
Stochastic Choice and Optimal Sequential Sampling∗

Drew Fudenberg† Philipp Strack‡ Tomasz Strzalecki§

May 20, 2015

Abstract

We model the joint distribution of choice probabilities and decision times in binary

choice tasks as the solution to a problem of optimal sequential sampling, where the

agent is uncertain of the utility of each action and pays a constant cost per unit time

for gathering information. In the resulting optimal policy, the agent’s choices are more

likely to be correct when the agent chooses to decide quickly, provided that the agent’s

prior beliefs are correct. For this reason it better matches the observed correlation

between decision time and choice probability than does the classical drift-diffusion

model, where the agent is uncertain which of two actions is best but knows the utility

difference between them.
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1 Introduction

In laboratory experiments where individuals are repeatedly faced with the same choice set,

the observed choices are stochastic—individuals don’t always choose the same item from a

given choice set, even when the choices are made only a few minutes apart.1 In addition,

individuals don’t always take the same amount of time to make a given decision—response

times are stochastic as well. Our goal here is to model the joint distribution of choice

probabilities and decision times in choice tasks, which we call a choice process.

We restrict attention to the binary choice tasks that have been used in most neuroscience

choice experiments, and suppose that the agent is choosing between two items that we call

left (l) and right (r). In this setting we can ask how the probability of the more frequent

(i.e., modal) choice varies with the time taken to make the decision. If the agent is learning

during the decision process, and is stopped by the experimenter at an exogenous time, we

would expect the data to display a speed-accuracy tradeoff, in the sense that the agent

makes more accurate decisions (chooses the modal object more often) when given more time

to decide. However, in many choice experiments there is instead the opposite correlation:

slower decisions are less likely to be modal (Swensson, 1972; Luce, 1986; Ratcliff and McKoon,

2008).

To explain this, we develop a new variant of the drift diffusion model (DDM); other

versions of the DDM have been extensively applied to choice processes in the neuroscience

and psychology literatures.2 The specification of a DDM begins with a diffusion process Zt

that represents information the subjects is receiving over time, and two disjoint stopping

regions Slt and Srt . The agent stops if at some point in time t it happens that Zt ∈ Slt

(in which case he chooses l) or Zt ∈ Srt (in which case he chooses r); otherwise the agent

continues. Because the evolution of the diffusion depends on which choice is better, the

model predicts a joint probability distribution on choices and response times conditional on

the true state of the world, which is unknown to the agent.

The oldest and most commonly used version of the DDM (which we will refer to as simple

DDM) specifies that the stopping regions are constant in time, i.e., Slt = Sl and Srt = Sr,

1See Hey (1995, 2001), Ballinger and Wilcox (1997), Cheremukhin, Popova, and Tutino (2011).
2The DDM was first proposed as a model of choice processes in perception tasks, where the subjects are

asked to correctly identify visual or auditory stimuli. (For recent reviews see Ratcliff and McKoon (2008)
and Shadlen, Hanks, Churchland, Kiani, and Yang (2006).) More recently, DDM-style models have recently
been applied to choice tasks, where subjects are choosing from a set of consumption goods presented to them.
Clithero and Rangel (2013); Krajbich, Armel, and Rangel (2010); Krajbich and Rangel (2011); Krajbich, Lu,
Camerer, and Rangel (2012); Milosavljevic, Malmaud, Huth, Koch, and Rangel (2010a); Reutskaja, Nagel,
Camerer, and Rangel (2011)
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and that Zt is a Brownian motion with drift equal to the difference in utilities of the items.

This specification corresponds to the optimal decision rule for a Bayesian agent who believes

that there are only two states of the world corresponding to whether action l or action r

is optimal, pays a constant flow cost per unit of time, and at each point in time decides

whether to continue gathering the information or to stop and take an action.3 The constant

stopping regions of the simple DDM imply that the expected amount of time that an agent

will gather information depends only on the current value of Zt, and not on how much time

the agent has already spent observing the signal process, and that the probability of the

modal choice is independent of the distribution of stopping times.4 In contrast, in many

psychological tasks (Churchland, Kiani, and Shadlen, 2008; Ditterich, 2006) reaction times

tend to be higher in incorrect than correct trials. For this reason, when the simple DDM

is applied to choice data, it predicts response times that are too long for choices in which

the stimulus is weak, or the utility difference between them is small. Ad-hoc extensions of

DDM have been developed to better match the data, by allowing more general processes

Zt or stopping regions Sit , see e.g., Laming (1968); Link and Heath (1975); Ratcliff (1978).

However, past work has left open the question of whether these generalizations correspond

to any particular learning problem, and if so, what form those problems take.

Our main focus in this paper is to provide learning-theoretic foundations for an alternative

form of DDM, where the agent’s behavior is the solution to a sequential sampling problem

with a constant cost per unit time as in the simple DDM but with a prior that allows her to

learn not only which alternative is better, but also by how much. In this uncertain-difference

DDM, the state of the world is the vector θ = (θl, θr) of the utilities of the two choice. In

this model an agent with a large sample and Zt close to zero will decide the utility difference

is small, and so be more eager to stop than an agent with the same Zt but a small sample.

Our main insight is that the nature of the learning problem matters for the optimal

stopping strategy and thus for the distribution of choices and response times. In particular,

we show that in the uncertain-difference DDM it is optimal to have the range of Zt for which

the agent continues to sample collapse to 0 as time goes to infinity, and moreover that is

does so asymptotically at rate 1/t. The intuition for the fact that the boundary should

converge to 0 is not itself new, and has been put forward both as a heuristic in various

3Wald (1947) stated and solved this as a hypothesis testing problem; Arrow, Blackwell, and Girshick
(1949) solved the corresponding Bayesian version. These models were brought to the psychology literature
by Stone (1960) and Edwards (1965).

4Stone (1960) proved this independence directly for the simple DDM in discrete time. Our Theorem 1
shows that the independence is a consequence of the stopping boundaries being constant.
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related models and as a way to better fit the data (see, e.g., Shadlen and Kiani, 2013) but

we provide the first precise statement and solution of an optimization problem that generates

decreasing boundaries, thus providing a foundation for their use in empirical work, such as the

exogenous exponentially-declining boundaries in Milosavljevic, Malmaud, Huth, Koch, and

Rangel (2010b).5 We then use approximation results and numerical methods to determine

the functional form of the boundary, thus providing guidance about what the rate of collapse

might be expected to be.

Finally, we investigate the consequences of allowing the flow cost to vary arbitrarily with

time. Intuitively, if the cost decreases quickly enough, this might outweigh the diminishing

effectiveness of learning and lead to an increasing boundary. We show that this intuition is

correct, and more strongly that any stopping region at all can be rationalized by a suitable

choice of a cost function. Thus optimal stopping on its own imposes essentially no restrictions

on the observed choice process, and so it is compatible with the boundaries assumed in

Ratcliff and McKoon (2008) and Shadlen and Kiani (2013). However, the force of the model

derives from its joint assumptions about the evolution of beliefs and the cost function, and

the cost functions needed to rationalize various forms of boundary may or may not seem

plausible in the relevant applications.

One motivation for modeling the joint distribution of decision times and choices is that

the additional information provided by decision times can lead to models that are closer

to the underlying neural mechanisms and may therefore be more robust.6 In addition, as

shown by Clithero and Rangel (2013), including decision times leads to better out-of-sample

predictions of choice probabilities. In other settings than the simple choice tasks we study

here, decision times can been used to classify decisions as “automatic/instinctive/heuristic”

or “cognitive/considered/reflective,” as in Rubinstein (2007), Rand, Greene, and Nowak

(2012), and Caplin and Martin (2014).

In addition to the papers cited above, our theoretical approach is closely related to the

recent work of Woodford (2014). In his model the agent can optimize the dependence of the

process Zt on θ subject to a Shannon capacity constraint, but the stopping rule is constrained

to have time-invariant boundaries. In our model the process Zt is exogenous but the stopping

5Drugowitsch, Moreno-Bote, Churchland, Shadlen, and Pouget (2012) state a decision problem with two
states (e.g. known payoff difference), a fixed terminal time, and time-dependent cost functions, and discuss
how to use dynamic programming to numerically compute the solution. Note that even with constant costs
the boundary is decreasing when the horizon is finite.

6See Shadlen and Kiani (2013) and Bogacz, Brown, Moehlis, Holmes, and Cohen (2006) for discussions
of how DDM-type models help explain the correlation between decision times and neurophysiological data
such as neuronal firing rates.
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rule is optimal subject to a cost, so the two approaches are complementary: both models

feature an optimization problem, but over different spaces.

Gabaix and Laibson (2005) and Ke, Shen, and Villas-Boas (2013) look at decisions de-

rived from optimal stopping rules where the gains from sampling are exogenously specified

as opposed to being derived from Bayesian updating, as they are here; neither paper ex-

amines the correlation between decision time and accuracy. Vul, Goodman, Griffiths, and

Tenenbaum (2014) studies the optimal predetermined sample size for an agent whose cost

of time arises from the opportunity to make future decisions; they find that for a range of

parameters the optimal sample size is one.

Natenzon (2013) and Lu (2013) study models with an exogenous stopping rule. They

treat time as a parameter of the choice function, and not as an observable in its own right.

The same is true of decision field theory (Busemeyer and Townsend, 1992; Busemeyer and

Johnson, 2004), which discusses the effect of time pressure but does not treat the observed

choice times as data, and of Caplin and Dean’s (2011) model of sequential search. Accumu-

lator models such as (Vickers, 1970) specify an exogenous stopping rule; Webb (2013) shows

that the distribution of choices induced by these models is consistent with random utility.

Our model makes joint predictions about decisions and response times because the stopping

time is chosen optimally. These additional predictions provide more structure on stochastic

choice and can help us develop more accurate models.

2 Choice Processes and DDMs

2.1 Observables

Let A = {l, r} be the set of alternatives, which we will call left (l) and right (r). Let

T = [0,+∞) be the set of decision times—the times at which the agent is observed to state

a choice. The analyst observes a joint probability distribution P ∈ ∆(A× T ); we call this a

choice process. We will decompose P as

pi(t) and F (t)

where pi(t) is probability of choosing i ∈ A conditional on stopping at time t and F (t) =

P (A× [0, t]) is the cdf of the marginal distribution of decision times.7

7Formally, we assume that P is a Borel probability measure on A×T . The conditional probabilities pi(t)
exist by Theorems 10.2.1 and 10.2.2 of Dudley (2002).
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It will also be useful to decompose P the other way

P i and F i(t)

where P i = P ({i} × T ) is the overall probability of choosing i ∈ A at any time, and

F i(t) = P ({i}×[0,t])
P i

is the cdf of time conditional on choosing i ∈ A.

2.2 Speed and Accuracy

It is easy to define accuracy in perceptual decision tasks, since in such settings the analyst

knows which option is ‘correct.’ However, in choice tasks the agents’ preferences are subjec-

tive and may be unknown to the researcher.8 One way of defining accuracy is with respect

to the modal choice, as we expect that the objects the agent chooses more often are in some

sense “better;” we denote the modal choice by m, the other one by o.

The simplest possible relationship between choices and times is no relationship at all,

that is when the distribution of stopping times is independent of the distribution of choices.

We will equivalently define this property as follows.

Definition 1. P displays speed-accuracy independence iff pm(t) is a constant function of t

Speed-accuracy independence is a necessary implication of the simple DDM, which we

introduce formally in the next section. The case of independence is by nature very knife-

edge, and is natural to relax it. In this paper, we focus on qualitatively capturing a positive

or a negative correlation between choices and time. To do this, we introduce the following

definition.9

Definition 2. P displays a speed-accuracy tradeoff iff pm(t) is an increasing function of t.

Note that this definition requires that the tradeoff holds for all times t. We expect there

to be a speed-accuracy tradeoff if the agent is learning about the options before her and is

stopped by the experimenter at an exogenous stochastic time, as by waiting longer he obtains

more information and can make more informed choices. But even if the agent is learning,

the observed choice process P need not display a choice-accuracy tradeoff if the stopping

8In some cases the analyst has a proxy of the preference in form of a separately elicited ranking, see, e.g.,
Krajbich, Armel, and Rangel (2010), Milosavljevic, Malmaud, Huth, Koch, and Rangel (2010b), Krajbich,
Lu, Camerer, and Rangel (2012).

9In the literature on perceptual tasks this concept is referred to as “fast errors;” we do not use this
terminology here.
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time is not exogenous but chosen by the agent as a function of what has been learned so far.

In this case, the agent might stop sooner when she thinks his choice is likely to be accurate,

so the choice of a stopping time may push towards the opposite side of the speed-accuracy

tradeoff.

Definition 3. P displays speed-accuracy complementarity iff pm(t) is a decreasing function

of t.

A priori we could observe both kinds of P , perhaps depending on the circumstances.

This is indeed the case; for example, Swensson (1972) and Luce (1986) report that speed-

accuracy complementarity is observed under normal conditions, but speed-accuracy tradeoff

is observed when subjects are incentivized on speed; see also, Shadlen and Kiani (2013).10

The speed-accuracy tradeoff can be equivalently expressed in terms of the monotone

likelihood ratio property. Let P be a choice process and let f i be the density of F i with

respect to F . Suppose that Fm is absolutely continuous w.r.t. F o; we say that Fm and

F o have the monotone likelihood ratio property, denoted Fm %MLRP F o, if the likelihood

fm(t)/f o(t) is an increasing function.

Though the above concepts will be useful for theoretical analysis, in empirical work time

periods will need to be binned to get useful test statistics. For this reason we introduce two

weaker concepts that are less sensitive to finite samples, as their oscillation is mitigated by

conditioning on larger sets of the form [0, t]. First, let Qi(t) := P ({i}×[0,t])
F (t)

be the probability

of choosing i conditional on stopping in the interval [0, t]. Second, we say that Fm first order

stochastically dominates F o, denoted Fm %FOSD F o if Fm(t) ≤ F o(t) for all t ∈ T . Below,

we summarize the relationships between these concepts.

Fact 1.

1. Let P be a choice process and suppose that Fm is absolutely continuous w.r.t. F o. Then

P displays the speed-accuracy tradeoff (complementarity/independence) if and only if

Fm %MLRP F
o (Fm -MLRP F

o / Fm = F o).

2. If P displays a speed-accuracy tradeoff (complementarity, independence), then Qm(t)

is an increasing (decreasing, constant) function

3. If Qm(t) is an increasing (decreasing, constant) function, then Fm %FOSD F
o (Fm -FOSD

F o, Fm = F o).
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Figure 1: The dots display the data from an experiment by Krajbich, Armel, and Rangel
(2010). (Since each alternative pair is sampled only once, we used self-reported rankings
collected by Krajbich, Armel, and Rangel (2010) to cluster the budget sets and compute
choice probabilities.) The blue line displays simulations of the approximately optimal barrier
b̄ for the uncertain-difference DDM (derived in Section 3.3) with parameters c = 0.05, σ0 =
α = 1; each simulation uses 5·106 draws and time is discretized with dt = 0.01. The expected
time to choose l is lower than the expected time to choose r for pairs of alternatives where l
is the modal choice; it is higher for pairs where r is modal. The red line displays predictions
of the simple DDM for any combination of parameter values.
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In particular, under speed-accuracy complementarity, the expected time to choose the

modal alternative is smaller than the expected time to choose the other alternative, i.e.,

Etm :=
∫∞

0
tdFm(t) ≤

∫∞
0
tdF o(t) =: Eto. Figure 1 shows that this fits the experimental

data of Krajbich, Armel, and Rangel (2010).

The proof of Fact 1 and all other results is in the Appendix. In the next section of the

paper we study a particular class of choice processes P , called drift-diffusion models (DDM).

Such models are defined by a signal process Zt and a stopping boundary bt. We characterize

the three subclasses of DDM: speed-accuracy tradeoff, complementarity, and independence

in terms the function bt.

2.3 DDM representations

DDM representations have been widely used in the psychology and neuroscience literatures

(Ratcliff and McKoon, 2008; Shadlen, Hanks, Churchland, Kiani, and Yang, 2006; Fehr and

Rangel, 2011). The two main ingredients of a DDM are the stimulus process Zt and a

boundary bt.

The stimulus process Zt is assumed to be a Brownian motion with drift δ and variance α2:

Zt = δt+ αBt, (1)

where Bt is a standard Brownian motion. In early applications of DDM such as Ratcliff

(1978) Zt was is not observed by the experimenter. In some recent applications of DDM to

neuroscience, the analyst may observe signals that are correlated with Zt; for example the

neural firing rates of both single neurons (Hanes and Schall, 1996) and populations of them

(e.g., Ratcliff, Cherian, and Segraves, 2003). In the later sections we interpret the process

Zt as a signal about the utility difference between the two alternatives.

Suppose that the agent stops at a fixed time s and choose l if Zs > 0 and r if Zs < 0 (and

flip a coin if there is a tie). Let pm(s) be the frequency of the modal choice. It is easy to see

that if δ > 0 then the modal choice is l, and its probability pm(s) is an increasing function of

the exogenous stopping time s: the process starts at Z0 = 0, so if s = 0 each choice is equally

likely. At each subsequent point in time s > 0 the distribution of Zs is N (δs, α2s); thus, the

probability of Zs > 0 increases. The same happens if the agent stops at a stochastic time

τ that is independent of the process Zt. Thus, an exogenously stopped process Zt leads to

10This could be explained if agents are stopping at random under time pressure, but are using some
other rule under normal circumstances; for example they are following the uncertain-difference DDM, to be
described in Section 3.3.
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a speed-accuracy tradeoff. We will now see that if the process Zt is stopped endogenously,

i.e., depending on its value, then this effect can be reversed.

The canonical example of a stopping time that depends on Zt is the hitting time of a

boundary. A boundary is a function b : R+ → R. Define the hitting time τ

τ = inf{t ≥ 0 : |Zt| ≥ bt}, (2)

i.e., the first time the absolute value of the process Zt hits the boundary. Let P (δ, α, b) ∈
∆(A × T ) be the choice process induced by τ and a decision rule that chooses l if Zt = bt

and r if Zt = −bt.11

Definition 4. A choice process P has a DDM representation (δ, α, b) if P = P (δ, α, b). A

choice process P has an average DDM representation (µ, α, b) if P =
∫
P (δ, α, b)dµ(δ), where

µ ∈ ∆(R).12

We note that the assumption that the process Zt is Brownian is an important one, as

without it the model is vacuous.

Fact 2. Any choice process P has a “DDM-like” representation where the stochastic process

Zt is arbitrary.

In particular an arbitrary P may correspond to a process Zt with jumps (or a filtration

that is not right-continuous). However, the standard assumption in the literature is that Zt

is Brownian.13 The next result characterizes the relationship between speed and accuracy in

the class of choice processes that admit a DDM representation.

Theorem 1. Suppose that P has a DDM representation (α, δ, b). Then P displays a speed-

accuracy tradeoff (complementarity, independence) if and only if bt is increasing (decreasing,

constant).

11There are boundaries for which there is a positive probability that τ =∞. This cannot happen for the
primitive objects that we consider here, which are choice processes. Thus, we only focus on those boundaries
that lead the agent to stop in finite time with probability 1. This property will be satisfied in any model
where the stopping time comes from a statistical decision problem in which never stopping incurs an infinite
cost and the value of full information is finite.

12Note that the parameter α can be removed here by setting α′ = 1, δ′ = δ/α, and b′ = b/α. By a similar
argument, δ can be assumed to be −1, 0, or 1. We nonetheless retain α and δ here as we will use them in
the next section to distinguish between utility and signal strength.

13For the Brownian motion Smith (2000) and Peskir et al. (2002) show that the distribution of hitting
times satisfies a system of integral equations depending on the boundary. The inverse problem of finding
a boundary such that the first hitting time has a given distribution was studied in Iscoe, Kreinin, and
Rosen (1999) in the case Brownian Random walks and they propose a Monte Carlo algorithm for solving it
numerically.
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The intuition behind the proof of this theorem is as follows: Suppose that δ > 0 (so the

modal action is l), that the barrier is decreasing, and that the process stopped at time t.

The odds that a modal decision is made in this situation are

pl(t)

pr(t)
=

P[Zt = bt|{τ = t} ∩ {|Zt| = bt}]
P[Zt = −bt|{τ = t} ∩ {|Zt| = bt}]

,

where {τ = t} is the event that the process Z has not crossed the barrier before time t.

From Bayes rule and the formula for the density of the normal distribution

P[Zt = bt|{|Zt| = bt}]
P[Zt = −bt|{|Zt| = bt}]

= exp

(
4δbt
α2

)
,

which is a decreasing function of t whenever b is. Moreover, a symmetry argument using the

Brownian bridge shows that the conditioning event {τ = t} does not matter.

Theorem 1 says that the speed-accuracy tradeoff generated by exogenous stopping can

be reversed if stopping is endogenous, i.e., the stopping time depends on the process Zt.

The special case of the constant boundary DDM is well known to arise as the solution

to an optimal sampling problem, for an agent who thinks there are only two possible states

of the world. The next section presents that model in detail, and then focuses on a related

model in which the agent is also learning about the intensity of her preference.

3 Optimal Stopping

3.1 Statement of the model

Both the simple DDM used to explain data from perception tasks and our uncertain-

difference DDM are based on the idea of sequential learning and optimal stopping. As we will

see, the models differ only in their prior, but this difference leads to substantially different

predictions. In the learning model, the agent doesn’t know the true utilities, θ = (θl, θr) ∈ R2,

but has a prior belief about them µ0 ∈ ∆(R2). The agent observes a signal (Zi
t)t∈R+ which

as in the DDM has the form of a drift plus a Brownian motion; in the learning model we

assume that the drift of each Zi is equal to the corresponding state, so that

dZi
t = θidt+ αdBi

t. (3)
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where α is the noisiness of the signal and the processes {Bi
t} are independent.14 The signals

and prior lie in a probability space (Ω,P, {Ft}t∈R+), where the information Ft that the agent

observed up to time t is simply the paths {Zi
s}0≤s<t.We denote the agent’s posterior belief

about θ given this information by µt. Let X i
t = Eµtθi = E [θi | Ft] be the posterior mean for

each i = l, r. As long as the agent delays the decision she has to pay flow cost, which for now

we assume to be constant c > 0. (Section 3.4 explores the implications of time varying cost.)

The agent’s problem is to decide which option to take and at which time. Waiting longer

will lead to more informed and thus better decisions, but also entails higher costs. What

matters for this decision is the difference between the two utilities, so a sufficient statistic

for the agent is

Zt := Z l
t − Zr

t = (θl − θr)t+ α
√

2Bt,

where Bt = 1√
2
(B1

t −B2
t ) is a Brownian Motion.

When the agent stops it is optimal to choose the option with the highest posterior ex-

pected value; thus, the value of stopping at time t is maxi=l,rX
i
t . The agent decides opti-

mally when to stop: he chooses a stopping time τ , i.e., a function τ : Ω→ [0,+∞] such that

{τ ≤ t} ∈ Ft for all t; let T be the set of all stopping times. Hence, the problem of the agent

at t = 0 can be stated as

max
τ∈T

E
[
max
i=l,r

X i
τ − cτ

]
15. (4)

3.2 Certain Difference

In the simple DDM the agent’s prior is concentrated on two points: θl = (θ′′, θ′) and θr =

(θ′, θ′′), where θ′′ > θ′. The agent receives payoff θ′′ for choosing l in state θl or r in state θr,

and θ′ < θ′′ for choosing r in state θl or r in state θl, so she knows that the magnitude of

the utility difference between the two choices is |θ′′ − θ′|, but doesn’t know which action is

better. We let µ0 denote the agent’s prior probability of θl.

This model was first studied in discrete time by Wald (1947) (with a trade-off between

type I and type II errors taking the place of utility maximization) and by Arrow, Blackwell,

and Girshick (1949) in a standard dynamic programming setting. A version of the result

for the continuous-time, Brownian-signal case can be found for example in Shiryaev (1969,

2007).

14This process was also studied by Natenzon (2013) to study stochastic choice with exogenously forced
stopping times; he allows utilities to be correlated, which can explain context effects.

15Following the literature, in cases where the optimum is not unique, we focus on the minimal optimal
stopping time.
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Theorem 2. With a binomial prior, there is k > 0 such that the minimal optimal stopping

time is τ̂ = inf{t ≥ 0 : |lt| = k}, where lt = log
(

P[θ=θl | Ft]
P[θ=θr | Ft]

)
. Moreover, when µ0 = 0.5, the

optimal stopping time has a DDM representation with a constant boundary b:

τ̂ = inf{t ≥ 0: |Zt| ≥ b}.16

Theorems 1 and 2 imply that the simple DDM satisfies speed-accuracy independence.

From the point of view of most economic applications, the simple DDM misses an important

feature, as the assumption that the agent knows the magnitude of the payoff difference rules

out cases in which the agents is learning the intensity of his preference. At the technical level,

the assumption that the utility difference is known, so there are only two states, implies that

the current value of the process Zt is a sufficient statistic, regardless of the elapsed time; this

is why the stopping boundary b in this model is constant. Intuitively, one might expect that

if Zt is close to zero and t is large, the agent would infer that he is close to being indifferent

between l and r and so stops, even though for the same value of Zt the agent would choose

to continue when t is small. This inference is ruled out by the binomial prior, which says

that the agent is sure that he is not indifferent. We now turn to a model with a Gaussian

prior which makes such inferences possible.

3.3 Uncertain-difference DDM

In the uncertain-difference DDM, the agent’s prior µ0 is independent for each action and

N (X0, σ
2
0). Given the specification of the signal process (1), the posterior µt is N (Xt, σ

2
t ),

where

X i
t =

X i
0σ
−2
0 + Zi

tα
−2

σ−2
0 + tα−2

and σ2
t =

1

σ−2
0 + tα−2

. (5)

To gain intuition, consider the agent at time t contemplating a strategy of waiting dt

more seconds and stopping then. The agent’s utility of stopping now is maxi=l,rX
i
t . If the

agent waits, he will have a more accurate belief and hence he will be able to make a more

informed decision, but he will pay an additional cost, leading to an expected change in utility

of
(
Et maxi=l,rX

i
t+dt −maxi=l,rX

i
t

)
−cdt. The main intuition for our results is that the value

of the additional information gained per unit time is decreasing in t, which leads to stopping

regions being time-dependent.

16This is essentially Theorem 5, p. 185 of Shiryaev (2007), but our formulation is superficially more
general, as in his model the drift only depends on the sign of the utility difference, but not on its magnitude.
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The following theorem states this intuition formally.17

Theorem 3. Let τ ∗ be the minimal optimal strategy in (4). Then

1. There is a strictly decreasing, strictly positive function k : R+ → R+ such that

τ ∗ = inf{t ≥ 0: |X l
t −Xr

t | ≥ kt}.

Moreover limt→∞ kt = 0.

2. If X l
0 = Xr

0 , then for bt = α2σ−2
t kt we have

τ ∗ = inf{t ≥ 0: |Z l
t − Zr

t | ≥ bt}.

Part (1) of the theorem describes the optimal strategy τ ∗ in terms of stopping regions

for posterior means X l
t − Xr

t : It is optimal for the agent to stop once the expected utility

difference exceeds a decreasing threshold kt. This follows from the principle of optimality

for continuous time processes and the shift invariance property of the value function, which

is due to the normality of the posterior. Intuitively, if the expected utility difference is small

for large t, the agent concludes that the two items are most likely indifferent and since σ2
t

is small for large t, the expected gain from learning more is low, so the agent stops. On

the other hand, at t = 0 even if the expected utility difference is small, σ2
0 is large so the

expected value of learning is high and thus the agent continues.

Part (2) of the theorem describes the optimal strategy τ ∗ in terms of stopping regions

for the signal process Zt := Z l
t − Zr

t .
18 This facilitates comparisons with the simple DDM,

where the process of beliefs lives in a different space and is not directly comparable.

One way to understand the difference between this model and the one from the previous

section is to consider the agent’s posterior beliefs when Zt ≈ 0 for large t. In the certain

difference model, the agent interprets the signal as noise, since according to his prior the

utilities of the the two alternatives are a fixed distance apart, so the agent disregards the

signal and essentially starts from anew. This is why the optimal boundaries are constant in

this model. On the other hand, in the uncertain difference model the agent’s interpretation

17Time-dependent stopping thresholds also arise if the cost or utility functions are time-dependent or if
there is a fixed terminal date, see e.g. Rapoport and Burkheimer (1971) and Drugowitsch, Moreno-Bote,
Churchland, Shadlen, and Pouget (2012).

18When X l
0 6= Xr

0 , the optimal strategy can be described in terms of asymmetric boundaries for the signal
process: bt = α2

[
− ktσ−2t − (X l

0 −Xr
0 )σ−20

]
and b̄t = α2

[
ktσ
−2
t − (X l

0 −Xr
0 )σ−20

]
.
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of Zt ≈ 0 for large t is that the two alternatives are nearly indifferent, which prompts the

agent to stop the costly information gathering process and make a decision right away. This

is why the optimal boundaries are decreasing in this model.

A similar observation applies when the agent knows the utility difference but is uncertain

about the signal intensity, as in Example (i) of Bather (1962) and Drugowitsch, Moreno-Bote,

Churchland, Shadlen, and Pouget (2012). In both of these cases the boundaries collapse to

zero because when Zt ≈ 0 for large t the agent thinks he is unlikely to learn more in the

future.19

We do not know of a closed-form solution for the functions k and b; however, we can

show that, as functions of the initial variance σ2
0, c, and noisiness α, they have to satisfy

the following conditions. The conditions provide useful information about the identification

of the parameters of the model, and about how the predictions of the model change as

the parameters are varied in experiments. They are also used to show that k is Lipschitz

continuous, which simplifies the analysis of the boundary value problem, and that it declines

with time at rate at least 1/
√
t, which is at the heart of the proof of Theorem 5 below.

Theorem 4. The optimal solution k(t, c, σ0, α) to problem (4) is Lipschitz continuous in t

and satisfies:

k(t, c, σ0, α) = k(0, c, σt, α) for all t ≥ 0 (6)

k(0, c, λσ0, α) = λk(0, cλ−3, σ0, α) for all λ > 0 (7)

k(t, c, σ0, λα) = λk(t, λ−1c, λ−1σ0, α) for all t, λ > 0 (8)

k(0, λc, σ0, α) ≥ λ−1k(0, c, σ0, α) for all λ > 0. (9)

The first equality follows from the fact that an agent who starts at time 0 with prior

N (X0, σ
2
0), has the same beliefs at each time t′ > t as an agent who started at time t with

prior N (Xt, σ
2
t ). This equality is used at various steps in the proofs, including showing that

k is Lipschitz continuous in t, which is convenient for technical reasons; it allows us to

ignore the complications of viscosity solutions and have an exact solution to the PDE that

characterizes the optimal stopping rule. The proofs of equalities (7) and (8) use a space-time

change. Inequality (9) follows from a space-time change argument and the fact that more

information is always better for the agent.

19In Bather (1962) the time horizon is infinite; his results imply that in this model the boundary bt
decreases at the rate 1/

√
t. The finite horizon in Drugowitsch, Moreno-Bote, Churchland, Shadlen, and

Pouget (2012) provides an additional reason for the boundaries to decrease.
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Theorem 4 implies that if P has an average DDM representation with respect to the

agent’s prior, then it displays speed-accuracy complementarity.

Theorem 5. If P has an average DDM representation P (µ0, α, b), then P displays speed-

accuracy complementarity.20

This is true because the boundary k is decreasing at the rate at least 1/
√
t, which, as

we show, follows from Theorem 4. This theorem implies that the analyst will observe speed-

accuracy complementarity in an experiment in which in the agent faces a series of decisions

with states (θr, θl) and the values of θ are drawn according to the agent’s prior. In particular,

as long as the prior is correct, speed-accuracy complementarity will hold for the average P in

a given experiment. In addition, we expect that the speed-accuracy complementarity should

hold at least approximately if the agent’s beliefs are approximately correct but we have not

shown this formally. Moreover, the complementarity can hold even across experiments as

long as the distributions of the states are close enough. That is, while we expect choice-

accuracy complementarity to hold within a given class of decision problems, it need not hold

across classes: if l and r are two apartments with a given utility difference δ = θl − θr,

we expect the agent to spend on average more time here than on a problem where l and

r are two lunch items with the same utility difference δ. This is because we expect the

prior belief of the agent to be domain specific and in particular, the variance of the prior,

σ2
0, to be higher for houses than for lunch items. Similarly, the complementarity can hold

across subjects (indeed, the data in Figure 1 is a cross-section of subjects), as long as their

boundaries are not too different. However, in the extreme case when one subject has a cost

much lower than another subject, the first one will make choices which are longer and more

accurate than the choices of the second subject.

So far we have assumed that the agent receives signals about both items simultaneously.

Note that the same conclusions apply if instead the agent has to allocate a fixed amount of

attention between the two signals, and this allocation can be altered at will from instant to

instant. Because beliefs are normally distributed, the agent will optimally allocate attention

in a way that maximizes the reduction of variance in the difference in utilities. The variance

in the difference is equal to the sum of the two variances, so the agent will allocate allocation

to equate these variances and thus give equal attention to both items at all times.21

20Here we understand µ0 to be a probability distribution on δ = θl− θr. Note that if b is decreasing, then
by Theorem 1, any for each realization of δ the induced choice probabilities P (δ, α, b) display speed-accuracy
complementarity.

21In practice people may be only able to attend to one signal at a time, and be physically limited in how
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To gain more insight into the form of the optimal policy, we characterize the functional

form for k̄ that satisfies conditions (6–9) with equality, and the b̄ that corresponds to it.

Using the results of Bather (1962) on the Chernoff (1961) model (which we show to be

equivalent to ours in Fact 4) we then show that b̄ approximates the solution well for large t.

Fact 3. Let

k̄(t, c, σ0, α) =
1

2cα2(σ−2
0 + α−2t)2

(10)

and

b̄(t, c, σ0, α) =
1

2c(σ−2
0 + α−2t)

. (11)

Then k̄ is the only function that satisfies (6)–(9) with equality, and b̄ is the associated bound-

ary in the signal space. Moreover, there are constants β, T > 0 such that for all t > T

∣∣b̄(t, c, σ0)− b(t, c, σ0)
∣∣ ≤ β

(σ−2
0 + α−2t)5/2

.

Fact 3 implies that b asymptotically declines to zero at rate 1/t. Using numerical methods,

we have found that k̄ and b̄ are good numerical approximations to the optimal boundaries k

and b.22

Finally, we note that the uncertain difference model is equivalent to the Chernoff (1961)

ex post regret model, where for any stopping time τ the objective function is

Ch (τ) := E
[
−1{xlτ≥xrτ}(θ

r − θl)+ − 1{xrτ>xlτ}(θ
l − θr)+ − cτ

]
;

that is, the agent gets zero for making the correct choice and is penalized the foregone utility

for making the wrong choice.

Fact 4. For any stopping time τ

Ch (τ) = E
[
max{X l

τ , X
r
τ} − cτ

]
+ κ,

where κ is a constant independent of τ ; therefore, these two objective functions induce the

fequently they can switch between them. See Krajbich, Armel, and Rangel (2010); Krajbich, Lu, Camerer,
and Rangel (2012) for experimental evidence on eye tracking in these choice tasks.

22The approximations for t→ 0 obtained by Bather (1962) show that b 6= b̄; however our simulations and
the bounds from Fact 3 indicate that b̄ approximates the solution quite accurately for moderate t, so it may
be useful for estimation purposes.
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same choice process.

Chernoff and following authors have focused on the behavior of the optimal boundary for

very small and very large values of t. We have not found any relevant monotonicity results

in this literature.

3.4 Non-Linear Cost

In deriving the DDM representation from optimal stopping, we have so far assumed that the

cost of continuing per unit time is constant. We have seen that in the uncertain-difference

model, the optimal boundary decreases due to the fact there is less to learn as time goes

on. One would expect that the boundary could increase if costs decrease sufficiently quickly.

This raises the question of which DDM representations can be derived as a solution to an

optimal stopping problem when the cost is allowed to vary arbitrarily over time. The next

result shows that for any boundary there exists a cost function such that the boundary is

optimal in the learning problem with normal or binomial priors. Thus optimal stopping on

its own imposes essentially no restrictions on the observed choice process; the force of the

model derives from its joint assumptions about the evolution of beliefs and the cost function.

Theorem 6. Consider either the Certain or the Uncertain-Difference DDM. For any finite

boundary b and any finite set G ⊆ R+ there exists a cost function d : R+ → R such that b is

optimal in the set of stopping times T that stop in G with probability one

inf{t ∈ G : |Xt| ≥ bt} ∈ arg max
τ∈T

E
[
max{X1

τ , X
2
τ } − d(τ)

]
.

In particular, there is a cost function such that the exponentially decreasing boundaries

in Milosavljevic, Malmaud, Huth, Koch, and Rangel (2010b) are optimal, and a cost function

such that there is speed-accuracy independence.

Intuitively, the reason this result obtains is that the optimal stopping rule always takes

the form of a cut-off: If the agent stops at time t when Xt = x, she stops at time t whenever

|Xt| > x. This allows us to recursively construct a cost function that rationalizes the given

boundary by setting the cost at time t equal the expected future gains from learning. To

avoid some technical issues having to do with the solutions to PDE’s, we consider a discrete-

time finite-horizon formulation of the problem, where the agent is only allowed to stop at

times in a finite set G. This lets us construct the associated cost function period by period
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instead of using smoothness conditions and stochastic calculus.23

4 Conclusion

The recent literature in economics and cognitive science uses drift-diffusion models with

time-dependent boundaries. This is helpful in matching observed properties of reaction

times, notably their correlation with chosen actions, and in particular a phenomenon that

we call speed-accuracy complementarity, where earlier decisions are better than later ones. In

Section 2 we showed that the monotonicity properties of the boundary characterize whether

the observed choice process displays speed-accuracy complementarity, or the opposite pattern

of a speed-accuracy tradeoff. This ties an observable property of behavior (the correlation

between reaction times and decisions) to an unobservable construct of the model (the bound-

ary). This connection is helpful for understanding the qualitative properties of DDMs; it

may also serve as a useful point of departure for future quantitative exploration of the con-

nection between the rate of decline of the boundary and the strength of correlation between

reaction times and actions.

In Section 3 we investigated the DDM as a solution to the optimal sequential sampling

problem, where the agent is unsure about the utility of each action and is learning about

it as the time passes, optimally deciding when to stop. We studied the dependence of the

solution on the nature of the learning problem and also on the cost structure. In particular,

we proposed a model in which the agent is learning not only about which option is better, but

also by how much it is better. We showed that the boundary in this model asymptotically

declines to zero at the rate 1/t. We also showed that any boundary could be optimal if the

agent is facing a nonlinear cost of time.

The analysis of our paper provides a precise foundation for DDMs with time-varying

boundaries and establishes a set of useful connections between various parameters of the

model and predicted behavior, thus enhancing the theoretical understanding of the model

as well as making precise its empirical content. We expect the forces identified in this paper

to be present in other decisions involving uncertainty: not just in tasks used in controlled

laboratory experiments, but also in decisions involving longer time scales, such as choosing

an apartment rental, or deciding which papers to publish (as a journal editor). We hope

23The proof of the theorem relies on a result on implementable stopping times from Kruse and Strack
(2015). In another paper Kruse and Strack (2014) generalize this result to continuous time, but as the
absolute value is not covered by their result we can not use it here. Nevertheless, we conjecture that the
methods used in that paper can be extended to prove the result in continuous time directly.

19



these results will be a helpful stepping stone for further work.
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Appendix: Proofs

A General Results

A.1 Proof of Fact 1

Proof of Fact 1: To prove part (1) note that by the definition of a conditional distribution

(property (c) p. 343 of Dudley, 2002) we have F i(t) =
∫

[0,t]
pi(s)
P i

dF (s), so the density of F i is

f i(t) = pi(t)
P i

. Since Fm is absolutely continuous w.r.t. F o, the ratio fm(t)
fo(t) is well defined F -almost

everywhere and equals pm(t)
po(t)

Pm

P o . This expression is increasing (decreasing, constant) if and only if

pm(t) is increasing (decreasing, constant).
To prove part (2), note that by the definition of a conditional distribution we have

Qi(t) =
P iF i(t)

F (t)
=

∫
[0,t] p

i(s)dF (s)

F (t)
. (12)

Thus, for t < t′ we have

Ql(t) > Ql(t′) iff

∫
[0,t] p

l(s)dF (s)

F (t)
≥

∫
[0,t] p

l(s)dF (s) +
∫

(t,t′] p
l(s)dF (s)

F (t) + [F (t′)− F (t)]

iff

∫
[0,t] p

l(s)dF (s)

F (t)
≥

∫
(t,t′] p

l(s)dF (s)

F (t′)− F (t)
,

which is true if pl(·) is a decreasing function since the LHS is the average of pl on [0, t] and the RHS

is the average on (t, t′]. However, the opposite implication may not hold, for example, consider

pl(t) := (t− 2/3)2 and F (t) = t for t ∈ [0, 1]. Then pl(t) is not decreasing, but Ql(t) is.
To prove part (3), note that by (12) we have

F l(t) > F r(t) iff
Ql(t)

P l
≥ Qr(t)

P r
iff Ql(t) ≥ P l = lim

s→∞
Ql(s),

where we used the fact that Ql(t)+Qr(t) = 1 and P l+P r = 1. Thus, if Ql is a decreasing function,

the RHS will hold. However, the opposite obviously doesn’t have to hold.

A.2 Proof of Fact 2

Let P be a Borel probability measure on Ω := A × T . Define the process Zt as follows. For any
ω = (a∗, t∗) ∈ Ω let

Zt(ω) :=


0 if t < t∗

+1 if t ≥ t∗ and a∗ = l

−1 if t ≥ t∗ and a∗ = r.

Note that Zt is Borel measurable for each t, so Zt is a stochastic process on the probability space

(Ω,BΩ, P ). Set b := 1 and observe that (Zt, b) is a DDM-like representation of P .
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Note that a representation with continuous paths is possible, where

Zt(ω) :=

{
t
t∗ if a∗ = l

− t
t∗ if a∗ = r;

however, in this representation the filtration generated by Zt is not right-continuous at zero.

A.3 Proof of Theorem 1

Let f : R+ → R+ be the density of the distribution of stopping times, and g : R+ × R → R+ be
the density of Zt i.e

g(t, y) =
∂

∂y
P [Zt ≤ y|δ, α] =

∂

∂y
P
[
Bt√
t
≤ y − δt

α
√
t

]
= φ

(
y − δt
α
√
t

)
,

where φ(x) = 1√
2π
e−x

r/2 is the density of the standard normal. By Bayes rule:

pl(t) = P[Zt = bt|τ = t, δ, α] =
g(t, bt)P[τ = t|Zt = bt, δ, α]

f(t)

pr(t) = P[Zt = −bt|τ = t, δ, α] =
g(t,−bt)P[τ = t|Zt = −bt, δ, α]

f(t)

It follows from Z0 = 0 and the symmetry of the upper and the lower barrier that

P[τ = t|Zt = bt, δ, α] = P[τ = t|Zt = −bt,−δ, α], (13)

because for any path of Z that ends at bt and crosses any boundary before t, the reflection of this

path ends at −bt and crosses some boundary at the same time.
The induced probability measure over paths conditional on Zt = bt is the same as the probability

of the Brownian Bridge.24 The Brownian Bridge is the solution to the SDE dZs = − bt−Z
t−s ds+αdBs

and notably does not depend on the drift δ, which implies that

P[τ = t|Zt = −bt,−δ, α] = P[τ = t|Zt = −bt, δ, α] (14)

Thus, by (13) and (14) we have that

pl(t)

pr(t)
=

g(t, bt)

g(t,−bt)
= exp

(
4δbt
α2

)
.

Wlog m = l and δ > 0; the above expression is decreasing over time if and only if bt is decreasing

over time.

24See, e.g., Proposition 12.3.2 of Dudley (2002) or Exercise 3.16, p. 41 of Revuz and Yor (1999).
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B The Uncertain-Difference Model

B.1 The Value Function

Our results use on the following representation of the posterior process in the uncertain-difference

model.

Lemma 1. For any t > 0

Xi
t = Xi

0 +

∫ t

0

α−1

σ−2
0 + sα−2

dW i
s

where W i
s is a Brownian motion with respect to the filtration information of the agent.

Proof : This follows from Theorem 10.1 and equation 10.52 of Liptser and Shiryaev (2001) by

setting a = b = 0 and A = 1, B = α.

Define the continuation value as the expected value an agent can achieve by using the optimal
continuation strategy if he beliefs the posterior means to be (xl, xr) at time t and the variance of
his prior equaled σ2

0 at time 0 and the noisiness of the signal is α.

V (t, xl, xr, c, σ0, α) := sup
τ≥t

E(t,xl,xr,σ0,α)

[
max{X l

τ , X
r
τ } − c (τ − t)

]
.

Lemma 2. The continuation value has the following properties:

1. E(t,xl,xr,σ0,α) max{θl, θr} ≥ V (t, xl, xr, c, σ0, α) ≥ max{xl, xr}.

2. V (t, xl, xr, c, σ0, α)− k = V (t, xl − k, xr − k, c, σ0, α) for every k ∈ R.

3. The option value V (t, xl, xr, c, σ0, α)− xi is decreasing in xi for i ∈ {l, r}.

4. V (t, xl, xr, c, σ0, α) is increasing in xl and xr.

5. The continuation value is Lipschitz continuous in xl and xr.

Proof of Lemma 2

In this proof we equivalently represent a continuation strategy by a pair of stopping times (τ l, τ r),

one for each alternative.

Proof of 1: For the lower bound, the agent can always stop immediately and get xl or xr. For

the upper bound, the agent can’t do better than receiving a fully informative signal right away and

pick the better item immediately.
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Proof of 2: Fix a continuation strategy (τ l, τ r); the expected payoff equals

E
[
1{τ l≤τr}X

l
τ l + 1{τ l>τr}X

r
τr − c

(
min{τ l, τ r} − t

)
|X l

t = xl − k,Xr
t = xr − k

]
= E

[
1{τ l≤τr}

(∫ τ l

t

α−1

σ−20 + sα−2
dW l

s + xl − k

)
+ 1{τ l>τr}

(∫ τr

t

α−1

σ−20 + sα−2
dW r

s + xr − k

)

− c
(
min{τ l, τ r} − t

)
|X l

t = xl, Xr
t = xr

]
= E

[
1{τ l≤τr}X

l
τ l + 1{τ l>τr}X

r
τr − c

(
min{τ l, τ r} − t

)
|X l

t = xl, Xr
t = xr

]
− k .

Intuitively, this comes from the translation invariance of the Brownian motion, i.e., the distribu-

tion of Xi
s conditional on Xi

t = xi − k is the same as the distribution of Xi
s − k conditional on

Xi
t = xi. As V is defined as the supremum over all continuation strategies (τ l, τ r) the result follows.

Proof of 3: The expected difference between stopping at time t with option l and using the
continuation strategy (τ l, τ r) is

E
[
1{τ l≤τr}X

l
τ l + 1{τ l>τr}X

r
τr − c

(
min{τ l, τ r} − t

)
|X l

t = xl, Xr
t = xr

]
− xl

=E
[
1{τ l≤τr}(X

l
τ l − x

l) + 1{τ l>τr}(X
r
τr − xl)− c

(
min{τ l, τ r} − t

)
|X l

t = xl, Xr
t = xr

]
=E

[
1{τ l≤τr}

∫ τ l

t

α−1

σ−20 + sα−2
dW l

s + 1{τ l>τr}(X
r
τr − xl)− c

(
min{τ l, τ r} − t

)
|X l

t = xl, Xr
t = xr

]

Note that the first part is independent of xl, and (Xr
τr − xl) is weakly decreasing in xl. As for

every fixed strategy (τ l, τ r) the value of waiting is decreasing the supremum over all continuation

strategies is also weakly decreasing in xl. Thus it follows that the difference between continuation

value V (t, xl, xr, c, σ0, α) and value of stopping immediately on the first arm xl is decreasing in xl

for every t and every xr.

Proof of 4: The expected value of using the continuation strategy (τ l, τ r) equals

E
[
1{τ l≤τr}X

l
τ l + 1{τ l>τr}X

r
τr − c

(
min{τ l, τ r} − t

)
|X l

t = xl, Xr
t = xr

]
=E

[
1{τ l≤τr}

(∫ τ l

t

α−1

σ−20 + sα−2
dW l

s + xl

)
+ 1{τ l>τr}X

r
τr − c

(
min{τ l, τ r} − t

)
|X l

t = xl, Xr
t = xr

]

=E

[
1{τ l≤τr}

∫ τ l

t

α−1

σ−20 + sα−2
dW l

s + 1{τ l>τr}X
r
τr − c

(
min{τ l, τ r} − t

)
|X l

t = xl, Xr
t = xr

]
+ xlE

[
1{τ l≤τr} |X l

t = xl, Xr
t = xr

]
,

which is weakly increasing in xl. Consequently, the supremum over all continuation strategies

(τ l, τ r) is weakly increasing in xl. By the same argument it follows that V (t, xl, xr, c, σ0, α) is in-

creasing in xr.

Proof of 5: The following argument establishes that the value function is Lipschitz continuous
with constant one. The initial belief about the mean of either option is additively separable from
the change in belief caused by the information the agent observed after time zero. Thus changing
the initial beliefs moves the posterior beliefs linearly. Hence, for any fixed stopping time the change
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in initial belief can at most linearly move the posterior beliefs about the mean. Furthermore, the
expected cost are unaffected by a change in prior beliefs. Thus, the supremum over all stopping
times can at most be linearly affected by a change in initial belief. To see this explicitly, observe
that

|V (0, xl, xr, c, σ0, α)− V (0, yl, xr, c, σ0, α)|

=

∣∣∣∣ sup
τ

E
[
max{xl +

∫ τ

0

α−1

σ−20 + sα−2
dW 1

s , x
r +

∫ τ

0

α−1

σ−20 + sα−2
dW 2

s } − c(τ)

]
− sup

τ
E
[
max{yl +

∫ τ

0

α−1

σ−20 + sα−2
dW 1

s , x
r +

∫ τ

0

α−1

σ−20 + sα−2
dW 2

s } − c(τ)

] ∣∣∣∣
≤
∣∣∣∣ sup
τ

E
[

max{xl +

∫ τ

0

α−1

σ−20 + sα−2
dW 1

s , x
r +

∫ τ

0

α−1

σ−20 + sα−2
dW 2

s }

−max{yl +

∫ τ

0

α−1

σ−20 + sα−2
dW 1

s , x
r +

∫ τ

0

α−1

σ−20 + sα−2
dW 2

s }
]∣∣∣∣ ≤ |yl − xl| .

B.2 Proof of Theorem 3

B.2.1 Characterization

Note that due to the symmetry of the problem V (t, xl, xr, c, σ0, α) = V (t, xr, xl, c, σ0, α). Without
loss of generality suppose xl ≤ xr otherwise swap xl and xr. As Xt is a Markov process, the
principle of optimality25 implies that the agent’s problem admits a solution of the form τ = inf{t ≥
0 : maxi=l,rX

i
t ≥ V (t,X l

t , X
r
t , c, σ0, α)}. Thus, it is optimal to stop if and only if

0 = V (t, xl, xr, c, σ0, α)−max{xl, xr} = V (t, xl, xr, c, σ0, α)− xr = V (t, xl − xr, 0, c, σ0, α) .

An envelope argument yields that V is continuous. Using the continuity and the monotonicity of
V we can define the function k implicitly by

k(t) := inf{x ∈ R : 0 = V (t,−x, 0, c, σ0, α)}.

As xl − xr ≤ 0, V is monotone increasing in the second argument and V (t, xl − xr, 0, c, σ0, α) ≥ 0
by Lemma 2 we have

{0 = V (t, xl − xr, 0, c, σ0)} = {xl − xr ≤ −k(t)} = {|xl − xr| ≥ k(t)} .

Hence the optimal strategy equals τ = inf{t ≥ 0 : |X l
t −Xr

t | ≥ k(t)} .
25Our model does not satisfy condition (2.1.1) of Peskir and Shiryaev (2006) because for some stopping

times the expected payoff is minus infinity, but as they indicate on p. 2 the proof can be extended to our
case.
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B.2.2 Monotonicity

First, we show that V (t, xl, xr, c, σ0, α) is decreasing in t. Note that by Doob’s optional sampling
theorem for every fixed stopping strategy τ

E
[
max{X l

τ , X
r
τ } − cτ | Xt = (xl, xr)

]
= E

[
max{X l

τ −Xr
τ , 0}+Xr

τ − cτ | Xt = (xl, xr)
]

= E
[
max{X l

τ −Xr
τ , 0} − cτ | Xt = (xl, xr)

]
+ xrt .

Define the process Xt := X l
t −Xr

t , and note that

Xt = X l
t −Xr

t = X l
0 −Xr

0 +

∫ t

0

α−1

σ−20 + sα−2

(
dW l

s − dW r
s

)
= X l

0 −Xr
0 +

∫ t

0

√
2α−1

σ−20 + sα−2
dW̃s , (15)

where W̃ is a Brownian motion. Define a time change as follows: Let q(k) solve k =
∫ q(k)
0

( √
2α−1

σ−2
0 +sα−2

)2
ds.

This implies that q(k) =
kα2σ−2

0

2σ2
0−k

. Define ψ(t) =
2σ2

0t

α2σ−2
0 +t

. By the Dambis, Dubins–Schwarz theorem

(see, e.g., Theorem 1.6, chapter V of Revuz and Yor, 1999) Ws := (Xq(s))s∈[0,2σ−2
0 ] is a Brownian

motion and thus we can rewrite the problem as

V (t, xl, xr, c, σ0, α) = sup
τ≥ψ(t)

E
[
max{Wτ , 0} − c

(
q(τ)− q(ψ(t))

)
|Wψ(t) = xl − xr

]
+ xr

= sup
τ≥ψ(t)

E

[
max{Wτ , 0} − c

(∫ τ

ψ(t)

q′(s)ds

)
|Wψ(t) = xl − xr

]
+ xr,

= sup
τ≥ψ(t)

E

[
max{Wτ , 0} − c

(∫ τ

ψ(t)

2α2

(2σ2
0 − s)2

ds

)
|Wψ(t) = xl − xr

]
+ xr.

Next, we remove the conditional expectation in the Brownian motion by adding the initial value

V (t, xl, xr, c, σ0, α) = sup
τ≥ψ(t)

E

[
max{Wτ +

(
xl − xr

)
, 0} − c

∫ τ

ψ(t)

2α2

(2σ2
0 − s)2

ds

]
+ xr .

Define τ̂ = τ − ψ and let wlog xl < xr, then

V (t, xl, xr, c, σ0, α) = sup
τ̂≥0

E

[
max{Wτ − |xl − xr|, 0} − c

∫ ψ(t)+τ̂

ψ(t)

2α2

(2σ2
0 − s)2

ds

]
+ max{xl, xr};

because the current state is a sufficient statistic for Brownian motion we have

V (t, xl, xr, c, σ0, α) = sup
τ̂≥0

E
[
max{Wτ − |xl − xr|, 0} − c

∫ τ̂

0

2α2

(2σ2
0 − s− ψ(t))2

ds

]
+ max{xl, xr}.

Note that for every fixed strategy τ the cost term is increasing in t and ψ(t) and thus V (t, xl, xr, c, σ0, α)−
max{xl, xr} is non-increasing.
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Finally, suppose that t < t′; then

0 = V (t,−k(t, c, σ0, α), 0, c, σ0, α) ≥ V (t′,−k(t, c, σ0, α), 0, c, σ0, α) .

By Lemma 2, V (t′,−k(t, c, σ0, α), 0, c, σ0, α) ≥ 0 and hence 0 = V (t′,−k(t, c, σ0, α), 0, c, σ0, α).
Hence

k(t, c, σ0, α) ≥ inf{x ∈ R : 0 = V (t′,−x, 0, c, σ0, α)} = k(t′, c, σ0, α) .

B.2.3 Positivity

The payoff of the optimal decision rule is at least as high as the payoff from using the strategy
that stops at time ∆ for sure. Because the information gained over a short time period ∆ is of

order ε
1
2 and the cost is linear, we expect that it is always worth buying some information when

the expected utility of both options is the same. To see this formally, note that

V (t, x, x, c, σ0, α)− x = sup
τ

E
[
max{Wτ , 0} −

∫ τ

0

2cα2

(2σ2
0 − s− ψ(t))2

ds

]
≥ E

[
max{Wε, 0} −

∫ ε

0

2cα2

(2σ2
0 − s− ψ(t))2

ds

]
=

∫ ∞
0

z
1√
2πε

e−
z2

2ε dz −
∫ ε

0

2cα2

(2σ2
0 − s− ψ(t))2

ds

≥
√

ε

2π
− 2cα2ε

(2σ2
0 − ψ(t)− ε)2

≥
√

ε

2π
− 2cα2ε

(2σ2
0 − ψ(t)− ε̃)2

for all fixed ε̃ ∈ [ε, 2σ2
0 − ψ(t) ) .

As the first term goes to zero with the speed of square root while the second term shrinks linearly

we get that V (t, x, x, c, σ0, α) − max{x, x} > 0 for some small ε > 0 and thus the agent does not

stop when his posterior mean is the same on both options.

B.2.4 Zero limit

Let k(s, c, σ0, α) ≥ K∗ > 0 for all s ≥ t. Consider the time t history where X l
t = Xr

t . The
probability that the agent never stops (and thus pays infinity costs) is bounded from below by the
probability that the process X l −Xr stays in the interval [−K∗,K∗],

P

[
sup

s∈[t,∞)
|X l

s −Xr
s | ≤ K(s)|X l

t = Xr
t

]
≥ P

[
sup

s∈[t,∞)
|X l

s −Xr
s | ≤ K∗|X l

t = Xr
t

]

By the above time change argument this equals the probability that a Brownian motion leaves the
interval [−K,K] in the time from ψ(t) to 2σ2

0,

P

[
sup

s∈[t,∞)
|X l

s −Xr
s | ≤ K∗|X l

t = Xr
t

]
= P

[
sup

s∈[ψ(t),2σ2
0 ]

|Ws| ≤ K∗(s)

]

27



This probability is non-zero. Thus, there is a positive probability the agent incurs infinite cost.

Because the expected gain is bounded by the full information payoff, this is a contradiction.

B.3 Proof of Theorem 4

Lemma 3.

V (0,xl, xr, cλ, σ0, α) =

= λ−1 sup
τ ′

E

[
max

{
λxl +

∫ τ ′

0

α−1

σ−20 + sλ−2α−2
dM l

s, λx
r +

∫ τ ′

0

α−1

σ−20 + sλ−2α−2
dMr

s

}
− cτ

]

Proof : We have that V (0, xl, xr, cλ, σ0, α) equals

sup
τ

E
[
max

{
xl +

∫ τ

0

α−1

σ−20 + sα−2
dW l

s, x
r +

∫ τ

0

α−1

σ−20 + sα−2
dW r

s

}
− cλ τ

]
= λ−1 sup

τ
E
[
max

{
λxl +

∫ τ

0

λα−1

σ−20 + sα−2
dW l

(sλ2)λ−2 , λxr +

∫ τ

0

λα−1

σ−20 + sα−2
dW r

(sλ2)λ−2

}
− cλ2 τ

]
= λ−1 sup

τ
E

[
max

{
λxl +

∫ τλ2

0

λα−1

σ−20 + sλ−2α−2
dW l

sλ−2 , λxr +

∫ τλ2

0

λα−1

σ−20 + sλ−2α−2
dW r

sλ−2

}
− cλ2 τ

]

= λ−1 sup
τ

E

[
max

{
λxl +

∫ τλ2

0

α−1

σ−20 + sλ−2α−2
dM l

s, λx
r +

∫ τλ2

0

α−1

σ−20 + sλ−2α−2
dMr

s

}
− cλ2 τ

]

For the step from the second to third line apply Proposition 1.4 of Chapter V of Revuz and Yor (1999) with

Cs := sλ−2and Hs := α−1λ
σ−2
0 +α−2λ−2s

(pathwise to the integrals with limits τ and τλ2). In the next step we

apply a time-change, where M i
r := λW i

rλ−2 is a Brownian motion and τ ′ is a stopping time measurable in

the natural filtration generated by M .

B.3.1 Proof of (6)

Note that Lemma 1 implies that for any t < t′

Xi
t′ = Xi

t +

∫ t′−t

0

α−1

(σ−2
0 + α−2t) + α−2s

dW i
t+s

where W i
s is a Brownian motion with respect to the filtration information of the agent. Thus, if

the agent starts with a prior at time 0 equal to N (X0, σ
2
0), then his belief at time t′ is exactly

the same as if he started with a prior at t equal to N (Xt, σ
2
t ) where σ−2

t = σ−2
0 + α−2t. Thus,

V (t, xl, xr, c, σ0, α) = V (0, xl, xr, c, σt, α) so

k(t, c, σ0, α) = inf{x > 0: 0 = V (t, 0,−x, c, σ0, α)}
= inf{x > 0: 0 = V (0, 0,−x, c, σt, α)} = k(0, c, σt, α).
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B.3.2 Proof of (7)

By Lemma 3, V (0, xl, xr, cλ, σ0, α) equals

= λ−1 sup
τ ′

E

[
max

{
λxl +

∫ τ ′

0

α−1

σ−2
0 + sλ−2α−2

dM l
s, λx

r +

∫ τ ′

0

α−1

σ−2
0 + sλ−2α−2

dM r
s

}
− cτ

]

= λ sup
τ ′

E

[
max

{
λ−1xl +

∫ τ ′

0

α−1

σ−2
0 λ2 + sα−2

dM l
s, λ
−1xr +

∫ τ ′

0

α−1

σ−2
0 λ2 + sα−2

dM r
s

}
− cλ−3τ

]
= λV (0, x1λ

−1, x2λ
−1, cλ−3, σ0/λ, α).

Thus,

k(0, c, σ0, α) = inf{x > 0: 0 = V (0, 0,−x, c, σ0, α)}
= inf{x > 0: 0 = V (0, 0,−xλ−1, c λ−3, σ0/λ, α)}
= λ inf{y > 0: 0 = V (0, 0,−y, c λ−3, σ0/λ, α)} = λ k(0, c λ−3, σ0/λ, α).

Setting σ̃0 = σ0/λ gives the result.

B.3.3 Proof of (8)

First, observe that V (t, x1, x2, c, σ0, λα) equals

= sup
τ≥t

E
[
max

{
x1 +

∫ τ

t

λ−1α−1

σ−2
0 + λ−2α−2s

dW 1
s , x2 +

∫ τ

t

λ−1α−1

σ−2
0 + λ−2α−2s

dW 2
s

}
− c(τ − t)

]
= λ sup

τ≥t
E
[
max

{
λ−1x1 +

∫ τ

t

α−1

λ2σ−2
0 + α−2s

dW 1
s , λ

−1x2 +

∫ τ

t

α−1

λ2σ−2
0 + α−2s

dW 2
s

}
− (cλ−1)(τ − t)

]
= λV (t, λ−1x1, λ

−1x2, λ
−1c, λ−1σ0, α) .

Thus,

k(t, c, σ0, λα) = inf{x > 0: 0 = V (t, 0,−x, c, σ0, λα)}
= inf{x > 0: 0 = V (t, 0,−λ−1x, λ−1c, λ−1σ0, α)}
= λ inf{y > 0: 0 = V (t, 0,−y, λ−1c, λ−1σ0, α)} = λ k(t, λ−1c, λ−1σ0, α).

B.3.4 Proof of (9)

By Lemma 3, V (0, xl, xr, cλ, σ0, α) equals

λ−1 sup
τ ′

E

[
max

{
λxl +

∫ τ ′

0

α−1

σ−20 + sλ−2α−2
dM l

s, λx
r +

∫ τ ′

0

α−1

σ−20 + sλ−2α−2
dMr

s

}
− cτ

]
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As receiving more information is always better we have that for all λ > 1

V (0, xl, xr, cλ, σ0, α) ≥ λ−1 sup
τ

E
[
max

{
λxl +

∫ τ

0

α−1

σ−20 + sα−2
dM l

s, λx
r +

∫ τ

0

α−1

σ−20 + sα−2
dMr

s

}
− cτ

]
= λ−1V (0, λxl, λxr, c, σ0, α)

This implies that k(t, λc, σ0, α) ≥ λ−1k(t, c, σ0, α) for all λ > 1

k(t, λc, σ0, α) = inf{x > 0: 0 = V (t, 0,−x, λc, σ0, α)}
≥ inf{x > 0: 0 = V (t, 0,−xλ, c, σ0, α)}
= λ−1 inf{y > 0: 0 = V (0, 0,−y, c, σ0, α)} = λ−1k(t, c, σ0, α) .

B.3.5 Lipschitz continuity of k

Let λε =
(
1 + εα−2σ2

0

)−1/2
< 1 and note that by definition λε σ0 = σε. We can thus use equations

(6), (7) and (9) to get

k(ε, c, σ0, α) = k(0, c, σε, α) = λεk(0, cλ−3
ε , σ0) ≥ λ4

εk(0, c, σ0, α) .

As a consequence we can bound the difference between the value of the barrier at time zero and at
time ε from below

k(ε, c, σ0, α)− k(0, c, σ0, α) ≥
[(

1 + εα−2σ2
0

)−2 − 1
]
k(0, c, σ0, α).

Dividing by ε and taking the limit ε→ 0 yields that kt the partial derivative of the boundary with
respect to time satisfies

kt(0, c, σ0, α) ≥ −2α−2σ2
0k(0, c, σ0, α) .

Since by equation (6) k(t+ ε, c, σ0, α) = k(ε, c, σt, α) we have that

kt(t, c, σ0, α) = lim
ε→0

k(t+ ε, c, σ0, α)− k(t, c, σ0, α)

ε
= lim
ε→0

k(ε, c, σt, α)− k(0, c, σt, α)

ε

= kt(0, c, σt, α) ≥ −2α−2σ2
t k(0, c, σt, α) = −2α−2σ2

t k(t, c, σ0, α) ≥ −2α−2σ2
0k(0, c, σ0, α),

where the last equality follows from equation (6) and the last inequality follows since k and σt
are decreasing in t. Thus, kt is bounded from below; since its upper bound is zero, k is Lipschitz

continuous in t.

B.4 Proof of Theorem 5

If the agent stops at time t at the barrier k(t, c, σ0, α), his posterior belief is that the true states are
normally distributed with θi ∼ N (Xi

t , σt). Thus,the probability that the agent assigns to picking l
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when r is optimal, conditional on stopping at t, is

P
[
θl < θr |X l

t −Xr
t = k(t, c, σ0, α)

]
= P

[
(θl − θr)− (X l

t −Xr
t ) ≤ −k(t, c, σ0, α)

∣∣∣∣X l
t −Xr

t = k(t, c, σ0, α)

]
= P

[
(θl − θr)− (X l

t −Xr
t )√

2σt
≤ −k(t, c, σ0, α)√

2σt

∣∣∣∣X l
t −Xr

t = k(t, c, σ0, α)

]
= Φ

(
− 1√

2
k(t, c, σ0, α)σ−1t

)
.

From the symmetry of the problem, there is the same probability of mistakenly picking r instead
of l. To show that the probability of being wrong increases over time, it remains to show that
k(t, c, σ0, α)σ−1

t is decreasing in t. We have that

∂

∂σt

[
k(0, σt, c, α)σ−1

t

]
= kσ(0, c, σt, α)σ−1

t − k(0, c, σt, α)σ−2
t .

We will now show that this is equal to −3 c kc(0, σt, c, α)σ2
t , which is nonnegative. To see that, we

show that kσ(0, c, σ0, α)σ0 = −3 c kc(0, c, σ0, α) + k(0, c, σ0, α). Set

βεσ0 = σ0 + ε⇒ βε = 1 +
ε

σ0
.

Inserting in equation. (7) gives

k(0, c, σ0 βε, α) = k(0, c, σ0 + ε, α) = βε k(0, c β−3
ε , σ0, α)

⇔ k(0, c, σ0 + ε, α)− k(0, c, σ0, α) = k(0, c β−3
ε , σ0, α)− k(0, c, σ0, α) +

ε

σ0
k(0, c β−3

ε , σ0, α).

Dividing by ε and taking the limit ε→ 0 yields

kσ(0, c, σ0, α) = kc(0, c, σ0, α)c

[
lim
ε→0

β−3
ε − 1

ε

]
+

1

σ0
k(0, c, σ0, α)

= kc(0, c, σ0, α)c [−3]
∂βε
∂ε

+
1

σ0
k(0, c, σ0, α)

= −kc(0, c, σ0, α)c
3

σ0
+

1

σ0
k(0, c, σ0, α)

⇔ kσ(0, c, σ0, α)σ0 = −3 c kc(0, c, σ0, α) + k(0, c, σ0, α) .

B.5 Proof of Fact 4

Let κ := E
[

max{θl, θr}
]

and fix a stopping time τ . To show that

E
[
−1{Xl

τ≥Xr
τ }(θ

r − θl)+ − 1{Xr
τ>X

l
τ}(θ

l − θr)+ − cτ
]

= E
[
max{X l

τ , X
r
τ } − cτ

]
+ κ,

the cost terms can be dropped. Let D be the difference between the expected payoff from the
optimal decision and the expected payoff from choosing the correct action, D := E

[
max{X l

τ , X
r
τ }
]
−
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E
[

max{θl, θr}
]
. By decomposing the expectation into two events,

D = E
[
1{Xl

τ≤Xr
τ }(X

l
τ −max{θl, θr}) + 1{Xr

τ<X
l
τ}(X

r
τ −max{θl, θr})

]
.

Plugging in the definition of Xi
τ and using the law of iterated expectations,

D = E
[
1{Xl

τ≤Xr
τ }(E[θl|Fτ ]−max{θl, θr}) + 1{Xr

τ<X
l
τ}(E[θr|Fτ ]−max{θl, θr})

]
= E

[
1{Xl

τ≤Xr
τ }(E[θl|Fτ ]− E[max{θl, θr}|Fτ ]) + 1{Xr

τ<X
l
τ}(E[θr|Fτ ]− E[max{θl, θr}|Fτ ])

]
= E

[
1{Xl

τ≤Xr
τ }E[−(θr − θl)+|Fτ ] + 1{Xr

τ<X
l
τ}E[−(θl − θr)+|Fτ ]

]
= E

[
− 1{Xl

τ≤Xr
τ }(θ

r − θl)+ − 1{Xr
τ<X

l
τ}(θ

l − θr)+

]
.

B.6 Proof of Fact 3

We rely on Bather’s (1962) analysis of the Chernoff model, which by Fact 4 applies to our model.
Bather studies a model with zero prior precision. Since such an agent never stops instantaneously,
all that matters is his beliefs at t > 0, which are well defined even in this case, and given by
X̂i
t = t−1Zit and σ̂−2

t = tα−2. In Section 6, p. 619 Bather (1962) shows that

k
(
t, c,∞, 1√

2

)√
t =

1

4 c t3/2
+O

(
1

t3

)
.

which implies that

k
(
t, c,∞, 1√

2

)
=

1

4 c t2
+O

(
1

t7/2

)
.

Fix α > 0. By equation (8) we have k(t, c,∞, α) = α
√

2k(t, 1
α
√

2
c,∞, 1√

2
). Thus,

k
(
t, c,∞, α

)
=

1

2 cα−2 t2
+O

(
1

t7/2

)
.

This implies that there exists T, β > 0 such that for all t > T we have∣∣∣∣k(t, c,∞, α)− 1

2 cα−2 t2

∣∣∣∣ ≤ β

t7/2
.

Fix σ0 > 0 and let s := t − α2σ−2
0 . This way, the agent who starts with zero prior precision

and waits t seconds has the same posterior precision as the agent who starts with σ2
0 and waits s
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seconds.26 Thus, by (6) we have k
(
t, c,∞, α

)
= k

(
s, c, σ0, α

)
, so∣∣∣∣k(s, c, σ0, α

)
− 1

2 cα2 (α−2s+ σ−2
0 )2

∣∣∣∣ ≤ β

(s+ α2σ−2
0 )7/2

.

Finally, since b(s, c, σ0, α) = α2k(s, c, σ0, α)σ−2
s , we have∣∣∣∣b(s, c, σ0, α

)
− 1

2 cα2 (α−2s+ σ−2
0 )

∣∣∣∣ ≤ β

(s+ α2σ−2
0 )5/2

.

To see that (10) and (11) hold, notice that by equations (6), (8), (7) and (9) applied in that

order, it follows that

k̄(t, c, σ0, α) = k̄(0, c, σt, α) = αk̄(0, α−1c, α−1σt, 1) = σtk̄(0, α2cσ−3
t , 1, 1)

= α−2c−1σ4
t k̄(0, 1, 1, 1) =

κ

cα2(σ−2
0 + α−2t)2

,

where κ = k̄(0, 1, 1, 1). Since b̄(t, c, σ0, α) = α2k̄(t, c, σ0, α)σ−2
t , it follows that b̄(t, c, σ0, α) =

κ
c(σ−2

0 +α−2t)
. The fact that κ = 1

2
follows from the proof of Fact 3, as any other constant

would result in a contradiction as t→∞.

B.7 Proof of Theorem 6

Let G = {tn}Nn=1 be a finite set of times at which the agent is allowed to stop and denote by T
all stopping times τ such that τ ∈ G almost surely. As we restrict the agent to stopping times in
T , the stopping problem becomes a discrete time optimal stopping problem. By Doob’s optional
sampling theorem we have that

sup
τ

E
[
max{X l

τ , X
r
τ } − d(τ)

]
= sup

τ
E
[

1

2
max{X l

τ −Xr
τ , X

r
τ −X l

τ}+
1

2
(X l

τ +Xr
τ )− d(τ)

]
= sup

τ
E
[

1

2
|X l

τ −Xr
τ | − d(τ)

]
+

1

2
(X l

0 +Xr
0),

so any optimal stopping time also solves supτ E
[
|X l

τ −Xr
τ | − 2 d(τ)

]
. Define ∆n = |X l

tn −X
r
tn | for

all n = 1, . . . , N . Observe that (∆n)n=1,...,N is a one-dimensional discrete time Markov process. To

prove that for every barrier there exists a cost function which generates b by Theorem 1 in Kruse

and Strack (2015) it suffices to prove that:

1. there exists a constant C such that E[∆n+1|Ftn ] ≤ C(1 + ∆n) .

2. ∆n+1 is increasing in ∆n in the sense of first order stochastic dominance

3. z(n, y) = E[∆n+1 −∆n | ∆n = y] is strictly decreasing in y.

26To see this, observe that σ2
s = 1

σ−2
0 +α−2s2

= 1
α−2t = σ̂2

t .
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Condition 1 keeps the value of continuing from exploding, which would be inconsistent with a

finite boundary. Conditions 2 and 3 combined ensure that the optimal policy is a cut-off rule.

B.7.1 Certain-Difference DDM

Set Zt = Z lt − Zrt = (θ′′ − θ′)t+
√

2αBt. Then

lt = log

(
P [θ = θl | Ft]
P [θ = θr | Ft]

)
= log

(
µ

1− µ

)
+ log

(
exp(−(4α2t)−1)(Zt − (θ′′ − θ′)t)2

exp(−(4α2t)−1)(Zt − (θ′ − θ′′)t)2

)
= log

(
µ

1− µ

)
+
Zt(θ

′′ − θ′)
α2

.

Denote by pn = P[θ = θl | Ftn ] the posterior probability that l is the better choice. The
expected absolute difference of the two choices satisfies

∆n = |X l
tn −X

r
tn | = |pn(θ′′ − θ′) + (1− pn)(θ′ − θ′′)|

= |(2pn − 1)(θ′′ − θ′)| = 2(θ′′ − θ′)
∣∣∣∣pn − 1

2

∣∣∣∣ .
Let ψn := [Z ltn − Z

r
tn ] − [Z ltn−1

− Zrtn−1
] denote the change in the signal from tn−1 to tn. We have

that the log likelihood is given by ln+1 = ln + α−2(θ′′ − θ′)ψn+1. We thus have

∆n = 2(θ′′ − θ′)
∣∣∣∣ eln

1 + eln
− 1

2

∣∣∣∣ = 2(θ′′ − θ′)

(
e|ln|

1 + e|ln|
− 1

2

)
. (16)

(1): It is easily seen that E [∆n+1|Ftn ] ≤ (θ′′− θ′), so for C big enough, E[∆n+1|Ftn ] ≤ C(1 + ∆n).
(2): To simplify notation we introduce mn = |ln|. The process (mn)n=1,...,N is Markov. More
precisely, mn+1 = |mn + α−2(θ′′ − θ′)ψn+1| is folded normal with mean of the underlying normal
distribution equal to

mn + α−2(θ′′ − θ′)E[ψn+1|ln] = |ln|+ α−2(θ′′ − θ′)∆n(tn+1 − tn)

= mn + α−2
( 2emn

1 + emn
− 1
)

(θ′′ − θ′)2(tn+1 − tn) (17)

and variance

V ar
[
mn + α−2(θ′′ − θ′)ψn+1

]
= α−4(θ′′ − θ′)2V ar [ψn+1]

= 2α−4(θ′′ − θ′)2(tn+1 − tn) .

As argued in part (2) of the uncertain difference case, a folded normal random variable increases
in the sense of first order stochastic dominance in the mean of the underlying normal distribution.
As (17) increases in mn it follows that mn+1 increases in mn in the sense of first order stochastic
dominance. By (16) mn = |ln| is increasing in ∆n and ∆n+1 is increasing in mn+1 = |ln+1| this
completes the argument.
(3): It remains to show that z(n,∆n) is decreasing in ∆n. As (pn)n=1,...,M is a martingale, and
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moreover conditioning on p is equivalent to conditioning on 1− p, we have that

z(n,∆n) = E
[
∆n+1

∣∣∣ pi =
∆i

2(θ′′ − θ′)
+

1

2

]
−∆n

= 2(θ′′ − θ′)E
[
|pn+1 −

1

2
|
∣∣∣ pn =

∆n

2(θ′′ − θ′)
+

1

2

]
−∆n

= 2(θ′′ − θ′)E
[
pn+1 −

1

2

∣∣∣ pi =
∆i

2(θ′′ − θ′)
+

1

2

]
+ 2(θ”− θ′)E

[
2 max

{1

2
− pn+1, 0

} ∣∣∣ pi =
∆n

(θ′′ − θ′)
+

1

2

]
−∆n .

As p is a martingale we can replace pn+1 by pn

z(n,∆n) = 2(θ′′ − θ′)E
[
pn −

1

2

∣∣∣ pn =
∆n

2(θ′′ − θ′)
+

1

2

]
+ 2(θ′′ − θ′)E

[
2 max

{
1

2
− pn+1, 0

} ∣∣∣ pi =
∆n

2(θ′′ − θ′)
+

1

2

]
−∆n

= ∆n + 2(θ′′ − θ′))E
[
2 max

{
1

2
− pn+1, 0

} ∣∣∣ pn =
∆n

2(θ′′ − θ′)
+

1

2

]
−∆n

= 4(θ′′ − θ′)E
[
max

{
1

2
− pn+1, 0

} ∣∣∣ pn =
∆n

2(θ′′ − θ′)
+

1

2

]
.

The above term is strictly decreasing in ∆n as pn+1 increases in the sense of first order stochastic

dominance in pn and pn in the conditional expectation is increasing in ∆n.

B.7.2 Uncertain-Difference DDM

Let us further define β2
i = 2σ2

ti − 2σ2
ti+1

. As X l
ti+1 −Xr

ti+1 is Normal distributed with variance β2
i

and mean ∆i we have that ∆i+1 is folded normal distributed with mean

Ei [∆i+1] = βi

√
2

π
e
− ∆2

i
2β2
i + ∆i(1− 2Φ(

−∆i

βi
)) ,

where Φ denotes the normal cdf. Thus, the expected change in delta is given by

z(i, y) = βi

√
2

π
e
− y2

2β2
i − 2 yΦ(

−∆i

βi
).

(1): It is easily seen that Ei [∆i+1] ≤ βi
√

2
π + ∆i.

(2): As ∆i is folded normal distributed we have that

Pi(∆i+1 ≤ y) =
1

2

[
erf

(
y + ∆i

βi

)
+ erf

(
y −∆i

βi

)]
.
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Taking derivatives gives that

∂

∂∆i
Pi(∆i+1 ≤ y) =

1

2

[
e
−
(
y+∆i
βi

)2

− e−
(
y−∆i
βi

)2]
=

1

2
e
−
(
y−∆i
βi

)2 [
e
− 4∆iy

βi − 1

]
< 0 .

As ∆i = |X l
ti −X

r
ti | it follows that y ≥ 0 and hence, ∆i+1 is increasing in ∆i in the sense of first

order stochastic dominance.
(3): The derivative of the expected change of the process ∆ equals

∂

∂y
z(i, y) =

∂

∂y

(
βi

√
2

π
e
− y2

2β2
i − 2 yΦ(

−∆i

βi
))

)
= −2Φ(

−y
βi

) < 0 .

Hence, z is strictly decreasing in y.
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