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Abstract

In this paper, we develop new estimation results for functional regressions

where both the regressor Z(t) and the response Y (t) are functions of an index

such as the time or a spatial location. Both Z(t) and Y (t) are assumed to belong

to Hilbert spaces. The model can be thought as a generalization of the standard

regression where the regression coe¢ cient is now an unknown operator �. An

interesting feature of our model is that Y (t) depends not only on contemporaneous

Z(t) but also on past and future values of Z.

We propose to estimate the operator � by Tikhonov regularization, which

amounts to apply a penalty on the L2 norm of �. We derive the rate of convergence

of the mean-square error, the asymptotic distribution of the estimator, and develop

tests on �. Often, the full trajectories are not observed but only a discretized

version is available. We address this issue in the scenario where the data become

more and more frequent (in-�ll asymptotics). We also consider the case where Z

is endogenous and instrumental variables are used to estimate �.

KeyWords: Functional regression, instrumental variables, linear operator,Tikhonov

regularization
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1 Introduction

With the increase of storage capability, continuous time data are available in many

�elds including �nance, medecine, meteorology, and microeconometrics. Researchers,

companies, and governments look for ways to exploit this rich information. In this

paper, we develop new estimation results for functional regressions where both the

regressor Z(t) and the response Y (t) are functions of an index such as the time or

a spatial location. Both Z(t) and Y (t) are assumed to belong to Hilbert spaces. The

model can be thought as a generalization of the standard regression where the regression

coe¢ cient is now an unknown operator �. An interesting feature of our model is that

Y (t) depends not only on contemporaneous Z (t) but also on past and future values of

Z.

We propose to estimate the operator � by Tikhonov regularization, which amounts

to apply a penalty on the L2 norm of �. The choice of a L2 penalty, instead of L1 used

in Lasso, is motivated by the fact that - in the applications we have in mind - there is

no reason to believe that the relationship between Y and Z is sparse. We derive the

rate of convergence of the mean-square error (MSE) and the asymptotic distribution

of the estimator for a �xed � and develop tests on �. In some applications, it would

be interesting to test whether Y (t) depends only on the past values of Z or only on

contemporaneous of values Z. If the application is on network and t refers to the spatial

location, our model could describe how the behavior of a �rm Y (t) depends on the

decision of neighboring �rms Z (s). Testing properties of � will help to characterize the

strategic response of �rms.

Often, the full trajectories are not observed but only a discretized version is available.

This case raises speci�c challenges which will be addressed in the scenario where the

data become more and more frequent (in-�ll asymptotics).

We also consider the case where Z is endogenous and instrumental variables are used

to estimate �:

There is a large body of work done on linear functional regression where the response

is a scalar variable Y and the regressor is a function. Some recent references include

Cardo, Ferraty, and Sarda (2003), Hall and Horowitz (2007), Horowitz and Lee (2007),

Darolles, Fan, Florens and Renault (2011), and Crambes, Kneib, and Sarda (2009). In

contrast, only a few researchers have tackled the functional linear regression in which
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both the predictor Z and the response Y are random functions. The object of interest

is the estimation of the conditional expectation of Y given Z. In this setting, the

unknown parameter is an integral operator. This model is discussed in the monographs

by Ramsay and Silverman (2005) and Ferraty and Vieu (2006). Cuevas, Febrero, and

Fraiman (2002) consider a �xed design setting and propose an estimator of � based on

interpolation. Yao, Müller, and Wang (2005) consider the case where both predictor

and response trajectories are observed at discrete and irregularly spaced times. Their

estimator is based on spectral cut-o¤ regularized inverse using nonparametric estimators

of the principal components. Crambes and Mas (2013) consider again a spectral cut-o¤

regularized inverse and derive the asymptotic mean square prediction error which is

then used to derive the optimal choice of the regularization parameter. Antoch, Prchal,

Rosa, and Sarda (2010) use a functional linear regression with functional response to

forecast the electricity consumption. In their model, the weekday consumption curve is

explained by the curve from the previous week. The authors use B-spline to estimate

the operator.

The paper is organized as follows. Section 2 introduces the model and the estimators.

Section 3 derives the rate of convergence of the MSE. Section 4 presents the asymptotic

normality of the estimator for a �xed regularization parameter. Issues relative to the

choice of the regularization parameter are discussed in Section 5. Discrete observations

are addressed in Section 6. Section 7 considers an endogenous regressor. Section 8

presents simulation results. The proofs are collected in Appendix.

2 The model and estimator

2.1 The model

We consider a regression model where both the predictor and response are random

functions. We observe pairs of random trajectories (yi; zi) i = 1; 2; :::; n with square

integrable predictor trajectories zi and response trajectories yi: They are realizations

of random processes (Y; Z) with zero mean functions and unknow covariance operators.

The extension to the case, where the mean is unknown but estimated, is straightforward.

The arguments of Y and Z are denoted t which may refer to the time, a location or a

characteristic such as the age or income of an agent.
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We assume that Y belongs to a Hilbert space E equipped with an inner product h; i
and Z belongs to a Hilbert space F equipped with an inner product h; i (to simplify
notations, we use the same notation for both inner products even though they usually

di¤er).

The model is

Y = �Z + U (1)

where U is a zero mean random element of E and � is a nonrandom Hilbert-Schmidt

operator from F to E . Moreover, Z is exogenous so that cov (Z;U) = 0: This assumption
will be relaxed in Section 7.

For illustration, consider the following example

E =

�
g :

Z
S
g (t)2 dt <1

�
;

F =

�
f :

Z
T
f (t)2 dt <1

�
where S and T are some intervals of R. Then, � can be represented as an integral

operator such that

(�') (s) =

Z
T
� (s; t)' (t) dt

for any ' 2 F . � is referred to as the kernel of the operator �: Model (1) means that
Y (t) depends not only on Z (t) but also on all the Z (s), for s 6= t. The object of interest

is the estimation of the operator �.

2.2 The estimator

We denote VZ the operator from F to F which associates to functions ' 2 F :

VZ' = E [Z hZ;'i] :

Note that, as Z is centered, VZ is the covariance operator of Z. We denote CY Z the

covariance operator of (Y; Z). It is the operator from F to E such that

CY Z' = E [Y hZ;'i]
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Using (1), we have

cov (Y; Z) = cov (�Z + u; Z)

= �cov (Z;Z) + cov (u; Z) :

Hence, we have the following relationships:

CY Z = �VZ ; (2)

CZY = VZ�
� (3)

where �� is the adjoint of � . CZY is de�ned as the operator from E to F such that

CZY  = E [Z hY;  i]

for any  in E . Note that CZY is the adjoint of CY Z , C�Y Z :
First we describe how to estimate �� using (3). The unknown operators VZ and CZY

are replaced by their sample counterparts. The sample estimate of VZ is

V̂Z' =
1

n

nX
i=1

zi hzi; 'i

for ' 2 F . The sample estimate of CZY is

ĈZY  =
1

n

nX
i=1

zi hyi;  i

for  2 E . An estimator of �� can not be obtained directly by solving ĈZY = bVZ��
because the initial equation CZY = VZ�

� is an ill-posed problem in the sense that VZ
is invertible only on a subset of E and its inverse is not continuous. Note that V̂Z has
�nite rank equal to n and hence is not invertible. A Moore-Penrose generalized inverse

could be used but it would not be continuous. To stabilize the inverse, we need to use

some regularization scheme. We adopt Tikhonov regularization (see Kress, 1999 and

Carrasco, Florens, and Renault, 2007).
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The estimator of �� is de�ned as

�̂�� =
�
�I + V̂Z

��1
ĈZY (4)

and that of � is de�ned by

�̂� = ĈY Z

�
�I + V̂Z

��1
(5)

where � is some positive regularization parameter which will be allowed to converge to

zero as n goes to in�nity. The estimators (4) and (5) can be viewed as generalization of

ordinary least-squares estimators. They also have an interpretation as the solution to

an inverse problem.

At this stage, it is useful to make the link with the inverse problem literature. Let H
be the Hilbert space of linear Hilbert-Schmidt operators from F to E : The inner product
on H is

h�1;�2iH = tr (�1�
�
2) :

Dropping the error term in (1), we obtain, for the sample, the equation

r̂ = K�

where r̂ = (y1; :::; yn)
0 andK is the operator fromH to En such thatK� = (�z1; :::;�zn)0.

The inner product on En is

hf; giEn =
1

n

nX
i=1

hfi; giiE

with f = (f1; ::; fn)
0 and g = (g1; :::; gn)

0 : Let us check that �̂� is a classical Tikhonov

regularized inverse of the operator K:

�̂� = (�I +K�K)�1K�r̂:

We need to �nd K�. We look for the operator B from F to E solution of

hK�; fiEn = h�; BiH : (6)
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Note that

h�; BiH = tr (�B�)

=
X
j



�B�'j; 'j

�
=

X
j



B�'j;�

�'j
�

where 'j is a basis of E . On the other hand,

hK�; fiEn =
1

n

X
i

h�zi; fiiE

=
1

n

X
i

hzi;��fiiF :

Using fi =
P

j



fi; 'j

�
'j, we obtain

hK�; fiEn =
1

n

X
i

X
j



fi; 'j

� 

zi;�

�'j
�

=
X
j

*
1

n

X
i



fi; 'j

�
zi;�

�'j

+
:

It follows from (6) that B�'j =
1
n

P
i



fi; 'j

�
zi for all j and hence

B�' =
1

n

X
i

hfi; 'i zi

for all ' in E . Now, we look for B the adjoint of B�. B is the solution of

hB�'1; '2iF = h'1; B'2iE :

We have

hB�'1; '2iF =
1

n

X
i

hfi; '1i hzi; '2iF

=

*
'1;

1

n

X
i

hzi; '2i fi

+
E

:
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Hence,

B' = (K�f)' =
1

n

X
i

hzi; 'i fi:

We have

K�K� =
1

n

X
i

hzi; 'i�zi = �bVZ
and

K�r̂ =
1

n

X
i

hzi; :i yi = ĈY Z :

It follows that

�̂� = (�I +K�K)�1K�r̂

= ĈY Z

�
�I + V̂Z

��1
:

The estimator �̂� is also a penalized least-squares estimator:

�̂� = argmin
�
ky � �zk2 + � k�k2HS

= argmin
�

nX
i=1

kyi � �zik2 + �
X

~�2j

where ~�j are the singular values of the operator �.

2.3 Identi�cation

It is easier to study the identi�cation from the viewpoint of Equation (3). Let H be the

space of Hilbert-Schmidt operators from E to F . Let T be the operator from H to H
de�ned as

TH = VZH for H in H.

According to (3), �� is identi�ed if and only if T is injective.
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VZ injective implies T injective. Indeed, we have

TH = 0

, VZH = 0

, VZH = 0, 8 
, H = 0, 8 

by the injectivity of VZ . Hence H = 0. It turns out that T is injective if and only if VZ
is injective. This can be shown by deriving the spectrum of T .

First, we show that T is self-adjoint. The adjoint T � of T satis�es

hTH;Ki = hH;T �Ki

for arbitrary operators H and K of H. We have

hTH;Ki = tr (THK�)

= tr (VZHK
�)

= tr (HK�VZ)

because VZ is self-adjoint. Hence, T �K = (K�VZ)
� = VZK = TK: Therefore, T is

self-adjoint.

The spectrum of T is also closely related to that of VZ : Let
�
�j, Hj

�
j=1;2::::

denote

the eigenvalues and eigenfunctions of T and
�
�j; 'j

�
j=1;2;:::

be the eigenvalues and eigen-

functions of VZ so that VZ'j = �j'j. Hj is necessarily of the form, Hj = 'j h�; :i where
� is the 1 function in E . Then,

THj = VZ'j h�; :i
= �j'j h�; :i
= �jHj:

So that the eigenvalues of T are the same as those of VZ .

In summary, a necessary and su¢ cient condition for the identi�cation of � is that

VZ is injective.
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2.4 Computation of the estimator

To show how to compute �̂�� explicitly, we multiply the left and right of (4) by
�
�I + V̂Z

�
to obtain

ĈZY  =
�
�I + V̂Z

�
�̂�� ,

1

n

nX
i=1

zi hyi;  i = ��̂�� +
1

n

nX
i=1

zi

D
zi; �̂

�
� 
E
: (7)

Then, we take the inner product with zl, l = 1; 2; :::; n on the left and right hand side

of (7), to obtain n equations:

1

n

nX
i=1

hzl; zii hyi;  i = �
D
zl; �̂

�
� 
E
+
1

n

nX
i=1

hzl; zii
D
zi; �̂

�
� 
E
, l = 1; 2; :::; n; (8)

with n unknowns
D
zi; �̂

�
� 
E
; i = 1; 2; :::; n: LetM be the n�n matrix with (l; i) element

hzl; zii =n; v the n�vector of
D
zi; �̂

�
� 
E
and w the n�vector of hyi;  i. (8) is equivalent

to

Mw = (�I +M) v:

And v = (�I +M)�1Mw =M (�I +M)�1w. For a given  , we can compute:

�̂�� =
1

�n

nX
i=1

zi

�
hyi;  i �

D
zi; �̂

�
� 
E�

(9)

=
1

�n
z0
�
I �M (�I +M)�1

�
w

=
1

n
z0 (�I +M)�1w

where z is the n�vector of zi.
Now, we explain how to estimate �' for any ' 2 F . Taking the inner product with

9



' in the left and right hand sides of (9), we obtain

D
'; �̂�� 

E
=

1

�n

nX
i=1

h'; zii
�
hyi;  i �

D
zi; �̂

�
� 
E�
,

D
�̂�';  

E
=

1

�n

nX
i=1

h'; zii
D
yi � �̂�zi;  

E
for all  2 E . This implies

�̂�' =
1

�n

nX
i=1

h'; zii
�
yi � �̂�zi

�
: (10)

Hence, to compute �̂�', we need to know �̂�zi. From (5), we have

��̂� + �̂�V̂Z = ĈY Z :

Applying the l.h.s and r.h.s to zi, i = 1; 2; :::; n, we obtain

��̂�zi + �̂�V̂Zzi = ĈY Zzi ,

�
�
�̂�zi

�
(t) +

1

n

nX
j=1

�
�̂�zj

�
(t) hzj; zii =

1

n

nX
j=1

yj (t) hzj; zii , i = 1; 2; ::; n: (11)

For each t, we can solve the n equations with n unknowns
�
�̂�zj

�
(t) given by (11) and

deduct �̂�' from (10).

The prediction of Yi is given by

ŷi = �̂�zi:

3 Rate of convergence of the MSE

In this section, we study the rate of convergence of the mean square error (MSE) of �̂��:

Several assumptions are needed.

Assumption 1. Ui is a random process of E such thatE (Ui) = 0, cov(Ui; UjjZ1; Z2; :::; Zn) =
0 for all i 6= j and = VU for i = j where VU is a trace-class operator.
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Assumption 2. � belongs to H (F , E) the space of Hilbert-Schmidt operators.
Assumption 3. VZ is a trace-class operator and




V̂Z � VZ




2
HS
= Op (1=n) :

Assumption 4. There is a Hilbert-Schmidt operator R from E to F and a constant

� > 0 such that �� = V
�=2
Z R:

An operator K is trace-class if
P

j



K�j; �j

�
< 1 for any basis

�
�j
�
. If K is self-

adjoint positive de�nite, it is equivalent to say that the sum of the eigenvalues of K is

�nite. Given VU is a covariance operator, VU is trace-class if and only if E
�
kUik2

�
<1:

The notation kkHS refers to the Hilbert-Schmidt norm of operators. An operator K
is Hilbert-Schmidt (noted HS) if kKk2HS �

P
j



K�j; K�j

�
< 1 for any basis

�
�j
�
: If

K is self-adjoint positive de�nite, it is equivalent to the condition that the eigenvalues

of K are square summable. A su¢ cient condition for



V̂Z � VZ




2
HS
= Op (1=n) is that

Zi is a i.i.d. random process and E
�
kVik4

�
<1, see Proposition 5 of Dauxois, Pousse,

and Romain (1982).

Assumption 4 is a source condition needed to characterize the rate of convergence of

the MSE. Moreover, it guarantees that �� belongs to the orthogonal of the null space

of VZ denoted N (VZ). Given this condition, there is no need to impose N (VZ) = f0g
to get the identi�cation.

The MSE is de�ned by

E

�


�̂� � �


2
HS
jZ1; ::; Zn

�
:

Proposition 1 Under Assumption 3, �̂� belongs to H (F , E) for all � > 0.

Proof: See Appendix.

Replacing yi by �zi + ui in the expression of ĈZY , we obtain

ĈZY =
1

n

X
i

zi hyi; :i

=
1

n

X
i

zi hui; :i+
1

n

X
i

zi h�zi; :i

= ĈZU + V̂Z�
�:
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We decompose �̂�� � �� in the following manner:

�̂�� � �� =
�
�I + V̂Z

��1
ĈZY � ��

=
�
�I + V̂Z

��1
ĈZU (12)

+
�
�I + V̂Z

��1
V̂Z�

� � (�I + VZ)
�1 VZ�

� (13)

+(�I + VZ)
�1 VZ�

� � ��: (14)

To study the rate of convergence of the MSE, we will study the rates of the three terms

(12), (13), and (14).

Proposition 2 Assume Assumptions 1 to 4 hold.
If � > 1, then MSE=Op

�
1
n�
+ ��^2

�
:

If � < 1, then MSE=Op
�
��^2

n�2
+ ��^2

�
:

4 Asymptotic normality for �xed � and tests

Assumption 5. (Ui; Zi) are iid and E (UijZi) = 0:
Under Assumption 5 and some extra moment conditions (see Dauxois, Pousse, and

Romain (1982) and Mas (2006)), we have

p
n
�
V̂Z � VZ

�
d! N (0; KZ) ;

p
nĈZU

d! N (0; KZU)

where KZ and KZU are covariance operators and the convergence is either in the space

of Hilbert-space operators (Dauxois et al. 1982) or in the space of trace-class operators

(Mas, 2006). Moreover,
p
n
�
V̂Z � VZ

�
and

p
nĈZU are asymptotically independent.

In this section, we consider the case where � is �xed. In that case, �̂�� is not consistent

and keeps an asymptotic bias. It is useful to de�ne ��� the regularized version of �
� :

��� = (�I + VZ)
�1 VZ�

�:
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We have

�̂�� � ��� =
�
�I + V̂Z

��1
ĈZU

+
�
�I + V̂Z

��1
V̂Z�

� � (�I + VZ)
�1 VZ�

�

= (�I + VZ)
�1 ĈZU

+

��
�I + V̂Z

��1
� (�I + VZ)

�1
�
ĈZU

+�
�
�I + V̂Z

��1 �
VZ � V̂Z

�
(�I + VZ)

�1��

= (�I + VZ)
�1 ĈZU

+� (�I + VZ)
�1
�
V̂Z � VZ

�
(�I + VZ)

�1��

+Op

�
1

n

�
:

As n goes to in�nity, �̂������ converges to zero and is
p
n�asymptotically normal. The

�rst two terms of the r.h.s are Op (1=
p
n) and will a¤ect the asymptotic distribution.

This distribution is not simple.

We want to test the null hypothesis: H0 : � = �0 where �0 is known. A simple way

to test this hypothesis is to look at ĈZY � V̂Z�
�
0. Under H0, this operator equals ĈZU

and should be close to zero. Moreover, under H0;

p
n
�
ĈZY � V̂Z�

�
0

�
d! N (0; KZU)

where

KZU = E
�
(u
 Z) e
 (u
 Z)

�
and (x
 y) (f) = hx; fi y and

�
�1e
�2�T = hT;��1iH�2 (see Dauxois, Pousse, and

Romain, 1982)

Let
�
�j : j = 1; 2; :::; q

	
be a set of test functions, then26664
p
n
D�
ĈZY � V̂Z�

�
0

�
�1; �1

E
...

p
n
D�
ĈZY � V̂Z�

�
0

�
�q; �q

E
37775
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converges to a multivariate normal distribution with mean 0q and covariance matrix the

q � q matrix � with (j; l) element:

�jl = E
hDp

nĈZU�j; �j

EDp
nĈZU�l; �l

Ei
=



�j; VZ�l

� 

�j; VU�l

�
:

This covariance matrix can be easily estimated by replacing VZ and VU by their sample

counterpart. The appropriately rescaled quadratic form converges to a chi-square dis-

tribution with q degrees of freedom which can be used to test H0. The test functions

could be cumulative normals as in Conley, Hansen, Luttmer, and Scheinkman (1997) or

could be normal densities with same small variance but centered at di¤erent means.

5 Data-driven selection of �

The estimator involves a tuning parameter, �; which needs to be selected. It can be

chosen as the solution to

min
�

1

�




V̂Z�̂�� � ĈZY




2
HS

:

See Engl, Hanke, and Neubauer (2000, p.102).

Another possibility is to use leave-one-out cross-validation

min
�

1

n

X
j




yi � �̂(�i)� zi




2
where �̂(�i)� has been computed using all observations except for the ith one. Centorrino

(2014) studies the properties of the leave-one-out cross-validation for nonparametric IV

regression and shows that this criterion is rate optimal in mean squared error. This

method is also used in a binary response model by Centorrino and Florens (2014).

Various data-driven selection techniques are compared via simulations in Centorrino,

Fève, and Florens (2013).

An alternative approach would be to use a penalized minimum contrast criterion as

in Goldenshluger and Lepski (2011). This could lead to a minimax-optimal estimator

(Comte and Johannes, 2012).
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6 Discrete observations

In this section, to simplify the exposition, we will refer to the arguments of (yi; zi), t,

as time even though it could refer to a location or other characteristic. Suppose that

the data (yi; zi) are not observed in continuous time but at discrete (not necessarily

equally spaced) times. We use some smoothing to construct pairs of curves (ymi ; z
m
i ),

i = 1; 2; :::; n such that ymi 2 E and zmi 2 F . This smoothing can be obtained by approx-
imating the curves by step functions or kernel smoothing for instance. The subscript

m corresponds to the smallest number of discrete observations across i = 1; 2; :::; n: m

grows with the sample size n.

Using the smoothed observations, we compute the corresponding estimators of VZ
and CZY denoted V̂ m

Z , Ĉ
m
ZY and the estimator of �

� denoted �̂m�� :

�̂m�� =
�
�I + V̂ m

Z

��1
ĈmZY :

To assess the rate of convergence of �̂m�� , we add the following conditions which

guarantee that the discretization error is negligible with respect to the estimation error.

Assumption 6. kzmi � zik = Op (f (m)) and kymi � yik = Op (f (m)) :

Assumption 7.
f (m)

�n
= o

�
��^2

�
:

Proposition 3 Under Assumptions 1 to 4, 6, and 7, the MSE of �̂m�� � �� has the
same rate of convergence as that of the MSE of �̂�� � �� in Proposition 2.

7 Case where Z is endogenous

Now, assume Z is endogenous but we observe instrumental variables W such that

cov(U;W ) = 0. Hence, E ((Y � �Z) hW; :i) = 0: It follows that

CYW = �CZW (15)

where CYW = E (Y hW; :i) and CZW = E (Z hW; :i) : Similarly, we have

CWY = CWZ�
� (16)

15



where CWZ = E (W hZ; :i)
We need the following identi�cation conditions:

Assumption 8. CWZ is injective.

Under this assumption, � is uniquely de�ned from (15). To see this, assume that

there are two solutions �1 and �2 to (15). It follows that (�1 � �2)CZW = 0 or

equivalently CWZ (�
�
1 � ��2) = 0: Hence the range of (��1 � ��2) belongs to the null

space of CWZ . However, under Assumption 6, the null space of CWZ is reduced to zero

and thus the range of (��1 � ��2) is equal to zero. It follows that ��1'� ��2' = 0 for all
', hence ��1 = �

�
2:

To construct an estimator of ��, we �rst apply the operator CZW on the l.h.s and

r.h.s of Equation (16) to obtain

CZWCWY = CZWCWZ�
�:

Note that CZW = C�WZ and therefore the operator CZWCWZ is self-adjoint. The opera-

tors CZW ; CWZ , and CWY can be estimated by their sample counterparts. The estimator

of �� is de�ned by

�̂�� =
�
�I + ĈZW ĈWZ

��1
ĈZW ĈWY : (17)

Similarly, the estimator of � is given by

�̂� = ĈYW ĈWZ

�
�I + ĈZW ĈWZ

��1
:

Now, we explain how to compute �̂�� is practice. From (17), we have�
�I + ĈZW ĈWZ

�
�̂�� = ĈZW ĈWY  :

Note that

ĈZW ĈWY  =
1

n2

X
i;j

hyj;  i hwi; wji zi;

ĈZW ĈWZ�̂
�
� =

1

n2

X
i;j

D
zj; �̂

�
� 
E
hwi; wji zi:

16



Taking the inner product with zl yields n equations

�
D
zl; �̂

�
� 
E
+
1

n2

X
i;j

D
zj; �̂

�
� 
E
hwi; wji hzl; zii

=
1

n2

X
i;j

D
zj; �̂

�
� 
E
hwi; wji hzl; zii , l = 1; 2; :::; n

with n unknowns
D
zj; �̂

�
� 
E
; j = 1; 2; :::; n: Then, for each  , �̂�� can be computed

from

�̂�� =
1

�

h
ĈZW ĈWY  � ĈZW ĈWZ�̂

�
� 
i
:

The computation of �̂�' can be done using the same approach as in Section 2.

Assumption 9. CZWCWZ is a trace-class operator and



ĈZW ĈWZ � CZWCWZ




2
HS
=

Op (1=n) :

Assumption 10. There is a Hilbert-Schmidt operator R from E to F and a constant

� > 0 such that �� = (CZWCWZ)
�=2R:

We decompose �̂�� � �� in the following manner:

�̂�� � ��

=
�
�I + ĈZW ĈWZ

��1
ĈZW ĈWY � �� (18)

=
�
�I + ĈZW ĈWZ

��1
ĈZW ĈWU (19)

+
�
�I + ĈZW ĈWZ

��1
ĈZW ĈWZ�

� � (�I + CZWCWZ)
�1CZWCWZ�

� (20)

+(�I + CZWCWZ)
�1CZWCWZ�

� � ��: (21)

Proposition 4 Under Assumptions 1, 2, 8, 9, and 10, the MSE of �̂�� � �� has the
same rate of convergence as in Proposition 2.

8 Simulations

This section consists of a simulation study of the estimator presented earlier. Let E =
F = L2[0; 1] and S = T = [0; 1]. � is an integral operator from to L2[0; 1] to L2[0; 1]

17



with kernel �(s; t) = 1 � js � tj2.1 We consider an Ornstein-Uhlenbeck process with

zero mean and mean reversion rate equal to one to represent the error function. It is

described by the di¤erential equation dU(s) = �U(s)ds + �udGu(s), for s 2 [0; 1] and
where Gu is a Wiener process and �u denotes the standard deviation of its increments

dGu. Note that this error function is stationary.

We study the model

Yi = �Zi + Ui; i = 1; :::; n

in two di¤erent settings. First, we consider design functions uncorrelated to the error

functions (cov(U;Z) = 0), then investigate the case where Z is endogenous (cov(U;Z) 6=
0).

8.1 Exogenous predictor functions

We consider the design function

Zi(t) =
�(�i + �i)

�(�i) + �(�i)
t�i�1(1� t)�i�1 + �i

for t 2 [0; 1], with �i; �i � iid U [2; 5] and �i � iid N(0; 1), for all i = 1; :::; n. These

predictor functions are probability density functions of some random beta distributions

over the interval [0; 1], with an additive gaussian term.

The numerical simulation is performed as follows:

1. Construct both a pseudo-continuous interval of [0; 1], denoted T , consisting of
1000 equally-spaced discrete steps, and a discretized interval of [0; 1], denoted ~T ,
consisting of only 100 equally-spaced discrete steps.

2. Generate n predictor functions zi(t) and error functions ui(s), where t; s 2 T so

as to obtain pseudo-continuous functions.

3. Generate the n response functions yi(s) using the speci�ed model where s 2 T .

4. Generate the sample of n discretized pairs of functions (~zi; ~yi) by extracting the

corresponding values of the pairs (zi; yi) for all t; s 2 ~T .
1Simulations have also been performed using di¤erent kernels. In particular, we have considered

multiple kernels, allowing to include multiple functional predictors in a single functional model. Results
suggest that the performance of the estimator is analogous in "multivariate" functional linear regression.
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5. Estimate � using the regularization method on the sample of n pairs of functions

(~zi; ~yi) and a �xed smoothing parameter � = :01.

6. Repeat steps 2-5 100 times and calculate the MSE by averaging the quantities

k�̂� � �k2HS =
R
~T

R
~T
(�̂�(s; t)� �(s; t))2dtds over all repetitions.

All numerical integrations are performed using the trapezoidal rule (i.e. piecewise

linear interpolation) although it is possible to use other quadrature rules (such as another

Newton�Cotes rule or adaptive quadrature).2 In addition, the simulations of the sto-

chastic processes for the error terms are constructed using the Euler-Maruyama method

for approximating numerical solutions to stochastic di¤erential equations.

Figure 1 shows 10 discretized predictor functions (zi), Ornstein-Uhlenbeck error func-

tions for �u = 1 (ui), response functions (yi) and an example of a response function for

various values of �u.

Table 1 reports the MSE for 4 di¤erent sample sizes (n = 50; 100; 500; 1000) and 5

values of the standard deviation parameter (�u = 0:1; 0:25; 0:5; 1; 2). Naturally, the use

of a �xed smoothing parameter � = :01 that is independent of the sample size prevents

the MSE from converging towards zero. In fact, the MSE converges to k� � ��k2HS,
which is a measure of the squared bias introduced by the regularization method.3 The

last two columns of Table 1 report the true global (R2) and extended local ( ~R2) functional

coe¢ cients of determination, de�ned as

R2 =

R
S
var(E[Y (s)jZ])dsR
S
var(Y (s))ds

=

R
S
var(�Z(s))dsR
S
var(Y (s))ds

~R2 =

Z
S

var(E[Y (s)jZ])ds
var(Y (s))ds

=

Z
S

var(�Z(s))ds
var(Y (s))ds

;

2In practice, the nature of the functions of interest should provide guidance for the researcher with
regards to the selection of the appropriate integration method. As we study square integrable functions
in this setup, the trapezoidal rule allows reducing the discretization bias with respect to the rectangular
rule.

3The magnitude of this bias depends on both the design functions and the value of � since �� =
(�I + VZ)

�1Vz�. We perform Monte-Carlo simulations to approximate the regularized operator ��
using 100 random samples of 1000 zi�s.
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Figure 1: Examples of simulated functions (top left: discretized yi; top right: discretized
ui for �U = 1, bottom left: discretized zi, bottom right: a single yi for various �u ).
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which are directly related to those proposed in Yao, Muller and Wang (2005).4

Table 1: Simulation results: Mean-Square Errors over 100 replications
Errors std Sample sizes Squared bias Coef. of d.

n = 50 n = 100 n = 500 n = 1000 k�� ��k2HS R2 ~R2

�u = 0:1 .0154 .0135 .0126 .0124 .0095 .995 .995
(.0027) (.0017) (.0008) (.0005)

�u = 0:25 .0291 .0205 .0138 .0130 .0095 .976 .976
(.0098) (.0063) (.0022) (.0013)

�u = 0:5 .0773 .0438 .0194 .0156 .0095 .910 .911
(.0363) (.0193) (.0057) (.0028)

�u = 1 .2909 .1354 .0371 .0257 .0095 .712 .724
(.1789) (.0659) (.0161) (.0089)

�u = 2 .9128 .4755 .1245 .0668 .0095 .383 .423
(.5495) (.2607) (.0660) (.0378)

Note: Standard deviations are reported in parentheses.

Simulations results are in line with the theoretical results. We observe that, for a

�xed �, the MSE converges to the squared bias and its variance shrinks as the sample

size grows. Further, the coe¢ cients of determination decrease as the error function�s

standard deviation parameter increases, since the estimation is made more di¢ cult.

For illustration purposes, we provide two sets of surface plots. Figure 2 shows 3D-

plots of the actual kernel (top-left), the regularized kernel (top-right), their superposition

(bottom-left) and the bias computed as their di¤erence (bottom-right). The Tikhonov

regularization appears to introduce most of the bias on the edges of the kernel.

Figure 3 shows the mean estimated kernel for n = 500 and Ornstein-Uhlenbeck errors

with �u = 1 (top-left), against the true kernel (bottom-left), against the regularized

kernel (top-right), and its mean errors with respect to the true kernel (bottom-right).

One may observe that the mean estimate is relatively close to the regularized kernel.

However it does not perform well on the edges when compared to the true kernel.

4These true coe¢ cients are approximated by their mean values using 1000 random functions over
100 simulations. In practice (when the true � is unknown) it is possible to use a consistent estimators
of those coe¢ cients by using �̂� and the sample counterpart of variance operators.
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Figure 2: True kernel vs. regularized kernel (top left: True; top right: Regularized,
bottom left: True vs. regularized, bottom right: Bias).
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Figure 3: True kernel vs. mean estimate (100 runs with n = 500, �u = 1) (top left:
Mean estimate, top right: Regularized vs. mean estimate, bottom left: True vs. mean
estimate, bottom right: Mean errors)
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Let us now turn to the case where Z is endogenous.

8.2 Endogenous predictor functions

We consider the design function

Zi(t) = bWi(t) + �i(t);

where �i(t) = aUi(t) + c�i(t) and the instrument wi is de�ned as

Wi(t) =
�(�i + �i)

�(�i) + �(�i)
t�i�1(1� t)�i�1 + �i

for t 2 [0; 1], �i; �i � iid U [2; 5] and �i � iid N(0; 1), for all i = 1; :::; n. Moreover,

Ui and "i are Ornstein-Uhlenbeck processes with standard deviation parameters �u =

�" = 1. It is easily shown that �i is also an Ornstein-Uhlenbeck process with unit mean-

reversion rate described by the di¤erential equation d�(t) = ��(t)+
p
a2�2u + c2�2"dG�(t).

We further assume a = 1, b 2 [0; 1] and c such that
R
S
var(Y (s))ds is unchanged as b

varies.5 Hence, the choice of b amounts to that of the instrument�s strength.

The numerical simulation design is slightly modi�ed so as to incorporate the gener-

ation of the instruments W and the dependence between Z and U :

1. Construct both a pseudo-continuous interval of [0; 1], denoted T , consisting of
1000 equally-spaced discrete steps, and a discretized interval of [0; 1], denoted ~T ,
consisting of only 100 equally-spaced discrete steps.

2. Generate n instrument functions wi(t) and error functions ui(s) and "i(s), where

t; s 2 T so as to obtain pseudo-continuous functions.

3. Generate n predictor functions zi(t) using the design speci�ed above, where t; s 2
T so as to obtain pseudo-continuous functions.

4. Generate the n response functions yi(s) using the speci�ed model where s 2 T .
5This assumption allows to keep the variance of Y stable when varying instrument strength. It

implies c =

s
1 + (1� b2)

R
S
(var(�W (s))dsR
S
var(�"(s))ds .
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5. Generate the sample of n discretized pairs of functions ( ~wi; ~zi; ~yi) by extracting

the corresponding values of the pairs (wi; zi; yi) for all t; s 2 ~T .

6. Estimate � using the regularization method on the sample of n triplets of functions

( ~wi; ~zi; ~yi) and a �xed smoothing parameter � = :01.

7. Repeat steps 2-5 100 times and calculate the MSE by averaging the quantities

k�̂� � �k2HS =
R
~T

R
~T
(�̂�(s; t)� �(s; t))2dtds over all repetitions.

Table 2 reports the MSE for 4 di¤erent sample sizes (n = 50; 100; 500; 1000) and

4 values of b when estimating the model without accounting for the endogeneity of Z.

Unsurprisingly, the estimation errors are important. The squared bias is smaller to that

of the previous design and decreases with b. The last two columns report R2 and ~R2 for

the full model. They are relatively stable since
R
S
var(Y (s))ds is �xed.

Table 2: Non-IV estimator: Mean-Square Errors over 100 replications
Instr. strength Sample sizes Squared bias Coef. of deter.

n = 50 n = 100 n = 500 n = 1000 k�� ��k2HS R2 ~R2

b = 0:25 2.4834 1.4642 .4690 .3214 .0060 .5144 .5461
(c = 2:3) (.4678) (.2011) (.0435) (.0317)
b = 0:5 2.3346 1.4504 .5826 .4541 .0027 .5140 .5450
(c = 1:96) (.4014) (.2416) (.0679) (.0460)
b = 0:75 2.1858 1.5363 .8535 .7529 .0011 .5294 .5591
(c = 1:55) (.4825) (.2974) (.1027) (.0640)
b = 1 2.4219 2.0547 1.6583 1.6310 .0006 .5633 .5919
(c = 1) (.5305) (.3525) (.1581) (.1121)
Note: Standard deviations are reported in parentheses.

We now turn to the simulations results for the IV estimator. Table 3 reports the

MSE�s along with R2 and the squared regularization biases. Squared biases are fairly

small in this setup. This is related to the covariance operator of the predictor functions.

R2FS denotes the �rst-stage regression�s coe¢ cient of determination. It shows how b

relates to the instrument�s strength. Naturally, weaker instruments are associated with

larger MSE�s, although the spread seems to vanish rather quickly in this setup.
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Table 3: IV estimator: Mean-Square Errors over 100 replications
Instr. str. Sample sizes Squared bias Coef. of d.

n = 50 n = 100 n = 500 n = 1000 k�� ��k2HS R2 R2FS
b = 0:25 .2383 .1710 .0752 .0542 .0060 .0175 .0246
(c = 2:3) (.2019) (.1422) (.0779) (.0209)
b = 0:5 .1040 .0619 .0315 .0276 .0027 .0737 .1092
(c = 1:96) (.0859) (.0349) (.0099) (.0053)
b = 0:75 .0682 .0444 .0242 .0216 .0011 .1767 .2683
(c = 1:55) (.0364) (.0203) (.0044) (.0028)
b = 1 .0466 .0330 .0211 .0199 .0006 .3287 .5048
(c = 1) (.0244) (.0138) (.0029) (.0021)
Note: Standard deviations are reported in parentheses.

For comparisons with the exogenous case, we provide a �nal set of surface plots.

Figure 4 shows 3D-plots of the mean IV estimated kernel (top-left), the mean non-IV

(top-right), the superposition of the mean IV and the true kernels (bottom-left) and

the mean estimation errors computed as the di¤erence between the true kernel and the

mean IV estimate (bottom-right). Note that the mean IV estimate is relatively close

to the actual kernel, whereas the estimate when neglecting endogeneity exhibits a large

bias.

A Appendix. Proofs

Proof of Proposition 1.
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Figure 4: True kernel vs. mean IV estimate (100 runs with n = 500, �u = 1 and
b = 0:75) (top left: Mean estimated IV; top right: Mean estimated non-IV, bottom left:
True vs. mean IV estimate, bottom right: Mean IV errors)
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using the fact that, if A is a HS operator and B is a bounded operator, kABkHS �
kAkHS kBkop where kBkop � supk�k�1 kB�k is the operator norm. Then, we have


�̂�


2

HS
� 1

�




ĈY Z


2
HS

:

It remains to show that ĈY Z is a HS operator. ĈY Z is an integral operator with degen-

erate kernel 1
n

Pn
i=1 yi (s) zi (t). A su¢ cient condition for ĈY Z to be HS is that its kernel

is square integrable which is true because Yi and Zi are elements of Hilbert spaces. The

result of Proposition 1 follows.

Proof of Proposition 2. To prove Proposition 2, we need two preliminary lemmas.

Lemma 5 Let A = B + C where B is a zero mean random operator and C is a non-

random operator. Then,

E
�
kAk2HS

�
= E

�
kBk2HS

�
+ kCk2HS :

Proof of Lemma 5.

E
�
kAk2HS

�
= E

 X
j



A�j; A�j

�!

= E

 X
j



A�A�j; �j

�!

= E

 X
j



(B + C)� (B + C)�j; �j

�!

= E

 X
j



B�B�j; �j

�!

+E

 X
j



C�B�j; �j

�!

+E

 X
j



B�C�j; �j

�!

+E

 X
j



C�C�j; �j

�!
:
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The second and third terms on the r.h.s are equal to zero because E (B) = 0 and C is

deterministic. We obtain E
�
kAk2HS

�
= E

�
kBk2HS

�
+ kCk2HS :

Lemma 6 Let A be a random operator from E to F .

E
�
kAk2HS

�
= trE (A�A) :

Proof of Lemma 6. We have

E
�
kAk2HS

�
= E

 X
j



A�A�j; �j

�!
=

X
j



E (A�A)�j; �j

�
= trE (A�A) :

We turn to the proof of Proposition 2. Applying Lemma 5 on the decomposition

(12), (13), and (14), we have

E

�


�̂� � �


2
HS
jZ1; Z2; :::; Zn

�
= E

�
k(12)k2HS jZ1; Z2; :::; Zn

�
+ k(13) + (14)k2HS

� E
�
k(12)k2HS jZ1; Z2; :::; Zn

�
+ 2 k(13)k2HS + 2 k(14)k

2
HS :

We study the �rst term of the r.h.s. By Lemma 6,

E
�
k(12)k2HS jZ1; Z2; :::; Zn

�
= E

 



��I + V̂Z

��1
ĈZU





2
HS

jZ1; Z2; :::; Zn

!

= trE

��
�I + V̂Z

��1
ĈZU Ĉ

�
ZU

�
�I + V̂Z

��1
jZ1; Z2; :::; Zn

�
= tr

��
�I + V̂Z

��1
E
�
ĈZU Ĉ

�
ZU jZ1; Z2; :::; Zn

��
�I + V̂Z

��1�
:
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Note that

ĈZU Ĉ
�
ZU' =

1

n2

X
i;j

zi hzj; 'i hui; uji ;

E
�
ĈZU Ĉ

�
ZU'jZ1; Z2; :::; Zn

�
=

1

n

X
i

zi hzi; 'iE [hui; uii jZ1; Z2; :::; Zn]

=
1

n

X
i

zi hzi; 'i tr (VU)

=
1

n
tr (VU) V̂Z'

because the ui are uncorrelated. To see that E [hu; ui] = trVU , decompose u on the

basis formed by the eigenfunctions  j of VU so that u =
P

j



u;  j

�
 j. It follows that

hu; ui =
P

j



u;  j

�2
and E hu; ui =

P
j



VU j;  j

�
= tr (VU) : Hence,

E
�
k(12)k2HS jZ1; Z2; :::; Zn

�
=

1

n
tr (VU) tr

��
�I + V̂Z

��1
V̂Z

�
�I + V̂Z

��1�
� C

n�

where C is a generic constant. It follows that E
�
k(12)k2HS

�
� C

n�
:

Now, we turn toward the term (13). We have�
�I + V̂Z

��1
V̂Z�

� � (�I + VZ)
�1 VZ�

�

=

�
�
�
I �

�
�I + V̂Z

��1
V̂Z

�
+
�
I � (�I + VZ)

�1 VZ
��
��:

Using I =
�
�I + V̂Z

��1 �
�I + V̂Z

�
, we obtain

I �
�
�I + V̂Z

��1
V̂Z = �

�
�I + V̂Z

��1
:

Hence,

(13) =

�
��
�
�I + V̂Z

��1
+ � (�I + VZ)

�1
�
��

=
�
�I + V̂Z

��1 �
VZ � V̂Z

�
� (�I + VZ)

�1��
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where the last equality follows from A�1 �B�1 = A�1 (A�B)B�1:

Now, we have 



��I + V̂Z

��1 �
VZ � V̂Z

�
� (�I + VZ)

�1��




2
HS

�




��I + V̂Z

��1



2
op




�VZ � V̂Z

�


2
op



� (�I + VZ)
�1��



2
HS

where





��I + V̂Z

��1



2
op

� 1=�2,



�VZ � V̂Z

�


2
op
= Op (1=n) by Assumption 2 and

� (�I + VZ)

�1��


2
HS
= O

�
��^2

�
:

If � > 1 then the term corresponding to (13) is negligeable with respect to (12). If

� < 1; then (12) is negligeable with respect to (13).

Now, we turn our attention toward the term (14). We have

(�I + VZ)
�1 VZ�

� � ��

= (�I + VZ)
�1 (VZ � �I � VZ)�

�

= � (�I + VZ)
�1��

= � (�I + VZ)
�1 V

�=2
Z R

by Assumption 4. Let
�
�j; 'j

	
be the eigenvalues and orthonormal eigenfunctions of

VZ : 


� (�I + VZ)
�1 V

�=2
Z R




2
HS

= �2
X
j

D
(�I + VZ)

�1 V
�=2
Z R'j; (�I + VZ)

�1 V
�=2
Z R'j

E
= �2

X
j

��j

(�j + �)2


R'j; R'j

�2
� �2 sup

�

��

(�+ �)2

X
j



R'j; R'j

�2
= O

�
��^2

�
:

The last equality follows from the fact that
P

j



R'j; R'j

�2
= kRk2HS <1 and, using

31



the notation � = �2, we have

sup
�

�2��

(�+ �)2
= sup

�

�2�2�

(�2 + �)2
= O

�
��^2

�
by Carrasco, Florens, and Renault (2007, Proposition 3.11). Consequently,


� (�I + VZ)

�1 V
�=2
Z R




2
HS
= O

�
��^2

�
:

This concludes the proof of Proposition 2.

Proof of Proposition 3.
We have

�̂m�� � �� = �̂m�� � �̂�� + �̂�� � ��:

We focus on the term �̂m�� � �̂��.

�̂m�� � �̂�� =
�
�I + V̂ m

Z

��1
ĈmZY �

�
�I + V̂Z

��1
ĈZY

=
�
�I + V̂ m

Z

��1 �
ĈmZY � ĈZY

�
+

��
�I + V̂ m

Z

��1
�
�
�I + V̂Z

��1�
ĈZY :




ĈmZY � ĈZY




2
HS

=






 1n
nX
i=1

zmi hymi ; :i �
1

n

nX
i=1

zi hyi; :i






2

HS

=






 1n
nX
i=1

f(zmi � zi) hyi; :i+ zmi hymi � yi; :ig






2

HS

� 2

n2

nX
i=1

�
k(zmi � zi) hyi; :ik2HS + kzmi hymi � yi; :ik2HS

	
:

k(zmi � zi) hyi; :ik2HS =
X
j



(zmi � zi)



yi; �j

�
; (zmi � zi)



yi; �j

��
= kzmi � zik2

X
j



yi; �j

�2
= Op

�
f (m)2

�
:
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kzmi hymi � yi; :ik2HS =
X
j



zmi


ymi � yi; �j

�
; zmi



ymi � yi; �j

��
= kzmi k

2
X
j



ymi � yi; �j

�2
= kzmi k

2 kymi � yik2

= Op
�
f (m)2

�
:

Hence, 



��I + V̂ m
Z

��1 �
ĈmZY � ĈZY

�



2
HS

= Op

 
f (m)2

�2n2

!
:

��
�I + V̂ m

Z

��1
�
�
�I + V̂Z

��1�
ĈZY

=
�
�I + V̂ m

Z

��1 �
V̂Z � V̂ m

Z

��
�I + V̂Z

��1
ĈZY

=
�
�I + V̂ m

Z

��1 �
V̂Z � V̂ m

Z

�
�̂��:

Hence, 



��I + V̂ m
Z

��1 �
V̂Z � V̂ m

Z

�
�̂��





2
HS

= Op

 
f (m)2

�2n2

!
:

This concludes the proof of Proposition 3.
Proof of Proposition 4. Using the fact that ka+ b+ ck2HS � 3

�
kak2HS + kbk

2
HS + kck

2
HS

�
;

we can evaluate the terms (19), (20), and (21) separately. The proof follows closely that

of Proposition 2. Let Z andW be the sets (Z1; Z2; :::; Zn) and (W1;W2; :::;Wn) :

E
�
k(19)k2HS jZ;W

�
= tr

��
�I + ĈZW ĈWZ

��1
ĈZWE

�
ĈWU ĈUW jZ;W

�
ĈWZ

�
�I + ĈZW ĈWZ

��1�
:

Using

E
�
ĈWU ĈUW jZ;W

�
=
1

n
tr (VU) V̂W ;

we obtain

E
�
k(19)k2HS

�
� C

n�

33



for some constant C:

The proof regarding the rates of convergence of (20) and (21) is similar to that of

Proposition 2 and is not repeated here.
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