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Abstract

We show that the folk theorem generically holds for the repeated two-player game with pri-
vate monitoring if the support of each player’s signal distribution is sufficiently large. Neither
cheap talk communication nor public randomization is necessary.
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1 Introduction

A possibility of tacit collusion when a party observes only private signals about the other parties’
actions has been a long-standing open problem. |Stigler (1964) considers a case in which a firm can
cut the price secretly and conjectures that, since the coordination on the punishment is difficult with
private signals, policing an implicit collusive agreement (punishing a deviator from the agreement,)
does not work effectively. Harrington and Skrzypacz| (2011)) examine a recent cartel agreement, and
construct a model to replicate how the firms police the agreement. Since their equilibrium requires
cheat-talk communication and monetary transfer, they show the possibility of explicit collusion,
rather than tacit collusion. A theoretical possibility of tacit collusion is, therefore, yet to be
proven/|

The literature on infinitely repeated games offers a theoretical framework to study tacit collusion.
One of the key findings is the folk theorem: Any feasible and individually rational payoff profile
can be sustained in equilibrium when players are sufficiently patient. This implies that sufficiently
patient firms can sustain tacit collusion to obtain any feasible and individually rational payoff.
Fudenberg and Maskin| (1986) establish the folk theorem under perfect monitoring, in which players
can directly observe the action profile. |Fudenberg, Levine, and Maskin (1994) extend the folk
theorem to imperfect public monitoring, in which players can observe only public noisy signals
about the action profile.

It has been an open question whether the folk theorem holds in general private monitoring,
in which players observe private noisy signals about other players’ actions. Matsushima| (2004),
Horner and Olszewski (2006]), Horner and Olszewski| (2009), and [Yamamoto| (2012)) show the folk
theorem in restricted classes of private monitoring (see below for details), but little is known about
general private monitoring.

The objective of this paper is to solve this open problem: In general private monitoring with
discounting’] the folk theorem holds in the two-player game. Specifically, we identify sufficient
conditions with which the folk theorem holds, and show that these sufficient conditions generically

hold in private monitoring. In our equilibrium, we use neither cheap-talk communication nor

! Another area where private signals are important is team-production. If each agent in a team subjectively
evaluates how the other agents contribute to the production, then seeing subjective evaluation as a private signal,
the situation is modeled as repeated games with private monitoring.

2See [Lehrer| (1990) for the case with no discounting.



public randomizationﬂ Furthermore, in the companion paper Sugayal (2012)), we generalize our
equilibrium construction to a general game with more than two players.

We now discuss papers about the folk theorem(| and then illustrate how we prove the folk
theorem, built upon the pre-existing work. The driving force of the folk theorem is reciprocity:
If a player deviates today, she will be punished in the future (Stigler (1964) call this reciprocity
“policing the agreement”). For this mechanism to work, each player needs to coordinate her action
with the other players’ histories. Whether the players achieve coordination depends on the players’
information and thus on the monitoring structure.

Fudenberg and Maskin| (1986)) establish the folk theorem under perfect monitoring. Because the
histories are common knowledge in perfect monitoring, each player can coordinate her continuation
strategy with the other players’ histories. |Fudenberg, Levine, and Maskin (1994) extend the
folk theorem to imperfect public monitoring by focusing on the equilibrium in which each player’s
continuation strategy depends only on past public signals. Because the histories of public signals
are common knowledge, players can coordinate their continuation play through public signals.

On the other hand, in general private monitoring, each player’s actions and signals are her
private information, so players do not share common information about the histories. Hence, the
coordination becomes complicated as periods proceed. This is why |Stigler| (1964)) conjectures that
collusion is impossible with general private monitoring.

If monitoring is almost public, then players believe that every player observes the same signal
with a high probability. Hence, almost common knowledge about finite-past histories exists. This
almost common knowledge enables [Horner and Olszewski| (2009) to show the folk theorem in almost
public monitoring.

Without almost public monitoring, almost common knowledge may not exist, and coordination
is difficult. To deal with this difficulty, Piccione (2002) and |[Ely and Viliméki (2002)) focus on
a tractable class of equilibria, a “belief-free equilibrium.” A strategy profile is belief free if, after
each history profile, the continuation strategy of each player is optimal, conditional on the histories
of the opponents. Hence, coordination is not an issue. |Piccione| (2002) and |Ely and Vélimiki

(2002) show that the belief-free equilibrium sustains the set of feasible and individually rational

3There are papers that prove folk theorems in private monitoring with cheap-talk or mediated communication
(explicit collusion). See, for example, |(Compte (1998), [Kandori and Matsushimal (1998), |Aoyagil (2002), |Aoyagi
(2005), [Fudenberg and Levine| (2007)), |Obaral (2009), Rahman| (2014), and Renault and Tomala| (2004).

“See also |[Kandori (2002) and [Mailath and Samuelson| (2006) for a survey.



payoffs in the two-player prisoners’ dilemma with almost perfect monitoringPf| However, with
general monitoring or in a general game beyond prisoners’ dilemma, the belief-free equilibrium
cannot sustain the folk theorem. See|Ely, Horner, and Olszewski (2005) and |Yamamoto (2009) for
the formal proof. Hence, there are two ways to generalize the belief-free equilibrium: One is to
keep prisoners’ dilemma payoff structure and to consider noisy monitoring; and the other is to keep
almost perfect monitoring and to consider a more general stage game.

The former approach by Matsushima (2004) and [Yamamoto (2012)) recovers the precision of the
monitoring, assuming that monitoring is not perfect but conditionally independent: Conditional
on action profiles, the players observe statistically independent signals. The idea is to replace one
period in the equilibrium of Ely and Véliméki (2002)) with a long T-period review phase. When
we aggregate information over a long phase and rely on the law of large numbers, we can recover
the precision of the monitoring.

To see the obstacle to further generalize their result to general monitoring with correlated
signals, let us explain their equilibrium construction in the two-player prisoners’ dilemma in which
each player has two signals, good and bad. Suppose that with player i’s cooperation, player j # i
observes a good signal g; with 60%, while with player i’s defection, player j observes a bad signal
b; with 60%. To achieve approximately efficient equilibrium, player j should not punish player 7 if
she observes g; for more than (0.6 4+ ¢) 7" times during a review phase with a small . Note that
by the central limit theorem, 0.67" is what player j can expect from player i’s cooperation.

Suppose now we are close to the end of a review phase. If player i’s signals are correlated with
player j’s, then after rare histories, player ¢« may believe that, given her own history and correlation,
player j has already observed g; for more than (0.6 +¢)7 times. After such a history, player i
may want to switch to defection. (If signals are conditionally independent, then player i after
each history always believes that player j observes g; at most (0.6 + )7 times with a very high
probability. Hence, switching does not happen.)

Once player i switches her action based on her history, player j wants to learn player i’s switch

of actions via player j’s private signals. Note that player 7 reviews player j’s actions by player

%See [Yamamoto| (2007)) for the N-player prisoners’ dilemma.

9Kandori and Obaral (2006) use a similar concept to analyze a private strategy in public monitoring. Kandori
(2011) considers “weakly belief-free equilibria,” which is a generalization of belief-free equilibria. Apart from a
typical repeated-game setting, Takahashi (2010]) and |Deb|(2011)) consider the community enforcement, and [Miyagawa,
Miyahara, and Sekiguchi (2008) consider the situation in which a player can improve the precision of monitoring by
paying a cost.



7’s history and that player j wants to know how player ¢ has reviewed player j so far. Player
1’s switch of actions is informative about her history and so about how she has reviewed player j.
Recursively, if a player switches actions, then we have to deal with a high order belief about each
player’s history.

To deal with this problem, in our equilibrium, we divide a review phase into multiple review
rounds. If the division is fine enough, we can make sure that the switch of actions only happens
at the beginning of the review round. In addition, before each review round, player j tells player ¢
whether player ¢ should switch the actions. (Apart from the issue of player j’s incentive to tell the
truth,) if this communication is successful, then player i does not need to learn player j’s switches.
Since we do not assume cheap talk, this communication is done by player j taking different actions
to send different messages. Since player i infers player j’s actions (messages) from noisy private
signals, player ¢ may make a mistake and player j may not realize player i’s mistake. In Section
[10, we construct a module for a player to send the other player a message by taking actions with
noisy private signals, so that, if player ¢ suspects that she made a mistake, then she believes that
player j has “realized” the mistake.

The latter approach is to generalize Ely and Viliméiki (2002) to a general stage game (here we
focus on two-player games), keeping monitoring almost perfect. In the belief-free equilibrium in
Ely and Vilimiki (2002)), in each period, each player i picks a state x; that can be G' (good) or B
(bad). In each period, given state z; € {G, B}, player i takes a mixed action o;(z;). Together
with the state transition, they make sure that, for each state of the opponent z; € {G, B}, both
0;(G) and o;(B) are optimal conditional on z;.

A reason why the belief-free equilibrium in [Ely and Viliméki (2002)) cannot sustain the folk
theorem in a general game is that it is hard for player j with ¢;(B) to punish player ¢ severely
enough after a signal which statistically indicates her deviation, at the same time keeping both
0j(G) and 0,(B) optimal against both z; = G and z; = B and keeping the equilibrium payoff with
x; = x; = G sufficiently high.

Horner and Olszewski (2006) overcome this difficulty as follows: They divide the repeated game
into L-period phases[] In each phase, each player i picks a state x; € {G, B}. In each phase,
given state z; € {G, B}, player i takes an L-period dynamic strategy o;(z;). Again, for each

"They use the term T-period blocks, but we use L and phases instead, in order to make the terminology consistent
within the paper.



state of the opponent z; € {G, B}, both 0;(G) and o;(B) are optimal conditional on z; at the
beginning of review phase. However, within a phase, since the players coordinate on x by taking
actions at the beginning of the phase, it is optimal to adhere to o;(z;) once player i takes an action
corresponding to o;(x;) at the beginning of the phase. Having L periods in the phase, they can
create a severe punishment by letting player j with o;(B) switch to a minimax strategy after a
signal which statistically indicates the opponent’s deviation. Moreover, since the switch happens
only after a rare signal which indicates a deviation, we can keep the payoff of ¢;(B) (and that of
0j(G) in order to keep belief-free property at the beginning of the phase) sufficiently high given
r; = G.

There are two difficulties to generalize their construction to general monitoring: With general
monitoring, the coordination on x by taking actions becomes harder since the actions are less
precisely observed. Second, as seen in the case with | Matsushimal (2004), since each player switches
actions based on past signals, each player may start to learn the opponent’s history by observing
each other’s switches via noisy signals. This learning becomes complicated with noisy signals.
Again, by using the module to send a message by taking actions with noisy private signals, we
make sure that the players can coordinate on z and learning does not change the player’s optimal
strategy.

In total, combining Matsushima| (2004) and Horner and Olszewski (2006), we construct a fol-
lowing equilibrium: We divide the repeated game into long review phases. At the beginning of the
phase, the players coordinate on z by using the module to send messages via taking actions. Then,
we have L review rounds. These review rounds serve two roles: One is to allow player i to switch
actions when she believes that the opponent has observed a lot of good signals in order to deal with
conditionally dependent signals. The other is to allow player j to switch to a minimaxing action
when she observes a lot of signals statistically indicating the opponent’s deviation as in Hoérner and
Olszewski| (2006). Relatedly, player i also switches her own actions to take a best response against
player j’s minimaxing strategy, when player j switches to the minimaxing actions. To coordinate
these switches, before each review rounds, the players communicate about the continuation play
again by the module to send messages via taking actions. The module and communication are
designed carefully so that learning from the opponent’s actions in the review round does not change
the optimal action within the review round.

The rest of the paper is organized as follows. In Section [2, we introduce the model, and in
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Section [3, we state assumptions and result (folk theorem). The rest of the paper proves the folk
theorem.

(After giving a short roadmap of the proof in Section [)), in Section [5 we derive the sufficient
conditions in a finitely repeated game without discounting such that, once we prove the sufficient
conditions, then it implies that the folk theorem holds in the infinitely repeated game with dis-
counting. From there on, we focus on proving these sufficient conditions.

Section @, we define multiple variables, with which Section [7| pins down the structure (of the
strategy) of the finitely repeated game.

(After giving another short roadmap in Section [§]) since the rest of the proof is long and
complicated, we first offer the overview in Section[J} Then, we prove two modules which may be of
their own interests. Section [10]defines the module for player j to send a binary message m € {G, B}
to player ¢. Section [11] defines the module that will be used for the equilibrium construction of the
review round. Given these modules, we explain how to use these modules to prove the sufficient
conditions in Section [12|

Sections actually prove the sufficient conditions. (See Section|12|for the structure of these
sections.) Since the entire proof is long, in Sections , we summarize each step as lemmas and of-
fer the intuitive explanation of the proof, relegating the technical proof to Appendix (online appen-
dix). In addition, we offer the table of notation in Appendix Appendices [A| and [B| are provided
as supplemental materials for the submission. In case the referees are not provided the supplemental

materials, the online appendix is also available at https: //sites.google.com /site/takuosugaya/home /research.

2 Model

2.1 Stage Game

We consider a two-player game with private monitoring. The stage game is given by {I, {A;,
Yitier, q}. Here, I = {1,2} is the set of players, A; is the finite set of player i’s pure actions, and
Y; is the finite set of player i’s private signals.

In every stage game, player ¢ chooses an action a; € A;, which induces an action profile a =

(a1,a2) € A=T[,c; Ai. Then, a signal profile y = (y1,12) € Y =[], Yi is realized according to a

el

joint conditional probability function ¢ (y | @). Summing up these probabilities with respect to y;,



let i(yi | @) = X, ev, a(y | a) denote the marginal distribution of player i’s signals. Throughout
the paper, when we say players 7 and j, players ¢ and j are different: ¢ # j.

Following the convention in the literature, we assume that player i’s ex post utility is a deter-
ministic function of player i’s action a; and her private signal 3;. This implies that observing her
own ex post utility does not give player i any further information than (a;,y;)F| Let @;(a;,y:) be
player i’s ex post payoff. Taking the expectation of the ex post payoff, we can derive player i’s
expected payoff from a € A: u; (a) =3, . ¢i(yi | @)ii(ai, yi).

Let F* be the set of feasible and individually rational payoffs:

= D > i (a;, ;) forallie I ;. 1
F {v € co({u(a)}taca) : v; —ajgil(rqu)gleajiu’(a“a]) orall i € } (1)

Let o™ be the minimax strategy.

2.2 Repeated Game

Consider the infinitely repeated game with the (common) discount factor 6 € (0,1). Let hl =
(a;r, yi77)i;11 with h! = {0} be player i’s history in period ¢; and let H} be the set of all the possible
histories of player ¢. In each period ¢, player ¢ takes an action a,;; according to her strategy
oi: Uy HE — A(A;). Let X; be the set of all strategies of player i. Finally, let E(d) be the set

of sequential equilibrium payoffs with a common discount factor 4.

3 Assumptions and Result

In this section, we state our four assumptions and main result. First, we assume that the distrib-

ution of private signal profiles has full support:
Assumption 1 For each a € A andy € Y, we have q(y | a) > 0.

Let us define

Esupport = yelg}izréA Q<y ‘ CL) >0 (2)

8Otherwise, we see the realization of player i’s ex post utilities as a part of player i’s private signals. Let U; be
the finite set of realizations of player i’s ex post utilities, and let u; € U; be a generic element of U;. We see a vector
(yi, ;) as player 4’s private signal. Hence, the set of player 4’s signals is now Y; x U;.



be the lower bound of the probability. Note that this also implies the full support of the marginal
distribution: min;e;s ey, aca (Vi | @) > Esupport-

Assumption [I| excludes public monitoring, where y; = y; with probability one. One may find
allowing public monitoring of special interest: Our other Assumptions [2| [3, and [4] defined below
generically hold if |Y;| > |A,| for each i and j, while pairwise full rank in Fudenberg, Levine, and
Maskin| (1994) requires |Y;| > |A1|+ |As| —1. (See also Radner, Myerson, and Maskin| (1986]).) We
can extend the result to allow public monitoring and interested readers are referred to the working
paper [

Second, we assume that player i’s signal statistically identifies player j’s action. Let

qi(ai, a;) = (4:(yi | @i, a5)),. ey, (3)
be the vector expression of the marginal distribution of player i’s signals.

Assumption 2 Foreachi € I anda; € A;, the collection of |Y;|-dimensional vectors (q;(ai, a;))a;e 4,

18 linearly independent.

Suppose that player ¢ takes a;. When player j changes her actions, the change gives a different
distribution of player i’s signals, so that player ¢ can statistically identify player j’s deviation.
Third, we assume that each signal of player ¢ happens with different probabilities after player

j’s different actions.

Assumption 3 For eachi € I, a; € A;, and aj,a; € A; satisfying a; # aj, we have ¢;(yi | ai, a;) #

¢i(yi | ai, a’;) for all y; € Y;.

Fourth, suppose that in the repeated game, player j takes a mixed strategy a; € A(A;). If
player ¢’s history is (a;,y;), then player i believes that player j’s history (a;,y;) is distributed
according to Pr((a;,vy;) | ;,ai,y;). Here, Pr is defined such that player j takes a; according to «;
and signal profile y is drawn from ¢(y | a). The following assumption about Pr((a;,vy;) | o, a;, y;)
ensures that there exists a mixed strategy of player j such that different histories of player i give

different beliefs about player j’s history:

9We use private strategies. The possibility of private strategies to improve efficiency is first pointed out by
Kandori and Obara/ (2006]).



Assumption 4 For each i € I, there exists oa; € A(A;) such that, for all (a;,y;), (a,y;) € A; X Y;
with (ai,y;) # (a;,Y;), there exists (aj,y;) € A; X Y; such that Pr((a;j,y;) | a;, ai, yi) # Pr((a;, y;) |
aj,aj, y) [

With these four assumptions, we can show the following theorem.

Theorem 1 If Assumptions (1], [3, [, and [{] are satisfied, then in a two-player repeated game, for
each payoff profile v € int(F*), there exists 6 < 1 such that, for all § > &, we have v € E (4).

4 Short Road Map

Before giving the details of the proof, we first display a short road map to prove Theorem [I] First,
in Section 5, we derive the sufficient conditions in a finitely repeated game without discounting such
that, once we prove the sufficient conditions, then it implies that Theorem [1] holds in the infinitely
repeated game with discounting. Second, in Section [6 we define multiple variables, with which
Section E] pins down the structure (of the strategy) of the finitely repeated game. The rest of the
roadmap, which is easier to understand once we see the structure in Section [7] is postponed until

Section 8l

5 Reduction to a Finitely Repeated Game without Dis-
counting

To prove Theorems , we fix a payoff v € int(F™*) arbitrarily. First, we derive sufficient conditions
such that once we prove these sufficient conditions hold for given v, then v € E (§). These sufficient
conditions are stated as conditions in a “finitely repeated game without discounting.” This reduction
to the finitely repeated game is standard (see Horner and Olszewski (2006), for example), except
that we successfully reduce the infinitely repeated game with discounting to the finitely repeated
game without discounting. Since there is no discounting, we can treat each period identically. This
identical treatment will simplify the equilibrium construction.

To this end, we see the infinitely repeated game as repetitions of Tp-period review phases. We

make sure that each review phase is recursive. (Specifically, our equilibrium is a Tp-period block

19This conditional probability is well defined for each «; and (a;,y;) given Assumption
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equilibrium in the language of Horner and Olszewski (2006).) We decompose each player’s payoff
from the repeated game as the summation of instantaneous utilities from the current phase and
continuation payoff from the future phases.

Instead of analyzing the infinitely repeated game, we concentrate on a Tp-period finitely repeated
game, in which payoffs are augmented by a terminal reward function that depends on a history of
the finitely repeated game. The reward function corresponds to the continuation payoff from the
future phases.

Specifically, in the finitely repeated game, in each period ¢t = 1,...,Tp, each player i takes an

t—1
T=1"

action based on her private history hf = (a; ., yi) Let X; be the set of player i’s strategies. In
equilibrium, each player is in one of the two possible states {G, B} and, given state x; € {G, B},
she takes a strategy o;(z;) € ¥;. On the other hand, player ¢’s reward function is determined by
player j’s state x; and player j’s history of the finitely repeated game thP + mi(zj, h]TP H). Note
that player i’s reward function is the statistic that player j calculates.

We will show that if we find a natural number Tp» € N, a strategy o;(z;), a reward function
mi(zj, h;‘-FP 1), and values {v;(7;)},e(c,) such that the following sufficient conditions hold, then we

have v € E(0): For each i € I,

1. [Incentive Compatibility] For all z € {G, B}?,

Tp
Tp+1
0 (i) € arg max B ;u (ar) + i, by | 03, 05(a5) |- (4)
In words, incentive compatibility requires that, given each state of the opponent, z; € {G, B},
both ¢;(G) and o;(B) are optimal for player i to maximize the summation of instantaneous
utilities and reward function. Since 7;(z;, h;‘»FP 1) is the movement of the continuation payoff
in the context of the infinitely repeated game and S, 7, 6 u; (a;) + 6 7w (z;, h]TP 1) is close
to ZtTj L Wi (ap) + (x5, thP 1) for a sufficiently large §, this condition implies both ¢;(G) and

0;(B) are optimal in each review phase regardless of the opponent’s state.

2. [Promise Keeping] For all = € {G, B}?,

B3 ) i ) | ()| = wiy), )

t=1

11



Here, for notational convenience, we write o(x) = (01(21), 02(x2)). In words, (b)) says that the

time average of the instantaneous utilities and the change in continuation payoff, ;(x;, ,

Tp+1
h;"™)
is equal to v;(z;). This implies that, for a sufficiently high discount factor, v;(x;) is approxi-

mately player i’s value from the infinitely repeated game if player j’s current state is x;.

. [Full Dimensionality] The values v;(B) and v;(G) contain v; between them:

vi(B) < v; < vi(G). (6)

Since this condition implies v;(B) < v;(G), when player j switches from z; = G to x; = B,
the switch strictly decreases player ¢’s payoff. Hence, player j can punish player ¢ by history-
contingent state transitions. In addition, since v; € [v;(B), v;(G)], player j can mix the initial

state properly so that player 7’s initial equilibrium payoff is v;.
. [Self Generation| The sign of 7;(z;, h]TP *1) satisfies a proper condition: For all thP (G, h]TP <

0 and m;(B,h;7*!) > 0. If we define

-1 lfﬂf] = G,

sign(z;) =

then this condition is equivalent to the following:

sign(z;)m; (25, AT > 0. (8)

J

We call the condition “self generation.”

This corresponds to the condition that Horner and Olszewski (2006) impose: The reward
function when the opponent’s state is G (or B) is nonpositive (or nonnegative). As will
be seen in the proof, in the infinitely repeated game, self generation ensures that player ’s
continuation payoff specified by the reward function at the end of a review phase is included
in [v;(B),v;(G)]. Since v;(z;) is player i’s value when player j’s state is x;, this inclusion

ensures that, by mixing x; = G and B properly in the next phase, player j implements the

12



continuation payoff specified by the reward function[']
The following lemma proves that the above conditions are sufficient.

Lemma 1 For anyv € R?, if there exist Tp € N, {{0; (%) Yareta,By Fier, 14mi(25, h?PH)}IjE{G,B}},-e],
and {v;(7;) }ier.,e{c,B} such that the conditions (@)—@ are satisfied, then we have v € E(J) for a
sufficiently large 6 € (0,1).

Proof. See Appendix [A.2l Appendices [A] and [B] are provided as supplemental materials for the
submission. In case the referees are not provided the supplemental materials, the online appendix
is also available at https://sites.google.com/site/takuosugaya/home/research. m

Let us comment on why we can ignore discounting. Recall that Assumption [2| ensures that
player j can statistically infer player i’s action. Hence, if she infers that player ¢ incurs a loss in
earlier periods of the finitely repeated game rather than later, then player j can compensate player ¢
slightly (of order 1 —§) so that player i is indifferent about when to incur the loss. For a sufficiently
large §, such compensation is arbitrarily small.

Therefore, we focus on, for any v € int(F™), finding Tp € N, {{0; (2;) }2,¢¢c,B) pier, {{mi(7;, thPH)}
v;e(G.By ier, and {vi(25) Vit je(a.py to satisfy (5)-(8).

6 Basic Variables

To construct the variables to satisfy f, it will be useful to define some functions/variables.
In Section we fix m;fa], 77, @ > 0, and (a;’) Here, o € A(A) with A(A) =

79

iel,xje{G,B}"
A(A;) x A(Az). Note that we do not allow correlation between players’ actions; in Section (6.2} we
fix (a(x), ol (x), ;" (x))ze(c,py2 for each p, oz;nin’p for each p, pp.or > 0, (vi(x)), ui(75))ier 2, (6,8

LeN,n>0,a(G),a(B), and o™*; and in Section we fix S, al-S(t), b;, 4as q, T, and Egprice.

A )

STh is sufficiently small. This condition

1One may wonder whether we need the condition that

is automatically satisfied for sufficiently large ¢ for the following reason: We first fix Tp. Then, ‘m-(xj, h;‘rp +1) is
bounded since the number of histories given Tp is finite. Finally, by taking ¢ sufficiently close to 1, we can make
(1=0)mi(wj h; ")

5Tr arbitrarily small.
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6.1 Basic Reward Functions 7;[a] and 7’

First, for each a € A(A), we create m;[a] (a;,y;) that cancels out the differences in the instantaneous
utilities for different a’s. Since Assumption [2|implies that player j can statistically infer player i’s

action from her signals, for each a; € A;, there exists m;(a;,-) : Y; — R such that

uilai, a;) + Bmia;, y;) | ai, a;] = 0 (9)
for each a; € A;. For each o, we define 7;[a(a;,y;) = mi(a;,y;) + wi(®) so that

ui(a) + Bmilal(a;,y5) | a] = wi(e) (10)

for each a € A. This equality also implies that the expected value of 7;[c(a;,y;) given « is zero:
E [m;[o](a;,y;) | ] = 0. In addition, m;[c](a;,y;) is continuous in .

Second, by adding/subtracting a constant depending on z; to/from 7;(a;, y;), we create 7’ (a;, y;)
that makes player i indifferent between any action profile and that satisfies self generation: u;(a) +
E [ij(aj,yj) | a] does not depend on a € A, and we have sign(z;)7;’ (a;,y;) > 0 for each z; €

{G, B} and (a;,y;). In summary,

Lemma 2 There exist u > 0 and (afj ) such that, for each i € I, the following three

icl,a;€{G,B}

properties hold:

1. For each o € A(A), there exists m;[a] : A; X Y; — (—%, %) that makes any action optimal for
player i: u;(a) + E[m;[a](a;, y;) | al = wi(a) for alla € A, This implies B [r;[a](a;,y;) | o] =

0. Moreover, for each (a;,y;), mi[a] (a;,y;) is continuous in «.

2. For eachz; € {G, B}, there existsm;" : A;xY; — (=2, %) satisfying u;(a)+E [7; (a;,y;) | a] =
u;’ for all a € A and sign(z;)7;” (aj,y;) > 0 for each x; € {G, B} and (a;,y;) € A; X Y.

o
N

is sufficiently large: maxX;craca |ui(a)|+maXier +;e(c,B) {ﬂfj} < U and MaXic1 4, c{q,B} }ﬂfj‘ <

NN

Proof. See Appendix[A.3 =

We fix m;[a], 7;7, 4 > 0, and (ﬂfj ) so that Lemma [2| holds.

iel,zje{G,B}
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A Player2’s
payoff
F”: set of feasible and individually
rational payoffs
u(a(G,B))
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minmax uz(uz,al)) payoff
\ %1 Gz

Figure 1: How to take a(z)

6.2 Basic Actions

We define an action profile a(x) for each x € {G, B}?>. As will be seen, a(z) is the action profile
which is taken with a high probability on equilibrium path when the players take o(z). Specifically,

we fix (a(2)),c(q p)> such that, for each i € I and z; € {G, B}, we have sign(z;)(v;—w;(a(z))) > OE

:1:6{
See Figure|l| for the illustration of a(x). This definition of a(x) is the same as Hérner and Olszewski
(2006). Given (a(r)),c(qpyes We perturb a;(z) to af(z) so that player i takes each action with

probability no less than p > 0:
of(2)= (1= (Al =D p)a(@) +p Y a (11)
a;#a;(x)

min.
i -

min
7

In addition, given player i’s minimaxing strategy o™, we also perturb «

o™ = (1= Al p) o™ +p > as. (12)

a;EA;

12 Action profiles that satisfy the desired inequalities may not exist. However, if dim (F*) > 2 (otherwise, int (F*) =
() and Theorem [1] is vacuously true), then there always exist an integer z and 27 finite sequences {ay(z), ...,
() }ze{a,B)2 such that each vector w;(x), the average payoff vector over the sequence {a1(x), ..., a.(%)}zc(c, By~
satisfies the appropriate inequalities. The construction that follows must then be modified by replacing each action
profile a(z) by the finite sequence of action profiles {a;(x), ..., a.(z)},c{q, By~ Details are omitted since this is the
same as [Horner and Olszewski| (2006).
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Let v;"” = max,,ea, ui(a;, aj ") be the perturbed minimax value. Given o;"™”, we define

o (z) ifz; =G,

QM if 7, = B

03*(x) =
By definition of a(z) and v € int (F*), we have
J r:w; =B r:x; =G

max {max wi(a;, &™), max ul(a(:v))} <wv; < min_w;(a(z)) for all i € 1.
a; €A;

If we take p sufficiently small, then the targeted payoff v; is in the interval of the payoffs induced

by of(z) and oi™™”: For a sufficiently small Ppayot > 0, for each p < p .., we have

r:x;j=B rx; =G

max {v;’p, max ui(ozp(x))} <v; < min_wu;(a’(x)) for all i € I.
Hence, there exist v;(x;) and u;(z;) such that, for each p < p,.x, We have

ma,x{v;"p, max ui(ap(x))} < ui(B) <vi(B) <v; < v(G) < 4;(G) < min_wu;(af(x)) for all i € 1.

r:x; =B ;=G

Given « fixed in Section |6.1], there exists L such that, for each p < p , we have
P payoff

ui(x;) — ui(af(z) < —2 if x; = G,

min,p

wi(x;) — max {ui(ap(x)), maxg,ea; Ui(a;, o )} >1 ifx; =B.
Fix such L. Given u and L, we fix sufficiently small > 0 such that, for each z; € {G, B}, we have
(15 4+ 8L) n { |ui(x)| + Lu + ;" | } < Jui(z;) — vi(z;)| .

In summary, we have proven the following lemma:

Lemma 3 Givenv € int (F*) andu € R, there exist (a(x))se(c,B)2; Ppagoft > 0, (UZ'(ZL’j),Ui(Ij))ie]7ij{G7B},

L €N, and n > 0 such that, for each i € I and p < p,,yo, we have

i
T:x;j =B T =

max {vfk’p, max ui(a’)(x))} <ui(B) < v(B) <v; < v(G) <4 (G) < min_w;(af(x)),  (14)
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ui(x;) —ui(a? () < —¢ ifr; =G,

. ) (15)
u;(x;) — max {ui(a”(aj)), maxg, e, ui(a;, af“n’p)} > ¢ ifr; =B,
and
(154 8L) n { |ui(z;)| + Lu + |5’ |} < |ui(z;) — vi(x;)| for each z; € {G, B}. (16)

We fix (a(z), of (x), &:’p(ﬁ))xe{G73}2 for each p, oz;nin’p for each p, ppayorr > 0, (vi(x5), ui(T;))icr,a;e(6,8)
L € N, and n > 0 so that Lemma [3| holds. In addition, we also fix two different actions
a;(G),a;(B) € A; arbitrarily with a;(G) # a;(B). Moreover, let o> = ﬁzaiem a; be the

random strategy of player i.

6.3 Conditional Independence

i

For the reason to be explained in Section , we want to construct S, O'ZS(t), ?;, 46, qB, T, and

Estrict With the following properties: In some period ¢ € N, player j takes a random strategy Oz;-“ix
and player 7 takes some action a;; and observes y;;. After period ¢, there are S periods assigned
to period ¢, denoted by S(t) € N° with |S(t)| = S. Player j takes oz;-nix in each period, while player

® .

i takes some pure strategy JZS U (ais vie) U (@i, yiJ)Teg(t)’TSs_l — A; in S(t), which depends

sES(t)
on her history in periods t and S().
Based on player j’s history in ¢ and S(t), player j calculates a function ¢, : (A4; x Y]-)SJrl — [0, 1].
The realization of ¢; statistically infers what action player i takes in period ¢: For some ¢¢ and ¢p

Witth—%:%—qB>O,Wehave

e if a;; = ai(G),
mix S .
B [% ((aj,tu Yie) U (s, yj,r>TeS(t)> | ™, it Yigs 0 (t)] = T ifay # ai(G), a;(B),

qB if a;; = a;(B).

Importantly, the expected value of ¢; is conditionally independent of y;;: In period t, from player

i’s perspective, if she (rationally) expects that she will take als(t)

, then the expected value of ¢; does
not depend on y; ;.
To incentivize player 7 to take af(t), player j gives the reward function 7+ ((aj’t, Y)Y (a;r, yj,T)TGS(t)>

(c.i. stands for conditional independence) such that, for each (a;;,v;.), if a pure strategy o; is dif-
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S(t)

ferent from o’ on equilibrium path, then

c.i. mix S
B |76 (50050 U (@ i) s ) |00 i, g o0

—E |:7T§‘i. ((aj,t7 yjﬂf) U (ajﬂ'? yjﬂ')‘reS(t)) | Oé;'nixa Aity Yit, Gi] Z Estrict (17)

for some egier > 0. (Here, we ignore the instantaneous utility.)

(®)

Moreover, we make sure that, given the equilibrium strategy (TZ-S , at the timing of taking a;,

the value does not depend on a;,: For each a;, € A;,

c.i. mix S
E |:7T7; ((aj,t, yjﬂg) U (aij,ij)Teg(t)) ’ Oéj ,aJZ-’t’ o, (t) = 0.

The following lemma ensures that we can find 5, O’ls(t), ¢;, 4as 4B, T

o1, and eqict to satisfy the

conditions above:

Lemma 4 There exist S € N, gpicy > 0, @S >0, and 1 > q¢ > qg > 0 with q¢ — % = % —qg >0

such that, for each i € I, t € N, and S(t), there exist als(t) c U (@it yie) U (@i, yi77>reS(t),rgsf1 —
seS(t)

Ai, ¢ ¢ (Aj % V)5 = [0,1], and 75t (A; x Y;)5T — [—u", u*"] such that the following

properties hold:

1. Take any pure strategy of player i, denoted by o; : U (ait,yit) U (air, Yir) — A,
sES(t)

For each (a;4,vit), if there exists h; = (¢, Yit) U (aLT,yi’T)TEg(t) <y Jor some s € S(1)
(t

TES(t),7<s—1

such that (a) h; is reached by the equilibrium strategy U;S ) with a positive probability, and

(b) oi(hi) # O'Zs(t)<hi) (0; is an on-path deviation), then the continuation payoff from h; is

decreased by at least egprict:

c.i. mix S
E [ﬂ'i ((aj,ta yj,t) U (aj,ﬂ yj»"'>7'€§(t)> ’ aj :ai,t> yi,ta g; (t)’ hz]

—E [W?l' <(aj,t7 yj,t) U (aj,Tayj,T)TeS(t)> | a;plx’ ity Yits Oiy hz‘] > Estrict-

2. The conditional independence property holds: For each a;y € A and y;; €Y,

4G if ai = a;(G)
mix S(t .
B [¢j <(aj,tvyj,t> U (aj,n?/j,r)fes(t)> | o™, aig, yi,t,U,-() = s ifaiy # ai(G), a;(B)
4B if air = a;(B).
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3. The expected value does not depend on a;: For all a;y € A;.
c.i. mix S(t)
E |:7Ti ((aj,t7 yj,t) U (a’j,T7 ijT>TES(t)> ’ aj 70%',157 g; = 0.

Proof. See Appendix[A.4 =
Let us provide the intuition of the proof. Given player i’s history in period ¢, (a;+, yi+), player
i is asked to “report” (a;t, yi+) to player j in periods S(¢). For a moment, imagine that player

i sends the message via cheap talk. Given player i’s message (d;., J;¢), suppose player j gives a

reward
~ 2
mix - ~
- Hl‘lj,myj,t — B [1aj,t,yj.,z | aj y Qi ts yi,t] || .
Here, 1,,,.,, is |A;| |Y;|-dimensional vector whose element corresponding to (aj,y;,) is one and the

other elements are zero. On the other hand, [E [laj’t,yj’t | oz;nix, Qi g)@t] is the conditional expectation

of 1

mix
J

given that player j takes o™ and player i observes (a;¢, 9;+). Throughout the paper,

aj t,Yj,t
we use Euclidean norm.
From player i’s perspective, ignoring the instantaneous utility as in ((17]), she wants to minimize

mix mix

A 2
B |:||1aj,t,yj,t —E [1aj,t’yj,t | @ ’ai’“yi,t} H | Q; ’ai,t’yi’t] (18)

by taking (G;+, ;1) optimally. As will be seen in Lemma , given Assumption , we can show that
(Gity Tit) = (aie, yiz) (telling the truth) is the unique optimal StrategyF_gI Since a;; = a;4, player j
has enough information to create ¢; to satisfy Claim [2| of Lemma .

Without cheap talk, player ¢ takes a message by taking an action sequence in S(¢) and player j
infers what action sequence/message player ¢ sends from player j’s history in S(¢). Player i wants to
minimize with (a; 4, U;+) replaced with player j’s inference of the message. By taking S = [S(¢)|
sufficiently long, ex ante (after period ¢ but before S(t)), we can make sure that given player i’s

® to maximize the reward, player j infers (a;¢, y;+) correctly with a high

equilibrium strategy O'ZS
probability. Since Claim [2] of Lemma {4 requires conditional independence at the end of period ¢,
this ex ante high probability is sufficient to create ¢, <(aj,t, yit) U (aj, ij)TEg(t)) to satisfy Claim
2

The strictness (Claim 1) can be achieved as follows: In the last period in S(t), if there is player

13The objective function is called “the scoring rule” in statistics.
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1’s history with which player i is indifferent, then player j can break the tie by giving a small reward
for player i’s specific action based on (a; ., y;,) with 7 being the last period in S(¢). We can make
sure that this tie-breaking reward is small enough not to affect the strictness of the incentives for
player ¢’s histories after which player ¢ had the strict incentive originally and not to affect player i’s
incentive to minimize so much (that is, the ex ante probability of player j infering (a;.,y;.) is
still high).

Then, we can proceed by backward induction. Whenever player j breaks a tie for some period
T, it does not affect the strict incentives in the later periods 7/ > 7 since the reward to break a tie
in a certain period 7 based on (a;,,y;.) will be sunk in the later periods 7’ > 7.

Finally, since player j can statistically identify player i’s action a;, from player j’s signal y;,,
by creating a reward function solely based on y;, in order to reward (or punish) a;, which gives a
low value (or high value) in S(t), we can make sure that the expected value does not depend on a; ;
to satisfy Claim Since the reward based solely on v, is sunk in S(), this reward does not affect
player i’s incentive in S(t).

We now fix S, azs(t), b5, 96, 4B, 7 and egpier SO that Lemma,holds.

)

7 Structure

Given the variables fixed in Section @, we pin down the structure of (the strategy in) each review
phase/finitely repeated game with 7" € N being a parameter. The review phase is divided into
blocks, and the block is divided into rounds. See Figure [2] for illustration.

First, given each player i’s state x;, the players coordinate on z in order to take a(z) depending
on x with a high probability. To this end, at the beginning of the finitely repeated game, they play
the coordination block.

In particular, players first coordinate on z;. First, player 1 sends z; € {G, B} to player 2 by
taking actions, spending T> periods with a large 7. We call these T: periods “round (z1,1),” and
let T (z1,1) be the set of periods in round (z1,1). (In this step, we focus on the basic structure
and postpone the explanation of the formal strategy in each round until Section )

Throughout the paper, we ignore the integer problem since it is easily dealt with by replacing
each variable n with the smallest integer no less than n.

Second, player 1 sends x; to player 2, spending T3 periods. We call these T’ 5 periods “round
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Roundfar {xy, 1): Plaver 1 sends x; Review Round 1: Players take @ (x)
i B h 2
T7 periods, T(xy, 1 with a high probability
i ta ) ™| periods, T(1)
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¥
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J, Tz perinds, T({4,(2))
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.
T= periods, T(xs, 1) W
¢ Review Round L: Players lake w(x)
with a high probability
Roundfor (x3,2): Plaver 2 sendsx, T periods, T(1)
T3 periods, Ty, 2) ¥
J’ Supple. Round ford, (I+ 1)
Player1sends i, (1 + 1)
Roundfar (x,,3): Plaver 1 sends x5 (1) T periods, T(A; (1 + 1))
TZ periods, T(¥3,3) [

Supple. Round ford; (I | 1):
Player2 sends A5 (1 + 1)

B
Tz periods, T(A;(1 + 1))
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1

¥
Review Round L: Flayerstake a(x)
with a high probability
T periods, T(L)

¥

i
| Report Block, Irepore = U(1'32) periods |

Figure 2: Structure of the review phase

(z1,2),” and let T (x1,2) be the set of periods in round (z1,2). (We will explain in Section [13.2]
why player 1 sends z; twice and why round (1, 2) is longer.)

Based on rounds (x1,1) and (x1,2), player 2 creates the inference of x;, denoted by x(2) €
{G, B}. (In general, we use subscript to denote the original owner of the variable and index in the
parenthesis to denote a player who makes the inference of the variable. For example, variable; (i)
means that player j knows variable;, and that variable;(7) is player i’s inference of variable;.)

Third, player 2 sends x1(2) to player 1, spending T2 periods. We call these T2 periods “round
(1,3),” and let T (z1,3) be the set of periods in round (z1,3). Based on rounds (x1,1), (z1,2),
and (x1,3), player 1 creates the inference of x;, denoted by z;(1) € {G, B}. (This inference (1)
may be different from her original state z.)

Once players are done with coordinating on x;, they coordinate on x3. The way to coordinate
on x5 is the same as the way to coordinate on x1, with players’ indices reversed.

After the coordination on z is done, the players play L “main blocks.” In each main block,
first, the players play a T-period review round. With a large T', we can recover the precision of the
monitoring by the law of large numbers. After each review round, the players coordinate on what

strategy they should take in the next review round, depending on the history (as explained in the
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Introduction). This coordination is done by each player i sequentially sending a binary message
Ni(l +1) € {G, B}, which summarizes the history at the end of the review round. (The precise
meaning of \;(I + 1) € {G, B} will be explained in Section [13.4])

In total, for [ = 1,...,L — 1, the players first play review round [ for 7" periods. Let T (I) be
the set of review round I. Then, player 1 sends \(l + 1) € {G, B}, spending T' 2 periods. We call
these T2 periods “the supplemental round for A; (I + 1),” and let T (A1 (I + 1)) be the set of periods
in it. After player 1, player 2 sends \y(l + 1) € {G, B}, spending T2 periods. “The supplemental
round for As (I +1)” and the set T (A3 (I 4 1)) are similarly defined. We call these three rounds
“main block [.” Once main block [ is over, the players play review round [ + 1, recursively.

After the last review block L, since the players do not need to coordinate on the future strategy
any more, main block L consists only of review round L.

Given this structure, we can chronologically order all the rounds in the coordination and main

blocks, and name them round 1, round 2, ..., and round R. Here,
R=6+3(L—-1)+1 (19)

is the total number of rounds in the coordination and main blocks. For example, round 1 is
equivalent to round (x,1), round 2 is equivalent to round (x,2), and so on. Given such a
chronological order, when we say r < [, this means that round r is review round [ or a round
chronologically before review round /. Similarly, » < [ means that round r is a round chronologically
before (but not equal to) review round /. In addition, let T(r) be the set of periods in round r; for
example, T(r) = T (x1,1), and ¢(r) + 1 is the first period of round r.

Finally, the players play the report block, where the players send the summary statistics of the

history in the coordination and main blocks. As will be seen in Section [I5] we use this block to
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fine-tune the reward function. This round lasts for Tiepert periods with

R
Tipor = 1+ (S+1)TH+(S+1)THY [T()|5 logy (1+ [T()[F ™M) (20)

r=1

R R
(54 DTE +1) D tog, [T + 5+ DTH Y T (1-+ log, 144 )

r=1
R
HS+ 1T [T logy [T F4 4 (54 )73 +1) Zl% ()]
r=1
R 2
+(S+ )T Y [T(r)|* logy | As| [Yal .
r=1
Note that Tieport is of order T,
We have now pinned down the structure of the review phase, with T" being a parameter. For

a sufficiently large T, the payoffs from the review round determine the equilibrium payoft from the

review phase since the length of the review rounds is much longer than the other rounds/blocks:

Lemma 5 Let

1 2 1
Tp(T)= 4T2+273 + LT, + (L—1)2T2 + Treport
N—— ~ ———— ——"
coordination block  review round supplemental round report block O(T%)

length of the review rounds _
length of the review phase hmT_’oo Tp (T)

=1.

be the length of the review phase. We have limp_,

Given player 7’s history h?(r) = (@4z, Yit)ter(r) in round 7 in the coordination and main blocks,

let

A = (AN ew)

#{t € T(r): (ais, Yir) = (@i, ys) }
( T ()] ) @)

(ai,y:) €A xXY;

be the vector expression of the frequency of periods in round r where player ¢ has (a; ¢, vit) = (@i, ;).

It will be useful to consider the following randomization of player i: For each round r, player ¢
picks a period t&xude(r) € T (r) randomly: t*de(r) = ¢ with probability |T(  for each ¢ € T (r),
independently of player i’s history. Let Tmclude (r) = T (r) \ t&clude(r) be the periods other than
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texclude(1) “and let

fiinclude [hT(T)]

7

includefy, T(r)
i h; g, Yi )
R R C) .

# {t € Tinclude (p) (a4, yig) = (ai>yi>}
T ()]~ 1 ey
azayz)eAle

(22)

be the frequency in T (r).  As will be seen in Section [13| player i decides the continuation

play in the subsequent rounds based only on fl-i“d“de[h?(r)]. This implies that player j never learns

(ai’tgxclude(r), yi,tgxclude(T)> by observing her own private signals informative about player i’s continuation
play. This property will be important in Section [I5]
Given f;[h1"], let

fi[h?f(ﬂfhl)] fi[hr(rh?)] fi[h?(mﬁ)] fi[hT(rml)] fi[h’ﬂ“(mzﬂ)] f,;[hjr(m’?’)]
lf

(fi[hf(f)], Sy )y fi[hf-r(”‘””)]) ) 23)

1

filhs]

be player i’s frequency of the history at the end of review round I; and let f;[h '] be the frequency
which exclude fi[hf(l)] from f;[h'] (that is, the frequency at the beginning of review round I).
finelude[p Sl and finclude[p<l] are similarly defined. On the other hand, let h=" and h! be player i’s
histories at the end and beginning of review round [, respectively. Similarly, let hfr and hS" be
player i’s histories at the end and beginning of round r, respectively.

Finally, let h;-eport be player j’s history in the report block.

8 Road Map to Prove ([5)—(8))

p

We have fixed m;[a], m;’, @ > 0, (ﬂ?j)ielme{G B} (a(x),of
sl g )

(2), &2 (2))seqa.pye for each p, "™ for

each p, poavor > 0, (vi(25), ui(2)))icra,eamy, L € N, > 0, a;i(G), a;i(B), o™, S, als(t), s 4G
qB, T, and ey in Section @, and then defined the structure in the finitely repeated game and
Tp(T) in Section [7}  Given this structure, we are left to pin down T € N, {{0; (#;) }s,e¢¢,5 Fier
and {{m;(z;, h]"")}s ey bier to satisfy () (8) with fixed {vi(z;)}iera,efc.my and Tp(T).

Since the proof is long and complicated, we first offer the overview in Section [0  Then, we

prove two modules which may be of their own interests. Section [10| defines the module for player
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J to send a binary message m € {G, B} to player i. This module will be used in the equilibrium
construction so that the players can coordinate on the continuation play by sending messages via
actions. Section [11]| defines the module that will be used for the equilibrium construction of the
review round. The proof for each module is relegated to the online appendix. The road map of

how to use these modules in the equilibrium construction will be postponed after Section [11}

9 Overview of the Equilibrium Construction

As Lemma, [5| ensures, the equilibrium payoff is determined by the payoffs in the review rounds.
Hence, in this section, we focus on how to define the strategy and reward function in the review

rounds.

9.1 Heuristic Reward Function

For a moment, suppose that the players can coordinate on the true z: z(i) = z(j) = x. Take
P < Ppayor- Suppose that the players take (o (z(i)), o/ (z(j))) = a’(z) in each review round and

that player i’s reward function is

L
LT {v;(z;) —wi(a (@)} + > > mila’(@)](aj1, yja). (24)
1=1 teT(l)

Claim 1 of Lemma [2| ensures that player ¢’s incentive is satisfied and that her equilibrium value is
vi(x;). Moreover, since E [m;[a”(2)](a), y;) | o”(x)] = 0, the law of large numbers ensures that
ST milaf ()] (aj., y;) is near zero with a high probability. Together with , we conclude that

self generation is satisfied with a high probability. See Figure |3 for illustration.
However, self generation needs to be satisfied after each possible realization of player j’s history,
and after an erroneous realization of player j’s history, self generation would be violated if we used

(24). For example, consider prisoners’ dilemma

C D
C 2,2 -1,3
D 3,-1 0,0
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the reward Function

I E[2Z, m P ()00 v¢) | a()] I
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N
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!
Self gzneration is violated

To{v: (%) — w2} -

Figure 3: Illustration of the heuristic reward with z; = G

where, for each j € I, signal structure is Y; € {0,,1,}, ¢;(1; | Ci,a;) = .6, and ¢;(1; | D;,a;) = 4
for each a; € {C,D}. Then, m;[a”(x)](a;,y;) =5 X 1gy,—1,3 — 5+ wi(a’(x)), where 1y, 1y = 1 if
y; = 1; and 1y, 1,3 = 0 otherwise. If z = (G,G) and v is close to the mutual cooperation payoff
(2,2), then both v;(x;) and w;(a”(x)) are near 2 by Figure 1. Hence, if player j observes y; = 1;

excessively often (say, almost Tp periods), then (24)) is equal to
LT{v;(x;) —uwi(a’(x)} + 5 x #{t 1 y;s = 1;} = LT + w;(a’(x)) LT > 0.

———

TV
both of them are near 2 near Tp near 2

If signals were conditionally independent, then the fix suggested by Matsushima (2004]) would
work: If violates self generation, then player j gives player ¢ the reward of zero. Since signals
are conditionally independent, player ¢ after each history believes that such an event happens very
rarely. (Since player ¢ puts a small yet positive belief on violating self generation, Matsushima
uses pure strategy a(zr) and gives a strict incentive to follow a;(x), so that player i wants to take
a;(x) even though the reward is zero with a small probability.)

However, with conditionally dependent signals, this fix does not work. For example, if player i’s
signals and player j’s signals are positively correlated, after player ¢ observes a lot of 1;, she starts
to believe that violates self generation with a high probability. After such an event, incentive

compatibility would not be satisfied if we gave the reward of zero.
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9.2 Type-1, Type-2, and Type-3 Reward Functions

To deal with this problem, we define the overall reward is the summation of the reward for each

review round / (we need more modification for the formal proof):
mi(wy, hi? ) = LT {ui(w;) — wi(o(@))} + Zﬂmlew x5, D),

where Ve (1, h;m), 1) is player ¢’s reward for review round /. We use u;(z;) instead of v;(z;) here
to keep some slack in self generation for the later modifications (see (14]) for why u;(z;) gives us more
slack). Now, player i’s value without further adjustment is u;(z;). The shape of 7% (z;, hjm), )
can be either type-1, type-2, or type-3.

The type-1 reward function is the same as heuristic reward: WreV‘eW(xj, J ), 1) = > ey mila ()]
(aj+,yj+). By Lemma [ 2, the maximum realization of the absolute value of the type-1 reward per
round is %T . Hence, as long as the realized absolute value of the type-1 reward per round is no

more than &T until review round /, no matter what realization happens in review round [ + 1, the

total absolute value at the end of review round [ + 1 is

+1

Z Z Tl ()] (s yin) | < 4LT><Z+4T§

=1 teT()

T.

| S

Together with , this means that self generation is not an issue.

Therefore, as long as ‘Zt@r@ milaf ()] (aje, yie)| < T for each [ =1,..,1, player j uses the
type-1 reward in review round [ 4+ 1. Let \;(I + 1) € {G, B} such that )\;({ 4+ 1) = G if and only
if 1D eriy milef (@))(aze, i) | <
history hjgl. (Presicely speaking, we should write A;(I + 1)(hj§l), but we omit hfl for simplicity.)

4T for each [=1,..,1. Note that A;(l+1) depends on player j’s

On the other hand, if A\;(I + 1) = B, then if player j used the type-1 reward function for review
round [ + 1, then self generation might be violated. Hence, player j takes a;’p (z(7)) (which is
equal to o;”(z) if 2(j) = x) and gives a constant reward. ensures that there exists a constant
reward such that (i) if coordination goes well and player i takes BR;(a;”(x(j))), then player i is
indifferent between “player j taking of(z(j)) and using the type-1 reward” and “player j taking
a;”(x(j)) and using the constant reward” (and so the switch of the reward function does not affect

player i’s incentive in the previous rounds) and that (ii) self generation is satisfied. We call this
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constant reward “the type-2 reward function.”

In the equilibrium construction, player i creates an inference of \;(I+ 1), \;(I +1)(i) € {G, B},
which depends on player i’s history hf”l at the beginning of review round [ + 1. Intuitively,
A;(14+1)(i) = G means player ¢ believes that A\;(I4+1) = G and \;(I+1)(¢) = B means she believes
Aj(l4+1) = B. Player i takes of (2(i)) if \;(I4+1)(7) = G and takes BR;(a;”(x(4))) if \;(I+1)(i) = B
since player j with \;(l + 1) takes a;”(x(j)) (which is equal to o”(x(i)) if the coordination goes
well: (i) = x(j)) and the reward is type-2 and constant. (Here, we ignore player i’s role to control
player j’s payoff. As player j takes an action based on A;(I+1) in order to control player i’s payoft,
player i also takes her action based on not only A;(I + 1)(z) but also A\;(I + 1) to control player j’s
payoff. We ignore this complication in this section.)

We say that the coordination goes well if (i) = x(j) = = and “N\;({ + 1)(i) = B whenever
Ai(l+1) = B”. The above discussion means that, if the coordination goes well, then player
i’s strategy is optimal. (One may wonder why her strategy is optimal if A\;(l + 1)(i) = B and
Aj(l+1) = G. Note that player j with \;(I4+1) = G uses the type-1 reward, and Lemma ensures
that any strategy of player ¢ maximizes the summation of the instantaneous utility and reward
function. Hence, any strategy of player 7 is optimal as long as A\;(I +1) = G.)

Finally, player j sometimes uses the following “type-3” reward:

RN EES S TR (25)
teT(l)
By Claim 2 of Lemma [2] this reward always makes player i indifferent between any action profile
(player i’s incentive is irrelevant) and satisfies self generation, but the value @;’ may be very different
from the targeted value v;(z;) (and so promise keeping may become an issue). We will make sure
that the type-3 reward is used with a small probability so that we will not violate promise keeping.
Moreover, we will also make sure that player ¢+ cannot deviate to affect player j’s decision of using
the type-3 reward function (since otherwise, depending on whether ;” is larger or smaller than the
value with the type-1 or type-2 reward, player ¢ may want to deviate to affect the decision). That
is, the distribution of the event that player j uses the type-3 reward does not depend on player i’s
strategy.
Further, whenever player j has \;(1)(j) (that is, player j believes that her reward function is

constant and takes a static best response to player i’s action), player j has determined to use the
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type-3 reward for player i, so that player i can ignore the possibility of \;({)(j) = B.

9.3 Miscoordination of the Continuation Strategy

Since players coordinate on the continuation strategy based on private signals, it is possible that
coordination does not go well. There are following two possibilities. First, players coordinate on
the same x(i) = x(j), but this is different from true x. Recall that z; controls player i’s payoff.
Hence, as long as players coordinate on the same z(i) = z(j) and z;(i) = z;(j) = x;, player i’s
payoff is equal to u;(z;). We will make sure that player j with z;(j) # z; uses the type-3 reward
so that, as long as players coordinate on the same (i) = z(j), either player i’s payoff is equal to
w;(x;) or player i’s incentive is irrelevant. Since the type-3 reward is not used often, by adjusting
the reward slightly, we can make sure that player i’s ex ante equilibrium payoftf is v;(x;).

Second, player i has z(i) # x(j) or “A\;(I+1)(i) = G if \;({+1) = B”. We will make sure that,

<l+1

; (at the end of review round [ + 1) believes

player ¢ with history A

{2(@) 7 2() VAN + 1)@ = G AN (I +1) = B}}

Pr
A {ﬂeVieW(l’j, h;mﬂ), [+ 1) is not type-3 reward}

|2y, hE | <exp(=T3).  (26)
Since the expected difference of player i’s payoff for different actions is zero with the type-3 reward
function, this means that player i’s conditional expectation of the gain of changing her action to deal
with the miscoordination is very small. (Note that holds, conditioning on hf”l, which includes
player i’s history in review round [+1.) That is, without further adjustment, the equilibrium would

be e-sequential equilibrium, where deviation gain after each history is no more than e being of order

exp(=T'3).

9.4 Adjustment and Report Block

To make the equilibrium strategy exactly optimal, we further modify the reward function as follows:

The above discussion implies that, if we changed player i’s reward function for review round [ so
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that

target <l <l
mo (g, ki )

1{{:v(i);éac(j)\/{kj(l)(i):G/\)\j(l):B}}/\{type—S reward is not used in Ve (2,17 1)} } x type-1 reward function

X T,

+ (1 - 1{{9:(1);&960)\/{)\] 1) (1)=GAN;(I)=B}}A{type-3 reward is not used in ﬂgeVieW(xj,h?(l),l)}}> J

then player i’s equilibrium strategy would be optimal. (Recall that Lemma [2| ensures that the
type-1 reward function makes each strategy of player i optimal. Hence, player ¢ does not need to
worry about miscoordination.) Note that such a reward would depend on player i’s history h?l as

well, since (i) and \;(1)(i) depends on hy'. Moreover, ensures that

1 17]7 3 ]7

E |:ﬂ_t‘arget( h<l h<l l) ‘ h;l] - E [Wrevlew(xj,hT(l) l) ’ xj;higl (27)

is of order exp(—T'3) with [ + 1 replaced with 1.

adjust ( hreport l

If player j can construct a reward function 7; zj, h; ), which depends on player j’s

report

history in the report block h;™", such that, from player ’s perspective at the end of review round

I, the expected value of 72V (z xj, hy” 1) given (x;, hi') is equal to , then by the law of iterated

expectation, player ¢ in review round [ wants to maximize

' i h]T(l), l) + ﬂ_;}djust(

E |:7_‘_1'*eview(x hreport l) | ],higli| — K |:7T‘Farget( h<l h<l l) | hgl

J’] ) R 7

and so player 4’s equilibrium strategy is incentive compatible.

a»djust(xj7 h<l hreport l) 5o that

To this end, we define 7 51

adjust <l jreport <L _report <l
B B |t g, i BP0 |y, B 0l s | g, b

J7 7 'Y 7
= B [ g, hE L) | g, b | = B e (g, 150, 0) | g, (28)
Here, 0P|, <z is player i’s equilibrium strategy in the report block given her history at the end

ht

of the main block, As will be seen in Section E we construct player i’s reward function

report

in the report block so that player i’s optimal strategy o, ] pst depends on her history in the

coordination and main blocks, in particular, on h; . Then, player j’s history in the report block is
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correlated with h'. Therefore, we can construct a function W?dju“(:cj, hjg, h;eport, [) such that
holds.
From now on, before defining the strategy and reward function formally, we introduce two

modules that will be useful for the equilibrium construction.

10 Module to Send a Binary Message

We explain how player j sends a binary message m € {G, B}. Specifically, we fix m € {G, B} and
define how player j sends m to player ¢ in T, where T C N is the set of periods in which player j
sends m. For example, if we take T = T (x;,1) and m = z;, then the following module is the one
with which player j sends z; in round (z;, 1).

Recall that, for each i € I, a;(G), a;(B) € A; with a;(G) # a;(B), and > 0 are fixed in Section
6l Given m € {G, B}, player j (sender) takes actions as follows: With p** to be determined in

Lemma [6] player j picks one of the following mixtures of her actions at the beginning:

1. [Send: Regular] With probability 1—7, player j picks agsend (m) = (1 - (|A;] = 1) p*) a;(m)+
peend Eaj ay(m) O That is, player i takes a;(m) (action corresponding to the message m)

with a high probability.

2. [Send: Opposite] With probability 7, player j picks @ysend () = (1= (J4;] = 1) p*) a;(m) +
pend D ata; iy & With = {G, B} \ {m}. That is, player j takes an action as if the true
message were 1m # m.

send

3. [Send: Mixture] With probability 7, player j picks af (M)

504 (G)+3a4  (B). That

is, player j takes an action as if she mixed two messages G and B.

send send send

Let aj(m) € {&] (G),a] (B),a; (M)} be the realization of the mixture. Given a;(m),

send

player j takes a;; i.i.d. across periods according to a;(m). (That is, the mixture over &/  (G),

d?send(B), and &gsend(M ) happens only once at the beginning. Given a;(m), player j draws a;;

from a;(m) every period.) On the other hand, player i (receiver) takes a; according to i (fully

mixed strategy) i.i.d. across periods. See Figure[dl In general, thin lines in the figure represent

the events that happen with small probabilities.
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What is the
true
message?

m=aG n=25
Player j's Player j’s
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| Ejp:cnd @ | Ejpcsnd('q) | ITjpacnd(M) | ﬁlp:cnd @) ﬁjpmm[Gj | l?mei ) |

Figure 4: How to send message m

In periods T, each player n € I observes a history it = {an, ynt hter. Given bl let

#{t € T: (an,hyn,t) = (ana yn)}

In [hﬂ (@, Yn) T

be the frequency of periods with action a,, and signal y,,; and let f, [hﬂ = (fn [hﬂ (@ny Yn))anyn DE
the vector expression.

In addition, as in t&de(r) in Section @, each player n picks one period t&*"d ¢ T randomly:
texclude — ¢ with probability ﬁ for each t € T, independently of player n’s history. ~We de-
fine Tinclude = {4 ¢ T : ¢ # ¢=cludel a9 the set of periods in T except for t&*de, We define
finclude[p T (g ) and finclude[pT] a5 above, with T replaced with Tinclude  That is, these are the
frequencies in the periods except for texclude,

Player i creates an inference of m based on fiude[pT] " denoted by m(fud[nl]) € {G, B}.
Since firlude[pT] is in A(A; X Y;), we can see m(fine[hT]) as a function m : A(4; x ;) — {G, B}.
On the other hand, player j creates a variable 6;(m, f*"[h]]) € {R, E} based on f%[A]], that
is, 0;(m,-) : A(A; xY;) = {R, E}.

As will be seen in the proof of Lemma , once 6;(m, f*"°[h]]) = E happens in a round where
player j sends a message, then player j uses the type-3 reward for player i (that is, player j makes
player 7 indifferent between any actions, as seen in (25))) in the subsequent review rounds. In order
to satisfy in the overview, we make sure that, given the true message m and player ¢’s history
hY, if m(firclude[pT]) £ m (if player i makes a mistake to infer the message), then the conditional

probability of 6;(m, fi*°[hT]) = E is sufficiently high (see Claim [2| of Lemma |§| for the formal

argument). That is, if player i realizes her mistake to infer player j’s message, then player i believes
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that any strategy is optimal with a high probability.

In addition, as mentioned in Section [0.2) we want to make sure that the type-3 reward is used
with a small probability so that we will not violate promise keeping. To this end, we define
0;(m, fire[nT]) so that 0;(m, fi*™¥[h]]) = E with a small probability (see Claim 3 of Lemma
@. We use R and E for the realization of §;, meaning that R stands for “regular” and E stands
for “erroneous.”

Moreover, again as mentioned in Section [9.2 we want to make sure that the distribution of the
event that player j uses the type-3 reward does not depend on player i’s strategy. To this end, we
make sure that the distribution of 8;(m, fj*™°[h]]) does not depend on player i’s strategy (again
see Claim [3| of Lemma [6).

In addition to m(fude[pT]), player i also creates a variable 0;(receive, frude[pT]) € {R, E},
that is, 0;(receive, -) : A(A; x Y;) — {R, E}. As 0;(m, f"™[h]]), once 0;(receive, f*°[hf]) = E
happens in a round where player j sends a message, then player ¢ uses the type-3 reward for player

j in the subsequent review rounds. Again, we make sure that 6;(receive, f24°[pT]) = E happens

finclude
K3

with a small probability and that the distribution of 6;(receive, [h]]) does not depend on

player j’s strategy (see Claim [4] of Lemma [f]).
T

Further, we make sure that player j with 6;(m, f*™%[h]]) = R (that is, if player j does not

use the type-3 reward for player i) believes that m;(f*""4[n]]) = m or 0;(receive, firlude[p]]) = F

()

(that is, player i infers the message correctly or player i uses the type-3 reward for player j) with
a high probability (see Claim [5| of Lemma @

In particular, with m = z;, this means that as long as player j is not using the type-3 reward for
player 7, she believes that player ¢ received x; correctly or player ¢ uses the type-3 reward. Since
player j is indifferent between any action in the latter case, in total, this belief incentivizes her to
adhere to her own state z;, as mentioned in Section and will be shown in Claim [5| of Lemma 11}

Finally, since Assumption (1| assumes that signal profiles have full support, each player cannot
figure out the other player’s actions or inferences perfectly (see Claims [ and [7] of Lemma [6)).

In total, we can construct three functions m, 0;, and 0, so that the following lemma holds:

Lemma 6 There exist p*™ > 0, emessage > 0, Kmessage < 00, m : A(4; x Y;)) — {G, B},
0;(receive,-) : A(A; x Y;) — {R,E}, and 0;(m,-) : A(A; xY;) — {R,E} such that, for a suf-
ficiently large |T|, for each i € I and m € {G, B}, the following claims hold:
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1. Since t=Mde 45 random, the frequency is the sufficient statistic to infer the other players’

variables: For each b} € (A; x V)™, m,m € {G, B}, and 0; € {R, E}, we have

Py ({m(f2e 0 (n]) = v, 0, (receive, fire(nF]) = b} | m, b )
.} 1m, f0]]).

= Py ({4 ]) = v, Os(receive, J24[n]])

In addition, for each hY € (A; x Y))'" and 0, € {R, E}, we have

91} | m, h?)

0;} [ 'm. filhT1)

Prji ({05 6m. £ )
= Pry ({050m, £ ln])

Here, Pry; ( | m, h;r) and Prj); ( | m, h}r) are induced by the following assumptions: In Pr;; ( | m, h}r),

player j’s action sequence {a;;}, . is given by h}r. On the other hand, player i takes a;; i.i.d.

across periods according to ai™*. Given {a;}ier, the signal profile y; is drawn from the condi-
tional joint distribution function q(y: | a:) for each t, and player j observes her signal {y;+}+er-
Finally, player i draws t&*M° randomly. Prj; ( | m, h?) s defined in the same way, with 1

and j reversed, and o™ replaced with aj(m) given m.

2. For all m € {G,B} and T € (4A; x V)", if m(fide[nT)) £ m (player i misinfers the

message), then we have

Prjj; ({0;(m, f;*"[h5]) = B} | m,hi') = 1 — exp(—Emessage | T]). (29)

3. For each m and for each strategqy of player i denoted by o; : ULT:'O_I (A; x Y;)® — A(A)), the
probability of 0; = R does not depend on m or o;: Pry; ({0;(m, fir™e[al]) = R} | m,0y) =

J
1 —2n for each m € {G, B} and o;.

4. For each strategy of player j denoted by o; : U';i'o_1 (A; xY;)” — A(A;), the probability of
0; = R does not depend on player j’s strategy: Pry; ({Hi(receive, finclude[pTT) = R} | aj) =

1 —2n does not depend on ajm

! Here, we omit m from Pry ( | m, h;r) since player j’s strategy o; and player i’s equilibrium strategy o™ fully
determine the distribution of actions and signals.
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5. For all b} € (A; x YO, if 0;(m, firae[hT]) = R, then we have

Pryj; ({0i(receive, f;"“[h;]) = BV m(f;""[h;]) = m} | m, ;)

> 1- eXp<—5message |TD

6. For allm,m € {G, B} and h}r € (A4; x Yj)m, any inference of player i is possible:

Pr; ({m(f""[h;]) = m} | m, h}) > exp(—Kmessage |T)-

7. For allm € {G, B} and h} € (A; x Yi)m, any history of player i is possible: Pr (k] | m) >
eXp(_Kmessage |T|)

Proof. See Appendix[A.6 =
Let us intuitively explain why Lemma [6] holds. Claim [1] holds once we define m/(fide[A]])

and 0; (receive, f*™[R}]) so that they depend only on f*™[[], and define 8;(m, f;*°[A]]) so
that it depends only on fji-nd“de[hﬂ. Hence, we concentrate on the other claims.
First, we define 6;(m, f*"°[h]]) such that player j has 6;(m, f*%[h]]) = R only if (and if,

except for a small adjustment in the formal proof) all of the following conditions are satisfied:

send

L. [Regular Mixture Send] Player j picks a;(m) =a%  (m).

2. [Regular Action Send] Let f*"*°[hj](a;) = 3=, v, fi*"[h]](aj,y;) be the frequency of
player j’s actions. We say that player j’s action frequency is regular if, for a small €yessage > 0,

we have | firde[pT](q) — a;(m)(a;)| < Emessage for each a; € A;.

J

3. [Regular Signal Send] Let fi*™M[n]](Y; | a;) = (fi*™*[h]](y; | a;)), ., with

Y; €Y

f]include [h;ﬁ‘] (aj ’ y])
] (a)

include —
£ ng )y | ay) =
be the vector-expression of the conditional frequency of player j’s signals given player j’s

action a;. (We define f"™°[nT)(y; | a;) = 0 if fi*™9°[AT](a;) = 0.) On the other hand, let
aff ({qj(aj, ai)}ai c Ai> be the affine hull of player j’s signal distributions with respect to player
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s actions. We say that player j’s signal frequency is regular if, for a small €yessage > 0,

a (£ | am),aff ({a5(a;(m), @)} e, ) ) < Emesage (30)
Here and in what follows, we use Euclidean norm ||-|| and Hausdorff metric d.

Given this definition, we verify Claim [3| of Lemma [6] [Regular Mixture Send] and [Regular
Action Send] are solely determined by player j’s mixture, which player i cannot affect. Moreover,
player i cannot affect the probability of [Regular Signal Send] since aff ({qj(aj(m), ] . Ai) is the
affine hull with respect to player i’s actions. (Precisely speaking, taking affine hull ensures that

player ¢ cannot change the expected distance

B [ (e nd)(v; | a),aft ({o5(a500}e) )| (31)

but does not guarantee that player ¢ cannot change the distribution of the distance

Pr (@ (F 07105 | ay), aff ({g50050)}e,) ) ) - (32)

We take care of player i’s incentive to change the distribution in the formal proof.) Hence, the

probability of 6;(m, f;ncmde[h}T]) = R does not depend on player i’s strategy.

_ psend

Moreover, a;(m) = &;  (m) with a high probability, as seen in Figure 3, and by the law of

large numbers, [Regular Action Send] and [Regular Signal Send] happen with a high probability
given aj(m) = @Jp-send(m). Hence, 0;(m, fi*9°[h]]) = R with a high probability. Hence, Claim
of Lemma [6] holds.

On the other hand, we define 6, (receive, f*°[h}]) as follows: Let f*™[h]](a;) = 3, oy, fi"™M%
[hT](a;,y;) be the frequency of player i’s actions. We say that player i’s action frequency is regular
if, for a small eyesage > 0, we have ‘ finclude[pT (q,) — a?ix(aiﬂ < Emessage for €ach a; € A;.  Let
[Regular Action Receive] denote this event. Player i has 0;(receive, f*"d[pT]) = R only if (and if,
except for a small adjustment in the formal proof) [Regular Action Receive] holds. Again, we can
make sure that the probability of 0;(receive, fI""4[AT]) = R does not depend on player j’s strategy
and is high by the law of large numbers. Hence, Claim [4] of Lemma [6] holds.

We now define player i’s inference m(f**4[n]]), so that Claim [ of Lemma [6] holds. She
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calculates the log likelihood ratio between aj;(m) = &/ (G) and a;(m) = &}  (B), ignoring the

prior of a;(m):

m (tsnhier | {0sm) = & (@)} {aisher)
P ({iahier | {as(m) = a8 (B)} {ass}ier)

= |T| {Z filhT) (@i, y:) log as(ys | @i, @™ (G)) = > AlhT](ai, yi) log ai (yi | as, @ Send(B))} :

@i,Yi ai,Y;

(33)

Related to , let

Li(fi[h7),G) = filhdas, yi) log qi(ys | as, 0 (@)

ai,Yi

send

be the log likelihood of aj(m) = &} (G). Li(filhi], B) and L;(fi[hj], M) are defined in the same
way, with G replaced with B and M, respectively.

Given these likelihoods, player i creates m(fnd¢[hT]) as follows: For some LFeite > ()

1. [Case G] If L;(firude[pl] G) > L;(finde[n]], B) + 2LYe then player i infers that the
message is G: m(fre[pl]) = G.

2. [Case B] If L;(firclude[pT] B) > L(fincude[pl] G) + 208, then player i infers that the
message is B: m(fincvde[pl]) = B.

3. [Case M] If neither of the above two conditions is satisfied, then player 7 infers the message

randomly: m(fm4[n}]) = G with probability 1; and m(f»™[h]]) = B with probability 1.

See Figure [5] for the illustration.

Let us fix LY > 0. Since the maximum likelihood estimator is consistent, there exists
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Likelihood of
7PSEIIC iog

a;(m) = & (@

is higher than that of

a;(m) = E]F (B)?

Yes

v

m(ﬂinclude[h'i[[']) =G

likelihood of
7‘];5“:'1

a;(m) = a; (B)

is higher than that of

7pssnd
a;(m) = a; 6)?

Yes No
m ﬁindude[h;ﬂ]) - B m(ﬁi“du‘ie[h?]j is random

Figure 5: How to infer m

p*"d > 0 such that, for sufficiently small LI*ive > 0, for each p*d < p*md, we have

Lo(frewte[AT], G) > Li( frme(F], B) + 3Ly
. . _ psend
if fireteelny] (ai,yi) = ﬁ%’ (Z/z' | ai, &} <G>) for each a;, y;
send

(that is, if the frequency of player i’s history is close to the ex ante mean given d? (G),

send

then the likelihood of @7 (G) is higher than that of a°" (B)),
Li(fre[h], B) = Li( fi*[R], G) + 3Liger
: include _ psend
i e (T) (o, ) = phas (v a0 "(B)) for cach as,
(that is, the frequency of player i’s history is close to the ex ante mean given @g)send (B),

send

then the likelihood of c‘vé-’send(B) is higher than that of @ ~ (G)).

(34)
send send send

Moreover, since the log-likelihood is strictly concave and & (M) = 1a7  (G) 4+ 3a)  (B), re-

taking p*¢ > 0 sufficiently small if necessary, for sufficiently small L} > 0, for each p*™d < psend,

send

if neither [Case G] nor [Case B] is the case, then a;(m) = &} (M) is more likely than both

send send

aj(m)=aj (G)and a;(m) =a}  (B): If neither [Case G] or [Case B] holds, then
Li(f"0[hi], M) > max { Li(f;""[h; ], G), Li( ;" [hi], B) } + 2Lt (35)

We fix LIS > 0 so that and (35) hold.
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Space of player j’s signal A(Y})

Affine hull of the distributions of player j's signals
with respect to playeri’s action

qjla;, a;(m))

q;(af,a;(m))

Figure 6: Affine hull of player j’s signal observation

Note that with this inference, Claim [2| of Lemma @ holds. To see why, suppose m = G (the
explanation with m = B is the same and so is omitted). If m(f*d[pl]) = B # G = m, then

[Case B] or [Case M] is the case. We consider these two cases in the sequel.

send

[Case B] implies that a;(m) = af prend

(B) is more likely than a;(m) = a7 (G), except for the

send

(M) with probability no less than

send _ psend

prior. Since player j takes each of @} (G), @  (B), and a}

2 by Figure {4, given m = ( and taking the prior into account, the law of large numbers ensures

send

that a;(m) # @7 (G) with probability of order 1 — exp(—Ligiii® [T|). Since [Regular Mixture

send

Send| ensures that «(m) # a7 (G) implies that 6;(m, f*[h]]) = E, this high probability on

send

aj(m) # & (G) implies that player j has 6;(m, f*%[h]]) = E with probability no less than
1 — exp(—Lie¥e | T|). Taking emessage > 0 sufficiently small, this is sufficient for .

d send

If [Case M] is the case, then implies that at least one of 545-'5% (B) and &} (M) is more
likely than @gsend (G), except for the prior. The same proof as [Case B] establishes the result.

We now prove Claim |5/ of Lemma @ Recall that we have already fixed LY so that and
hold. Note that we assume 0;(m, fi*¥°[h]]) = R, which implies [Regular Mixture Send],
[Regular Action Send], and [Regular Signal Send].

send

For a moment, suppose that p**® = 0 and €pessage = 0 for simplicity. Then, [Regular Mixture

send

Send] and [Regular Action Send] imply that player j takes a;(m) = &f = (m) = a;(m) (the last
equality holds only with p*** = 0). Since she takes a;(m) for sure, we can see fi*™[L]|(Y; | a;(m))
as her entire history. Moreover, [Regular Signal Send] implies that this frequency is equal to the

affine hull aff <{qj(aj(m), ai)}aieA) (With emessage = 0). See Figure |§|
send

If firde[nT] is close to the ex ante distribution given @) =~ (m), then by the law of iterated

expectation, player j believes that player i’s history finclude[pT

;] is close to the ex ante distribu-
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tion given agsend(m). ensures that player j believes that player i has L(m, finclude[pT]) >
L(rn, finclude[pT]) 4 2 [receive with 1 € {G, B} \ {m} and so m(f®e[pT]) = m with a high proba-

bility.

In particular, there exists £; > 0 such that, if

£ nT1 (Y5 | az(m) — g;(a;(m), o7™)]|

< & (distance from the ex ante mean is small), (36)

then by the law of large numbers, player j believes that L(m, finde[pT]) > L(rn, finclude[pT]) 4
205 with 1 € {G, B}\{m} (and so m(f*[p]]) = m) with probability 1—exp(—¢,, preceive |T]),

belief

where the coefficient €., preceive > 0 depends on &; and Lresere We fix such g > 0. In Figure Iﬂ,
“belie

g1 > 0 determines the distance between point A and point D.

On the other hand, suppose does not hold. This means that her signal frequency f;nd“de [h}r] (Y; |

a;j(m)) is not close to g;(a;(m), ™ ). Since f]i-“dude[h?](y} | aj(m)) is in aff ({qj(aj(m), ai)}aieAi>7
this means that her signal frequency is skewed toward g;(a;(m),a;) for some a; € A; compared to
gj(aj(m), o).

probability o (a;) = | ,ii|-

Player j believes that such a; happens significantly more often than the ex ante

Hence, given £; > 0, there exists sufficiently small €5 > 0 such that, if does not hold, then
there exists a; € A; such that the conditional expectation of the frequency of a; is not close to

mix 1

o™ (a;) = p: For some a; € A;,

(2

. Sen 3 1
B | () o) [, o™ (m) o™ B =
> &9 (the frequency of player i’s actions is irregular). (37)

Fix such 5 > 0. In Figure[7], if we take g5 > 0 sufficiently smaller than £; > 0, then points B and
C will be included in the interval [A, D].

The log likelihood is continuous in perturbation p*"® and frequency fi""d¢[AT]. In addition,
the conditional expectation of f{*I[h]] is continuous in f*I°[A7T]. Hence, there exist sufficiently

small p* > 0 and pyessage > 0 such that the following claims hold: Given 6;(m, fji-]“cludle [h]]) = R,

40



Ex ante distribution given a'fm":
q; (a;(m),a¥)

q;(g; (m),al) A B C D q;(a;(m),a;)
@ oo +—0 0
| | | | |
|
\/ Player j believes \l
I m( finctede[kTY) = .r
Player j believes that Playerj believes that
player i’s action frequency is irregular player i’s action frequencyis irregular

Space: aff ({q}- (af(m)‘ai)}aieAi) n Ay

Figure 7: Player j’s inference of player i’s history

I

£ h51(Y5 | aj(m) — gj(a;(m), o7™)]|

< ¢, (distance from the ex ante mean is small),

then player j believes that m(f*%¢[h}]) = m with probability 1 —exp(—2ie., preceive |T|). For

belief

sufficiently small epessage > 0 compared to e, Lreceive > 0, we can say that player j believes

that m(fde[nT]) = m with probability 1 — exp(—¢message |T|)-

. Otherwise, there exists a; € A; such that

> —&9.

B [l e | . .

| A

For sufficiently small €pyessage > 0 compared to €2 > 0, by the law of large numbers, player j

include[7, T A
fi [hi](GZ) T4,

E with probability 1 — exp(—&message |T|)-

believes that

> Emessage 10T Some a; € A; and so 0;(receive, finude[pT]) =

In both cases, Claim [5] of Lemma [6] holds.

Finally, since each player takes a fully mixed strategy and Assumption [I] ensures that the dis-

tribution of the private signal profile has full support, we have Claims [6] and [7] of Lemma [0 In

the working paper, we also consider public monitoring, where both players observe the same signal

with probability one. There, we make sure that the same claims hold, only using the fact that

players are taking private strategies.
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11 Module for the Review Round

In this section, we consider the following |T|-period finitely repeated game, in which T C N is the
(arbitrary) set of periods in this finitely repeated game. In our equilibrium construction later, T
corresponds to the set of periods in the review round. In this section, we fix z(i) € {G, B}* and
z(j) € {G, B}?. As will be seen, x(7) is player i’s inference of state profile z € {G, B}

Recall that Section @ defines (a7 ());c; neqcpy2 for each p. Given x(i) € {G, B}?, with p to be
determined in Lemma 7, player i takes a;; i.i.d. across periods according to of (x(z)).

As in Section , let h] = {a;s, yit}eer be the history; fi [h]] be the frequency; t5*" be the
period excluded from Tde = {¢ € T : ¢ # t&cwde}s and firde[AT] be the frequency in Tinclude,

As in the case with the binary message protocol, each player i creates a variable 6;(x(i), finctude[pT]) €
{R, E} based on finclude[pT] that is, 0;(x(i),-) : A(A;xY;) — {R, E}. Again, once 0;(x(i), finclude[pT]) =
E happens in a review round, player ¢ uses the type-3 reward function for player j (makes player j in-
different between any action) in the subsequent review rounds. We make sure that 0;(z (i), fiude[p]]) =
E with a small probability and the distribution of 6;(x(i), fi*™4¢[AT]) does not depend on player

Jj’s strategy (see Claim [2] of Lemma E] with indices ¢ and j reversed for the formal argument).

In addition, related to the type-1 reward in Section [0.2], each player j calculates

w2 (), R = ) mla(@()) (@ yi) (38)

include
teT]

= ) mlal @i agyp) x SR ag, ),

(a,y5)€A;}Y;
using the reward function defined in Lemma [2 Except for the fact that it does not include the
reward in period t‘;"d“de and that it uses player j’s inference x(j) rather than true state profile z,
this function is the same as the type-1 realization of m*V¥(z;, h}m), [) with T = T (I). Note that
this depends only on f*""%°[h] and x(j) once we fix p, since we have fixed (m;[c](a;,y;)),

in Lemma [2| for each o € A(A).
As in Section , player j will have X;(I + 1) = B only if |m;(z(j), f[n]])| > &[T

J

aj,y;) €A XY

happens in review round /. We prove that if 2(i) = z(j) (coordination on = goes well) and
0;(z(i), finclude[pT]) = R (player i does not use the type-3 reward for player j), then player i believes

that |m;(z(j), fMe[p]])| < % |T| (and so A;(1+1) = G) or 0;(x(j), f*™¥[r]]) = E (and so player
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j uses the type-3 reward function for player i) with a high probability (see Claim [3| of Lemma [7)).

This high probability implies the following: As will be seen in Lemma [§] if the coordination
does not go well, then as a result of the message exchange about x, player j uses the type-3 reward
with a high probability. Together with the argument in the previous paragraph, player ¢ with
0;(x(i), firclude[pT]) = R believes that A;(I + 1) = G or player j uses the type-3 reward with a high
probability. Hence, if we define player ¢’s strategy such that she switches to A;(l + 1)(i) = B only
after 0;(x(i), fincwde[pT]) = E| then holds.

Given such a transition of A;(I + 1), whenever \;(l + 1)(i) = B, player ¢ uses the type-3 reward
function for player j. With indices i and j reversed, as mentioned in Section [9.2] player ¢ can
condition that whenever \;(I + 1)(j) = B, player j uses the type-3 reward.

Finally, we prove that if (i) = x(j), 6" (x(i), f""¥°[h]]) = R, and |m;(x(q), fiM9e[n]])| >
= |T|, then player i believes that 6;(x(j), fi*"%[h]]) = E with a high probability (see Claim {4 of
Lemma . This high probability implies the following: As will be seen in Section ife; =B
(player i wants to keep player j’s equilibrium payoff low), 2% (z (i), fir*de[pT]) = R (player i has
not yet made player j indifferent), and |m;(x(7), f™[n]])| > ;% |T| (self generation is an issue)
in a review round, then player 7 will minimax player j to keep her payoff low in all the subsequent
review rounds. In such a case, player i believes that player j uses the type-3 reward for player ¢

and any strategy (including the minimaxing one) is optimal.

In total, we can construct 0;(x(i),-) so that the following lemma holds:

Lemma 7 Given py,..g, U, and L fived in Section there exist p € (0, Ppayorr), Oi(x(7),-) :
A(A; xY;) — {R,E}, and review > 0 such that, for a sufficiently large |T|, the following four
properties hold: For each i € I,

1. Since t;"d“de is random, the frequency is the sufficient statistic to infer the other players’

variables: For each é’j € {R,E} and 71; € R, we have

Prjs ({05(2(0). 7 T) = By, mila ), 7S = 7| | 2(5), T

= Pryp ({00, frT) = 05, mila(), F2 (A7) = 72} | 2(9), filhT])

Here, Prj; ( | z(j), h?) s induced by the following assumptions: Player i’s action sequence

{ais},er s given by hl. On the other hand, player j takes a;, ii.d. across periods according to
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of(x(j)). Given {a;}ier, the signal profile y; is drawn from the conditional joint distribution

function q(y; | a:) for each t, and player i observes her signal {y;+}ter. Finally, player j

draws t‘;xcmde randomly.

2. For each z(j) € {G, B} and for each strategqy of player i denoted by o; : Um (4 x ) —
A(A;), the probability of 0; = R does not depend on x(j) or o;: Prj( {9 ]“ndud‘"[hT = R}
| 2(j),0:) = 1 — 2n for each z(j) € {G, B}? and o;.

3. For eachx(j) € {G, BY? and hT € (A; x V)™, conditional on z(i) = x(j), if 07V (x(i), finclude[pT]) =

R, then player i believes that either m;(x(j), fi*°[h]]) is near zero or 0;(x(j), fi*™™°[h]]) =

E with a high probability:

iz ; , include h']l‘ < % T . ‘ . .
Tjli } ( (j) fj . [ JD| = | | | Qf(]),{l’(l) :$(])}ahz > 1_eXp(_5reView|T|)-
VO;(x(5), fReh]]) = E

4. Foreach (i) € {G, B}? and hT € (A; x Y))!"!, conditional on (i) = x(j), if 057" (), finclude[pT]) =

R and |m;(x (i), frde[nT]))| > L |T|, then player i believes that 0;(x(j), frmde[nl]) = E with
a high probability:

Pr]‘z ({9 fmdUde[hT E} ’ I’ {33( ) (])} ) h}‘) Z 1-— eXp<_€review |TD

Proof. See Appendix[A.7 =

Let us explain why Lemma (7| holds intuitively. First, we define 6;(x(j), f*™[h]]) as follows:
Let fi*"[h]](a;) be the frequency of player j’s actions; and let f*™°[h7](Y; | a;) be the condi-
tional frequency of player j’s signals given a;, as in Section|[10l Player j has 6;(z(j), fi*"*°[h]]) = R

only if (and if, except for a small adjustment in the formal proof) both of the following conditions

are satisfied:

1. [Regular Action Review| We say that player j’s action frequency is regular if, for a small

Ereview > 0, we have |fji»n°1‘1de[h}.r] (aj) — a?(m(j))(aj)} < Ereview 0T €ach a; € A;.

2. [Regular Signal Review] We say that player j’s signal frequency is regular if, for a small
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Ereview 0, we have
d (71055 | (). aff ({g;(a;(2(3)) )} e, ) ) < Ereiew:

Given this definition, Claim (1| holds since tji"dude is random and other variables depend only on
f]include [ h}r] _

In addition, Claim [2| holds for the following reasons. [Regular Action Review] is solely de-
termined by player j’s mixture, which player i cannot affect. Moreover, player ¢ cannot affect
wea,) i the affine hull with

respect to player i’s actions. (The same caution as and is applicable here.)

the probability of [Regular Signal Review]| since aff ({qj(aj (x(4)),a:)}

By the law of large numbers, [Regular Action Review| and [Regular Signal Review| happen with
a high probability. Hence, 0;(x(j), f*™[h]]) = R with a high probability.
Given this definition of 0;(x (i), f*™[R;]) and 0;(z(j), f*M*[h]]), we prove Claim of Lemma

[1 Since we condition z(j) = x(i), let z(j) = 2(:) = z. As in Claim [f| of Lemma [6} with ¢ and j

send

reversed, a;(m) replaced with a;(x), p*° replaced with p, @ﬁsend (m) replaced with of (), and €pessage

replaced with €eview, We have the following: Given 6;(z, fincd¢[4T]) = R, there are following two

cases:

L. firde[pT](Y; | as(x)) is close to ¢;(ai(z),af(x)). This means that f*M[Rf](Y; | ai(z))

is close to the ex ante mean given (a;(z),af(z)). For a small perturbation p, this means

that f""I°[h]] is close to the ex ante mean given by (af(z),af(x)). By the law of iterated

expectation, the conditional expectation of f}"I°[h7] is close to the ex ante mean given

(0f

?(x),0(x)). By the law of large numbers, player i believes that m;(z, f""°[h7]) is close

J

to the ex ante mean given (o] (), af(7)).

By Claim (1| of Lemma , the ex ante mean of m;(x, "™ °[hT]) = 3, pinctuae mi[a? ()] (s, Yjt)
J

p

i

|mi(, firmde[pT])| < = |T| with probability 1 — exp(—&review |T|)-

p

given (af(z), afj(v)) is zero. Therefore, for sufficiently small &,cview > 0, player i believes that

2. Otherwise, firlde[nT|(V; | a;(z)) is skewed toward ¢;(a;(x),a;) for some a; € A; compared
to gi(ai(z),af(z)). Again, for sufficiently small p, since player i takes a;(z) often and a;(w)

and of(x) are close to each other, this implies that player i believes that f;*°[h]](a;) is
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not close to af(z(j))(a;) for some a; € A; (and so 0;(x, fi*"¥°[h]]) = E) with probability

1 — exp(—¢review | T|) for a sufficiently small € eyiey -

In both cases, Claim [3] of Lemma [7] holds.
Similarly, we prove Claimof Lemma E] Since we assume x(j) = x(i) and 0;(z, fre[pT]) = R,
again, there are following two cases: The first is that finclude

(2

by (of(z),af(x)) with = z(j) = 2(i). Then, since the ex ante mean of m;(z, f*™%[R]]) is

[h]] is close to the ex ante mean given

Zero, |7rj (x, fiind“de[h?])‘ > £+ |T| is not the case. The remaining case is that player i believes that

0, (. free(1T)) = E.

12 Road Map to Prove (5)—(8) given the Modules

Again, recall that we have fixed 7;[a], 7;”, @ > 0, (afj)ielx-e{G’ gy (a(2), ol (x), ;" (x))zeqc,py2 for
sl g )

min,p
i

mix

each p, « i

for each p, puaor > 0, (vi(2)), ui(75))icraeta.8y, L € N, n >0, ai(G), ai(B),
S, gf(t), i» 4G5 4B 7¢iand egyie in Section @ Then, we fix the structure of the finitely repeated
game in Section The length of the finitely repeated game is Tp(T) with T" being a parameter.

send send send

Given these variables, we fix 54? (@), 045 (B), 045 (M), p* > 0, message > 0, Kiessage <
oo, m : A(A; x Y;) — {G, B}, 0;(receive, ) : A(A; xY;) = {R,E}, and §;(m,-) : A(A; xY;) —
{R, E} so that Lemma [| holds; and we fix p € (0, ppayon)s 0i(2(i),-) : A(4; x Y;) — {R, E}, and
Ereview > 0 such that Lemma [7] holds.

Given these variables/functions, in Sections [L3[[16] we define the strategy and reward, and then
verify (B)—(8).

Specifically, we define player i’s strategy in the coordination and main blocks for each 7' in
Section The definition of the strategy o}P*"|,
Section [15l

In Section , we define player i’s reward function ;(z;, hTP*Y) for each T. As will be seen,

J
. and 7", We define the

%

<r in the report block will be postponed until

%

review adjust
7 » T

(x5, h;‘-FPH) is the summation of 7;(x;), 7, (a, yj¢), T
first three elements in Section {14 and will postpone the definition of 7" and 7!**°"* until Section
L5l

In Section , Lemma, (13| defines ageport|hig o, w0 and 71 for each T, which completes the

)

definition of the strategy o;(x;) and the reward m;(z;, h;FP 1) for each 7.
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Finally, in Section [16], we prove that, for a sufficiently large 7', the defined strategy and reward
satisfy (B)—(8).

The technical proofs for the claims in Sections are further relegated to Appendix [A] (online
appendix), and Appendix [Bf contains the list of the frequetly used notation.

13 Strategy in the Coordination and Main Blocks

Sections and define the strategy in the coordination blocks for x; and z;, respectively. In
particular, player ¢ creates z;(¢) and x;(z). Section derives properties about (7).

Given z(i) = (z;(7), z;(7)), in Section we define player i’s strategy in main block /. As will
be seen, her strategy in main block I depends on two variables \;(1) € {G, B} and \;(1)(i) € {G, B}.

Sections[13.4.1] [13.4.2, and [13.4.3| define her strategy in review round [, the supplemental round for
A;(I+1), and that for A\;(I + 1), given \;({) and X;(1)(j). Finally, we define the transition of A;(l)

and A;(7)(7) in Section |13.4.4

13.1 Strategy in the Coordination Block for z;

In order to coordinate on z;, player j sends z; € {G, B} in rounds (z;,1) and (z;,2). Given these
two rounds, player ¢ creates her inference z,(i) € {G, B}. Given x;(7), player i sends z;(7) in round
for (z;,3).

In particular, in round (z;,1), player j sends z; € {G, B} spending T' > periods as explained
in Section (with m replaced with z;, and T = T(z;,1) with |T| = Tz). Player j con-

structs 6, (:cj,f}“dude[h;r(xj’l)]) € {R, EY}, and player i constructs z;(f™e[n] ")) € {G, B} and

T(xjvl)

0;(receive, finclude[p,

]) € {R,E}. In addition, for each n € {i,j}, let td(z; 1) be the pe-
riod such that player n does not use her history in period ¢4 (z; 1) when she determines the
continuation play.

Then, in round (z;, 2), player j re-sends x; spending T’ 5 periods as explained in Section (with
m replaced with z;, and T = T(z;,2) with |T| = T'3). Player j constructs 0;(z;, f}“d“de[h?(xﬂ)]) €
{R, E}, and player i constructs z;( finclude[pTE20y ¢ £@ BY and 0;(receive, finclude[pT ]y ¢

K3 K3

{R,E}. For each n € {i,j}, t&M(z; 2) is randomly selected.
Given mj(f-i“d“de[h?(xj’l)]) € {G, B} and a:j(fiiHCIUde[h;I(xj’2)]) € {G, B}, player i creates x;(i) €

(2
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Playeri’s
randomization

Prob 1 —n l Probn
Round (xj,Z) xj(i): Round (xj-,l) xj(i):

xj(i) = x; (fimclude [h:I‘(:xJ-,z)]) xj(i) = x}_(ﬁ_mclude [h:r(xj-i)])

Figure 8: How to create x;(i)
{G, B} as follows:

1. [Round (z;,2) 2;(i)] With probability 1 — n, player i uses z;(fi"[n] *>*)]) in round (z;,2)

to infer x;: z;(i) = xj(fl-incmde[h?(mjg)]);

T(zjvl)
%

2. [Round (x;,1) z;(i)] With probability 7, player i uses x;(fm"ude[n

infer z;: x;(i) = xj(fiinclude[h}‘(ﬂﬁj,l)]).

]) in round (z;, 1) to

We summarize player ¢’s inference in Figure [

Finally, in round (z;,3), player ¢ sends z;(i) € {G, B} spending T2 periods as explained
in Section (with indices j and 7 reversed, m replaced with z;(i), and T = T(x;,3) with
IT| = Tz). Player i constructs 6;(z;(i), f;ncmde[h?(%ﬁ)]) € {R,E}, and player j constructs

25 (D) (frme[p] V) € {G, B} and ;(veceive, frm9e[n] Y]y € (R, E}. For each n € {i, ]},

texehude (- 3) is randomly selected.

Given Qj(wj,f}nCIUde[hgr(wj’2)]) € {R,E} and xj(i)(f}nd“de[h}r(xj’?’)]) € {G, B}, player j creates

z;(j) € {G, B} as follows:

1. [Adhere z;(j)] If player j has 0;(x;, fmde [h;r(xj’2)]) = R in round (z;,2), then player j mixes

the following cases:

(a) [Round (z;,2) x;(j)] With probability 1—n, player j adheres to her own state: z;(j) = z;;
(b) [Round (x;,3) x;(j)] With probability 7, player j listens to player i’s message in round

(27,3): 2;(j) = a; (§) (firede [ 7)),

2. [Not Adhere z;(j)] If player j has 6;(z;, f;ndude[h?(%m]) = F in round (z;,2), then player j

always listens to player i’s message in round (z;,3): z,(j) = z; (i)(f}n‘llu‘ie[h}r(mj’g)]).

We summarize player j’s inference in Figure [0
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( fmcucle[hT(‘I ])7

— R:[Adhere x; (/)]

= E: [Not Adhere x; (j)]

Player j’s
randomization
Prob1 -7 Prabn
[ L
Round (x;,2) x;()): Round (x.,', 3) xj(]?r:(x A
x]U) _ xj Xj U) - xj(i)(f}mclude Ihj Jr l)

Figure 9: How to create z;(j)

13.2 Properties of z,(i) and z;(j)

It will be useful to derive the following properties about the inferences.

Lemma 8 Given the above construction of x;(i) and x;(j), we have the following: For a sufficiently

large T, for each i,j € I and x;,x;(i),z;(j) € {G, B},

1. For each h?(xj’l), h?(xj’Q), and h?(xj’:}), if (i) # x;(j), then player i believes that [Round (x;, 3)
5], 0;(x, fre T V) = B, or 6;(x;, £ [n; ) = E with a high probability:

[Round (z;, 3) 96]' (J )]
Pr Vo; ("EJ’ fmclude[ ]) ’ Tj, T (])7 h?(rj71), h?(mj’z), h?(xj’g) 2 l—exp(—QT%)'
)

\/9]‘ (xj , f;nclude [ ]

(39)

2. For each hT(xj 1) h;r(xﬂ), and h?(mj’g), if ©;(j) # x;(7), then player j believes that [Round

x;,1) x:(i)] or 0;(receive, finclude[p 1 = I with a high probability:
1) 0, (veceive, fincude[p T2 — B with a high probabil

[Round (z;,1) ;(i)]
Pr VO, (receive, f”‘cmde[h?(‘rJ 2)]) E ¢ | zj,x(1), h}r(m]-,n, h;r(gcjg), h}‘(%ﬁ) > 1—exp(—2T%).

VO (i), f ey V) = E

Proof. See Appendix[A.§ =
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As will be seen, if [Round (z;,3) z;(j)], 6;(x;, £ [n; V) = B, or §;(x;, fretde[n; 2] =

J J

E is the case, then player j uses the type-3 reward (makes any strategy of player i optimal). Hence,
ensures that, whenever player 7 realizes that player i’s inference is miscoordinated with player
j’s inference, any strategy is optimal for player ¢ with a high probability, as required by .
Similarly, ensures that, whenever player j realizes that player j’s inference is miscoordinated
with player 7’s inference, any strategy is optimal for player j with a high probability.

We explain why holds.  First, Figure [J implies that if 2;(j) # ;, then we have [Round
(z;,3) zj(j)] or 0;(x;, f}nCIUde[h;-r(xj’z)]) = E. Hence, we concentrate on x;(j) = ;.

Look at Figure|§| for how player ¢ infers x;(¢). Suppose player i has x;(i) = x;(f, incmde[hmmj ’1)]) +

7 7

2;(j) = x;. Since the round (z;,1) lasts for T2 periods, Claim [2|in Lemma @ with m = z; implies
Pr <{9j(xj> f;ndude[h?(:ﬂj’l)]) - E'} | zj, h?(fﬂj,l)) > 1 —exp <_€messageT%> .

Given z;, by Figure @ player j’s strategy in rounds (z;,2) and (z;,3) and her inference z;(j) are
independent of her history in (x;,1). Hence, this inequality is sufficient for (39).
Suppose next player i has (i) = (e [pT“2)]) £ 4.(j) = 2;.  Since the round (z;,2)

K3 K3

lasts for T3 periods, Claim [2{in Lemma |§| with m = z; implies
Pr <{0j($j7 f;nclude[h?($j72)]) _ E} | ), hzf(wj,?)) >1— exp (_5messageT%> ) (41)

Since player j uses her history in the round (z;,2) to determine z;(j) by Figure |§|, this inequality
does not immediately imply . Nonetheless, we can still prove as follows.

Observe that by Figure [9] with probability at least 7, regardless of player j’s history in (z;,2),
hT(m]’g)])

i Since the length of round

player j uses the inference in (z;,3): z;(j) = x;(1)(f""[
(x;,3) is Tz, Claim |§| of Lemma@ (with ¢ and j reversed and m = z,(i)) implies that player i with
hf(xj’g) believes that any ;(i)( f}“dude[h?(xj ’3)]) happens with at least probability exp(—Kmessagel 2 )-

In total, player ¢ believes that any x;(j) is possible with at least probability nexp(—KmessageT%)
given (hmxj 2 p T ’3)). Hence, the belief update about 6;(x;, f}nd“de[hj-r(xj ’2)]) from h?(xj % and

7 ) 1% J

;(j) is of order exp(—T'2).

20



Since T3 > T2 (here is where we use the assumption that round (z;,2) is much longer than

round (z;,3)), (41)) implies that
P 0. (1. include hT(Ij:Q) = F . (A hT(x]WQ) hT(afﬁS) 42
r J(xwfj [ i )= | 25, 2;(5), by ) 1Y (42)

is of order exp(—7'3). Conditional on x; and x;(j), player j’s strategy in round (x;, 1) is independent
of her history in (x;,2) and (x;,3). Hence, (42)) is sufficient for (39).

We second prove . Look at Figure |§| for how player j infers x;(j). Suppose player j has
() = a;(2)(firemae [h}r(xj A ]). Then, since round (z;,3) lasts for Tz periods, Claim [2{ of Lemma@

(with ¢ and j reversed and m = z;(4)) implies

N

Pr ({61a,0), £ T = BY () BTY) 21— exp (~eneeT

).

Given (i), player i’s strategy in rounds (z;,1) and (z;,2) is independent of her history in (z;, 3).
Hence, this inequality is sufficient for (40)).

Suppose next that player j adheres to ;. In this case, by Flgure@ player j has 6;(x;, f‘-“CIUde[h}T(xj’Q)]) =

R. Hence, by Claim [5] of Lemma [6], we have

b 0, (receive, fmd“de[hgr(ajj ’2)]) =F
r
\/xj (filnclude[hr(xjvz)}) =1

7

| .Z’j, h}l’(rj,Z) Z 1-— €exXp (_5messageT%> . (43)

To see why this is sufficient for , we deal with player j’s learning from z,(7), h}r(xj ’1), and

h’]'r(xjvg)
j
(x,1): x;(i) = :L’j(f‘nd“de[hq-r(”’l)]). Since the length of round (z;,1) is T2, Claim |§| of Lemma@

1

as follows. By Figure , with probability at least 7, player ¢ uses the inference in round

)

(with m = z;) implies player j with h ) believes that any inference x; (fmelude [h happens

1

with probability at least exp(—Kmessagel ). In total, player j believes that any x;(i) is possible
with probability at least nexp(—KmessageT%) given (h}r(mj ’1), h}r(zj ’2)).

Since T3 > T2 (here is where we use the assumption that round (z;,2) is much longer than

round (z;, 1)), implies

01- receive, include hq'r(xj,2) _E

v (freelh; ) =

o1



is still of order 1 — exp(—T3). Moreover, given (i), player i’s strategy in round (z;,3) is inde-

pendent of her history in (x;,1) and (z;,2). Hence, (43)) is sufficient for (40)).

13.3 Strategy in the Coordination Block for z;

The strategy in the coordination block for z; is defined in the same way as Section [13.1} with indices
i and j reversed. Player i creates 0;(z;, £ [nT D)) € {R, E}, 0;(x;, frnde[pT2))) € {R, B},

7 (2

() (finclude [, T3y € (G BY, 0;(receive, a;, findvde[p @)y € (R EY. and (i) € {G, B}. On

7

the other hand, player j creates :Ei(fji-nd“de[h;rm’l)]) € {G, B}, 0;(receive, f;ncmde[hf(m’l)]) € {R,E},

i(frede [T 02N) € (G, BY, 0;(veceive, firde[nT 2]y e (R, B}, 2,(j) € {G, B}, and 6;(x;(j),

J J

freen; ) € {R, B}.

J

13.4 Strategy in the Main Block

Given the coordination block, each player i has the inference of the state profile (i) = (z;(7), z,(i)) €
{G, B}*. Player i with z(i) takes an action in main block I given X\;(I) € {G, B} and X;(1)(i) €
{G,B}. We first define the strategy given \;(l) and \;({)(4):

13.4.1 Review Round [ given \;(I) and \;(!)(7)

In review round [, player i takes actions, depending on (i) her inference of the state profile
z(i) € {G, B}?, (ii) the summary statistic of the realization of player j’s reward (calculated by player
i) \i(l) € {G, B}, and (iii) her inference of player j’s statistic \;(/), denoted by X;(1)(i) € {G, B}.
As will be seen, both \;(1) and \;(1)(¢) are functions of the frequency of player i’s history at the be-
[h]. Hence, precisely speaking, we should write \; (1) ( finclude[p<1)

ginning of review round {, finclude ]

and \;(1)(i)(f<ude[p=1]). For notational convenience, we omit finclude[p=!].

Player i picks «;(l) € A(A;) based on \;(I) and \;({)(i) at the beginning of review round [ as
follows (see Figure [10]for illustration). Given (1), player i takes a;, according to o (1) i.i.d. across
periods for T' periods in review round /. (That is, the mixture to decide a;(l) is conducted only

once at the beginning of review round I. Given «;(!), player i draws a;; from «;(l) every period in

the round.)

1. If player ¢ has \;({)(i) = G, then player i believes that with a high probability, any action is
optimal. (If A\;(I) = G (coordination goes well), then the reward is not type-2. Whether the

02



reward is type-1 or type-3, both rewards make any strategy of player ¢ optimal by Lemma )
In this case, she picks the strategy to control player j’s payoffs.

(a) If \;({) = G, then player j’s reward function is not type-2. In this case, player i takes
a;(1) = of (x(i)) with probability 1 — n, and «;(1) = «;”(x(4)) with probability 7.

(b) If X\;(l) = B, then player j’s reward function is type-2. Then, player ¢ takes a;(l) =
of (x(7)) with probability 1, and «;(1) = «;”(x(i)) with probability 1 — 7.

7

That is, with a high probability, player i takes of (2(4)) if A\;(1) = G and o (x(7)) if \;(1) = B.
As will be seen in Section this strategy makes sure that player j’s equilibrium payoff is

vj(x;) at the same time of satisfying self generation.

In addition, we make sure that the support of a;(l) is the same regardless of \;(1) € {G, B}
given \;(1)(¢7) = G. With indices i and j reversed, player i cannot learn \;(l) by observing
a;(1) given X\;({)(j) = G. This will be important when we calculate player i’s belief update
about \;(1) in Lemma [9]

2. If player ¢ has \;(/)(i) = B, then player ¢ believes that her reward function is type-2 and
player j takes o”(2(i)) if (i) = x(j). (She believes that, if x(i) # x(j), then player j uses
the type-3 reward and any strategy is optimal with a high probability by Lemma ) Hence,
player i takes the static best response to o (x(i)): a;(l) = BRi(a}"(2(1))).

For notational convenience, let action;(I) = R denote the event that player i takes of (z(7)) if
Ai(l) = G and takes o (z(4)) if N\;(1) = B; and let action;(l) = F denote the complementary event.
If \;(1)(i) = G, then action;(l) = R denotes the event that player ¢ takes the strategy which is
taken with a high probability 1 — 7. As will be seen in Claim 4| of Lemma |1 1] (with indices i and j
reversed), if A\;(1)(z) = G and action,(l) = E, then player ¢ will use the type-3 reward for player j.

Let hf(l) = (@i t,Yit)t in review round 1 D€ player i’s history in review round /. Given hf(l), if player
i has \;(1)(i) = N(l) = G and takes «a;(I) = af(z(i)), then she creates the random variables
05V ((4), fiind“de[h?(l)]) € {R, E} as in Section |[11f with T = T(!) (7" periods in review round [).
Let tx<lude(]) be the period randomly excluded by player i.
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Figure 10: Determinaction of «;(1)

On the other hand, player 7 also calculates player j’s type-1 reward

w5 (i), [ V) = Yo mla@(@)(ais yi)- (44)

teT (1) tAtgxelude(D)

The definitions are the same as in Section |11| with indices ¢ and j reversed and T = T(Z)H
Given \; (1) and 7;(z(i), finclude [h?(l)]), player i defines \; (I + 1) as follows: The initial condition
is A\; (1) = G. Given \; (1), player i defines A\;(I + 1) as follows (See Figure [11] for illustration):

1. [Case A; G| If player i has \;(I) = G, then player ¢ has \;(I + 1) = B at the end of review

round [ if and only if player j’s score in review round [ is excessive:

(a) [Case \; Not Excessive| If player i has

i(2(), finclude[h?(”])( < L7, then Ni(I+1) =G

)

at the end of review round [.

(b) [Case \; Excessive] If player i has

(3 (4), f;ndude[hf“)])) > LT then A;(l+1) = B at

the end of review round /.

2. [Case \; B] If player i has \;(I) = B, then player i has A\;(l + 1) = B at the end of review
round /. That is, \;(I) = B is absorbing.

With indices ¢ and j reversed, player j also creates \;(I + 1) € {G, B}.

®Note that the function 7;(z(i), finclude [h}(l)]) is well defined even if player i takes a; (1) # of (x(i)).
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Figure 11: Transition of \;({)

13.4.2 The Supplemental Round for A; (I + 1)

Player j sends \; (I +1) € {G,B} in the supplemental round for \;(l + 1) spending T> peri-
ods as explained in Section (with m replaced with A\; ({+1), and T = T(); (I +1)) with
IT| = T2). Player j creates 6;(\;(I + 1),f;ncmde[h}w‘j(lﬂ))]) € {R,E} and player i creates

A (I+1) (fii“d“de[hq-r(/\j(lﬂ))]) € {G,B} and Qi(receive,fg“cmde[hm)‘j(lﬂ))]) € {R,E}. For each

(2 3

n € {i,j}, t&Me();(l + 1)) is randomly excluded.

13.4.3 The Supplemental Round for \; (I + 1)

The strategy is the same as Section [13.4.2| with indices ¢ and j reversed. Player i creates 6;(\;(I +
1), fincludep THFDY (R FY and player j creates A; (I + 1) (f;nCIHde[h;.T()‘i(l+1))]) € {G, B} and

0;(receive, firctnde [h}r(Ai(Hl))]) € {R,E}. Foreachn € {i,;j}, t&Mde()\;(I+1)) is randomly excluded.
Now that we have defined player i’s strategy given \;(1)(:) and X\;({) for all [ € {1,..., L} and
that we have defined the transition of X;(l). Hence, to complete the definition of the strategy in

the main block, we are left to define the transition of X;(1)(7).

13.4.4 Transitions of \;(/) and \; (1) (¢)

The initial condition is A;(1)(7) = G. Inductively, for [ € {1,...,L — 1}, given X\;(1)(i) € {G, B},
player i determines \;({ 4+ 1)(i) € {G, B} as follows (see Figure [12| for illustration):

1. [Case \;(i) G] If player i has A;(1)(i) = G, then player i has A\;(I+1)(i) = B in the next block
[+ 1 if and only if player ¢ decides to “listen to” player j’s message in the supplemental round

for A\;j(I 4+ 1) and “infers” that player j’s message is B. Specifically,
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A

(a) [Regular  \;(i)] If player i has ay(l) = af(x(i)) and 6;(x(3), fiind“de[h?(i)]) = R for each
[

[ <[ with Ai(l) = G, then player ¢ mixes the following two cases:

i. [Case \;(i) Ignore] With probability 1 — n, player i “ignores” player j’s message:
Player i has \;(l 4+ 1)(i) = G, regardless of player ¢’s inference of player j’s message
about \;(l 4+ 1), denoted by A; (I + 1) (finclude[p TO (1D}

)

As will be seen in Lemma [J] if player ¢ ignores player j’s message, then player i
believes that \;(I+1) = G or player j uses the type-3 reward with a high probability.
In other words, holds when player 7 ignores the message.

To see why this is true with this transition, assume here that player j has \;(l) = G,

Ai(1)(j) = G, and «;(l) = off(2(j)). The first condition assumes that player j had

not yet switched to A;(l) = B by the beginning of review round . In addition, as
will be seen in Lemma , if A\;(I) = G but either \;(1)(j) # B or a;(l) # o (x(j)),

J
then player j uses the type-3 reward (and so holds trivially). Given these

conditions, if and only if |m;(x(j), findude[hq-r(l)])‘ > &, player j has \;(I+1) = B by

J J

Figure |11 (with indices ¢ and j reversed).

Imagine first that player i has \;(I) = G for each [ < I. Then, [Regular 0
X;(i)] implies 0;(x(i), frwde[pTD)) = R, By Claim [3 of Lemma , player i with
0,(x(i), fr™[h; "]) = R believes that, if (i) = x(j), then |m;(x(j), fire[n] "))

4 or player j uses the type-3 reward. Moreover, if (i) # x(j), then player i be-

<

lieves that player j uses the type-3 reward by Lemma In total, player ¢ believes
that A\;({ + 1) = G or player j uses the type-3 reward.

Imagine second that player i switched A;(I) = G to A\;(I+1) = B for some [ < [ — 1.
This means |m;(z(7), fimd“de[h?(i)]) > &+ by Figure . Claimof Lemmaensures
that player i with 6;(x(i), finclude [h?(i)]) = R believes that player j uses the type-3
reward if (i) = x(j). Again, if z(i) # x(j), then player ¢ believes that player j uses
the type-3 reward.

In both cases, player i believes that A;(I41) = G or player j uses the type-3 reward.
Note that the above argument establishes player i believing “A;(I+1) = G or player
j using the type-3 reward” at the end of review round [ (or in the second case, at

A~

the end of review round /). Recall that holds conditional on player ¢’s history
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Figure 12: Transition of \;(1)(z)

at the end of review round [+ 1. Hence, we still have to deal with player ¢’s learning
about A;(l+1) from her history between the end of review round [ (or that of review
round Z) and the end of review round [ + 1. See the explanation after Lemma @ for
the details.

ii. [Case A;(¢) Listen] With probability 7, player i “listens to” player j’s message:
Player i has \;(I + 1)(i) = A; (I 4 1) (finclude[p 0+

Claim[2| of Lemmal] ensures that player ¢ believes that either A;(I41)(7) = A; (1 + 1)
or player j uses the type-3 reward.

(b) [Irregular 6 X;(i)] Otherwise, player i always listens to the message: Player i has
) includerz. T(X; (1
)‘j(l+1)(2):)\j (l—l—l) (f lud [hz( J(+1))]).

7

Note that, after each history (unless \;(1)(:) = B), player ¢ listens to player j’s message
with probability at least 1. See footnote [17] for why this lower bound of the probability is

important.

. [Case A;(i) B] If player i has \;(1)(¢) = B, then player ¢ has \;({ + 1)(i) = B in the next
block [ + 1. That is, A\;({)(i) = B is absorbing.
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13.4.5 Property of \; (1) ()

Now that we have finished defining player ’s strategy in the coordination and main blocks, it will
be useful to summarize the property of the inference \;(1)(7). Suppose that z(i) = z(j) (otherwise,
Lemma |8 ensures that player i believes that player j uses the type-3 reward function) and that
player j has \;(I)(j) = G (otherwise, as mentioned in the explanation of Claim [4] of Lemma [7]
player j uses the type-3 reward).

The following lemma ensures that, if x(i) = z(j), player j has \;({)(j) = G, and player i
has A;({)(i) = G, then player i believes that, with a high probability, one of the following four

events happens: \;(I) = G; 0;(\;(1), fi""e [h;r()‘j(l))]) = E happens when player j sends A;([) in the

supplemental round; actionj(i) = E for some | < [ —1; or 0;(x(4), f;nCIUde[h?(l)

some review round [ < [ — 1 As will be seen in Lemma , the cases except for \;(l) = G imply

]) = E happens for

that player j uses the type-3 reward. Hence, the following lemma is the basis for ([26)):

Lemma 9 For a sufficiently large T', for each i € I, x; € {G,B}, and each h?l, if player i has
Ai(D)(7) = G, then we have

Xi(1) = BAG; (D), fretue M) = R

J J

Pr Aaction; (1) = 6;(z(j), fji-ndude[h}r(l)]) =R foreachl <1—1 <exp(—T

| 2, {z(j) = 2()}, {N(1)(G) = G}, s

Wl

). (45)

Proof. See Appendix[A.9 =

Let us give an intuitive explanation. Recall that, given X;(1)(j) = G, if player j has action,(l) =

R with [ < [, then we have

{Ai(l)(j) = G Aaction;(I) = R with [ < z}
= {AZ(Z)(]) — G Aaction;(I) = R with [ < l} since A;(1)(j) = B is absorbing by Figure
{os) = a2} (46)

See Figure [12| for how player ¢ updates A;(1)(z). If player ¢ listens to A;(!) in the supplemental

169j(x(j),f;I‘CI“de[h?@]) is not defined if player j does not take a;(l) = of(z(j)). We define that if a;(l) #

off (x(4)), then neither 0;(z (), f;ndude[h}r(i)]) = R nor 0,(z(j), fji-nd“de[h;r([)}) = F is the case.
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round for A;(1), then by Claim [2] of Lemma [6] if A;(1)(¢) # A;(1), then

include Al Al 1
Pr ({0,050, ;) = B 250, 27 ) 21— exp(—emessage ).

M) given A;(1), this inequality is

Since player j’s continuation strategy does not depend on h; Ty
sufficient for (45| (for sufficiently large T').

Hence, we focus on the case where player ¢ does not listen to A;(/), and will prove

A\(l)=B
Pr Aaction; (1) = 6;(z(j), fi-nd“de[h}r([)}) — Rforeach [ <[—1 < exp(—T9).

J

[y, 2() = 2@} IDG) = G b7

A, A

Since player i does not listen to A;(1), for each [ < I — 1 with \;(I) = G, we have oy (I) = o ((3))
and 0,(x(i), £ [n] V) = R,

First consider the case where player 7 has AZ(Z) —= G foreachl <!—1. Foreachl < [— 1, suppose
X(D(j) = A;(1) = G. Unless action;({) = E, player j takes o (I) = a(z(j)). On the other hand,
we have just verified that player i with A;(I) = G has o;(I) = o (x(i)) and 0;(x(q), finchde [h?([)]) =R

in the case we are focusing on. Hence, unless action;(/) = E, we have

J

Pr VO (), £l ) = B

|25 {o(i) = 20} {NDG) = M) = G}, {action; (1) = R, £k )
mi(a(y), frbse ]| <

mi(2(3), £y O] < £ 1m)

J

= Pr vej(l'(j), fi'nclude[h}T(lA)D — R by

J

| 25, {2(j) = 2()}, af(@(0)), o’ (@ (5)), filr "]

> 1 — exp(—&review!') by Claim [3] of Lemma[7]

Since ,(l) =

(), f‘“d“de[hw)])’ < |T| imply A;(i +1) = G by Figure[11] together
with the case of actlonj(i) E, the above inequality implies

{A](Z +1) = B Aaction; (i) = 0;(x(j), finchude[pT0)) = R}

J

Pr
[y () = 2@} D () = (D) = G} i

<exp(—eT)  (47)
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with a sufficiently small €.

In order to prove , we are left to prove

J J

{Xi(i+1) = B Aaction (1) = 0,(x(5), fre [} V]) = R}
|25 {2(3) = 2@}, {00 0) = 3() = G}, i

Pr (48)

is of order exp(—T') from (47). (The difference from is that, in ([48)), we condition on X;(1)(j) =
G and hE', rather than \;(I)(j) = G and higi.) To see why is sufficient for , note that,

since \;(l) = B is absorbing, we have

\() =B
Pr naction; (1) = 0;(x(j), finde[n D)) = R for cach | <1 — 1
|25, {2 () = (@)}, INO)G) = G} A7
. NI+ =B
< ZPr Aaction; (1) = 6;(z(j), f]i-“d“de[h?(l)]) =R

=\ feG) =260 0 G) = L) = G b

If holds for each [ < [ — 1, then this inequality implies , as desired.

We now prove . To this end, comparing and , we need to deal with learning
after review round [ and conditioning on not only X;(I)(j) = G but also \(I)(j) = G. Given
X(D)(j) = G (and so A;(1)(j) = G for each [ < I), learning after review round [ is small for the
following reasons: Figure [10| implies that both «a;(I) = off(z(j)) and a;(l) = a;”(x(j)) happen
with probability at least 7 regardless of player j’s history. Further, Figure [4 implies that, given

~ ~ send _ psend _ psend

Aj(1), any aj(N\;(1) € {&f  (G), &% (B),a} (M)} happens with probability at least 5. Hence,

1 & » &
player i cannot update the belief about A;(I + 1) so much by observing a;(1) or a;(\;(1)) given
A(DG) = G.
Moreover, conditioning on \;(1)(j) = G does not change player i’s belief so much for the following
reasons: Figurewith indices i and j reversed, as long as \;(1)(j) = G, player j listens to player i’s
message about \;(I+1) with probability at least 77 Claim@of Lemma@ (with ¢ and j reversed and

m = \(l + 1)) implies that player i with h?wdﬂ)) believes that any \;(I + 1)( f}“dude[h}r()‘i(”l))])

'"This is where we use the mixture in the inference of \;(l).
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happens with probability exp(—KmessageT%). Hence, player i believes that )\l(l~ + 1)(j) = G is
possible with probability at least 7 exp(—KmessageT%).

Since T2 < T for a sufficiently large 7', implies , as desired.

Second we consider the case where there exists [ < [—2 such that player i switches from )\l(i ) =G
to A\i(I +1) = B, that is, |m;(x(i), f;ncmde[h?@]) > 4 by Figure . Since player i has \;(I) = G
until review round [, the same proof as above implies that she believes that, given AZ(Z) (7) = G,
with a high probability, A;(I) = G unless action;(I) = E or 6,(x(j), f;n“mde[h?([)]) = FE for some
[ < i

Moreover, if \;(I) = G, then since \;(I) = G and \;(I+1) = B imply
by Figure unless actionj(i) = E, we have

w5 ((i), fincde[pT D)) > &

2

o { (), flnclude[h']ﬂ‘(i)]) _ E}
[

|25 {2(5) = 2@}, {0 = M) () = 6}, {action;()) = R}, filn] )
{0,aG), frmepi Oy = £}
|2, {2()) = <>} of (a(i)), o (x()), filh; V)

since player j takes a x(j)) by (46} .

= Pr

> 1 — exp(—&review!') by Claim [4] of Lemma[7] (49)

In total, player i believes that A;(I) = G unless action;(I) = E or 6,(x(j), f]i-“d“de[hf(z)]) = F for
some [ < [. Player i also believes that if A;(I) = G, then action;(I) = E or 6,(x(j), f]i.nd“de[h}r(i)]) =

E. Hence, player i at the end of review round [ believes that

Pr ({actionj(i) — 0;(2(j), £ [nT D)) = R for each [ < Z} | 25, {)\i(f)(j) - G} , hff)

is of order exp(—T). We can deal with learning after review round [ and conditioning on \;(1)(j) = G

as above.

18The precise argument goes as follows: Since player i has \;(I) = G for each | < [, she has \;(I) = G for each
< [ —1. Replacing [ with [ in the above argument, player j believes that \;(! ) G unless actlonj(l) = FE or

]
G.j(x(j),f}“cmde[h}r(”]) = F for some | < [ — 1. Since~ “action;(I) = E or 0;(x(5), firetndeln; (Z)]) = E for some
[ <1—1” implies “action;(I) = E or 0;(z(j), f;“dude[h?(l)]) = E for some [ < [”, the statement holds.
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13.5 Full Support of t;xcmde(r)

As will be seen, it will be useful (in the proof of Lemma [13) that player i believes that any ¢*9(r)

is possible in each round r, as long as player j’s state \;(1)(j) has not switched to \;(1)(j) = B:

Lemma 10 For a sufficiently large T', for eachi € I, x; € {G, B}, round r, and player i’s history
h=, the following claim holds: Let I be the first review round with \(1)(j) = B and suppose round
r satisfies v < If.  (If \i(1)(j) = G for each | = 1,...,L, then we assume that each r = 1,..., R

satisfies r < If.) For each t € T(r), we have

Pr ({t&Me(r) =t} | 25, {N()(j) = G for alll < v}, hFY) > T2

send

Proof. Let a;(r) be player j’s strategy in round 7. Since r < [}, a;(r) can be either &}  (G),

77
end _ psend

a” " (B), @’ (M), o, o (x()), or o (x(j)). Let

J J J J

action

support = min aj (71) (aj) > 0

_ psend send send . . * .
4 4 (M), a0 (2(7)) 0 (2(7)) }ras €4,

2()E{G,BY a;(0e{af™ (@).a5"" (B).af

be the lower bound of the probability with which player j takes each action.

Since player j picks tjf"d“de(r) from T(r), there exists one s € T(r) with
Pr ({tixclude(r> — 8} | Oéj(r>7hi§L) > ‘T(T)’_l > T-1

By Assumption [1} the conditional probability is always well defined. Hence, we are left to show
that the likelihood between t$*M4¢(r) = ¢ and t$%(r) = s is bounded by T~" for each t € T(r):

Pr({t7(r) = t} [ ay(r). hE") 50
Pr ({tgxclude(r) - s} | aj(r),hﬁL) > . ( )

)

Suppose that t3M(r) = s, (a)s,y;s) = (a5, 7;), and (a;1,y;0) = (@;,7;) is the case. Imagine
that player j changes ¢$*%(r) from s to t: t*"4°(r) = . At the same time, suppose that Nature
changes (a; s,y s) from (a;,y;) to (a;,9;), and changes (a;¢,y;+) from (a@;,y;) to (a;,y;). Then,
f}nd“de [h}r(r)] is unchanged. Conditional on X;(1)(j) = G, player j takes fully mixed strategy in
each round. Hence, the likelihood between “(a;s,y;s) = (a;,y;) and (a;j.,y;:) = (@;,9;)" and

“(ajs,y;s) = (aj,7;) and (aj+,yj) = (aj,7;)” is uniformly bounded by (egﬁgggrtssupport)% Hence,
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we have ({ 1d() }| " <L)
Pr ({txcvde(r) =t} | a;(r), hi .

J J b > action 2

Pr ({texlude(r) = s} | ay(r), h5") — (Sipporesupport)

which implies for a sufficiently large T, as desired. m

14 Reward Function in the Coordination and Main Blocks

Before defining the strategy in the report block, we define player i’s reward function. In Section
14.1] we define the variable 0;(I) € {G, B}, on which the reward function depends, so that 6;(I)
satisfies certain properties. Given the definition of 6,([), Section defines the reward function

Tp+1 c 1 : _ zj ; djust ¢ - :
mi(2j, h; "), which is the summation of 7;(xz;), 7,7, 7Y, 779" and m;P*". 7;(x;) is defined

i 0 N ) e i

in (52); and 71" is defined in (57). (7;” has been defined in Lemmal[2) The remaining rewards

i

adjust and 77 will be defined in Lemma

7 A

™

14.1 Definition of 0,(1) € {G, B}

As will be seen in and , 6;(l) = B means that player j uses the type-3 reward for player i
in review round /. 6;(l) depends on the frequency of player j’s history at the beginning of review
round [, firmae[p=l] - Although we should write 0;(1)(fi*™°[h5"]) precisely speaking, for notational
convenience, we write 6;(1).

The formal definition of §,(1) is relegated to Appendix In Appendix , we will define
6;(1) such that 0;(l) = B if (and only if, except for a small adjustment) at least one of the following
four cases happens: When player j sent a message m in a round r < I, 6;(m, fji-nd“de[hr(r)]) =F

J

happened; when player j received a message in a round r < [, 6;(receive, f;ncmde[h?(r)]) = F

happened; in some review round [ < [ —1, player j had \;(1)(j) = \;(I) = G, took a;(l) = o (z(4)),
and 0577 (x(5), f;nd“de[h;r([)]) — F happened; or when player j inferred z;, x;, or \;(I) with [ <1—1
or took Oéj(~) for [ < 1J'| the result of player j’s mixture was a rare event (for example, when she
inferred z;, [Round (z;,3) 2;(j)] happened. As seen in Figure [9] this event happens only with

probability 7 (rare). After [Round (z;,3) x;(j)], player j has 6;(l) = B).

9Precisely speaking, since the mixture to determine o (1) happens at the beginning of review round , 6; (1) depends

on player j’s history at the beginning of review round [, hfl, and her own mixture at the beginning of review round
l.
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There are following six implications of this definition. First, §;(I) = B is absorbing: §,(l) = B
implies 6;(l + 1) = B.

Second, the distribution of §;(I) does not depend on player i’s strategy. Since we will define
that player j uses the type-3 reward if and only if 6;(I) = B, this ensures that player i cannot
control whether player j uses the type-3 reward or not, as mentioned in Section [9.2]

To see why this property is true, recall that Claims [3] and [] of Lemma [6] ensure that the distri-
bution of 6;(m, f;ncmde[h}‘(r)]) and 0;(receive, f}“‘"‘l“de[hr(r)]) does not depend on player i’s strategy.

j
Moreover, Claim [2| of Lemma |7| ensures that the distribution of H;eVieW(a:( 7), fi-“d“de[hq-r(l)]) does not

J J
depend on player i’s strategy’| Finally, player j’s own mixture is out of player i’s control. Hence,
in total, the distribution of #;(l) does not depend on player i’s strategy.

Moreover, recalling that £ stands for erroneous (and so it is rare that the realization of a random
variable is E), it is rare to have 6; (I) = B. This ensures that player j does not use the type-3
reward often, as mentioned in Section [9.2]

Third, player j with \;(1)(j) = B has 6;(I) = B. This ensures that player ¢ can condition that
player j has \;(1)(j) = G since otherwise the type-3 reward makes all the strategies optimal.

To see why \i(1)(j) = B implies 6,(I) = B, take [ < | — 1 such that player j switched from
X(D(j) = G to \(I+1)(j) = B. As seen in Figure [12| with indices i and j reversed, this means
that player j listened to player i’s message \;(I 4+ 1). If [Regular 6 \;(j)] was the case (see Section
with indices i and j reversed), then listening to player i’s message is the rare realization of
player j’s own mixture and so 0,(l) = B.

If [Regular 6 \;(j)] is not the case, then player j with \;(I) = G did not take a;(I) = o (z(4))
or had Qj(x(j),f;ndude[h;r(i)]) — E for some | < I. Since player j had \;(1)(j) = G, she also had

X(D)(j) = G. Hence, if she did not take o(2(j)) in review round I, then this is a rare realization of

her own mixture for o (1). If 6;(z (), f}ncmde[h}m)]) = [, then player j has 6;(l) = B by definition.
In total, player j has 6;(1) = B whenever player j switched from \;(1)(j) = G to A\;(I+1)(j) = B.
Fourth, given 0;(I) = G, player j takes of(x(j)) if A\;(I) = G and takes a;”(x(j)) if \;(I) = B.
In other words, if action;(l) = E, then 6;(I) = B. Moreover, since ;(l) = B is absorbing, if
action;(I) = F for some [ < [, then 6,(I) = B.

To see why, note that the third property implies that given 6,(l) = G, player j has \;(1)(j) = G.

20Since 9;-0"10“’(:r(17')7 finclude [h?(l)]) is defined only if player j takes a;(l) = of ((j)), we need some adjustment so

that player ¢ does not want to control the distribution of 8,;(l) by changing the distribution of «;({).
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Given \;(1)(j) = G, Figure |10 with indices ¢ and j reversed ensures that the event that player j
takes o (2(j)) with \;(I) = G or takes of(x(j)) with \;(l) = B is rare (happens with probability
no more than n). Since we have 0,(l) = B after a rare realization, the result follows.

Fifth, if player j has z,(j) # x;, then we have 6,(I) = B. Recall that player j’s state z; controls
player i’s payoff (see for example). This property means that when player j does not adhere to
her own state (“gives up” controlling player i’s payoff), player 7 is indifferent between any action.

]) = E or [Round (z;,3)

’].I‘(l'j72)

Figure @ ensures that, if ;(j) # z;, then either 6;(x;, f;nd“de[h]

x;(j)] (rare realization of player j’s mixture) happens. Hence, z;(j) # x; implies 6;(I) = B.
Finally, suppose that player ¢ conditions on \;(1)(j) = G (see the third property for why this
conditioning is optimal). Player ¢ believes that, if she has z(i) # x(j) or A\;(I)(i) = G, then
A;(l) = G or (1) = B with a high probability. That is, as seen in , player i believes that, if
the coordination does not go well, then player j uses the type-3 reward with a high probability.
To see why player i holds such a belief, we first explain that, if player ¢ has z(i) # x(j), then she
believes that 6;(I) = B with a high probability. (i) # z(j) happens only if one of the following
two cases happens: (i) # x;(j) or z;(i) # x;(j). We consider these two cases in the sequel.
Given in Lemma [§] if player ¢ has x;(i) # x;(j), then given x; and x;(j), player ¢ believes
that [Round (z;,3) z,(j)] (a rare realization of player j’s mixture), 0,(z;, f;ncmde[h?(%l)]) =F, or

6;(x;, f]i-nd“de[hf(xj ’2)]) = E at the end of coordination block for x;. Since player j’s continuation

strategy does not depend on her history in the coordination block for x; conditional on z;(j), this
belief means that, in review round [, player ¢ believes that 6;(l) = B.

Again, given in Lemma [§ with indices i and j reversed, if player i has x;(i) # z;(j), then
given x;(j), player i believes that [Round (x;,1) z;(j)] (a rare realization of player j’s mixture),
6, (receive, f;ndude[h?(x’ﬂ)}) = E, or 0;(x;(j), f}nd“de[h?(“’?’)]) = E at the end of coordination block
for z;. Since player j’s continuation strategy does not depend on her history in the coordination
block for z; given z;(j), this belief means that, in review round [, player ¢ believes that 6;(I) = B.

Hence, we are left to show that, given z(i) = x(j), if player i has A;({)(¢) = G, then she believes
that A;(I) = G or 0;(I) = B with a high probability. Recall that Lemma [J] ensures that player

with z(i) = z(j) and A;(1)(¢) = G believes that player j has \;(l) = G, 6;(\;(1), f;nCIUde[h?(Aj(l))]) =

E, action;(l) = FE for some [ < [ — 1, or Hj(x(j),f}ncmde[h?([)]) — Eforsomel <1—1. As

seen in the fourth property, action;(l) = E for some [ < [ — 1 means 6;(I) = B. In addition,

0,(\i(1), fincude [Ny — B and 6(w(j), £ [T D]) = B imply 6;(1) = B by definition. Hence,
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Lemma [9| implies that player ¢ believes that player j has A;(I) = G or 0;(I) = B with a high
probability.

In total, we prove the following lemma:

Lemma 11 For each j € I and | € {1,...,L}, we can define a random variable 6,(1) € {G, B}

whose distribution is determined by player j’s history hi" such that the following properties hold:
1. 0;(1) = B is absorbing: 0;(1) = B=0;(l+1) = B.

2. For each x; € {G, B} and o, € ¥;, the distribution of 0;(1), denoted by Pr(6; () |
oj(xj),0;), does not depend on player i’s strategy o; € ¥;. Moreover, 0;(l) = B is rare:

Pr({6; () = B} | 0j(x;),0:) < (154 8L) 1.
3. For each hjél with X\;i(1)(j) = B, we have 0;(1) = B.

4. For each j € I andl € {1,...,L}, for each hjgl with 0;(1) = G, player j takes of(x(j)) if
Ai(l) = G and takes o"(x(5)) if \;(1) = B.

5. For each j € I andl €{1,...,L}, for each hjél with x;(j) # xj, we have 0,(1) = B.

6. For a sufficiently large T, for eachi € I, x; € {G, B}, 1 € {1,..., L}, and hy', if 2(i) # x(j)

or X\;j(1)(i) = G with a positive probability with h', then player i believes that A\;(1) = G or

0;(1) = B with a high probability conditional on x;, 2(5), and \(1)(5) = G: If hi' satisfies

Pr ({2(3) # 2() V & (0(0) = G} |y, 2(7), ') >0,

then we have
Pr({4() = GV ;1) = BY |2, {N(D() = G}, h) = 1= exp(~T4).
Proof. See Appendix ]

14.2 Definition of the Reward Function

We are now ready to define player i’s reward function, given the above definition of ;(1). The total

reward is the summation of (i) a constant 7;(z;), (ii) the reward for rounds other than review rounds,
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R il . : _ review
Z'r l:round 7 is not a review round teT(r) b (aj ts y] 75)7 (111) the reward fOI‘ review round [ = 17 ) L7 T

adjust report ,

and ;""" and (iv) the reward for the report block 7;

M:o

mi(z, P = m) +

> w7 (aje yse)

r=1 teT(r)
round r is not a review round

_I_Z{ review x]’fmclude[ <l] f][ T(l)],l) +7r?djust( ]’hjl’h;eport l)}

report
+7; (z

h<L hreport)‘ (51)

J’]

We define and explain each term in the sequel.

First, we define the constant 7;(x;) such that

_ B [Ele {1, 0=y Tuilw;) + Lo, 0=y (sign (x;) LT0 + T;”) } | xj]
Ti(z;) = Tpui(z;) — .
+{@+20)Ts + 218 }
(52)
We define this constant so that player i’s average value from the review phase is equal to v;(z;) in
order to satisfy promise keeping. As will be seen in , the value in the biggest parenthesis is the

value (without being divided by Tp) from the coordination, main, and report block.

Second, the term

Mm

Z W?j (aj,tv ?Jj,t)

r=1 teT(r)
round r is not a review round

cancels out the effect of the instantaneous utilities on the incentives for the rounds which are not
review rounds. This reward incentivizes the players to take actions in order to exchange messages
in the coordination block and supplemental rounds.

Third, we define 7i°"*¥ such that 71"V satisfies the properties mentioned in Section[9] Firstly,

if \i(1)(j) = B (recall that \;(1)(j) = B implies 6,(I) = B), then player j uses the type-3 reward

sign (z;) LTu + Z aje, Yjt)- (53)

teT(l)

Compared to in Section 9, we add sign(z;) LT4. Since sign(z;) x sign (x;) LTu = LT, this

term gives us enough slack in self generation once the type-3 reward is used.
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Secondly, if A\;(1)(j) = G, then if 6,(I) = B, then again player j uses the type-3 reward

sign (z;) LTu + Z 7 (@, Yja)- (54)
teT(l)
If \;(1)(j) = 0;(1) = G, then the reward function depends on A;(l) (whether self generation is an

issue or not). If A\;(I) = G (self generation is not an issue), then player j uses the type-1 reward

T {ui(x;) — ui(@”(@())} + > mila? (@(5)] (@, yje). (55)
teT(1)
By Lemma [2, any strategy of player i is optimal. In addition, since the expected payoff from
wi(ar) +mila?(x(5))(ajs, yie) is ui(a”(x(j))), the value from the review round (without being divided
by T or Tp) is Tu;(x;). Here, we ignore the effect of her strategy in review round [ on the payoffs
from the subsequent rounds. See Section (16| for the formal proof of why it is optimal for player @
to ignore this effect.

On the other hand, if A\;(I) = B (self generation is an issue), then player j uses the type-2 reward

T{ui(w;) — wi(BRi(af"(2(5))), a5 (x(7))) }- (56)

By Claimof Lemma , player j with 0;(1) = G and \;(I) = B takes o;”(x(j)). Since the reward
is constant, as long as the coodination goes well and player ¢ has z(i) = z(j) and \;(1)(i) = B,
player 7’s equilibrium strategy, which takes a static best response to ozj P(x(j)), is optimal. In
addition, since the expected payoff from w;(ay) is u;(BRi(a”(2(j))), a;”(2(j))), the value from the

review round (without being divided by T" or Tp) is T'u,(x;).
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i

In total, we define the reward = as follows:

7T§eview (xj; f;nclude[h§l]’ fj [h?(l)}, l) (57)

= LlpsoG=4 sien () LT+ > w7 (a4, y5)

tET(1)
3
( ( ) AR
T{ui(zy) — ui(a”(x(4)))}
Liyw=6 .
+ 2 ter Tl (@(5)] (@) vjie)
Lig;()=c1
+1lon. = T{ui(x;) — u;(BR; (o (x(5))), o7 (x4
+1 0 G)=G) =y T{ui(x;) — wi (i( (4))); a5 (x(5)))}
9)
+lio,0-5) § sign (z;) LTa+ Y 77 (aj4,950)
teT(1)
\ li y,

Note that z(j), A\i(1)(j), A;(1), and 6;(l) are determined by x;, f;ndude[hfl], and player j’s own mix-

Zj

ture, and 3, py 7 (@5, yje) and 3o op) mila(z(4))](aje, yje) are determined by f; [hf(l)]. Hence,

. . . ; < T(I

VeV is a function of x;, f;nd“de[h;l], g [hj( )], and 1.
review
i

Player i has (i) # x(j) or A;({)(i¢) = G even though player j has 6;(I) = G (this implies \;(1)(j) = G
by Claim 3| of Lemma [11)) and A;(I) = B. One may wonder what if player ¢ has x(i) # z(j) or

Given this definition of 7 , player ¢’s strategy is optimal unless the coordination goes wrong:

A;(1)(i) = B but player j has 6;(I) = A;(l) = G. This case is not a problem since any strategy
of player 7 is optimal given \;(l) = G. To see why, note that Lemma [2] ensures that, with type-1
reward (55), any strategy is optimal.

Let A;(2(5),1) be the set of player 4’s histories f;[h '] such that player i with f;[h;] has 2(j) =
x(7) and \;(1)(i) = B with probability one:

For any realization of t$x<de(y) for r < [,

Aix(5),0) = § filhi] - . . . :
player i with fi[h'] has z(j) = x(i) and X\;(1)(i) = B
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The discussion above means that, if and only if
A(D(G) =G N0;(1) = GAN() = BA filh] € Ail2(5), 1), (58)

player i’s strategy would be suboptimal if the reward for review round [ were 7}V " (x5, fineiude [hjgl], fil

target
%

If player j used the following reward function 7 rather than 7®V¥_ then player i’s strategy

would be optimal after each history: Again, if A\;(I)(j) = B or 6;(I) = B, then player j uses
the type-3 reward or (54)), respectively. If X\;(1)(j) = 6;(1) = G and X;(I) = G, player j
uses the type-1 reward as before. In addition, if X;({)(j) = 6,;(1) = G and “\;(I) = B and
filhs'] & Ai(z(5),1)”, then player j uses the type-1 reward as well. If \;(1)(j) = 0;(I) = G and
“N;j(1) = B and f;[h"] € Ai(z(5),1)”, player j uses the type-2 reward .

Intuitively, whenever player i’s history satisfies (58)), player j uses the type-1 reward rather than
type-2. Since Lemma [2] ensures that the type-1 reward makes any strategy of player ¢ optimal,

with such a reward function, player ¢’s strategy would be optimal after each history.

target
7

In total, 7 is defined as

7Tzarget(xj’ fi[h?l]’f;nclude[hjﬁl]’ fj [h}‘(l)], l) (59)

= lpuwo)=s { sign (z) LT+ Y 777 (a0, 950)
teT(l)

+louwg)=6

( ( )

1{Aj(l>:cvjkj(l) = B A filh'] & Mi(2(5), D)}

~\~
the case with which

aleview jg suboptimal
Lig;(=c1 T {ui(z;) — ui(a”(x(5)))} (
+ X ter Tl (2(5)] (a2, vjie)
\ +1{)\j(l):B/\f¢[hfl]eAi(a:(j),l)}{ui(xj) —ui(BR;(a;"(2(5))), ;" (2(4)))}
+L0,0)=5y {Sign () LTT + 3 cpy 73 (a0 yj,t)}

/

\

target
%

of f;[h:!] as well.

Since is a function of whether f;[h '] is included in A;(2(j),1) or not, this reward is a function

review
i

target
7

target
%

review
)

Instead of replacing 7 with 7 , we add the expected difference between 7 and

to 7'eView: The reward 7*U"*", which is added to 7!®¥i" in , is defined so that the expected value
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djust t t . .
of V"% is equal to the expected difference between 71V and 7;""*"". In particular, in Lemma
. djust <l t t
H, we will define 78" (z;, h3 ,h;epor [) and 0P|, < pst SO that

E |:ﬂ_?djust( 5, h]<l, h;eport l) | xj, {/\ ( )( ) G} 7O_report|h ,h<l]
= B [n oy, SilBE, £ ), fj 15010 g, A0 G) = G b
B [ a7, 105 | (D G) = G A (60)

if \;(1)(j) = G and 79" (2, h=!, B2 1) is zero if \;(1)(j) = B. (Note that the difference between

Jote 1%

,n.reVIeW target

report |
)

and 7, is identically equal to zero if A\;(1)(j) = B.) Here, o < is the conditional

hi

adjust

distribution of player i’s strategy in the report block given hfl. This property of 7; corresponds

to in Section [9.4]

We postpone the definition of 7*¥"" and 7!®°" to Lemma .

target review

14.3 Small Expected Difference between T, and 7;

Recall that Claim [6|of Lemma [11] ensures that player i who has x(i) # x(j) or A;(1)(i) = G believes
that it is rare for player j to have \;(l) = B and §,(l) = G given \;({)(j) = G. On the other hand,

target review

the difference between 7; and 7} is not zero only if player i has x(i) # x(j) or \;({)(i) =G

with a positive probability and player j has A;(!) = B and () = G. Hence, the expected difference

adJust)

(and so the expected value of 7 is close to zero, conditional on A;(1)(j) = G. This closeness

will play an important role when we define player i’s strategy in the report block in Lemma

Lemma 12 For a sufficiently large T, for each i € I, 1 € {1,...,L}, xz; € {G, B}, and h?l, the
difference (60) depends only on the frequency of player i’s history:

B [ g, A0, 705 £ L0 s AN G) = G A
B |7 g, P S0 0 |3 A0 G) = GY A

= B [ (o, HBE, feens, fj[hw] D |25 IO () = G AR
B [mie g, e, O L AN G) = G ]
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Moreover, this difference is sufficiently small:

B s (ay, £, £relhs ) 10500 Ly, ANOG) = G} £

: : < - < exp(—Ti).
B |7 (ay, S, 105, 0) |2 AN DG) = G b

[ I

Proof. Both " and m;***" depend only on x;, f;[h7'], fird[p="], and f; [h}r(l)]. In addition,

Ai(1)(j) depends only on finde[n=] Since texd®(r) is random, f;[h7'] is a sufficient statistic.
Recall that f;[h'] € A;(z(j),1) implies that player i has either z(i) # z(j) or \;(1)(i) = G.
Comparing and (59), m;"®" and 7ieViev differ only if \;()(j) = G A 0;(1) = G A N(I) =
B A fi[ht] & Ai(x(5),1). Since both 7iV®¥ and 7{**" are of order T, it suffices to show that,
conditional on z;, (), \(1)(j) = G, and f;[h=], if player i has x(i) # x(j) or A\;(1)(i) = G, then

player i believes that 0,(l) = B or \;(l) = G with a high probability:
Pr({6;() = BV X(0) = G} |y, 2(3), A(D () = G} b)) 21— exp(=T%),

Claim [6] of Lemma [T1] establishes the result. m

15 Report Block

report adjust

We now define o}*"| <z, 7i9"*" and ;" in Lemma . This finishes defining the strategy

i

oi(x;) and reward function ;(z;, thp+1):

Lemma 13 There exists Krepors € N such that there exist o\ |, <o, 729" (x5, hjg, hi® ot 1) with

)]

Ut

TV (5, hjgl, RPN D) € | — exp(—T5), exp(—T

and
report <L jreport 11 11
0P (Ij7 hj ; hj ) S [_KreportT12 ; KreportT12]

such that, for sufficiently large T', for each x; € {G, B} and hz-SL ,
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report ..
1. 0; 7", < mazimizes
[

L
Z ui(at) _|_7T;eport($], {L hreport Z adjust ]’hfl,hreport l)| ],higL] ) (61)

t:report block =1

E

2. From player i’s perspective at the end of review round l, the expected adjustment is equal to

@):

E |:ﬂ_?djust($]7 h]<l’ h;eport l) ‘ {)\ ( )( ) G} report|h<l h<l]
= B[ g, fl0E S 100D g A 0G) = G A
—B | g, S S0 )0 |3 A0 G) = GY R (62)

if \i(1)(7) = G, and the adjustment is equal to zero if \;(1)(j) = B.

3. The equilibrium value satisfies

E

Z wi(ag) + P (g, 3T RSP | @y, 01O < hiSL] =0. (63)

t:report block

Proof. See Appendix [AT1] =

Let us intuitively explain why this lemma is true. To this end, we first assume that the players
have access to the public randomization device and can communicate via cheap talk in Section [15.1}
Then, we explain how to dispense with cheap talk, keeping public randomization device in Section
15.2, Finally, we explain how to dispense with public randomization device in Section The

formal proof in Appendix does not use public randomization device or cheap talk.

15.1 Report Block with Cheap Talk

Intuitively, player i sends f;[h=5] = (fi[hr )R, to player j so that player j can calculate 729"

to satisfy . To this end, it will be useful to divide each round r into |T(r)|% subrounds with
equal length, that is, each subround lasts for |']I‘(r)|§ periods: Let t(r) + 1 be the first period of
round r: T(r) = {t(r) + 1,....t(r) + |T(r)|}. Subround k(r) of round r consists of T (r, k(1)) =
{t(r)+ (k(r) —1) |']I‘(r)|§ +1,..,t(r)+ k(r)|T(r )] 1. Let fi[hl "] be the frequency of player i’s
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Round r: consists of | T(7r) | periods |

.r AR .r- J - '.
Subround 1: Subround ky.: Subround |G| -

z . T N
consists of | T(r)|= periods consists of [1(r)|z periods consists cfl"]l'\'rlﬁ periods

Figure 13: Rounds and subrounds

history in subround k(r) of round r:

fi[h?(r,k(r))] (a1, 1) = #{t €T (r k(r)): aig = a;, Yip = yi}.
[T (r)|?

See Figure [13] for illustration:

report
i |h§L

15.1.1 Player ¢’s Strategy o
At the beginning of the report block, the players draw a public randomization device, which deter-
mines whether player 1 or 2 sends the message f; [hiSL]. Each player is picked with probability %
and only one player is picked at the same time (that is, with public randomization, only one player
sends the history). Suppose player i is picked.

For each round r, player i sends the frequency of each subround ( f; [h?(r’k(r))})%g)j. Then, for
each round r, the players draw a public randomization device, which picks one subround k(r) with
probability |'I[‘(7’)|_% randomly. Suppose that k;(r) € {1, ..., |T(r)\%} is picked for round r. Then,
player i sends the entire history of the picked subround k;i(r): (@it Yit)erp g,y (The reason

why player ¢ sends the message this way rather than simply sending (a; s, y; ) is to reduce the

teT(r)

cardinality of the message, looking ahead to dispensing with cheap talk.)

. ¢ djust
15.1.2 Reward Functions 7;**" and 7"

report
)

Player j incentivizes player 7 to tell the truth by = as follows: First, player j incentivizes player

i to tell the truth about (a;, y;:) e T(r ks () by giving the reward equal to

-7 Z 1{t:t;xclude(r)}1{r<l;} Hlaj,t,yj,t — B [1aj,t,yj,t | a(r), &i,b?)i,t} H2
teT(r,ki(r))

(64)
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In general, 1;x; is equal to one if statement X is true and zero otherwise. Here, 1 O 1
J

if and only if ¢t = ¢&*"(r); and 1 {rez) 18 equal to one if and only if round r is before (and not

equal to) review round [} (recall that [} is the first review round with X\;(1)(j) = B). We define

1{T<lf} = 1 for each r = 1,..., R if player j has \;(/)(j) = G for each [ = 1,..., L. In addition,

1 is |A;] |Y;|-dimensional vector whose element corresponding to (aj.,y;.) is one and other

aj.eYj.t
elements are equal to zero. Moreover, a;(r) is player j’s strategy in round r and (d, ., 9;,) is player
1’s message.

Ly = B [Lay e | (7)), g, Gt H2 is called the scoring rule in statistics, and incentivizes
player i to tell the truth about (a;¢, 9;:) if player ¢ believes that (a;¢, y;+) is distributed according
to Pr(- | a;(r),ais,yiz). Moreover, given Assumption ] the incentive is strict if a;(r) is a fully
mixing strategy. (See Lemma [46| for the formal proof.)

Here, player j punishes player i based on the period t?"dude(r). Recall that player j does not
use (a4, yj) with t = t;?"d“de(r) to determine her continuation strategy. Hence, player ¢ cannot
learn (a4, y;:) and believes that (a;,y;¢) is distributed according to Pr(- | «;(r), ait,yir). By
Lemma , with Assumption |1} player ¢ cannot learn what period is t;"dude('r’). Together with the
fact that o;(r) is fully mixing given \;(1)(j) = G, player i has the strict incentive to tell the truth
about (a;, ;) for each t € T (r, k;(r)) if r < I}

Second, we make sure that does not affect player i’s incentive in the coordination and main

blocks. At the timing when player 7 takes a;,, the expected reward given that player ¢ will tell the
truth in the report block is

_T_Hl{tzt;xcl“de(r)}1{r<l;}E [Hlaj,tayj,t - B [laj,tvyj,t | a;(r), aig, yivt} H2 | a;(r), aivt] ’

given t&e(y) ¥ and a;(r). Note that the conditional expectation E (L0050 | (7)), i, i
depends on (a;¢,yi+), and the distribution of y;; depends on (a;(r),a;:). Hence, the conditional
expectation given (o;(r),a;;) (but before observing y;,) depends on (c;(r),a;;). Since player j’s

signal y;; statistically infers player i’s action a;, there exists 7§ [av;(r)](a;4, yj;) such that

i

n 2
W;?a Cel[aj(r)Kaj,ta yj,t) =E |:H1aj,tayj,t - E |:1aj,t7yj,t | Qj (T)v ai,hyi,t} || | aj(r)’ aiﬂfi| :
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To cancel out the effect of (64) on player ¢’s incentive to take actions, player j gives the reward
y yer ) g

T 1{t texclude } {r<l*}ﬂ_cancel[aj (T)](G/J”t, yji)' (65)

T(?‘Jﬁ‘(?‘))]

Third, player j punishes player i if player i’s message about the frequency f;[h; about

the picked subround is not compatible with player 7’s message about the history in this subround:

—T" 151{ (66)

r<l*} {fi[ﬁ?(nki(r))]#m(r)\*% 2T (r ki (r) 1‘ii,t*9i7t}'
The variable with hat denotes player i’s message. Since |T (r)|§ is the length of the subround,
F[RFCRCD] and ]T(r)\_% > iet(ri(ry) Laig, should be equal to each other if player i tells the
truth.

In total, we have

ieport< j,h]<L hreport)
- PO 2
R - ZtGT(T’ ki(r)) l{t:texclude(r )} H]'aj,tayj,t — B |:1aj,tvyj,t | a(r), ai,tayi,t} H
T-1 1 exclude cancel [ U
Z; 1{7"<lf} + th?r (rks(r)) - {t=texelude () 1 T (e ()] (e, i)
- —T51
{fz[hT( Ky ( ))};ﬁﬂl‘(r)r% et (ri(r) 1ai’t,gi’t}

IT(r)| 3

Finally, given player ¢’s message about the frequency of subrounds, ( fz[ (rk(r)) 1) K(ry=1+ Player j

calculates the frequency of the round:
()3

filhi ™1 =T ()] 73 §j filh . (67)

=1
For each [, from fi[ﬁ?(l)], s fi[ﬁ?m] with round r being review round [, player j defines

Wadjust( h<l hreport l)

B [ (g, e, ), HRE D) |, INOG) = G il

= 2x1lnwo=e) . |
= | (g, S 1AL D L, (0 G) = G Al
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so that holds with truthtelling. Lemma|l12|ensures that the expected difference between ;&
and 7" depends only on the frequency of player i’s history. Here, 2 cancels out the probability
that player 7 is selected by the public randomization (we define that the adjustment is zero for

player j who is not selected). Note that we have

ngjust T hgl hr'eport DIl < ex _T% 68
7 ) = p

i IR
<l report
for each z;, h;', h; 7", and [ by Lemma

15.1.3 Incentive Compatibility

Consider player i’s incentive to tell the truth about the history in round r. If 1 (ret} = 0, that

report <L jreport
(a5, hE5 1

is, if round 7 is in review round [} with \;(l})(j) = B or after, then 7} 7 ) does not

depend on player ¢’s message about round r. Moreover, the message about round r does not affect

adjust
i

T either. To see why, note that, for each [ < [7,

7T;?Ldjust (xj; hjgl; h;eport7 l)
B [n15 (g, fireve[ns], £, FIRE) D) | g, ANDG) = G, RE)

= 2X1lpoo=61 . . .
B [ (o, e S, () | g AN () = G Sl

does not depend on player i’s message about round r since round r is after review round /. For

cach | > I¥, we have 724" (z;, hjg, hi® 1) = 0 by definition since \;({)(j) = B. Since the message

¢ djust : - ‘
P or iU any message is optimal about round r with 17 _.y = 0. Therefore
i i s {T‘<li } !

does not affect
we will concentrate on the case with 1 s} = 1 and \;(1)(j) = G for each review round [ which is
equal to or before round r.

When player ¢ sends (a;+, yir) LET(r s (1) player i believes that the expected reward from
given a;(r) is

—T~ " Pr ({t = t7M(r)} | ay(r), hit)

7

XB [ 0,050 = B [Layane | @) i Gial |1 05(r), hE5 {8 = 29} (69)

First, Pr ({t = t&"(r)} | aj(r),h.SL) > T2 for each t € T(r) by Lemma Second,

7

7



since player j does not use information in period t;"d“de(r) to determine the continuation play,

player i believes that given t$*"(r) = ¢, player j’s history (a;., ;) is distributed according to

Pr (aj,b Yjt | OZj(’f‘), Qi t, yi,t)-
Hence, is equal to

—cl& |:H1aj,t:yj,t - E [1aj,t7yj,t | Oé]'(T)a di,ta gi,t] H2 ’ Oéj(T'), gty Yit (70)

for some & > 0 of order 7' for each ¢t € T (r, k;(r)).

Finally, since we are considering the case with 1 {r<iz)> , player j’s strategy «;(r) has full support.

r<ly

Then, by Assumption , we can make sure that the expected loss in (70) from telling a lie about
(ait, yis)is of order T3, (See Lemma for the details.) Since T3 is greater than the magnitude

report

(since méaav;(r)] (a4, y;.) is sunk in the report block, the other

: - : . djust < :
relevant reward in 7;"°”" is the one defined in ) and the adjustment 77" (x5, h7", K", 1) is

of the other reward in T,

of order eXp(—T%) by , it is strictly optimal to tell the truth about (a;, vi¢) T (i () regardless
of the past messages.

Given this truthtelling incentive about (a; ¢, i +) HET(r ki (1) consider player i’s incentive to tell the

T(?ﬁk(?“))]

truth about the frequency in subrounds. While she sends the message f;[h; , she believes

that public randomization will pick any k(r) with probability |']I‘(7“)]7% > T s, (Recall that the

1
public randomization k;(r) is drawn after she finishes sending ( f; [h?(r’k(r))])gg)ﬁ .) Hence, if player

i tells a lie about subround k(r), then the expected loss from is T-5 x T~ which is greater

Hence, it is strictly optimal to tell

than the magnitude of the adJustment I (T = A )

]7 7 0%
the truth about (f;[h; ))])%SL regardless of the past messages.
In summary, we construct an incentive compatible strategy and reward such that player ¢ tells

the truth about the history and from that report, player j calculates WadJuSt to satisfy .

15.2 Dispensing with Cheap Talk

We now explain how player i sends the message by taking actions. Again, the players draw a
public randomization device to decide who to report the history. Suppose that player ¢ is selected.

Player j takes o™ i.i.d. across periods, and WadJuSt( i WL REPO 1) = 0. Assumption [2] ensures

report
J

mix

that there exists player j’s reward function 7’ to incentivize her to take "™ and to keep her

equilibrium value in the report block equal to zero. Hence, we focus on player i’s strategy and
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rewards.

report

15.2.1 Player i’s Strategy o;"" |, <z

1
As in the case with cheap talk, player i sends (f; [h?(r’k(r))])%g)zlj and (@i, Yit)yer(rp (- Lt M be

a generic message that player ¢ wants to send in the report block, that is, m; can be f; [h?(r’k(r))]
for some r and k(r), or (a;+,y;:) for some r and ¢ € T (r, k;(r)); and let M; be the set of possible
messages. We have |M;| < |T (r)|%‘Ai”Yi| < T3kl for f; [h?(r’k(r))] since the frequency of subround
fi [h?(r’k(m} can be expressed by “how many times out of |T (7“)]% periods player i observes each
(a;,y;).” (Recall that |T (r)|% is the length of the subround.) For (a;;,vy:.), we have |M;| < |A;| Y]
since (a;,y;) is included in A; X ;.

We now explain how player i sends m; € M;. Given a;(G) and a;(B) fixed in Section [6.2] there
exists a one-to-one mapping @ : M; — {a;(G),a;(B)}°%™! between message m; and sequence
of binary actions since |{a;(G),a;(B)}Y°2™ ! = |M;].  (See Appendix |A.4| for how to define @;
explicitly.) Note that the length of a@;(m;) is bounded by log, T slAdlvil for fi[hf(r’k(r))] and by

log, |Ai| [Y3] for (ais, yir)-
When player i sends the message m;, player i takes an action sequence @;(m;). Moreover,
player i repeats each element of @;(m;) for multiple periods, in order to increase the precision of

[h?(r’k(r))}, player i repeats the action for T 3

the message. In particular, for m; corresponding to f;
periods, and for m; corresponding to (a;+,y;.), she repeats it for T% periods. Let T (m;) be the
number of repetitions: T(f;[h ")) = T% and T (aiy, yis) = T1.

Given this strategy, the communication takes periods of order Tiz:

ZL x  [T@E  x  log[T @M
i repetition number of subrounds length of di(mi;,for f; [h'i}'(Tyk(T))] (71)
1 2 ’
=1 T ()} X logy A Vi
repetition

number of periods per subround  length of @;(m;) for (a;,y;)

which is of order T1z < T, as seen in |D
Let treport + 1 be the first period of the report block; and let tieport + 1, ..., treport + T be the
periods in which player i takes @;(m;) for some m;. (Precisely speaking, T should be of order

Tz by . For simple notation, we just write T 1 rather than of order T12 in the text.) After
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Period trepop + 12 Player i takes \ —H Perinds S(trepore + 1): § periods
the firstelement of @;(m;) cf the *  Player] givesthe reward baszd
firstmessage m; on (aj.:,e_:mﬂd’j al‘tnpurl“lj and

! (afﬁyﬁ);gs(t“ et

v Playeri takes a pure strategy
Period treport + T(m;): Playeri which depencs only on
takes the first element of a;(m;)of
the firstmessagemy

) and

s trepare | 10 ."a,ajrtrérmﬂ

(@ie¥is)

3€5{Lrepore 1)
Jf « | It player i deviates, then the loss
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Figure 14: Structure of the report block with public randomization

player ¢ finishes sending each @;(m;), the players sequentially assign S periods for each of periods
treport + 1, ..., treport 1 T%, where S is determined in Section That is, periods tyeport + T1z +
1, treport + 1 o + S are assigned to period tyeport + 1, periods trepors + Tt + S+ 1, treport +
T + 28 are assigned to period fyeport + 2, and so on. In general, let S(¢) be the set of periods
Treport 1 TH + (k—1)S+1, ..., treport + Tt + kS that are assigned to period ¢t with k =t — tieport-
In periods S(t), given player i’s history in period ¢, player i takes Jis(t) determined in Section
The periods treport + 1, ..., treport + Tt are called “the round for sending the history” and the
other periods are called “the round for conditional independence.” Figure [I4] summarizes the entire

structure.

15.2.2 Player j’s Inference of Player :’s Message

For each period ¢ in which player i sends an element of an action sequence @;(m;) assigned to a
message m;, player j given her history in periods ¢ and S(t) calculates a function ¢;((a;,y;.)
U (ars yj,T)Tes(t)) determined in Section By Lemma @, since the expected realization of ¢; is

high (or low) if player i takes a;(G) (or a;(B)), player j infers that the element of @;(m;) is a;(G)
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(or a;(B)) if there are a lot of high (or low) realization of ¢,. Since player i repeats the element
of @;(m;) for T'(m;) periods, by the law of large numbers, player j can infer the element correctly

with probability of order
1 — exp(=T(my). (72)

Importantly, Lemma (4] ensures that (if player i expects that she will take af(t)

in the round for
conditional independence) player i in the round for sending the history cannot update player j’s
inference from player i’s signal observation (conditional independence property).

Given this inference of each element of @;(m;), player j infers each message using the inverse of
G.(mi). Let (filh] PG T))](]))“Eq(n))‘1 and (alt(]),yiyt(j))tg( , be player j’s inference. As in (@,
player j infers fi[h;"](7) and fi[hF'](5) from ((fi[k;"" 10))%)1?»:1.

15.2.3 Reward Functions 79" and 7"

adjust report

We modify 7; and T, in order to deal with the possibility of errors. First, we consider an

error when player j calculates

7_{_?Ldjust( x;, h]<17 h;eport l) (73)
E[w:f“get(xj,fiﬂﬁlﬂd@[h-ﬂ] FIB) AIRELD g, AN G) = G, £ G)]

= 2x1 HOIOE
PO s g, e, f.0) 2 (NOG) = G ARG

from f;[h gl](j). Since the cardinality of f;[h "] is |T(r)|§|A"”m, the length of @;(m;) to send
filh; By R } is log, |T (r)]3 slilvil < log, T34Vl Since each round has |T (r)|% < T's subrounds and
there are R rounds, the total length of @;(mn;)’s that are used to calculate f;[h='](5) is no more than
RT% log, |T ()34 By , recalling that T'(m;) = T for m; corresponding to f;[hr "F™)),
player j infers f;[h='](j) correctly with probability no less than

1

1 — RT% logy |T (r) |3 5 exp(—T7%). (74)

On the other hand, the cardinality of the messages ((fi[hr "*™))( j))',f((;)‘3 )| used to calculate
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f:[h=1(5) is no more than

)

number of subrounds in round r

1
R RT3
H L (cardinality of fi[h?(“k(r))]) < (‘T(r)yglAiIIYi\) 7
which is of order exp(T'3).
As will be seen in Appendix [A.11.3.2] if we have shown that the probability of the correct
inference (74), to the power of the cardinality of the messages used in (73)), converges to one, then
adjust

<
we can create m; (x5, by,

h;eport, [) such that, given that player i follows the equilibrium strategy

in the report block, (i) this adjustment is still small and (ii) holds from the perspective of player
1

i in review round [. Since we have (|T (r)|%"4"'”y"|)RT§ ~ exp(T'3) < exp(T'2) for a sufficiently large

T, the probability of the correct inference, to the power of the cardinality of the messages, satisfies

1
RT3
(|1r(r)|%|Ai||Yi|)

(1= RT% log, [T} 17 x exp(~T%)

1
RT3
|Az-||m>

> 1—RT%10g T(r %|A"'Hy"|xexp—T% x (T ()] — lasT — oo, 75
2

as desired.
: t <L t : . .
We also modify 7;""" (5, h;", h;™") taking errors into account.  Consider the reward to

incentivize player ¢ to tell the truth about (a;4, y;)

teT(r,ki(r))
- 1{t:t§xcl“de(r)}1{r<l;} Hlaj.,t’yj,t —E [1aj,t7yj,t ’ a; (T)’ di:t’ Qlt] H2 (76)

Without cheap talk, player j can infer each element of @;(m;) to send (a;¢, y;+) correctly with
probability of order 1 — exp(—T'7) since T'(m;) = T'i for m; corresponding to (a;,y;). Since the
number of elements of @;(m;) to send (a;, vi¢) is log, |A;| |Yi], the probability that player j infers
(a1, yi¢) correctly is

1 — logy |A] |Yi] x exp(~T1).

On the other hand, the cardinality of the message (a; ¢, yi¢) in is |A;| |Yi].

Hence, the probability of the correct inference, to the power of the cardinality of the messages
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in , converges to one as T' goes to infinity:

[A: Y3l

(1= Togy |4i] Vil x exp(=T4)) " = 1~ | 4] Vil logy | Ail [¥i] X exp(~T4) =7 1.

As will be seen in Lemma [8] formally, this means that we can slightly modify the reward taking
errors into account, so that it is strictly optimal for player i to tell the truth about (a;, vi¢).

Similarly, we can modify 75 [a;(r)](a ¢, y;¢) so that ¢ cancels out the effect of a;; in

i

period t of the coordination or main block on the modified version of .

Next, consider the reward to incentivize player i to tell the truth about f;[hr"*")]:

{fi "N GD AT T enony o) lai,myi,tm}' (77)

Without cheap talk, since the cardinality of fi[hf(r’k"m)] is |T (r)|§‘Ai||n|, the length of a@;(m;)
to send fi[h?(r’ki(r))] is log, |T (r)]%w”m. In addition, since the cardinality of (a;¢, vi+) is |Ai| [Yil,
the length of @;(m;) to send (a4, i) is logy |Ai| |Yi]. Since each subround has |T (r, ki(r))| =
|T (r)|% < T3 periods, the total length of @(m;)’s that are used to calculate f;[h; " *™V](}) and

_2 .
T (r)|® Zte'ﬂ“(r,ki(r)) Lai ()i () 18

logy [T (r) | =™ 4 T (r)] ¥ log, | A |Yi].
Hence, all the messages transmit correctly with probability

1 — (logy |T ()3 4M exp(— T2 ) + T (r)|3 log, |Ai] |Yi] exp(— T3 ). (78)
)
]

# of repetitions for f; [hjir(r’k(r # of repetitions for (a; ¢,yi,t)

On the other hand, the cardinality of the messages used in is calculated as follows: The
cardinality of f;[h; """V (j) is [T ()34 As for [T ()75 3, corry) Lawe(G)ane) When player i
sends the message as if (@i, ¥i+) teT(r ks (r)) WETE the true message, the distribution of this summation

> teT(rki(r)) Laio()wir(j) depends only on the frequency of each (a;,y:) in (@i, §ir) Hence,

teT(r,ki(r))"
the relevant cardinality of (a;(j), ¥it())serrp, () fOT is equal to that of the frequency, that is,

]T (T.)|%‘Ai||yi|.

83



Hence, to the power of the relevant cardinality is

—T—00 L.

2 2
Eli 3 m(r) 314il1Yil o) 3 141
(1 - <1og2 T ()3 41Y exp(—T%) + T ()5 log, | A4 |Yi] eXp(_Ti)»

Therefore, we can slightly modify the reward function so that player ¢ wants to tell the truth about
T

In addition, we add 7¢* defined in Section in order to incentivize player i to take azs(t) in the
round for conditional independence.

Finally, we add the reward m;(z;,y;) defined in @, so that it cancels out the effect of the
instantaneous utilities.

In total, we have

report <L jreport
T (2, hj 7hj )

= Z i, Yje)

t:report block

§
modification of

||1aj,t:yj,t - B |:1¢lj,t7yj,t | Oéj(?“), ai,t<j)7 Yit (])] H2

- ZtET(r,ki(r)) 1{t:t;xclude(r)}

R

* Z 1{’”<l?} +T’111{t:t¢xclude(T)} {modiﬁcation of msanel[ay;(r)](ajs, ijt)}
r=1 J

L fz‘[h?(T’ki(T))](J')#T(T)r% ZtET(r,ki(r)) 1ai,t(j),yi,t(j)} }

+ Z T’lﬂf'i' ((Gj,u Yie) U (s, yj,T)Teg(t)> .

t:round for sending the history

—T-15 {modiﬁcation of 1 {

15.2.4 Incentive Compatibility

Let us verify player i’s incentive. By m;(;+, Yj.t), @D ensures that we can neglect the instantaneous

utility. In the round for conditional independence, Claim [I] of Lemma [] implies that, once player

i deviates, then she incurs a loss of T ey from T717$4 . Since the modification is small, the
other terms in 7" are of order T-'!. Hence, it is optimal for player 7 to take O’Z-S(t) in the round

for conditional independence.
Given this incentive, Claim [2] of Lemma [4] ensures that player ¢ in the round for sending the
history cannot update player j’s inference of player ¢’s message. Moreover, @ and Claim |3| of

Lemma 4] ensures that player ¢ is indifferent between any action in the round for sending the history
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in terms of the expected value of

wi(an) + milaia i) + D (ilae) + 7z vi)) + 7 (@50 550) U (@i Ui e
T€S(t)
Since the incentive with cheap talk is strict, the message transmit correctly with a high probability,
and the modification is small, it is incentive compatible for player i to follow the equilibrium strategy.
In summary, we construct an incentive compatible strategy and reward without cheap talk. The
key idea is to use the round for conditional independence to keep conditional independence property

in the round for sending the history.

15.3 Dispensing with Public Randomization

Now we explain how to dispense with the public randomization. Recall that the public randomiza-
tion plays two roles in the report block. The first is to pick who reports the history. The second
is to pick a subround k().

Let us focus on the first one. (The second one is dispensed with by a similar procedure. See
Appendix for the details.) The purpose of this first role is to establish the following two
properties: (i) ex ante (before the report block), every player has a positive probability to report
the history, and (ii) ex post (after the realization of the public randomization), there is only one
player who reports the history.

The property (i) is important since, without adjusting the reward function by 7>%"" based
on player i’s report in the report block, player i’s equilibrium strategy would not be optimal.
The property (ii) is important to incentivize player ¢ to tell the truth. Remember that player j
incentivizes player ¢ to tell the truth by punishing player i according to . As seen in , the
establishment of truthtelling incentive uses the fact that player ¢ cannot update her belief about
the realization of player j’s history in period t?x“lude(r). If both players sent messages by taking
actions and player ¢ could observe a part of player j’s messages before finishing reporting her own
history, then player ¢« might be able to learn player j’s history in period t;"d“de (r) and would want
to tell a lie.

In order to establish these two properties without public randomization, we consider the following

procedure. For simplicity, let us assume that the signals are not conditionally independent (see the
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end of this subsection for the case with conditionally independent signals): There exists a?* € A

such that, given aP*, there exist y7", 77" € Y1 and y5" € Y3 such that

Pry;"™ [a®",yt™) #Pry™ [ ™ 70"
Fix those a?*, 7", 77" € Y7, and 45" € Y. Without loss, we assume that
Pr(yz™ [ a®",y1") > Pr(yy™ | a®", 00™). (79)

At the beginning of the report block, the players take a pure strategy ap'r'ﬂ Let ¢, be the
period when the players take aP*. Each player ¢ observes her own signal y;, .. By Assumption
2} since player j can statistically identify if player i takes a}™, there exists 71" : A; x Y; — R such
that it is optimal for player i to take af™":

. . 0 ifa;=a",

E [ui(ai, a;) + 77" (ag,95) | ai,af™] = (80)
. p.r.
-1 ifa; #a;.

Intuitively, player 2 asks player 1 to guess whether player 2 observed v ., = y5" or Yo, . #
y5". On the other hand, since players’ signals are conditionally dependent, player 1’s conditional
likelihood of y5,,, = y5" against yo; . 7# 5" depends on i, € Y. In particular, ensures
that there exists p}" such that

Pr ({you,.. =957} | a7 y1™)
Pr ({ya4,. 45"} [ apr yP™)

Pr ({y27tpm_ = ygr} | ap.r.7 gll)r)
Pr ({yltpm 7A yg‘r'} | arr, y—?r) .

>t >

Perturbing p}" if necessary, we make sure that there is no y; € Y7 such that

Pr ({?J2,tp.r, = yg'r'} | aP, 3/1) _ b
Pr ({yz,tp,r. - ygr'} | @p'r',yl) !

2I'The superscript p.r. stands for “public randomization.”
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Given this definition, we partition the set of player 1’s signals into Y;**"* and Y;**'~"P°"":

Pr({v2, =957} [ aP™ 1)
Yreport = c Y . )Up . > pp.r. 3 p.r.7
' {yl YPr ({yz,tpm. # Uy } | ap™, yl) ! h
. Pr ({924, =957} [ @™, 51) i
Ynot report = c Y . yUp.r . < pp.r. 3 p.r.
' {yl Y Pr ({yz,tpm. # Uy } | aPT, yl) ! h

with YP U Y P" = V). Player 1 is asked to report whether “y;, . € Y7 or “y;, =€
Y"O POt » (I this explanation, we assume that cheap talk is available. Cheap talk is dispensable
as in Section M) For notational convenience, let P = 1 denote the event that y,, , € Y
and (P™ = 2 denote the event that y,, , € Y{" 7P Let i®" € {1,2} be player 1's message
about (/P

To incentivize player 1 to tell the truth, player 2 rewards player 1 if either “player 2 observes

y5>" and player 1 reports i*" = 17 or “player 2 does not observe 5" and player 1 reports ;> = 27:

—4 —p.r.
T <1{Z/2,tpr.=y2p‘r‘/\2p'r:1} + D 1{y2,tp,1\ #yg'r‘/\zp‘r:Q}) ) (81)

After player 1 sends ", the players send the message about h?L sequentially: Player 1 sends
the messages first, and then player 2 sends the messages. The players coordinate on how to send
the messages based on i*" as follows.

If player 1 reports :*" = 1, then player 2 adjusts player 1’s reward function based on player 1’s
messages, and incentivizes player 1 to tell the truth according to , , and with ¢ = 1.
On the other hand, if player 1 reports :*" = 2, then player 2 incentivizes player 1 to send an
uninformative message (formally, we extend the message space to {garbage} U M; and player 2
gives the positive reward only if player 1 sends {garbage} if " = 2. She does not adjust the
reward function for player 1 if i*" = 2). As in the case with public randomization, given player
1’s message 1", player 1 wants to send the true message m; after ;> = 1; and she wants to send
{garbage} after ;P = 2.

On the other hand, player 1 adjusts the reward and incentivizes player 2 to tell the truth
according to (64)), (65]), and with @ = 2, only after player 1 sends {garbage}. (If i*" =1, then

player 1 makes player 2 indifferent between any messages and m54"" is identically equal to zero.)

87



,mon—report

® report -
Yitpr, € y,_ Yitpn (=

A 4 A 4

Player 1's reward in Player 1's reward is
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Player 2 tells the truth about fz[hgm].

Figure 15: How to coordinate without public randomization

See Figures [I5 and [I6] for illustration.

Since Y**"" and Y"*""P*" are nonempty, with truthtelling, both i** = 1 (that is, Yty €
Y{P™) and P = 2 (that is, Yitpr € Y"P™) happen with a positive probability. Hence,
each player has the positive probability to get her reward adjusted (that is, the property (i) is
established). Moreover, the second sender (player 2) can condition that player 1’s message was
{garbage}, and so there is no learning about h=" (that is, the property (ii) is established).

We are left to verify that it is optimal for the players to take a”™ and player 1 has the incentive
to tell the truth about (»". Consider player i’s incentive to take a pure strategy a*. aP* affects
player i’s payoff through , , adjustment of the reward m*¥™", the rewards for truthtelling
, , and . Since the effects other than are sufficiently small compared to , it is
optimal to take af" for each i € {1,2}.

Given that the players take aP*, the report i’* affects player 1’s payoff through , adjustment
of the reward 29" the rewards for truthtelling , , and (66]), since is sunk at the point
of sending i’*. Except for , the effect is of order T7°. Hence, it is optimal to send ** = 1 if

7B | gy | @ e, | = O™ > TR B [y, ey |07y, |+ O(T7),

1{y2,prr4 =Y3
where O(T7%) is a random variable of order 7~°. That is,

Pr ({yz,tp‘r. = yg'r'} | aPr, yl,tpm.)

- > P 4+ O(T™h.
Pr ({yz,tp,r. # s } | apr, yl,tp,r.) i )
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Figure 16: Player 2 can condition that she did not learn player 1’s history

For a sufficiently large T, therefore, it is optimal to send i*" = 1 if y;, . € Y{**". Similarly, we
can show that it is optimal to send i*™ = 2 if y;, € V" "P*"". That is, it is optimal to tell the
truth about (/**.

In summary, we construct an incentive compatible strategy and reward such that the players
coordinate on whether player 1 sends the history truthfully, by asking player 1 to guess whether
player 2 observed y,, . = Y5 or Yoy . # y5 . Moreover, player 2’s report matters only after
player 1 sends the garbage, which incentivizes player 2 to tell the truth. Since the players’ signals
are correlated, player 1’s guess differs after different observations of player 1’s signals. Hence, both
players have positive probabilities of getting their reward adjusted based on the report block.

Finally, if the players’ signals are conditionally independent, player 2 takes a mixed strategy and
asks player 1 to guess which action she takes, rather than asks player 1 to guess whether player 2
observed Yoy, = Y5 O Yz, # Y5 -

The proof is the same as above, except that, since player 2 takes a mixed strategy, player 2 has
to be indifferent between multiple actions in period ¢,,. If player 2 had different probabilities of

getting her reward adjusted after different actions of hers, then depending on player 2’s expectation
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of the adjustment, player 2 would have different incentives to take different actions. To avoid
such complication, as will be seen in Appendix formally, we make sure that the magnitude
of getting her reward adjusted does not depend on player 2’s action. Then, player 2 becomes

indifferent between actions.

16 Verification of (5))—(8)

Note that Section [7] defines the structure of the finitely repeated game with 7" being a parameter.

For each T, Section (13| defines player ¢’s strategy in the coordination and main blocks, and Lemma

defines her strategy in the report block o} pEE- Hence, we have finished defining the strategy.
In addition, for each T', Section defines the reward function as

R

mi(ey, ) = w(ry) + > > (a0 950)

r=1:round r is not a review round t€T(r)

+ Z { revlew }nclude[hjgl]’ fj [th(l)]y l) + ﬂ_?djust( z;, h]<l, h;eport l)}

_i_ﬂ_llreport(xj7 h]<L hreport)‘ (82)

(2

Section m pins down 7;(x;), m;’, and 75"V, and Lemma pins down 72U and 7/, Hence,
we have finished defining the reward function. Therefore, we are left to verify (/| @7.
It is useful to recall that Claim 2 of Lemma (13| defines 7*4"™"(z;, hfl, h;eport [) so that, given

player ¢’s equilibrium strategy in the report block, we have

E |:7Tr'eview(l, h<l l) adjust( h<l hreport l)| hgl]

7 _]7]7 7, ]7]7] 7

= B[y, £IRE, S, O |y ] )
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since \;(1)(j) = B implies 7vie" = 7% by (57) and . Moroever, . ensures that

ﬂ_;arget (xj7 fz[hlgl]’ f]i'nclude[hjﬁl], fj [h;ﬂ‘(l)L l) (84)

= LpoG)=5y 4 sign () LT+ Y 7 (a4, y5.4)
teT(l)

Tlawo=a
’ T {ui(z;) — uilo?(2()))} \
+ 2 ter Tl (@) (@) vjie)

+1{)\j(l):B/\fi[hfl]eAi(a:(j),l)}{ui<xj)_ui(BRi(Oﬁ (@(1))), o (z(4)))}

)

+10;=5} {Sign () LT + 3 ey T (@500 Y }

]- <l
A ()=GV{X;()=BAfi[h A (z(5) 1)
Lo,a)=c1 Dt & )

16.1 Incentive Compatibility, Promise Keeping, and Full Dimensional-
ity
We prove the optimality of player i’s equilibrium strategy by backward induction: In the report

block, player ¢ maximizes

E

L
Z ui(ai,t) + Z W?djuSt< x5, h]<l, h;eport l) report ('Tj) hj<L hreport) | j, hfL]

t:report block =1

since the other rewards in are sunk in the report block. Hence, by Lemma [13] it is optimal to
take o7P"| <1 for each z; € {G, B}.
The equilibrium payoff (without taking the average) in the report block satisfies

E

7

Z ui(ai,t) + 7T_;'report( x;, h]<L hreport) | x;, O_J'report|hi§L7 hZSL] -0

t:report block

by Claim 3 of Lemma (13 (we include 7*¥"™*(x z;, hjl, h;emrt [) to the equilibrium payoff in review
round [, rather than in the report block).
In the last review round L, since the continuation payoff from the report block is zero, player ¢

ignores » ;.o plock Wil@it) + TP (x5, h =r hreport). In addition, by , the expected value of

2 : 7_‘_?djust(a:' <l hreport l)

Iy 0y
I<L-1
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does not depend on player i’s strategy after review round L — 1.  Since the rewards 7;(z;),

R T i include[7, <! T(1)
Zrzlzround 7 is not a review round ZtGT(T) e ’ (aj7t’ yj,t)7 and ﬂ-gewew (‘rﬁ f]{nc " e[hj ]7 fj [h] ]7 l) for [ S L-1

are sunk in review round L, player ¢ wants to maximize, with [ = L,
E | Y wila) + i (g, [, £l 10 4w g, b R | g, 0i(a), b
teT(l)
Given , by the law of iterated expectation, player i wants to maximize, with [ = L,
B | D wilar) +m = (g, AR SRS, £ )0 L@y 0ua) b
teT(1)
Hence, by Lemma [2{ and , if 6;(1) = B, then player i wants to maximize
B | Y wilay) +sign () LTa+ > w7 (a54,y50) | 25, 04(w:), by
tET(l) teT(1)

Claim 2 of Lemma ensures that any strategy is optimal and the equilibrium value (without taking
the average) is equal to sign(z;) LT4 + T4;’ .

On the other hand, if §;(I) = G, then we have \;({)(j) = G by Claim (3| of Lemma Hence,
if \;(I) = G or “\;(I) = B and h" & A;(2(j),1)”, then player i wants to maximize

B> wilar) + T {ui(zy) — wila? ()} + Y milo? (@) @z yie) | 25, 04(2:), by
teT(l) teT()

By Claim 1 of Lemma , any action is optimal and player i’s equilibrium value is Tu;(z;). In

addition, \;(l) = B and h<' € A;(z(j),1), then player i wants to maximize
E Z ui(ay) + ui(x;) — wi(BRi(a* (x(5))), " (2(5))) | @5, 04(x:), by
teT(l)

Since the reward is constant, player ¢ wants to take a static best response to player j’s strategy.
Moreover, Claimof Lemmaensures that player j with 6;(1) = G and \;(I) = B takes a;”(2(j)).
Hence, BR; (a”(x(j))) is optimal. Since A;(z(j),1) is the set of player i’s history in which player
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i has z(i) = z(j) and A\;(l)(¢) = B with probability one. Figure |10 ensures that player i with
Ai(x(j),1) takes BR; (o"(x(j))) with probability one.  Hence, player i’s strategy is optimal.
Moreover, her equilibrium value is T'u;(x;).

In total, with [ = L, the equilibrium payoff is

B> wilar) + m e (, filhE, £ ns), fi05 0,0 | g, by

J
teT(l)

sign (z;) LTu + Tu;’  if 0;(1) = B.

Since the distribution of #;(l) does not depend on player i’s strategy by Claim [2| of Lemma ,
player ¢ before review round L ignores the continuation payoff from review round L on. Again,

ensures that the expected value of

Z W?djust ($j7 hjgl’ h;eport’ l)
I<L—1
does not depend on player ¢’s strategy after review round L — 1. Ignoring the rewards in that

have been sunk, player i in the supplemental rounds for A;(l) and As(l) with [ = L maximizes

E > ui(ar) + > w3 (@50, y50) | g, b

teT(A (1)UT(A2(1) teT(A (1)UT(A2(1)

Therefore, any strategy is optimal and the equilibrium value is equal to 272 since |T(A(1))| =
T(A2(1)] = T

Again, this value does not depend on the previous history. Hence, player ¢ in review round
L — 1 ignores the continuation payoff from the supplemental round for A\;(L) on. Therefore, by
the same proof as review round L, we can establish the optimality of the equilibrium strategy.
Recursively, we can show that the equilibrium strategy is optimal in the main and report blocks,

and the equilibrium payoff from the main and report blocks is equal to

L
1 gz, . _ _x;
2 (L — 1) T>u;” + Z {1{9j(l):(;}Tui(CL’j) + 1{9j(l):B} (Slgn (1}]) LTu + Tuij)} .
=1
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Since this value does not depend on player i’s strategy in the coordination block, player ¢ in the

coordination block maximizes

E

> {wiar) + 77 (a0 y50) } | l‘j] :

t:coordination block

Hence, any strategy is optimal and equilibrium value is equal to (4T% + 2T§) u;’, recalling that
ATz + 2T is the length of the coordination block.
Therefore, in total, player i’s value from the review phase except for 7;(x;) is equal to
L
(47 + 273 4 2(L = ) TH) @ + >~ {1, =cy Twi(w) + Lo,y (sign () LT + Ta?) }
- (85)
Hence, by definition of 7;(z;) in (52), the total equilibrium value (without taking the average) is

equal to Tpv;(x;), as desired. In total, we have verified incentive compatibility, promise keeping,

and full dimensionality.

16.2 Self Generation

We first show that we can ignore the terms except for Y& | 7wz, hfl, [). To see this, define

€ > 0 such that, for each z; € {G, B}, we have
(15 + 7L) n {|ui(z;)| + Lu + |5’ |} + & < |ui(z;) — vi(w;)] - (86)

(16) ensures that there exists such € > 0.

Note that the terms other than Zle mreview (g hjgl, l) in m;(z;, hJTP 1) satisfy, for each hjSL and

report

;

Ti(xj) = Tpvi(z;) — B [Zfz1 {0y Tuilw;) + Lo, 0=y T (sign (2;) LT + T ) }]
—{e+2n)Ti +ori}ay,
}Zlezround r is not a review round ﬂ-fj (aj,ta yj,t)‘ S (TP - LT) u by Lemma 7
7Te'LdjuSt(wj’ hSl hr'eport’ l)’ < exp <_T%> by Lemma ,

()

J
t <L t o
|7 (o B B < KoeporT12 by Lemma [3]

@ J

94



By Lemma 5, 7p and LT are similar to each other for a large 7. Hence, for a sufficiently large T’

<L t
for each 7™ and A", we have
i U (IJ) + Z’r 1: round r is not a review round (CL] t) Yj, t)
T adjust <l j report report <L jreport
P+ 2121 e (2, h] 5 hg )+ (2, h] h )

L . _ _x;
vi(w;) = B[S L, o-arbuila) + Lo o-my F (sign (a) L+ )} | — <.
vi(w;) = B[ (T, 00y busles) + T,0-m 3 (sign (@) L+ ) }| +¢

Moreover, by Claim [2] of Lemma [11] the probability of #;(I) = B is no more than (15 + 8L)n for
each [. Taking [ = L, this means that §;(L) = G with probability no less than 1 — (15+8L)n
Since #;(l) = B is absorbing, this also means that 6;(l) = G for each [ with probability no less than
1—(15+8L)n. Hence, if x; = G, we have

i Wl(x]) + ZT 1: round 7 is not a review round (a] ty yj t)
Tp + Zl:l ﬂ-fldjust( ;) hj<l’ h;eport l) 1‘report(xj7 h] <L hreport)

< wi(z;) —wi(xj) + (15 + 8L) 7){]uz |+Lu+|u ‘}4—8

which is non-positive by . Similarly, if z; = B, we have

lim i Trl (‘I]) + Zr 1: round r is not a review round (CL] s yJ t)
T—oo T adjust <l 7 report report <L jreport
P +Zl:lﬂ-i ( .77h] 7h] l)+7r ( ]’h] h )

> vi(w) — wiz;) — (15 + 8L) n {|ui(z;)| + Lu + |u;” {}—520.

Hence, for a sufficiently large 7", we have sign(z;) {W,(mj, h<TP+1) Zl LTV (g h<l l)} 0.
Therefore, it suffices to show that sign(z;) 31, 7V (x;, hy =ty >o.
Moreover, if 8;(1) = B for some [ = 1, ..., L, then we have sign(z;) S5, 75" (z;, hy =ty >o.
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To see this, recall that, for each history of player j, we have

review include T(
T ., [ £l )

7

= lpuwo=s { sien (z) LT+ Y 777 (a0, 954)
teT ()

( )

. T {ui(z;) — ui(a?(z(j)))}

(=6}

Lo, =} + 2 ier mila" (@) ))](agt,ygt)
1oy w=mT{uwi(z;) — wi(BR;(e)"(2(5))), o (x(4)))}

Tj

+10,0)=53 {Slgn () LT+ 3y emgy 737 (@je, yj,t)}

-~

+louwo)=c

\ 7

For each history of player j, by Lemma , we have sign(z;) > teT() 7" (ajy,yj¢) > 0. Moreover, by
Claim [5] of Lemma [11] z(j) = z; if 6;(1) = G. Hence, ensures that

sign () Lio, =11 {ui(x;) — ui(a’(x(j)))} = 0,
sign () 1o, w=cy{ui(7;) — wi(BRi(0;"(2(j))), o;"(2(j)))} = 0.

Hence, together with Claim [3| of Lemma [11] (X;(1)(j) = B = 0;(1) = B), we have

review include T
(aj, fide =1 £ 17010

> 1y, )=cysign (5) Z mila” (2 () (@, yje) + Lo, w=py LT
teT(l)
> —1{9],(1):G'}TG + 1{9],(1):B}LT1] by Lemma .

sign (x;) ;

Therefore, if 6,(1) = B for some | =1, ..., L, then we have

L
> sign () 71 (ay, fm B, fi07 )0 > — (L 1) Ta+ LTa > 0,
=1

as desired.

Therefore, we focus on the case with 0;(l) = G for each | =1, ..., L. By Claim [5{ of Lemma |11}
we have 7;(j) = x;. Let [ be the last review round with \;(l) = G (define [ = L if \;(I) = G for
each [ = 1,..,L). If z; = G, then recalling that o”(z(j)) = o/ (2(j)) with z;(j) = z; = G, we
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have

L
revlew T(l)
E Y (2, hy D)

=1

= > 3 T{uilzy) —wl@” (@)} + Y mla? (@)@ yi0)

o (2(j))), o5 (x(5)))

ar ((7)))

J/

<max,, (je{c,Bylui(z;)—ui(ar(z;,2:()))} since z;(j)=z;

=1 teT(l)
L
+ Y T {ui(x;) — wi(BRi(o} " (x(4))), o (x(4))) }
I=l+1
< IT max ui(x;) — ui(a’(x;, x; +(L-DT w;(x;) — u;(BR;
e {ui(ey) = wlof (@ ()} + (L= DT( wlay) — w(BR
2o u
—T =T
+ 4L * 4
I=1 —~—
since /\;' e since 71'1[04:]7(1% gi;) 1A XY —>[ 1 14] lsy Lemma [2]
nila z . @it it _l 2 1S e mdxnnum realization
X et [fopr(l:(Jl))](l_ilyj, )|<ET for 3, ey mila (7)) (a7,6:97.0)
< LT a. i\Lj) — U; P iy Ly + T + T < 0
< LT max {ui(e) - wlof(a s} + §T+

by (15). Similarly, if 2; = B, we have

L
revlew T(l)
E :ﬂ-z xj? J 7l)

= > AT {uilzy) —w(@ (@)} + D mla”(@()](a50 y5)

teT(l)

+ Z T {ui(x;) — wi( BRi(a;" (7)), 07" (2(7))) }

I=l+1

l_T i i i) — Wq r iy L1 .
min )~ oy, 20))

+(L - 1)1 yz’(%‘) — ui(BRi(a"(2(j))), Oé}k-’p(ﬂﬂ(J'))Z }

>min,, ;e (0, {wi (@) —ui (BRi(* (2())),a " (2(i)) } since @;(j)=c;

v

V
t~
~
2
"
—~—
£
§

97

— max {ui(BR;(a]"(x(5))), 07" (x(4))), ui(a” (x;, 2:(j)

}}+ i

4

T>()



by (15). Therefore, self generation is satisfied.
Since we have proven (5)—(8), Lemma [I] ensures that Theorem [1] holds.
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