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Abstract

We consider a dynamic asset pricing model with one asset, in which one in-

formed trader trades against liquidity traders and competitive market makers. In-

formed trader has private information about the fundamental value of the asset as

well as an exogenous demand shock on the market. We characterize the unique

linear Markov equilibrium of the model. With just the private information about

fundamentals the price converges to the fundamental value in a monotone way

(Kyle [1985]). We show that the model with arbitrarily small demand shocks ex-

hibits a price bubble. The bubble is created for strategic reasons by the informed

trader, who follows a so called pump-and-dump strategy. He initially exacerbates

the demand shock, trading at a loss (contrarian behavior), and gains later on by

trading at an inflated price. Finally, both payoff relevant and payoff irrelevant

information is revealed to the market.

1 Introduction

Why do asset price bubbles exist and how are they affected by rational traders? The

predominant view among economists is that the strategic arbitraging behavior of buying

low and selling high tends to stabilize asset prices around their underlying values. In the

stringent neoclassical version, as exemplified by the efficient market hypothesis (Friedman

[1953], Fama [1965]), the arbitraging precludes the departure of prices from the funda-

mental values. More recent research has attenuated this view by admitting the limits to

the arbitraging behavior, due to the risk involved, short-selling and liquidity constraints,
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possibly aggravated by agency or coordination failures.1 This may allow prices to be

shaken away from the fundamentals, yet the informed arbitrageurs are expected to push

them back, if not all the way, at least in the right direction.

While such arbitraging frictions render the price bubbles consistent with the presence

of rational arbitrageurs, the origin of a bubble is still commonly attributed to animal

spirits.2 The sheer size of the most famous bubbles suggests the image of a market over-

taken by bullish sentiment, with the arbitrageurs unable, in the face of the frictions, to

bring the prices down. We would like to challenge this view in three progressive ways. We

present a market microstructure model, in which the rational (risk-neutral and liquid-

ity unconstrained) informed trader “rationally destabilizes” the price in equilibrium, by

buying high and selling low. Second, this rational destabilization requires only an exoge-

nous demand shock and not behavioral traders directly swayed by, say, trending prices.

Third, the price may be destabilized almost exclusively by the rational arbitrageurs, that

is endogenously, with hardly any exogenous shock.

In this paper we consider a dynamic asset pricing model with one asset, in which one

informed trader trades against liquidity traders and competitive market makers. For the

sake of simplicity we set it up as closely as possible to the seminal model by Kyle [1985].

The main difference is that in our case the informed trader has private information about

the fundamental value of the asset as well as the exogenous persistent demand shock.

The demand shock is the expected demand by the liquidity traders, at any point in time.

While the first dimension of private information is standard (starting with Kyle [1985]

and Glosten and Milgrom [1985]), the second dimension is meant to capture the “soft”

information about the market, such as, for example, the extent of the common liquidity

shock for the short lived rational market participants.3

The dynamic trade and the multidimensional private information offers a rich spec-

1See e.g. De long et al. [1990], De Long et al. [1990], Campbell and Kyle [1993] and Wang [1993] for
the importance of risk involved, Miller [1977], Harrison and Kreps [1978], Duffie et al. [2002] for short-
selling constraints, Grossman and Miller [1988], Shleifer and Vishny [1997], Brunnermeier and Pedersen
[2009] for the liquidity constraints and Abreu and Brunnermeier [2003], Doblas-Madrid [2012] for the
coordination failures; among others.

2By “price bubble'' we refer to periods of large run-ups in asset prices followed by collapses, see e.g. 
Brunnermeier [2001] for a textbook treatment, and Kindleberger and Aliber [2011] for their classic account 
of the historical booms and busts. For a review of behavioral finance literature see Barberis and Thaler 
[2003], Shiller [2003] or Baker and Wurgler [2013]

3Kumar and Lee [2006] show that retail investor’s tend to buy in concert, showing high correlation
between the stocks they buy and the stocks that they sell, and only a small proportion of this investor
sentiment can be predicated from market and macro variables. While Kumar and Lee [2006] look
at within period correlation, Barber et al. [2009] show that this investor sentiment also persists over
extended periods of time (more than a year).
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trum of strategies to the informed trader. We show that in the unique linear equilibrium

of the model the informed trader exacerbates rather than trades against the demand

shocks. In this way he strategically destabilizes the price and, in the case of a positive

demand shock, “pumps-up” the price bubble, often losing money in the short run. He

rides the bubble for a while and reverts his position - starts “dumping” - some time be-

fore the price peak. Eventually all the private information is revealed to the market, so

in particular, the price is driven back to the fundamentals. Finally, the model with just

information about the fundamentals (Kyle [1985]) has expected price confined between

the ex-ante expectation and the realized value. We show that even when the extent of

the demand shock is arbitrarily small, it will trigger a significant price bubble, created

for endogenous, strategic reasons.

In this paper a risk neutral informed trader learns at time zero both the value v of the

asset as well as the extent of the demand shock m. At time one the value of the asset is

revealed exogenously to the market. At times 0,∆, ..., 1−∆ the informed trader submits

his order flow and the liquidity traders submit theirs, which is drawn from a distribution

with mean ∆m. Market maker observes the total order flow and clears the market at a

competitive price, equal to the expected value of the asset given the public history of the

total order flows. Looking at the continuous-time limit, with all the variables believed to

be normally distributed, we provide the analytical solution of the model. More precisely,

we establish that the continuous time version of the model has a unique linear Markov

equilibrium strategy of the informed trader, which is linear in the extents of market’s

biases about the value and the demand shock. The analytical characterization of this

nonstationary dynamic equilibrium permits us a clean analysis in what follows.

As a starting point, we find that in the course of trading the informed trader reveals all

the private information to the market: just before the end of trade the market essentially

knows both the value of the asset and the demand shock. Thus, at least in the “long-

run” the price aggregates the information about the asset, and so the market fulfills its

informative role. That the trader reveals all private information about the value is fairly

intuitive in our setting, and follows from the arbitrage argument: instead of ending with

private information on his hands, the informed trader could have traded on it, making

larger profits but also pushing the price closer to the value. That the trader can make

money trading heavily on the knowledge about the demand shock - the payoff irrelevant

information - just before the market shuts is less obvious. However, we show that while

there is no arbitrage that yields higher profits at any point of time, there are dynamic

strategies such that when, say, there is a positive demand shock, they result in net total
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sales and maintain the expected price above the fundamentals throughout. Crucially,

they offer an arbitrage opportunity even in the last instants of trade.

With 1 dimensional uncertainty the pump-and-dump strategy is unprofitable. In our

case, however, a demand shock allows the price to rise relatively quickly in the process of

pumping, and fall slowly in the process of dumping. In the course of the whole “round-

trip” trade the trader makes net sales, at inflated prices. Essentially, the informed trader

who faces a positive demand shock chooses to pump the price up in order to service this

demand at inflated prices.4

The informed trader’s desire to exacerbate the demand shock in a dynamic setting

directly contrasts the static version of the model where he acts to stabilizes the price.

With a single period of trading an informed trader always acts to correct prices, buying

if he expects the price to be below the asset value and selling if he expects the price to be

above.5 Thus he makes money by partially dampening the shock, selling at a price swung

high by the positive demand shock and buying at a price swung low. That in the course

of dynamic trading the expected price moves outside of the band between the ex-ante

expected price and the realized value hinges on the informed trader using a destabilizing

pump-and-dump strategy, as described above.

Importantly, the results carry over to the limit as we look at the sequence of models

when the variance of the demand shock m shrinks to zero.6 The price paths given a

demand shock at the order of n standard deviations converge in law, as the standard

deviation vanishes, to different distributions depending on n, and to a different distribu-

tion than the one in the model with m = 0 for sure (Kyle [1985]). Thus, an arbitrarily

small demand shock can lead to a large persistent price bubble, when variance of m is

small. The price is destabilized almost exclusively for strategic reasons. The empirical

counterpart is that large price run-ups can be generated without the demand pressure

from the liquidity traders.

There is ample evidence that some sophisticated traders pursue such destabilizing

strategies. Brunnermeier and Nagel [2004] document how the most successful hedge

funds, arguably the better informed and rational traders, would ride the dot com bubble

by building up positions in appreciating and overpriced stocks, and eventually start

4Clearly, persistence of the demand shock is crucial for this argument. In a related two period model,
an informed trader who knows upfront the realizations of independent demand shocks in both periods
benefits by partially offsetting each and smoothing their effect across time. Prices are thus stabilized by
the trader (Bernhardt and Taub [2008]).

5See Rochet and Vila [1994] and Lambert et al. [2014]
6The liquidity is not vanishing along the sequence, as we keep the per-period variance of the liquidity

trade constant.
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reverting position around the peak. Temin and Voth [2004] document the similar trading

strategy of Hoarse Bank during the South Sea Bubble, which was purchasing the stock

while at the same time refusing it as a loan collateral.7 In contrast to the model with

one dimensional uncertainty or a model with just arbitraging frictions, ours can yield

the paths of asset prices and informed trader’s holdings consistent with these empirical

findings.

The destabilizing strategies akin to ours have been justified in dynamic asset pricing

literature in models that include trend followers, or positive feedback traders: traders who

expect prices to continue their trend (De long et al. [1990]). The results are related. One

difference in our model is the alternative mechanism by which the rational traders benefit

from pumping the price, in the absence of behavioral agents: they do not trigger the rule

of thumb reaction that can be subsequently exploited, but front-run the common liquidity

shock on the market. The second difference is the mechanism by which the competition

between the rational agents does not wipe out the benefits of destabilization. We do not

limit the competition in arbitrage by the risk involved but instead introduce asymmetric

information about the demand shocks, between the informed trader and the competitive

fringe of market makers.

Given a risk neutral market maker in our model, the price is the expectation of the

value and so is believed to be a martingale, with no excess volatility beyond that of the

value v. Thus, while the demand shock that sets off a large price bubble can be very

small, it must be unexpected (see also Avery and Zemsky [1998]). One implication of the

small magnitudes involved, however, is that if the distributions are estimated from the

data, the discrepancies between the beliefs and the true distribution of the demand shocks

seem hard to avoid. The result implies that, with small variance of m, small (in absolute

terms) discrepancies between the beliefs and the true distribution of demand shocks will

have large effects on the true distribution of prices, their volatility in particular.

Related Literature. A number of dynamic asset-pricing models consider the effect

of multidimensional uncertainty. Most of this literature models the second dimension

as uncertainty of the proportion of informed investors, uncertainty of their information

quality, or uncertainty whether an information event occurred, as in Romer [1993], Avery

and Zemsky [1998], Li [2012], Back et al. [2014], Banerjee and Green [2014].8 While this

7See also Soros [2003].
8See also Rochet and Vila [1994] and recent papers by Ganguli and Yang [2009], Manzano and Vives

[2011], Gao et al. [2013] and Lambert et al. [2014] for analysis of multidimensional uncertainty in static
settings, and Bernhardt and Taub [2008] mentioned earlier in two period setting.
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early literature emphasized the “bubble dynamics”of prices, it was due not to the strategic

behavior of the informed trader, but the fact that a single price (or the order flow) cannot

aggregate information from both dimensions: Second period order flow can reveal more

information and bring about a large correction in price. Given no strategic effects, a

small range of uncertainty can bring about only small bubbles. Also, our model shows

that the multidimensional uncertainty of a related kind can be modeled in a tractable

framework with normal distributions, as in the seminal paper by Kyle [1985].9

This paper also belongs to the literature on the asset price manipulation based solely

on trade.10 In some cases, an uninformed trader can make profits by pretending to be

informed (Allen and Gale [1992] , Allen and Gorton [1992], Fishman and Hagerty [1995]).

An informed trader may manipulate the price to slow down the release of his information.

For example, in a paper that also builds on Kyle [1985], Foster and Viswanathan [1994]

show that, in the presence of two informed traders with nested information, the better

informed trader trades heavily on the common information early on to slow down the

learning of the other trader about his private information (see also Chakraborty and

Yılmaz [2004]). Guo and Ou-Yang [2014] show that when the informed trader has private

information about the mean reverting (rather than persistent) liquidity demand, he trades

against the liquidity trader’s position, which slows down the release of the information to

the market. In our model the manipulation has an additional feature that goes beyond

the slowing down of the information release: Informed trader exacerbates the persistent

demand shocks and thus pushes the price further away from the fundamentals, driving

the bubble.

It is known that in the presence of risk-averse market making traders, prices lose

their martingale property and exhibit much richer dynamic patterns. In particular, since

risk-averse market makers only gradually absorb demand/supply shocks, prices can per-

sistently depart from fundamentals (see e.g. De long et al. [1990], De Long et al. [1990],

Campbell and Kyle [1993] and Wang [1993]). We have maintained the assumption of

risk-neutrality both for analytical tractability and to isolate the analysis of the strate-

gic destabilization, which does not require risk-averse market makers. Similarly, if the

informed trader is risk-averse his trade will additionally depend on his privately known

position, a different kind of “non-fundamental” private information (see Du and Zhu

[2014], Guo and Ou-Yang [2014]; see also Vayanos [1999] for the model of trade based

9While the models differ, the crucial feature in all is that the market is trying to learn both whether,
or to what extent, the order flow is driven by a demand from an informed trader, as well as well as how
it reflects his private information.

10For other types of manipulation see Vives [2008], chapter 9.3, for an excellent textbook treatment.
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solely on this insurance motive).

Finally, Kyle [1985] and Back [1992] established, based on the arbitrage arguments,

that in the course of trading all the private information is revealed to the market and the

price converges to the fundamental value.11 The results have been shown to be robust

to the specification of the information structures (Ostrovsky [2012]). While those papers

allowed for asymmetric information about the fundamental value only, we show that

arbitrage argument can be extended to establish information revelation in the case of

asymmetric information about both fundamental and non-fundamental information.

This paper is organised as follows. In section 2 we describe the model, then in section 3

we characterize the unique linear equilibrium. In section 4 we describe several properties

of the equilibrium, such as the informed trader’s destabilization strategy, and examine

the limit when the demand stock becomes small. Section 5 then concludes. In the interest

of flow all proofs have been left to the appendix.

2 The Model

There is a single risky asset with a value v, which will be publicly announced at time 1.

At time 0 the single risk-neutral informed trader learns v as well as the demand/supply

shock m. At any time t prior to 1 the asset is traded continuously among the noise

(liquidity) traders, the informed trader and competitive risk-neutral market makers. The

cumulative order from the liquidity traders Zt follows12

dZt = mdt+ dBt,

where Bt is a one-dimensional Brownian Motion. The informed trader chooses his cu-

mulative order St strategically. At any time t the cumulative total order Ot = St + Zt is

publicly observed and the asset price Pt is determined as the expected value of the asset

given Ot as well as the strategy of the informed trader.

The model is designed as a continuous time version of the seminal model of insider

trading by Kyle [1985] (see Back [1992]). The difference is the private information in the

hands of the informed trader: in our case he has private information not only about the

payoff-relevant value of the asset (“fundamentals”) but also the payoff-irrelevant demand

11Caldentey and Stacchetti [2010] establish that the information is revealed also in the case of random
length of the trading window. Back et al. [2000] establish information revelation in the case of multiple
symmetrically informed traders.

12We normalize the instantaneous volatility σ2 to be equal to one. This is without loss of generality:
the two relevant parameters for the model are the ratios of the variances of v and m over σ2.
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shock. Intuitively, private information about the fundamental value gives informed trader

direct arbitrage opportunities: purchasing when the asset is undervalued or selling when

it is overvalued. Private information about the demand shock allows him to service, or

“trade against” it at favorable prices. This can alternatively be seen as a factor slowing

down the release of information about the asset to the market: for example, selling given

an unexpected demand shock is less likely to drive the price down.

Specifically, we assume that v and m are independently normally distributed with zero

means and variances σ2
v and σ2

m respectively.13 A strategy of the insider S = {St}t∈[0,1)

is a continuous semimartingale14 with respect to the filtration generated by Zt, v and m.

In order to exclude the “doubling strategies” (see Back [1992]) we also require a strategy

to satisfy

E
[∫

[0,1]

S2
t dt

]
<∞.

In the paper we will focus on the equilibrium strategies in the following subclass. Let

V t and M t be the processes of market expectations of v and m, which are measurable

with respect to the filtration FOt generated by the total order process upto time t, and

denote

Xt = v − V t, Yt = m−M t.

A linear Markov strategy S satisfies

dSt = (βtXt + δtYt) dt,

for some deterministic functions βt and δt in L2 ([0, t]) for any t < 1. Thus, a linear

Markov strategy depends on the private information and the history of trade only through

two state variables Xt and Yt, which are the (negative) extents of market’s biases about

v and m. Moreover, at any point of time the order flow is linear in those biases. Let Σt

13We can easily extend the results to the case of correlated m and v. Independence is made for the
sake of tractability and because it makes the interpretation of some of our results easier.

14St can be written as St = S1,t − S2,t + Mt, where Si,t are positive, increasing and continuous
processes, and Mt is a continuous local martingale independent of Bt (see Karatzas [1991]). The fact
that Mt and Bt are independent reflects the fact that at any given moment the order flow from the
informed trader is independent of (“is submitted before”) the demand from the liquidity traders. We
exclude discontinuous strategies for the sake of tractability only: we comment in the proof of Lemma 3
that the informed trader would not benefit from discrete orders (see also Back [1992]).
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be the market’ posterior covariance matrix

Σt =

[
σ2

11,t σ12,t

σ12,t σ2
22,t

]
= E

[
X2
t XtYt

XtYt Y 2
t

∣∣∣∣∣FOt
]
. (1)

We will assume that Pt = V t, which is motivated by the competitive fringe of the

market makers. Finally, for a strategy S and a price process P the wealth of the informed

trader at time T ≤ 1 is defined as (see Back [1992])

WT =

∫
[0,T ]

(v − Pt) dSt − [P, S]T .

The term [P, S]T is the cross-variation process, whose differential is usually written as

dPtdSt. It captures the fact that a large order - in the sense of having a positive quadratic

variation - by the informed trader at time t affects the execution price at time t, equal

to Pt−+ dPt, just like in discrete time models.15 On the other hand, if the process S has

differentiable paths, as in the case of a linear Markov strategy, we have [P, S]T = 0.

2.1 Discrete Time Model

In the paper we will occasionally refer to the following discrete time version of the model.

The model is parametrized by the period length ∆ = 1/N , N ∈ N, together with the

parameters of the continuous time model above, σ2, σ2
v and σ2

m. In each period t =

0,∆, 1 −∆ the timing of the game is as follows: First, the informed trader submits the

order st(“ = dS ′′t ); then the liquidity traders submit their order zt(“ = dZ ′′t ), which is

drawn from N(m∆,∆); finally at the end of period t the price Pt is set competitively to

be V t, as in continuous time. A linear Markov strategy in period t thus takes the form

st = βt
(
v − V t−∆

)
+ δt

(
m−M t−∆

)
. (2)

The wealth of informed trader at the end of period T is WT =
∑T

t=0 (v − Pt) st.
We cannot hope to obtain tractable results in the discrete time framework for any

period length. However, let us solve the simple static version of the model (with period

15If instead we assumed that the current order dXt is executed at the “past” price Pt−, then the
informed trader could freely destabilize the market estimates by adding a Brownian component to his
strategy, and so freely create private information. Indeed, the value function in Theorem 1 is a semi-
positive quadratic function in the state variables v − V t and m −M t (see also Kyle ’85). Therefore,
without the cross-variation component the informed trader would strictly prefer to destabilize the market
estimates in this way.
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length ∆ = 1) in order to develop some basic intuitions about the strategic behavior of

the informed trader. The linear strategy in this setting is simply a strategy that is linear

in the realized value and the demand shock, since the ex-ante expectations are fixed and

equal to zero. An equilibrium strategy s0 is a strategy that maximizes informed trader’s

payoff given that the price is equal to the expected value conditional on the realized order

flow and the strategy s0 being used.

Lemma 1 In the static model there is a unique linear equilibrium strategy. The strategy,

price and the wealth of the informed trader are given by

s0 = βv + δm,

p = λ (s0 +m+ ε) ,

E [W1|S, v,m] =
β

2
(v − λm)2 ,

where

λ =

(
σ2
v

σ2
m + 4

)0.5

, β =
1

2λ
, δ = −0.5.

A few properties are worth pointing out. First, the informed trader benefits from

the known demand shocks. This is because his payoffs are proportional to the squared

difference between the value of the asset v and the price λm that would result if he

abstained from trading. The demand shocks destabilize this price, increasing his profits.

It is also easy to verify the comparative statics result that informed trader’s expected

equilibrium profits are increasing in the variance of the demand shock σ2
m.

Second, the informed trader benefits if the shocks to the value v and the demand m

have opposite signs: when the asset is undervalued, in which case he wants to buy it, and

there is a supply shock (or vice versa). One way to interpret it is that in this case his

demand for the asset will be undetected by the market maker, and so will affect the price

less. Alternatively, with v positive a supply shock will increase the difference between

the value and the price λm that results if he abstains from trading.

Third, δ equal to negative half means that the informed trader trades against, or

dampens the demand shocks. This again should be intuitive. If, say, v = 0, a demand

shock will push the price above the value, and so in order to make profits the informed

trader will submit a partially offsetting sell order. This offsetting by the informed trader

means that fixing the magnitude of the demand shock m+ ε, the larger the share of the

unexpected part of the shock ε the bigger effect on the price it will have. On the other
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hand, the demand shocks are not fully offset by the informed trader, and so a demand

shock will push the price up, and the supply shock - down.

One last aspect to consider is the information possessed by a liquidity trader. Each

liquidity trader has an order zt ∼ N (m∆,∆) which they service in the market. This

order will allow the liquidity trader to update about the demand shock, m, or the value

of the asset, v and potentially possess better information than the market. However, as

∆ becomes small and we approach the continuous time model, each liquidity trader need

have no additional information about the demand shock or the value of the asset. As the

discrete model approaches continuous time, the idiosyncratic component of a liquidity

trader’s order overwhelms the systematic component generated by the demand shock, m.

This means that in the limit the order of a single liquidity trader provides no additional

information about the demand shock or the asset value that could be used in the market

to make profit.16

3 Equilibrium

Let us focus back on the continuous-time model. We are interested in equilibrium strate-

gies of the informed trader defined as follows. Such a strategy must be optimal, starting

from any time t onwards (and conditional on any history), given that market maker as-

sumes that the strategy is indeed being followed. More precisely, fix a strategy S and

let Pt = V t be the process of expected values if the market believes the informed trader

uses S. We will say that S is an equilibrium strategy if for any other strategy S̃ and time

t < 117

E
[∫

[t,1]

(v − Pr) dSr − [P, S][t,1]|S, v,m,FZt
]
≥ E

[∫
[t,1]

(v − Pr) dS̃r − [P, S̃][t,1]|S̃, v,m,FZt
]
.

(3)

In the rest of this section we will prove the following result, which is one of the main

results of the paper. We postpone the detailed analysis of the result until Section 4.

16To illustrate this, fix the market filtration, Ft, at time t and consider a sequence of random variables
zn where zn ∼ N

(
m
n ,

1
n

)
. Let F (v,m|.) be the conditional cdf of v and m, then as n goes to infinity

F (v,m|Ft, zn) converges almost surely to F (v,m|Ft) .
17All the equalities and inequalities between the random variables in the paper are understood as

holding almost everywhere. For example, the following inequality must hold for almost every history of
the noise traders’ order flow.
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Theorem 1 There exists a unique linear Markov equilibrium strategy S. The equilibrium

is characterized by

dSt = (βtXt + δtYt)dt,

dXt = −λt (dSt + Ytdt+ dBt) ,

dYt = −φt (dSt + Ytdt+ dBt) ,

E
[
W1|S, v,m,FZt

]
= aX2

t + 2btXtYt + cY 2
t + dt,

where the deterministic parametres a, bt, c, dt, βt, δt, λt and φt are such that:

(Value) bt = (t/2− 1/4), a and c are the unique solution with a, c > 0, ac > 1/16 to

1√
ac− 1

4

− 1√
ac+ 1

4

+
1√
ac

[
ln(
√
ac− 1

4
)− ln(

√
ac+

1

4
)

]
= 4σ2

m, (5)

1√
ac− 1

4

− 1√
ac+ 1

4

− 1√
ac

[
ln(
√
ac− 1

4
)− ln(

√
ac+

1

4
)

]
=

4a

c
σ2
v ,

and dt is the solution to d1 = 0 and ddt = − (aλ2
t + 2btλtφt + cφ2

t ) dt;

(Learning) λt and φt are defined as

λt =
c

2(ac− b2
t )
, φt =

−bt
2(ac− b2

t )
; (6)

while the market’s posterior covariance matrix Σt is the unique solutions of the ordinary

differential equation

dΣt = −

[
λ2
t λtφt

λtφt φ2
t

]
dt, (7)

with the initial conditions σ2
11,0 = σ2

v, σ2
22,0 = σ2

m and σ12,0 = 0;

(Strategy) βt and δt are the solutions to[
λt

φt

]
= Σt

[
βt

δt + 1

]
. (8)

The proof of the Theorem proceeds in several steps. First, Lemma 2 is fairly standard

and characterizes the Bayesian learning by the market makers when the informed trader

follows a linear Markov strategy.

Lemma 2 Fix a linear Markov strategy S with parameters βt and δt that market believes
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the informed trader is using. If the informed trader uses a strategy S̃t then the market

biases follow equations

dXt = −λt(dS̃t + Ytdt+ dBt), (9)

dYt = −φt(dS̃t + Ytdt+ dBt).

The gain functions λt and φt are defined by (8), where the market makers posterior

covariance matrix Σt is the unique soluton to (7) with the initial conditions σ2
11,0 = σ2

v,

σ2
22,0 = σ2

m and σ12,0 = 0.

In the case when S̃ ≡ S the result is an application of the Kalman - Bucy filter (see

Liptser and Shiryaev [2000]). For any other strategy S̃ 6= S the result follows from the

Girsanov’s Theorem (see Karatzas [1991]). Therefore, instead of thinking of a deviation

strategy S̃ as changing the measure over the paths of total order Ot and the biases Xt

and Yt (as in (3)), one can simply think of it as steering or changing the drift of those

biases, thought of as state variables. Put differently, the informed trader chooses his

trading strategy to maximize the integral of of his flow payoffs XtdS̃t− dPtdS̃t, given the

law of motions in (9), for fixed λt and φt.

For any strategy S̃ let [S̃]t be its quadratic variation process. Note that for any linear

Markov strategy S̃ we have [S̃] ≡ 0.

Lemma 3 Fix a linear Markov equilibrium strategy S and let T ∗ ≤ 1 be the first time

when Xt and Yt are perfectly correlated, i.e., det Σt = 0. Then there are a, b, c > 0 such

that with bt = b+ t/2

i) for any strategy S̃ and any t < T < T ∗ we have

E
[∫

[t,T ]

(v − Pr) dS̃r − [P, S̃][t,T ]|S̃, v,m,FZt
]

= aX2
t + 2btXtYt + cY 2

t + dt− (10)

− E
[
aX2

T + 2bTXTYT + cY 2
T + dT |S̃, v,m,FZt

]
− E

[∫
[t,T ]

λr
2
d[S̃]r|S̃, v,m,FZt

]
;

ii) at any t < T ∗ the gain functions satisfy (6), where dt is defined by dT = 0 and

ddt = −σ2 (aλ2
t + 2btλtφt + cφ2

t ) dt.

The main point of the Lemma is that in equilibrium, as long as the biases are not

perfectly correlated, the informed trader must be indifferent between any strategies with

[S̃] = 0 that reveal the same amount of information to the market, in the sense that they
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result in the same covariance matrix of XT and YT (compare Kyle [1985], Back [1992]).

It also shows that using a strategy with [S̃] 6= 0 is suboptimal.

The indifference constrains the gain parameters λt and φt as well as the parameters

a, c and bt in the payoff function. For example, when Yt = 0 and the informed trader

abstains from trading the market biases have no drift. Thus, indifference between trading

now and abstaining for an instant requires a to be constant. The case of c and bt is slightly

more complicated and relies on the fact that the state variable Yt and dS̃t affect the biases

in the same way. For example, in the case when only Xt = 0 and the informed trader

abstains from trading the market biases will drift. However, the effect of this drift on the

state variables and flow payoff is the same as the effect of dS̃t, and so must be equal to

zero. Thus, to have the informed trader indifferent between trading now and abstaining

from trade c must be constant. In Section 4 we discuss the properties of the equilibrium

strategy in more detail.

For the rest of the proof we will use the following technical Lemma.18 The implication

is that in any linear Markov equilibrium, as long as the market does not believe m and

v to be perfectly correlated (and so the gain parameters λt and φt are not colinear - see

(6)), the informed trader can drive the biases Xt and Yt to any arbitrary vector.

Lemma 4 Fix two bounded functions ft and gt on [0, 1] and consider two processes Xt

and Yt that solve

dXt = ft (utdt+ dBt) ,

dYt = gt (utdt+ dBt) ,

where ut is a FX,Yt -measurable control and Bt is a Brownian Motion. Suppose that for

every T < 1 ft and gt are not colinear on [T, 1]. Then for every x, y ∈ R and ε > 0 there

exists a control ut such that Xt and Yt satisfy

E[X1] = x, E[(X1 − x)2] < ε,

E[Y1] = y, E[(Y1 − y)2] < ε.

The following Lemma shows that in linear Markov equilibrium the market cannot

believe before the end of trading that m and v are perfectly correlated. Otherwise, the

18It would not be difficult to strengthen the result to avoid ε in the statement and have convergence
a.e. The weaker result below is sufficient and, in our view, more instructive. Also, the generalization to
more dimensions is straightforward.
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informed trader could make arbitrarily high profits by first fooling the market that, say,

the demand shock is greater than the truly realized one (see Lemma 4). Then, once the

market stops learning independently about the demand shock, the trader would drive

the price arbitrarily low for a long period of time and purchase the asset undetected by

the market, proxying in for the demand shock.

Lemma 5 Fix a linear Markov equilibrium strategy S and let Σt be the market mak-

ers’ posterior covariance matrix (see (1)). Then, for every t < 1 detΣt 6= 0, i.e., the

equilibrium biases Xt and Yt are not colinear.

The following Theorem is one of the first main result of this section.

Theorem 2 In any linear Markov equilibrium all the information is revealed by the end

of trading

lim
t→1

Σt =

[
0 0

0 0

]
.

That the informed trader reveals all the information about the value (σ2
11,1 = 0) is

fairly intuitive. Note that private information about v is directly payoff relevant and

offers easy arbitrage: If, say, the informed trader knows that the asset is undervalued

he can use this information and make money by buying the asset. By deviating to a

strategy that trades more aggressively on this information just before the end of trade

he can increase his flow profits at any point of time.19

The argument why the information about the payoff irrelevant demand shock is re-

vealed as well (σ2
22,1 = 0) is more complicated and, to the best of our knowledge, new.

Note that the demand shock is payoff irrelevant, and so private information about it does

not offer direct arbitrage opportunities as above. In particular, when just the information

about the value is revealed, there is no deviating arbitrage strategy that offers strictly

higher expected flow payoff at any time.20 There exists, however, an opportunity for

a more complicated dynamic arbitrage that constitutes an overall profitable deviation,

while decreasing flow profits at some points of time. One of the main results of the

19More formally, under the simple arbitraging strategy with the flow trade DXt for D >> 0, the
expected flow payoff and so the drift of −(atX

2
t + 2btXtYt + ctY

2
t ) equals DX2

t . Thus, in the case
when not all the information is revealed the simple arbitraging just before the end of trade constitutes
a profitable (while typically not the optimal) deviation.

20A deviating strategy will increase expected flow profits exactly when it reveals information about
v quicker. Achieving this with probability one is impossible, since the original strategy reveals all the
information about v.

15



paper (Proposition 1) shows that such a strategy is used by the insider in equilibrum

throughout the whole trade, and we postopone the discussion of it until Section 4.

We are now ready to establish Theorem 1. We show below that there is a unique

linear Markov strategy that satisfies the conditions of Lemmas 2, 3 and the Theorem 2

- indifference, no colinearity and information revelation. On the other hand, we verify

that this is indeed an equilibrium strategy.

Verification. It is easy to verify that the equations (5) are equivalent to

σ2
v =

∫
[0,1]

λ2
tdt =

∫
[0,1]

c2

4(ac− b2
t )

2
dt, (11)

σ2
m =

∫
[0,1]

φ2
tdt =

∫
[0,1]

b2
t

4(ac− b2
t )

2
dt.

In other words, given (7) in Lemma 2, the strategy S reveals all the information to

the market (if it is believed to be folowed). Also, [S] ≡ 0. Therefore it follows from the

formula for the expected profits in part i) of Lemma 3 and the positive definiteness of

the matrix

[
a b1

b1 c

]
that the strategy S is optimal.

Uniqueness. Lemma 2 establishes that βt and δt is uniquely pinned down by λt, φt

and Σt by (8), and that Σt in turn is pinned down by λt and φt. Lemmas 3 and 5 establish

the form of the value function as well as λt and φt for some a, c, bt with dbt = 0.5dt and

dt as in the Theorem. Consequently, the three “free” parameters, through which all the

other parameters in the equilibrium are defined, are a, b0 and c. (7) in Lemma 2 and

Theorem 2 imply that those parameters must solve (11) together with

0 =

∫
[0,1]

λtφtdt =

∫
[0,1]

−cbt
4(ac− b2

t )
2
dt.

It is easy to see that for the above equation to be satisfied it must be that b0 = −1/4,

and so bt = (t/2− 1/4) . Given that, equations (11) are equivalent to equations (5).

Lemma 7 in the Appendix shows that for the given σ2
v and σ2

m equations (5) have a unique

solution (a, c) with a, c > 0, ac > 1/16. This concludes the proof of the uniqueness and

the theorem.
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4 Rational Destabilization

In this section we investigate in detail the strategic response of the informed trader to

the demand shocks, and its implications on prices and asset holdings.

Just as in the static model, the informed trader benefits if the demand shocks are

large and if v and m have opposite signs. To see the effects of large shocks lets focus on

the strategy that abstains from trading until (just before) time 1 (see Lemma 3). Demand

shock Y0 adds a drift to the price, which can be eventually exploited by the informed

trader. Indeed, conditional on no trading by the informed trader, we have E[X2
1 ],E[X1Y1]

and E[Y 2
1 ] linear in Y 2

0 , with all of the coefficients strictly positive.

Let us introduce the following change of variables. Fix the equilibrium strategy S

from Theorem 1 together with the covariance matrix function Σt. Let Ht = σ12,t
σ2
11,t

and

define

Ŷt = Yt −
σ12,t

σ2
11,t

Xt

to be the orthogonalized part of Y . In other words, we have E[ŶtXt|FOt ] = 0, for any

t < 1.

Lemma 6 For the equilibrium strategy S as in Theorem 1 we have

E
[
W1|S, v,m,FZt

]
= âtX

2
t + 2b̂tXtŶt + cŶ 2

t + dt, (12)

where ât = a+2btHt+cH2
t and b̂t = bt+cHt, with a, bt, c as in Theorem 1. In particular,

b̂t < 0, ∀t < 1.

The logic behind b̂t < 0 is the same as in the static setting. When the asset is,

say, undervalued and the demand from the liquidity traders overestimated, the informed

trader can satisfy his demand with relatively little response of the price. An easy corollary

to the Lemma is that the informed trader does not fully absorb the demand shock, just

as in the static model.

Corollary 1 In the equilibrium strategy as in Theorem 1 we have δt > −1, for all t.

Recall that in the static setting the informed trader was making money by stabilizing

the demand shocks, δ < 0. The dynamic setting, however, offers him many more ways to

respond to the shock. In particular, while in the static case the magnitudes and the signs
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of the market biases are a matter of luck, in the dynamic setting the informed trader can

choose to “drive” the biases of the market in the desired regions. For example, instead

of trading against the demand shock, as in the static setting, the trader can choose to

first exacerbate the shock and thus destabilize the price even further. The following

Proposition is the main result of this section.

Proposition 1 In the equilibrium strategy as in Theorem 1 we have δt > 0, for all t.

To provide the intuition for the proof let us consider a discrete time model with

two periods, t = 0, 1/2. It will be useful to write down the linear Markov strategy st,

t = 0, 1/2, as

st = β̃t(v − P̃t) + δ̃t(m− M̃t), (13)

where P̃t and M̃t are the expected price and the demand shock estimate at the end of

period t if the informed trader abstains from trading,

P̃t = Pt−∆ + λt(m−M t−∆),

M̃t = M t−∆ + φt(m−M t−∆).

The reparametrization is motivated by the continuous time model, in which “P̃t = Pt−∆”

and “M̃t = M t−∆” (as long as the strategy has no quadratic variation). Thus, say, the

continuous time state variable Xt can be alternatively interpreted as v − Pt or v − P̃t.
First, it is easy to see that δ̃1/2 = 0. This is because with this reparametrization the

static benefits from trading against the demand shock m − M̃t disappear. The same is

true in the continuous time model.

Second, just as in the static model analyzed in section 2.1, the expected payoff at

the beginning of the second period is proportional to the squared difference between the

value of the asset v and the price P̃1/2

E
[
W1|v,m, ε0, s0, s1/2

]
= a1/2(v − P̃1/2)2,

where a1/2 > 0. In equilibrium both the demand shock m and the order flow s0 in the

first period typically move the price P̃1/2 in the same direction.21 Thus, in the dynamic

21The price is given by

P̃1/2 = λ0 (s0 +m+ ε0) + λ1/2
(
m−M1/2

)
=

= (λ0 − λ1/2φ0) (s0 +m+ ε0) + λ1/2m,
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model the informed trader has an additional benefit from accentuating the demand shock

in the first period, since it helps further destabilize the price P̃1/2 in the second period.

This effect is absent in the static model. Here it results in delta decreasing over time,

and so δ̃0 > δ̃1/2 = 0.

In continuous time, the proof is more complicated for the following reason. The

intensity of trade on private information, βt and δt, must be proportional to the inverse

of det Σt and so, roughly speaking, the amount of the outstanding private information.

In particular, since in continuous time the private information must be revealed at the

end (and so det Σt = 0, see Theorem 2), δt and βt converge to infinity at the end of

trading. This is the “Brownian Bridge” property of the prices familiar from Kyle [1985].

This statistical effect counterbalances the strategic force described above, which pushed

delta to be decreasing. The proof of the Proposition establishes that δt scaled by the

positive det Σt is decreasing and equal to zero at the end of trade.

An immediate implication of δt > 0 is that for a fixed level of a demand shock, its

effect on the price is increasing in the extent to which it was expected by the informed

trader. More precisely, for the linear Markov equilibrium strategy S, any time t < 1 and

any magnitude of the positive order flow from the liquidity traders dZt > 0

dPt|S, dZt,m > dPt|S, dZt,m′,

for any two levels of expectations by the informed trader m > m′ > 0. In other words,

in our model with private information monopolized by a single informed trader, the

arbitraging behavior exacerbates instead of stabilizing the demand shocks’ effect on price,

in the short term.

The informed trader’s equilibrium strategy of accentuating the demand shocks is

reminiscent of the pump-and-dump strategy. Consider the event when v = 0 but there is

a positive demand shock, m > 0. Figure 1 illustrates the price paths and the informed

trader’s asset holdings. The price starts at 0 and climbs up, in response to the exogenous

demand shock. Initially the trader purchases the asset, pumping the price even more.

Once the price climbs sufficiently high, the negative component in the strategy βt(v−Pt)
corresponding to the trade on the fundamental information dwarfs the positive component

δt(m−M t) that corresponds to the trade on the non-fundamental information. In other

words, the informed trader starts dumping the asset. Note that the informed trader starts

and so this will be true as long as (λ0 − λ1/2φ0) > 0.. It can be verified that (λ0 − λ1/2φ0) > 0 for the
linear Markov equilibrium strategy.
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selling before the price reaches its peak (pushed along by the shock), as in the trading

pattern of hedge fund portfolios during the tech bubble documented by Brunnermeier

and Nagel [2004]. The selling pressure drives the price down, eventually back to the true

realized value v = 0 (see Theorem 2). Overall, the price is inflated for two reasons. One

is the exogenous demand shock; the other is the the strategic response by the informed

trader.
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Figure 1: The left panel shows a realized price path and the 99.8% confidence interval for
v = 0 and m = 3. The right panel shows the corresponding asset holdings by the informed
investor (solid) and the 99.8% confidence interval and the asset holdings by the informed
investor in the model with one dimensional uncertainty (dashed). σ2

v = σ2
m = 1

The rationale behind the pump-and-dump strategy can be summarized as follows.

The informed trader, knowing about the price insensitive demand shock22 buys along

and pushes the price even higher, in a sense frontrunning it. Doing so allows him to

service the exogenous demand shock, or sell against it later, at inflated prices. More

precisely, given the exogenous positive demand shock the price rises relatively quickly

during the pumping, helped by the shock, and falls slowly during the dumping. In the

course of the whole trade the informed trader makes net sales, and all along at prices

above the value of the asset. Let us also point out that without the second dimension of

uncertainty (see Kyle [1985]) such a pump-and-dump strategy is not profitable. In this

case the net sales are zero and the losses incurred in the initial period of driving the price

up are exactly offset by the additional profits of selling the asset later on.

The pump-and-dump strategy used by the informed trader has clear empirical impli-

cations on the joint process of prices and his asset holdings or profits. Recall that in the

22See XXXX last section.
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model with one dimension of uncertainty, for the realized value v the informed trader

always trades to correct the mispricing of the asset (Kyle [1985], Theorem 3):

dSKt
dt

= βKt (v − Pt), βKt > 0, for t ∈ [0, 1).

This implies that with probability one the change in the asset holdings has the opposite

sign to the market bias (Pt − v) or, equivalently, the difference between Pt and P1 (see

Theorem 2)
dSKt
dt
× (Pt − v) = −βKt (v − Pt)2 < 0, for t ∈ [0, 1). (14)

In particular, the bubble (“inverse-U”) paths of prices that exceed the value of the asset

have the informed trader deepening his short position on the asset throughout (see Figure

1).

This relationship of prices and asset holdings can be restated in terms of the flow

profits. Formula (14) says that in the model with one dimension of uncertainty the flow

profits of the informed trader are always positive.

In our model the informed trader no longer trades just to correct the mispricing and

his flow trade can have the same sign as the market bias. In particular, for the bubble

paths of prices exceeding the asset value the informed trader might initially be “riding the

bubble”, buying the asset in the process of pumping (see Figure 1). In terms of profits,

this exhibits a persistent form of contrarian behavior, as he is incurring short term losses

in the initial periods. The losses are recovered later on in the process of dumping, when

he starts reverting his position.

Formally, while Theorem 1 fully characterizes the joint distribution of prices and asset

holdings, we have the following implication:

Proposition 2 Let S be the linear Markov equilibrium strategy.

i) At any time t there is a positive probability that the informed trader rides the bubble:

P (
dSt
dt
× (Pt − v) > 0|S) > 0;

ii) Fix v and m. If |m| is sufficiently high relative to |v| then there is T > 0 such that

the informed trader is expected to ride the bubble until time T :

E
[
dSt
dt
× (Pt − v)|S, v,m

]
> 0, for t ∈ (0, T ].
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4.1 Vanishing Second Dimension of Uncertainty

In this section we consider models with vanishing asymmetric information about the

mean demand from the liquidity traders. While we maintain the assumption that only

the informed trader knows the extent of the demand shock (asymmetric information), we

send the variance of demand shocks σ2
m to zero. Thus, in some weak sense, the models

approximate the model with only one dimension of uncertainty (Kyle [1985]). The players

are almost sure that the order from liquidity trader follows almost a Brownian Motion

(while there is never common knowledge that it is exactly so). We will see that even

negligible amount of asymmetric information will have discontinuous effect on the price

paths and asset holdings.

Consider models parametrized by the variance of the demand shock σ2
m, with the

asset value v and the demand shock m = ασm, for some α. The α effectively measures

how surprising the shock is, irrespectively of its magnitude. Note that for any α, as

σm → 0 the “real” effect of the shock vanishes and the process of cumulative order from

the liquidity traders Zt converges in distribution to a Brownian Motion.

In the absense of asymmetric information, the effects of the demand shocks are negli-

gible when σm is small. In fact, recall that in the model with one dimension of uncertainty

the process of the equilibrium (negative) market bias XK
t = v−V t = v−Pt follows (Kyle

[1985], Theorem 3)

dXK
t = −

(
1

σv (1− t)
XK
t dt+ σvdZt

)
, X1

0 = v. (15)

If the demand from liquidity traders follows dZt = ασmdt + dBt, the process of market

biases XK
t (and so prices) has an additional drift of −ασvσmdt, and so converges to the

process in the equilibrium of the Kyle model, as σm → 0.

However, asymmetric information about the demand shocks and the strategic re-

sponse by the informed trader upsets this continuity result.

Proposition 3 i) In the equilibrium strategy as in Theorem 1 we have

δt =
1

σm
×

√
3

(1− t)2 +O(1), βt =
1

σv
× 1 + 2t

(1− t)2 +O (σm) ,

λt = σv +O (σm) , φt =
√

3σm (1− 2t) + o (σm) ,

a =
1

2σv
+O (σm) , c =

σv

4
√

3σm
+O (1) .
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ii) Consider models with the asset value v and the demand shock m = ασm, for some

fixed α. As σm → 0 the processes of the equilibrium market biases Xt and Yt/σm converge

in distribution to the solutions X∗t and Y ∗t of

dX∗t = −σv

((
(1 + 2t)

σv (1− t)2X
∗
t +

√
3

(1− t)2Y
∗
t

)
dt+ dBt

)
, X∗0 = v

dY ∗t = −
√

3 (1− 2t)

((
(1 + 2t)

σv (1− t)2X
∗
t +

√
3

(1− t)2Y
∗
t

)
dt+ dBt

)
. Y ∗0 = α

Corollary 2 i) Fix v and α as in Proposition (3). The expectations X t and Y t of the

limits of the equilibrium market biases X∗t and Y ∗t are given by

X t = v − (v +
√

3α)t+
√

3αt2,

Y t = α−
√

3(v +
√

3α)t+ (
√

3v + 6α)t2 − 4αt2.

In particular, for v = 0 and α > 0 the expected limit price path pt = −X t is a strictly

concave function with p0 = p1 = 0.

ii) Fix value v of the asset. The process XK
t of the market biases in the model with

one dimensional uncertainty has a different distribution than the limit process X∗t of the

equilibrium market biases, for any α.

Part ii) of the Proposition says that even as the exogenous shocks become negligible

(σm small), they have significant influence on the distribution of prices. This is because

as the shocks vanish the informed trader accentuates them more (δt ∼ 1
σm

, part i) of

the Proposition), and so their overall effect on the order flow, which is proportional to

δt×σm, does not disappear. Put otherwise, for small σm the trade, and so the prices can

be destabilized for purely strategic reasons.

The intuition for δt ∼ 1
σm

is in turn as follows. If instead δt was of order one the

market would not be able to learn the demand shock. This is because the order flow

would be dominated by the trade based on the mispricing of the asset (formally, the

learning parameters λt and φt would be determined by βt - see (8)). But then this

would open the door to a profitable deviation to a pump-and-dump strategy: first inflate

the price and then trade against the (undetected) demand shock. Put otherwise, in
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Figure 2: The left panel shows realized price paths and the 99.8% confidence intervals for
v = 0 and either m = 3σm (above) or m = −σm (below). The right panel shows realized
price path (solid) and the corresponding asset holdings by the liquidity traders in our model
(lower dashed) for v = 0 and m = 3σm. Compare with the liquidity traders’ holdings in the
model with one dimensional uncertainty: for the same price path (upper dashed) and the
paths within the 99.8% confidence interval. σm ≈ 0, σv = 1.

equilibrium the market must always entertain the possibility that high prices are due to

an (exacerbated) demand shock.

Figure 2, left panel, illustrates the paths of prices for different realizations of tiny

persistent demand shocks and v = 0. An immediate implication of the price destabilized

strategically is that the large deviations of the price from the fundamental value do not

require large demand from liquidity traders. It follows from the formula (15) that in

the model with one dimensional uncertainty (Kyle [1985]) this would be the only way to

destabilize the price.23 (see Figure 2, right panel).

As we pointed out in the introduction, given price setting by competitive risk neutral

market maker our model cannot generate asset prices more volatile than the fundamen-

tals, and so E[X2
t ] ≤ σ2

v, for any t. However, this need not be true if the markets’ beliefs

are misspecified.24 The model with tiny demand shocks seems particularly susceptible

to misspecification errors, given difficulties in potential estimation of such shocks from

the data. Most direct reason is the large impact of small measurement errors. Even with

no errors, estimating the extent of a demand shock, or a drift of a Brownian diffusion

of liquidity traders’ demand in the case when the values of the drift are dwarved by the

volatility (σm << 1) is practically impossible. XX add citationXX. Figure 3 illustrates

23More precisely, to generate Pt = nσv it must be that Zt ≥ n.
24The informed trader knows the realization of v and m so his beliefs about their distribution are

irrelevant; we assume that the beliefs of the market are common knowledge.
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the expected variance of the price in cases when players have correct beliefs about the

variance of the fundamentals, but the market slightly underestimates, in absolute terms,

the variance of tiny demand shocks.
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Figure 3: Expected variance of prices when the market believes that σm = ε while the true
σm equals 1ε (lowest), 2ε, 3ε, 4ε and 5ε (highest). ε ≈ 0, σv = 1.

The asymmetric information affects discontinuously also the paths of the asset hold-

ings of the informed trader and how they correlate with the prices. It is a simple corollary

to Proposition 3 that as σm → 0 the linear equilibrium strategy of the informed trader

converges in distribution to S∗, where

dS∗t =

(
1

σv
× 1 + 2t

(1− t)2X
∗
t +

√
3

(1− t)2Y
∗
t

)
dt, (16)

for X∗t and Y ∗t as in Proposition 3. Thus, the strategy inherits the qualitative feature of

pump-and-dump, as if it was exagerrating the demand shocks with variance 1 with the

explicitly computed βt and δt =
√

3
(1−t)2 > 0. Formulas in Proposition 3 and (16) explicitly

characterize the joint limit distribution of price paths and asset holdings. In particular,

we get the following implication, strenghtening the results of Proposition 2. We note

that in the model with one dimensional uncertainty we have
dSK

t

dt
× (Pt − v) distributed

as −σvN2, for a standard Normal variable N , and so independent of time t.

Proposition 4 Let S∗ be the limit of the linear Markov equilibrium strategies as σm → 0,

as in (16).

i)
dS∗

t

dt
×X∗t has distribution independent of t such that:

dS∗t
dt
×X∗t ∼ −σv(N2

1 +
√

3N1N2),
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for independent standard Normally distributed variables N1 and N2. In particular P (
dS∗

t

dt
×

X∗t > 0) > 0.

ii) Fix v and α. If |α| is sufficiently high relative to |v| then there is T > 0 such that

the informed trader is expected to ride the bubble until time T :

E
[
dS∗t
dt
×X∗t |S∗, v, α

]
> 0, for t ∈ (0, T ].
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Figure 4: The left panel shows the mean and the 99.8% and 70% confidence intervals for the
price times the change in the informed trader’s asset holdings for v = 0 and m = 3σm. The
right panel shows the unconditional time-independent density functions in our (solid) and the
model with one dimensional uncertainty (dashed). σm ≈ 0, σv = 1.

5 Conclusions

In the paper we presented a model of dynamic asset trading, in which the informed trader

has multidimensional private information about both the fundamentals and the exoge-

nous demand shock. In order to isolate the strategic “rational destabilization” effect in

this setting and its implications on price and asset holdings we strived to make the model

parsimonious, basing it on the seminal paper by Kyle (Kyle [1985]). The simplicity al-

lowed us to establish uniqueness and characterize the parameters of the (non-stationary)

equilibrium analytically in closed form (Theorem 1). This facilitated a clean analysis

of the equilibrium and the following results. Both payoff relevant and payoff irrelevant

information is revelaed to the market in the process of trading, and so at least eventu-

ally the markets perform their informative role (Theorem 2). In the process of trading

the informed trader “rationally destabilizes” the price by exacerbating the exogenous
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demand shocks via pump-and-dump strategy (Proposition 1), which leads to persistent

price departures from the fundamental value and the pattern of asset holdings of “rid-

ing a bubble”, much as documented empirically. Finally, due to the extreme “rational

destabilization” persistent and significant price departures from the fundamental value

can be triggered by negligible exogenous demand shocks (3).

6 Appendix

6.1 Proofs for Section 3

Proof. (Lemma 3) Fix a linear equilibrium strategy S and thus the gain functions λt

and φt as in Lemma 2. For any differentiable at, bt, ct, dt, when the informed trader uses

a linear strategy S̃ with drift θt then we have from Lemma 2 and Ito’s formula

d
(
atX

2
t + 2btXtYt + ctY

2
t + dt

)
+XdS̃t = (17)

= Xtθt − 2Xt(θt + Y )(atλt + btφt)− 2Yt(θt + Y )(btλt + ctφt)+

+ datX
2
t + dbtXtYt + dctY

2
t + htdBt + ddt +

(
atλ

2
t + 2btλtφt + ctφ

2
t

)
(dt+ d[S̃]t),

for ht = −2(atλtXt + bt (φtXt + λtYt) + ctφtYt).

First, if S̃ = S and so θt = βtXt+δtYt and [S̃] ≡ 0, as long as the functions at, bt, ct, dt

satisfy the equations

dat + βt(1− 2atλt − 2btφt)dt = 0, (18)

dct − 2(δt + 1)(btλt + ctφt)dt = 0,

2dbt + δt(1− 2atλt − 2btφt)− 2βt(btλt + ctφt)]dt− 2(atλt + btφt) = 0,

ddt −
(
atλ

2
t + 2btλtφt + ctφ

2
t

)
dt = 0,

]then the drift of the term in (17) is zero. Also, it follows from the “no doubling”
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restriction that for any strategy S̃25

E
[∫

[t,T ]

htdBr|S̃, v,m,FZt
]

= 0. (19)

and so (10) holds.

Second, (17) implies that

(1− 2atλt − 2btφt) = (btλt + ctφt) = 0. (20)

Otherwise the informed trader could profitably deviate from the strategy S: for example,

if (1 − 2atλt − 2btφt) > 0 then choosing the drift θ = (βt + γ)Xtdt, with γ > 0, in any

event when |Xt| is large and Yt is equal or sufficiently close to zero would increase the

expected wealth at time T relative to strategy S (note that we are using here that t < T ,

and so Yt and Xt are not perfectly correlated). The necessary condition (20) implies (6)

as well as, together with (18), that dat = dct = 0 and dbt = 0.5dt.

Finally, for an arbitrary strategy S̃ we have

d
(
atX

2
t + 2btXtYt + ctY

2
t + dt

)
+XdS̃t − dPtdS̃t =

= htdBt +
(
atλ

2
t + 2btλtφt + ctφ

2
t

)
d[S̃]t − dPtdS̃t =

= htdBt +
(
atλ

2
t + 2btλtφt + ctφ

2
t − λt

)
d[S̃]t =

= htdBt −
λt
2
d[S̃]t.

The first equality follows from (17), (18) and (20), the second from dPtdS̃t = −dXtdS̃t =

λtd[S̃]t and the last equality from atλ
2
t + 2btλtφt + ctφ

2
t = λt

2
. The formula, together with

(19) establishes (10) and concludes the proof of the Lemma.26

Proof. (Lemma 4) We construct the control ut as follows. Fix T < 1 such that

25Given that dXt and dYt are linear in dS̃t, Yt and dBt and the linear coefficients λt and φt are

uniformly bounded, it follows from the Ito formula that the “no doubling” restriction E
[∫ 2

[0,1]
S̃2
t dt
]
<∞

implies that E
[∫

[0,1]
X2
t dt|S̃

]
<∞. The last inequality is sufficient for the expectation in the text to be

equal to zero (see KS). We leave the details to the reader.
26Observe also that the analogous equality would hold if we allowed discontinuous strategies: the only

change would be an additional term −λr

2 ∆[S̃]t, where ∆[S̃]t are the squared differences of the cumulative
order at the points of discontinuity (compare Back 92).
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∫
[T,1]

f 2
t dt,

∫
[T,1]

g2
t dt < ε. Consider functions fTt and gTt defined on [T, 1] such that∫

[T,1]

ftf
T
t = 1,

∫
[T,1]

gtf
T
t = 0,∫

[T,1]

gtg
T
t = 1,

∫
[T,1]

ftg
T
t = 0.

The existence of such functions follows from the fact that ft and gt are not colinear: For

example, fTt can be defined as the appropriately rescaled difference between ft and the

projection of gt on ft

fTt = C ×

(
ft −

∫
[T,1]

ftgtdt∫
[T,1]

g2
t dt

gt

)
.

Now, define the control ut as follows

ut = 0, t ≤ T,

ut = (x−XT ) fTt + (y − YT ) gTt , t > T.

Given the control ut we have

X1 = XT +

∫
[T,1]

ft((x−XT ) fTt + (y − YT ) gTt )dt+ ftdBt = x+

∫
[T,1]

ftdBt,

Y1 = YT +

∫
[T,1]

gt((x−XT ) fTt + (y − YT ) gTt )dt+ gtdBt = y +

∫
[T,1]

gtdBt,

E[X1] = x, E[(X1 − x)2] =

∫
[T,1]

f 2
t dt < ε,

E[Y1] = y, E[(Y1 − y)2] =

∫
[T,1]

g2
t dt < ε,

where the inequalities in the last two lines follow from the choice of T . This concludes

the proof of the Lemma.

Proof. (Lemma 5) We will establish that if the market makers were convinced that

Xt and Yt are perfectly correlated from some time T < 1 onwards, this would allow the

informed trader to obtain arbitrarily high profits. Suppose by contradiction that on an

nonempty interval [T, 1] we have Yt = αXt for some constant α, and so the equilibrium

strategy takes the form dSt = β̃tXtdt. As in the proof of Lemma 3 on this interval we
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have, for any differentiable ãt and d̃t

d(ãtX
2
t + d̃t) +XtdSt =

= −2ãtλtXt(βtXt + αXt) +X2
t dãt + dd̃t − σ2ãtλ

2
t + βtX

2
t dt− 2ãtλtXtdBt =

= X2
t (βt(1− 2ãtλt) + dãt − 2αãtλt) + ddt − σ2ãtλ

2
t − 2ãtλtXtdBt,

and so

E
[∫

[t,1]

(v − Pr) dSr|S, v,m,FZt
]

= ãtX
2
t + d̃t − E

[
ãt1X

2
1 |S, v,m,FZt

]
,

for any ãt and d̃t that solve βt(1 − 2ãtλt) + dãt + 2αãtλt = 0, and dd̃t − σ2ãtλ
2
t , d̃1 = 0.

On the other hand, if at time t the informed trader deviates to a linear Markow strategy

S̃ with drift θdt then

d(ãtX
2
t + d̃t) +XtdS̃t = Xtθt(1− 2ãtλt) + dd̃t − σ2ãtλ

2
t − 2ãtλtXtdBt,

and so to make sure that the informed trader has no profitable deviation it must be that

1− 2ãtλt = 0. This implies, just as in Lemma 3, that for any strategy S̃ with [S̃] ≡ 0

E
[∫

[t,1]

(v − Pr) dS̃r|S̃, v,m,FZt
]

= ãtX
2
t + d̃t − E

[
ã1X

2
1 |S̃, v,m,FZt

]
. (21)

This establishes that conditional on the equilibrium play on the interval [0, T ], for any

linear Markov strategy S̃ the expected profits from trading on the interval [T, 1] depend

only on E
[
X2

1 |S̃, v,m,FZt
]
.

Lets construct a deviation strategy S̃ that yields arbitrarily high expected payoffs as

follows. Intuitively, the strategy first ”fools” the market to believe that there is a larger

demand shock than the truly relized one. Then, on the interval [T, 1] the strategy drives

the price arbitrarily low (Xt arbitrarily high) for a long period of time, at which price the

informed trader purchases the asset undetected by the market. More precisely, equations

(6) imply that the conditions of Lemma 4 are satisfied, and so there is a strategy such

that (with high probability) XT is very close to 0, and YT is very close to −N , for some

N > 0. Notice that for any t in [0, T ], any public history η on [T, t] and any two strategies

S̃ and Ŝ we have

E
[
dXt|S̃, XT = 0, YT = −N, η

]
= E

[
dXt|Ŝ, XT = 0, YT = 0, η

]
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exactly when dS̃t = dŜt+N. From this and (21) follows that conditional on XT = 0, YT =

−N the expected payoff on the interval [T, 1] of a strategy S̃ that results in X1 = 0 is

equal to

d̃t +N × E
[∫

[T,1]

Xtdt|S̃, XT = 0, YT = −N
]
.

Therefore, arbitrarily high expected profits can be made by a strategy S̃ that results

in X1 = 0 and at the same time in the arbitrarily high expectation of
∫

[T,1]
Xtdt. This

establishes the desired contradiction and so the proof of the Lemma.

Proof. (Theorem 2) Fix an equilibrium strategy S and let a, bt and c be the parameters

in the expected payoff function (10). We claim that it is suffient to show that the matrix

P1,

P1 :=

[
a b1

b1 c

]
,

is strictly positive definite. This is because, from Lemma 3, for any strategy S̃ the ex-

pected flow payoff equals the drift of−(atX
2
t +2btXtYt+ctY

2
t ) under S̃, and so maximizing

expected payoffs requires minimizing a1X
2
1 + 2b1X1Y1 + c1Y

2
1 . If the matrix P1 is strictly

positive definite but Σ1 was not the zero matrix under tentative equilibrium strategy S, a

strategy S̃ such that E[X2
t |S̃],E[Y 2

t |S̃] < ε (see (6) and Lemma 4) would result in strictly

smaller a1X
2
1 + 2b1X1Y1 + c1Y

2
1 and constitute a profitable deviation, for ε sufficiently

small.

First, no eigenvalue e of the matrix P1 can be strictly negative. Otherwise, if (xe, ye)

is the associated eigenvector, a strategy S̃ resulting in (E[Xt|S̃],E[Yt|S̃]) sufficienly close

to (Mxe,Mye) would yield arbitrarily high profits as M → ∞, in view of (10). Second,

no eigenvalue of the matrix can be equal to zero. Otherwise, when ac− b2
1 = 0, we would

have, say,

dσ2
11,1 = −λ2

1σ
2 = − c2σ2

4(ac− b2
1)2

= −∞,

and it is easy to verify that σ2
11,t = −

∫ 1

t
dσ2

11,1 + σ2
11,1 would have to be infinite for any

t < 1.

Lemma 7 For given parameters σ2
v and σ2

m equations (5) have a unique solution (a, c)

with a, c > 0, ac > 1/16.
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Proof. If x =
√
ac− 1

4
then the LHS of the first equation in (5) becomes

G(x) =
1

x
− 1

x+ 0.5
+

1

x+ 0.25
[ln (x)− ln (x+ 0.5)]

Clearly G(x) → ∞ as x ↓ 0 and G(x) → 0 as x → ∞: The first part follows from 1
x

heading to infinity faster than −ln(x) when x→ 0. The second part follows as all three

terms converge to zero as x→∞.

The next step is to show that G(x) is strictly decreasing. Taking the first derivative,

G′(x) for x > 0:

G′(x) = − 1

x2
+

1

(x+ 0.5)2 +
ln (1 + 0.5x−1)

(x+ 0.25)2 +
1

(x+ 0.25)

[
1

x
− 1

x+ 0.5

]
=
−0.25

x+ 0.25

(
1

x2
+

1

(x+ 0.5)2 −
4ln (1 + 0.5x−1)

(x+ 0.25)

)
≤ −0.25

x+ 0.25

(
1

x2
+

1

(x+ 0.5)2 −
4 (0.5x−1)

(x+ 0.25)

)
≤ −0.25

x+ 0.25

(
1

x2
+

1

(x+ 0.5)2 −
2

x (x+ 0.5)

)
< 0

Thus, G(x) monotonically declines from ∞ to 0 and so there is a unique solution to

4s2
m = G(x), which thus pins down unique ac > 0.

The LHS of the second equation in (5) is strictly greater than that of the first equation

and thus strictly positive. Thus the second equation pins down unique a, c > 0 for a fixed

value of ac > 0.

6.2 Proof for Section 4

Proof. (Lemma 6) The form of the coefficients in the expected wealth function follows

easily from comparing with the expected wealth function under the original variables Xt

and Yt in Theorem 1

Let us establish here that b̂t < 0 for every t < 1. Since H0 = 0 we have b̂0 = −1/4.

On the other hand, since σ12,t, σ
2
11,t → 0 as t → 1 we have from L’Hopital’s rule that as

t→ 1

b̂t → b1 + c×
σ′12,1

σ2′
11,1

= b1 + c× −λ1φ1

−λ2
1

= b1 + c× −b1

c
= 0,
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Also, we have

b̂t = bt + cHt =
2 (ac− b2

t )

σ2
11,t

[λtσ12,t − φtσ2
11,t],

b̂′t =
1

2
+ cH ′t =

1

2
+ c

λt
σ4

11,t

[λtσ12,t − φtσ2
11,t] =

1

2
+ c

λt
σ4

11,t

[λtσ12,t − φtσ2
11,t] =

=
1

2
+ c

λt
σ4

11,t

σ2
11,t

2 (ac− b2
t )
b̂t =

1

2
+

λ2
t

σ2
11,t

b̂t.

This establishes that b̂t > 0 implies b̂′t > 0. Together with b̂0 < 0 and b̂1 = 0 this

establishes the proof of the lemma.

Proof. (Corollary 1) It is easy to verify that dŶt = (δt+1)
det Σt

(dS̃t+Yt+dBt). Consequently,

if δt ≤ −1 a strategy such that dS̃t + Yt < 0 both weakly increases the drift of Ŷt and

decreases that of Xt. Given the form of the expected value function in (12) and in

particular b̂t < 0 this contradicts the indifference of the informed trader in the case when

Xt = 0.

Proof. (Proposition 1) From the projection Theorem (see (6)) we have:

δt + 1 =
(σ2

11,tφt − σ2
12,tλt)

σ2
11,tσ

2
22,t − σ2

12,t

.

Let ht be the difference between the numerator and the denominator,

ht = (σ2
11,tφt − σ2

12,tλt)− (σ2
11,tσ

2
22,t − σ2

12,t).

Also, from the definition of λt and φt in (6) we have,

λ′t = −2λtφt,

φ′t = −(
a

c
λ2
t + φ2

t ).
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Therefore

h′t = (σ2
11,tφ

′
t − φtλ2

t + φtλ
2
t − σ12,tλ

′
t)− (−σ2

11,tφ
2
t − σ2

22,tλ
2
t + 2σ12,tλtφt) =

= −σ2
11,t(

a

c
λ2
t + φ2

t ) + 2σ12,tλtφt + σ2
11,tφ

2
t + σ2

22,tλ
2
t − 2σ12,tλtφt =

= −λ
2
t

c
(aσ2

11,t − cσ2
22,t) = −λ

2
t

c

∫ 1

t

(aλ2
s − cφ2

s)ds =

= −λ
2
t

4c

∫ 1

t

ac2 − cb2
s

(ac− b2
s)

2
ds = −λ

2
t

4c

∫ 1

t

λsds < 0.

On the other hand, since σ2
11,1 = σ2

22,1 = σ12,1 = 0 and λ1, φ1 are finite we have that

h1 = 0. Together this implies that ht > 0 for t < 1 and so establishes the proof.

Proof. (Proposition 2)

i) Since dSt

dt
× (Pt − v) = βtX

2
t + δtXtYt, the result follows from the fact that Xt and

Yt have a bivariate Normal distribution and are not perfectly correlated.

ii) From Ito’s formula we have

d

dt
E
[
dSt
dt
× (Pt − v)|S, v,m

]
=

= − d

dt
E[βtX

2
t + δtXtYt|S, v,m] =

= −E[β′tX
2
t + δ′tXtYt + 2βtXtdXt + δt(XtdYt + YtdXt) + βt(dXt)

2 + δtdXtdYt|S, v,m] =

= −E[AtX
2
t +BtXtYt + CtY

2
t +Dt|S, v,m]dt,

with appropriate continuous functions At, Bt, Ct and Dt, and in particular

Ct = −δt(δt + 1)φt.

Since E[X2
t |S, v,m],E[XtYt|S, v,m] and E[Y 2

t |S, v,m] are continuous, the function

E
[
dSt

dt
× (Pt − v)|S, v,m

]
is continuously differentiable. On the other hand, it follows

from Proposition 1 that C0 < 0, and so the derivative of E
[
dSt

dt
× (Pt − v)|S, v,m

]
at

t = 0 is strictly positive if |m| is sufficiently large relative to |v|. This establishes the

proof.

Proof. (Proposition 3) i) To simplify the notation, for the parameters a, bt and c of
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the value function defined in Theorem 1 (line (5)), denote

ξt =
ac

ac− b2
t

,

ξt depends on the parameters of the model σ2
m and σ2

v - the dependence that we do not

make explicit, for the sake of tractability. The approximations of the parameters in the

Proposition are based on the approximation ξt ≈ 1, which is justified since, as we will

see, σm ↓ 0 implies ac ↑ ∞.

Since Σt satisfies the differential equation (7) and Σ1 is the null matrix, we have

λt =
1

2a
ξt =

1

2a
(1 + ε1) ,

φt =
−bt
2ac

ξt =
1

4ac
(
1

2
− t) (1 + ε1)

σ2
11,t =

∫
[t,1]

λ2
sds =

∫
[t,1]

c2

4(ac− b2
t )

2
ds =

1

4a2

∫
[t,1]

ξ2
sds =

1− t
4a2

(1 + ε2) ,

σ12,t =

∫
[t,1]

λsφsds =
1

4a2c

t(t− 1)

4
(1 + ε3) ,

σ2
22,t =

∫
[t,1]

φ2
sds =

1

4a2c2

∫
[t,1]

b2
sξ

2
sds =

1

16a2c2

(1− t) (1− 2t+ 4t2)

12
(1 + ε4) ,

where ε1 ∈ [0,maxt ξt − 1] and εi ∈ [0, (maxt ξt)
2 − 1], i = 2, 3, 4 (we are not making

explicit the dependence of the error terms on time). In particular, the last equation

evaluated at t = 0 yields

ac =
1

σm8
√

3
+

√
1 + ε4 − 1

σm8
√

3
.

Consequently

ac =
1

σm8
√

3
+O (1) , a =

1

2σv
+O (σm) ,

εi = O (σm) . i = 1, ..., 4

By substituting those values we obtain the formulas for λt and φt. From the Bayes
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formula (8) in Lemma 2 we have

δt + 1 =

(
σ2

11,tφt − σ2
12,tλt

)
detΣt

=
1−t
4a2

(1 + ε2) 1
4ac

(1
2
− t) (1 + ε1)− 1

4a2c
t(t−1)

4
(1 + ε3) 1

2a
(1 + ε1)

1−t
4a2

(1 + ε2) 1
16a2c2

(1−t)(1−2t+4t2)
12

(1 + ε4)− [ 1
4a2c

t(1−t)
4

(1 + ε3)]2
=

= ac× 24

(1− t)2 × (1 +O (σm)) =

√
3

σm (1− t)2 +O (1) ;

βt =
(σ22,tλt − σ12,tφt)

detΣt

=

=
1

16a2c2
(1−t)(1−2t+4t2)

12
(1 + ε4) 1

2a
(1 + ε1)− 1

4a2c
t(t−1)

4
(1 + ε3) 1

4ac
(1

2
− t) (1 + ε1)

1−t
4a2

(1 + ε2) 1
16a2c2

(1−t)(1−2t+4t2)
12

(1 + ε4)− [ 1
4a2c

t(1−t)
4

(1 + ε3)]2
=

= a× 2(1 + 2t)

(1− t)2 × (1 +O (σm)) =
1 + 2t

σv (1− t)2 +O (σm) .

ii) It follows from part i) and the continuous dependence of the solutions of stochastic

ODE on the parameters (see Karatzas [1991]).

Proof. (Corollary 2) i) Since the stochastic differential equations in Proposition 3 are

linear in states X∗t Y
∗
t , the expectations X t and Y t must solve the corresponding system

of linear ordinary differential equations, with truncated stochastic part “dB′′t . It is easy

to verify that the functions in Corollary 2 are the solution.

ii) Lack of convergence for α 6= 0 follows for example from comparing the drifts at

t = 0. In the case α = 0, the drift of XK
t depends only on the value of XK

t , while the

drift of X∗t depends both on X∗t and Y ∗t . The result thus follows form the fact that X∗t
and Y ∗t are not perfectly correlated.

Proof. (Proposition 4) i) From Proposition 3 it follows that

E[X∗2t ] =

∫ 1

t

σ2
vds = σ2

v(1− t),

E[Y ∗2t ] =

∫ 1

t

3(1− 2s)2ds = 1− 3t+ 6t2 − 4t3,

E[X∗t Y
∗
t ] =

∫ 1

t

σv
√

3(1− 2s)ds = σv
√

3t(t− 1).
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Consequently,

dSt
dt
× (Pt − v) = − 1 + 2t

σv (1− t)2X
∗2
t −

√
3

(1− t)2X
∗
t Y
∗
t ∼

∼ − 1 + 2t

σv (1− t)2X
∗2
t −

√
3

(1− t)2X
∗
t

(
E[X∗t Y

∗
t ]

E[X∗2t ]
X∗t +

(
E[Y ∗2t ]− (E[X∗t Y

∗
t ])2

E[X∗2t ]

)1/2

N2

)
∼

∼ AN1 +BN1N2,

where N1 and N2 are independent standard Normally distributed random variables, and

A = −E[X∗2t ]

(
1 + 2t

σv (1− t)2 +

√
3

(1− t)2

E[X∗t Y
∗
t ]

E[X∗2t ]

)
= −σv,

B = −
√

3

(1− t)2

√
E[X∗2t ]E[Y ∗2t ]− (E[X∗t Y

∗
t ])2 = −

√
3σvσm.
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