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Abstract

We study optimal selling strategies of a seller who is poorly informed about the buyer’s

value for the object. When the maxmin seller only knows that the mean of the distribution

of the buyer’s valuations belongs to some interval then nature can keep him to payoff zero

no matter how much information the seller has about the mean. However, when the seller

has information about the mean and the variance, or the mean and the upper bound of the

support, the seller optimally commits to a randomization over prices and obtains a strictly

positive payoff. In such a case additional information about the mean and/or the variance

affects his payoff.
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1 Introduction

The prevalent approach to modeling trading rules and other economic institutions through

mechanism design, and game theory in general, assumes a great deal of structure on the form of

player’ beliefs. The seller knows the distribution of buyers’ valuations, the government the dis-

tribution of agents’ productivities, and the regulators the distribution of the firms’ cost, to name

a few. These beliefs come from a black box of the Bayesian approach, the assumption that the

beliefs coincide with a true distribution is then appended almost without exception; see Morris

(1994) for a departure. The drawbacks of the described approach have been prominently put

forward in Wilson (1987), who argued that too much information is commonly known among

the players. The common knowledge assumption was relaxed in the mechanism design frame-

work, and a new wave of literature started, by Bergemann and Morris (2005). They studied

the implementability on all type spaces. Majority of the subsequent literature followed in same

vein, that is, characterizing incentive compatible mechanisms under various assumptions on

the agents’ beliefs about each other. Rather little attention, however, has been dedicated to the

designer and the design of optimal mechanism from his perspective.1

We study the robust of optimal trading rule in an environment where a profit maximizing

seller is selling a good to a single buyer. The seller has very limited information about the

buyer’s valuation. He is armed merely with the information about the mean of the distribution

of the buyer’s valuations.2 The information about the mean is represented by the interval to

which the mean belongs. The seller then evaluates any trading mechanism by taking the expec-

tation with respect to the type distribution that yields the smallest profit among the distributions

with a mean in the interval. In other words, the seller is a maxmin expected utility maximizer

who believes that nature can choose any distribution over non-negative valuations with a mean

in a fixed interval. Wolitzky (2014) provides an interesting interpretation for this information

structure, where a model of a seller who knows only the mean of the buyer’s distribution arises

from model of information acquisition.

Our findings can be summarized as follows. First we show a somewhat daunting result

that the seller who only knows that nature draws a non-negative valuation from a distribution

with a mean in some interval, [µ, µ̄], expects zero payoff. This is so irrespective of the interval

to which the mean belongs and the mechanism he chooses. Additional information about the

mean has no affect on such a seller’s payoff. The picture drastically changes once one assumes

1Some notable exceptions are Bergemann and Schlag (2008) and Bergemann and Schlag (2011) who study
optimal mechanism for sale of an object by a seller under max-min regret and max-min preferences. We provide a
more substantial overview of the literature in the subsection Related Literature below.

2One of the first thing a student is thought in an econometrics class is how to estimate a mean. Yet very little is
known about how agents faced with such limited information should behave. As a thoroughly explored framework,
profit maximization in bilateral trade provides a natural testing ground.
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that there is an upper bound, θ̄, on the support of nature’s distributions. We show that the

uniquely optimal selling strategy has the seller committing to a randomization over prices in

interval [τ, θ̄] for some τ > 0 with a cdf of the order ln t and no mass points. Interestingly, the

seller randomizes over prices in such a way that when valuations are distributed on the same

interval as prices, the seller’s payoff depends only on the mean of the distribution of valuations.

By making his payoff independent of the information about the parameters of the distribution

that he does not know, the seller, in a sense, insures himself against the missing information

about the distribution of valuations.

We obtain several comparative statics results. Given the interval of means that the seller

entertains as possible, his expected payoff decreases when θ̄ increases. When nature cannot

assign high values to the agents, somewhat curiously, the seller’s payoff increases. This is due

to the fact that by lowering θ̄ one restricts the set of possible distributions for nature. On the

other hand, the seller’s payoff is increasing in the lower bound of possible means, µ, of the

distribution over valuations. Namely, for a given distribution over prices the seller’s payoff

cannot decrease if µ increases.

Bounding the support of the distributions over valuations from above implicitly restricts the

variance of those distributions. We therefore also explore the problem in which seller knows

that the mean of valuations belongs to an interval [µ, µ̄], and the variance to [σ2, σ̄2]; but there

is no upper bound on the support. We show that the unique optimal strategy for the seller is

to randomize over some interval [τ, τ̄] with density of the form h(x) = a/x + b. In this case,

he expects the valuations to be drawn from a distribution that has the support contained in the

same interval over which he randomizes, and more importantly, his payoff then depends only

on the mean and the variance of the distribution of valuations. Thus again, he insures himself

against the information about the distribution of valuations that he does not have. Of course,

he believes that nature chooses a distribution with the lowest possible mean, µ, and the highest

possible variance, σ̄2. The seller’s optimal payoff is shown to be increasing in µ and decreasing

in σ̄2.

For a given amount of knowledge about the mean, knowing the upper bound of the sup-

port of the distributions or knowing the upper bound of the variance is payoff equivalent for

the seller. More precisely, given [µ, µ̄], for every θ̄ there exists a σ̄2 (σ2 is irrelevant), and

vice-versa, such that the seller’s payoff is the same regardless of which of the two pieces of

information he possesses. That notwithstanding, the seller uses different pricing schemes in

the two cases. The price distribution in the case when he knows the upper bound on the support

first order stochastically dominates the price distribution he uses when he knows the payoff

equivalent upper bound on the variance of the nature’s distribution. Whether the seller has

information about the variance or the upper bound of the support of the nature’s distribution is
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thus potentially identifiable from the data.

The above described results imply that when the seller only has information about the mean

of the distribution over valuations, additional information about the mean has no effect on his

payoff. However, when he has information about the mean and the variance, or the mean and

the upper bound, then the additional information about the two parameters can be beneficial to

the seller.

1.1 Related Literature

Wilson’s critique and Bergemann and Morris (2005) have initiated a large body of literature on

robust mechanism design. For an in-depth review see Bergemann and Morris (2013). Our paper

is closely related to the work of Bergemann and Schlag (2011). They consider the problem of a

seller selling a single good to a buyer. The seller is a max-min expected utility maximizer with

imperfect information about the distribution over the valuations: he knows that the valuations

are distributed in an epsilon neighborhood of some distribution. In their environment nature

has a dominant strategy, therefore a deterministic take-it-or-leave-it price is optimal.3 Auster

(2013) analyses a model with common values in which the seller is privately informed, and

ambiguity is of the similar form as in Bergemann and Schlag (2011). Garrett (2014) studies

a model of cost-based procurement in which the principal is uncertain about the agent’s effort

cost function.

The environment that is closest to the one analyzed in this paper is studied in Wolitzky

(2014). He considers efficiency in a bilateral trade model in which the buyer and the seller

know only the mean of each other’s valuations. He shows that under some parameters the

efficient trade is possible and characterizes when exactly that is the case. Our paper, on the

other hand, is concerned with profit maximization and the value of information for the seller.

Also, unlike in Wolitzky (2014) we allow for the information about the variance. Carroll (2012)

studies the problem of providing robust incentives for information acquisition. In his model the

decision making max-min expected utility maximizing principal is incentivizing an expert to

acquire costly information.

Lopomo, Rigotti, and Shannon (2009) explore robustness of mechanisms under incomplete

preferences, as in Bewley (1986). Castro and Yannelis (2012) approach the problem from a

different perspective and show that every efficient allocation rule is incentive compatible if and

only if the agents have max-min preferences.

Robustness in the context of moral hazard has been explored in Lopomo, Rigotti, and

3López-Cunat (2000), Bergemann and Schlag (2008) and Bergemann and Schlag (2011) explore the seller’s
problem when he is minimizing his regret.
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Shannon (2011), Chassang (2013) and Carroll (2015), to name a few.

Our paper is also related to the growing literature on mechanism design under ambiguity

aversion. Though in that literature, unlike in the present paper, the buyers are the ones who

are ambiguity averse. See for example Bose, Ozdenoren, and Pape (2006), Bose and Daripa

(2009) and Bodoh-Creed (2012). More recently Bose and Renou (2014) and Di Tillio, Kos,

and Messner (2014) have shown that in such environments the seller might benefit from using

non-standard mechanism.

2 Environment and terminology

Preferences and information: There is a seller who wants to sell a single unit of a good to

a buyer. We denote the probability with which the good is transferred to the agent by x and

write τ for the transfer to be be paid by the agent. Throughout the paper we will slightly abuse

terminology and refer to x also as an ‘allocation’.

The buyer is a risk neutral expected utility maximizing agent whose valuation for the good

is denoted by θ. Thus, if he receives the good with probability x and pays the transfer τ in

exchange, his payoff is

xθ − τ.

If, instead, the buyer decides not to participate in the mechanism his payoff is 0.

The seller is uncertain about the agent’s valuation of the good, θ. He only has partial

information about the distribution of the buyer’s valuations. More specifically, we assume that

the seller knows that the buyer’s valuations are non-negative and drawn from a distribution

which has a mean that belongs to the interval [µ, µ̄]. We denote the set of all such distributions

by F (µ, µ̄). Later we will explore environments in which the seller knows additional features

of the distributions.

The seller does not assign any value to the good, he only cares about the revenue he can

obtain. In addition, we assume that the seller evaluates mechanisms with respect to their worst

case expected value; i.e. it is this worst case expected revenue that he seeks to maximize.

Therefore, if the transfer function in an incentive compatible mechanism is t and the seller

believes that the buyer’s valuation is drawn from a distribution in the set F (µ, µ̄), then his

payoff is

inf
F(µ,µ̄)∈F

EF[t].

An axiomatic representation of maxmin preferences is provided in Gilboa and Schmeidler
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(1989).

3 Unbounded Valuations

First we study the case where the seller only knows that the buyers valuations are distributed

over R+ and the bounds on the mean of the distribution of values [µ, µ̄]. The seller chooses an

incentive compatible and individually rational mechanisms. With one agent it is without loss

of generality to consider randomizations over posted prices.4

The set of distributions over prices is denoted by H and its generic element by H. We

require that
∫ ∞

0 θdH exists and is finite.

Proposition 1. Suppose that the set of possible types is R+. Then

inf
F∈F (µ,µ̄)

U(H, F) = 0,

for every distribution over prices H ∈ H . Consequently,

sup
H∈H

inf
F∈F (µ,µ̄)

U(H, F) = 0.

Proof. All missing proofs can be found in Appendix A. �

The highest payoff the seller can expect from a given randomization over the prices is the

expected price. This would be the case if he were to sell with probability one. However, nature

can choose a binary distribution over valuation 0 and some high valuation θ with the mean µ. 5

The probability that nature needs to assign to θ is then decreasing in θ. Since the seller in that

case sells only when the buyer’s valuation is θ, and his expected payoff is bounded above by

4Clearly a randomization over prices is an incentive compatible and individually rational mechanism. On the
other hand, starting from any incentive compatible and individually rational mechanism one can obtain a random-
ization over prices. That is, in an incentive compatible mechanism the allocation rule is monotonic, therefore the
cumulative distribution over prices can be defined to be equal to the allocation rule. If no type gets the object with
probability one, this can be replicated by assigning probability to high prices. Since both the allocation rule from
the original mechanism, as well as randomization over prices assign the object with the same probability to each
type the two mechanisms have the same transfers up to a constant. Since any randomization over (non-negative)
prices leaves type 0 with zero payoff, the randomization over prices achieves at least as high a payoff as the original
mechanism. See Skreta (2006) and Kos and Messner (2013) for how to deal with the cases where the distribution
are not continuous. The seller could potentially also try to obtain the information about the distribution of the val-
uations of the buyer, rather than just ask for his type. Since such information is payoff irrelevant for the buyer, the
seller will not be able to elicit it. Randomization over prices is also studied in Bergemann and Schlag (2011).

5The seller’s problem can be thought of as a zero sum game between the seller and nature. We elaborate on this
later in the paper.
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the expected price, nature can keep the seller to an arbitrarily low positive payoff by making

sure that the seller sells with a very small probability (i.e. by choosing θ high enough).

The daunting consequence of the above result is that knowledge of the mean itself – or the

interval it resides in – has no effect on the seller’s payoff. Regardless of the extent of knowledge

the seller has about the mean, nature can hold him to payoff zero.

The above result hinges on the assumption that the seller is willing to consider arbitrarily

high valuations. Next we explore the case of a seller who believes that only valuations up to

some upper bound θ̄ are possible.

4 Bound on the valuations

In this section we study the environment in which there is an upper bound on the buyer’s val-

uations. In particular, the seller believes that buyer’s valuations are distributed on the interval

[0, θ̄], for some θ̄ > 0, with a distribution that has a mean in [µ, µ̄]. The set of possible distribu-

tions of valuations is denoted by F (µ, µ̄, θ̄).

4.1 Optimal posted prices

We start our analysis by exploring the seller’s optimal posted price. The appeal of posted prices

stems from their simplicity, their empirical relevance and not least from the fact that they are

optimal for the seller in a standard setting with ambiguity neutral sellers (see Myerson (1981)

and Riley and Zeckhauser (1983)). While the optimality property of posted prices does not

carry over to our environment they still constitute a natural benchmark.

Let u(τ, F) be the seller’s expected payoff when he offers the price τ and the valuations are

drawn from the distribution F. Given the price τ, type θ of the buyer will acquire the good if

and only if θ > τ.6 Therefore

u(τ, F) = τ[1 − F(τ)].

The seller’s optimization problem is then

sup
τ≥0

inf
F∈F (µ,µ̄,θ̄)

u(τ, F). (1)

6Throughout the analysis we maintain the assumption that the agent does not buy the good if he is indifferent
between buying and not buying. As will become clear, this technical assumption serves the purpose of guaranteeing
that a best response for nature exists. This assumption does not affect the solution and the value of the problem.
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The buyer’s behavior is simple: he buys the good if his value is above the offered price

and does not otherwise. The seller’s problem can therefore be thought of as a game against

the malevolent nature. The seller chooses the price τ after which nature chooses a distribution

F ∈ F (µ, µ̄, θ̄) with the objective to minimize the seller’s payoff.

It is never optimal for the principal to set a price equal to zero or a price that exceeds the

lower bound of the expectation of the agent’s type, µ. A price of zero implies a payoff equal

to zero. The same is true for a price above or at µ. In the latter case nature can hold the

principal to payoff zero by choosing the distribution that puts the entire probability mass on

µ. This distribution trivially satisfies the mean constraint while at the same time generating

with probability one a type that is not willing to buy at the price set by the seller. On the other

hand, any price τ′ that lies strictly between 0 and µ guarantees the principal a strictly positive

payoff. Indeed, any type distribution that respects the mean constraint must put strictly positive

weight on the interval [µ, θ̄]. Therefore, for a price τ′ satisfying 0 < τ′ < µ there is always –

irrespective of what type distribution nature chooses – a set of types with positive probability

that is willing to buy the good. But then the seller’s maxmin expected revenue must be strictly

positive too.

To find the optimal price, we first determine nature’s best response to each possible price

τ < µ. Nature’s goal is to chose a distribution that minimizes the seller’s expected payoff.

Buyers with valuations smaller or equal to τ do not buy,7 while buyers with valuations above τ

buy the good. Nature’s objective is therefore to place as much probability mass as possible at

or below τ subject to the constraints that the expected value of the distribution must be in [µ, µ̄]

and that no set of types outside [0, θ̄] can be given positive probability. This objective is best

achieved by choosing the type distribution with mean µ that concentrates all the weight on the

points τ and θ̄.8

The probability mass, p, that this distribution assigns to the type τ is defined by

pτ + (1 − p)θ̄ = µ,

therefore

p =
θ̄ − µ

θ̄ − τ
.

7Remember that the buyer does not buy the good when he is indifferent.
8For a fixed price τ, nature is maximizing F(τ) subject to the constraint µ = F(τ)E[θ|θ ≤ τ]+(1−F(τ))E[θ|θ > τ].

Given that τ < µ, F(τ) is maximized when E[θ|θ ≤ τ] = τ and E[θ|θ > τ] = θ̄.
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Using this we can rewrite Problem 1 as

max
τ∈[0,µ]

1 − θ̄ − µθ̄ − τ

 τ.
It is straightforward to verify that the objective function of this problem is strictly concave in

τ, and equal to zero on the two extremes of the interval [0, µ]. Solving for τ yields

τ∗ =
√
θ̄
[ √

θ̄ −
√
θ̄ − µ

]
.

Let F∗ be the type distribution corresponding to the principal’s most pessimistic belief asso-

ciated with the optimal posted price (i.e. nature’s best response to the optimal price). It is

straightforward to verify that the weight that this distribution puts on θ̄ is 1 − p = τ∗/θ̄. Since

this is the probability with which the principal expects the agent to buy the good, his maxmin

expected revenue is u(τ∗, F∗) = τ∗2/θ̄. We summarize these findings in the following proposi-

tion.

Proposition 2. The optimal posted price is

τ∗ = θ̄ −
√
θ̄(θ̄ − µ).

Given this price the seller expects that the agent will buy with probability τ∗/θ̄, therefore his

expected revenue is

u(τ∗, F∗) = [τ∗]2/θ̄ =

( √
θ̄ −

√
θ̄ − µ

)2
.

Comparative statics. The price that the seller charges and the payoff that he realizes are

increasing in the lower bound of the expected type, µ. Indeed, for every price the seller’s payoff

(weakly) increases after an increase in µ. Notice also that the seller’s payoff is independent of

µ̄.

At first it might seem somewhat surprising, that preventing nature from assigning high

valuations to a buyer might help the seller, but in our environment this is indeed the case.

The seller’s payoff is decreasing in the upper bound on the support of nature’s distributions,

θ̄: the larger the upper limit of the set of possible types, the weaker becomes the restriction

that the mean constraint imposes on nature’s ability to concentrate mass on low types. That is,

increasing θ̄ increases the set of nature’s strategies.
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4.2 Random Pricing Policies

In this section we explore what the seller can achieve by committing to a randomization over

posted prices. Clearly the seller cannot fare worse when we expand his set of possible mecha-

nisms to randomizations over posted prices. We motivate the following analysis with an exam-

ple.

Example 1. Assume that the agent’s valuations are in the interval [0, 1] (i.e. θ̄ = 1), and that the

seller knows that the expected value of the agent’s valuation is at least 3/4 (i.e. µ = 3/4). The

result from the preceding subsection implies that the seller’s optimal posted price is τ∗ = 1/2

and u(τ∗, F∗) = 1/4.

Now suppose that the seller instead of using a posted price commits to a fifty-fifty random-

ization over the prices τ1 = 1/3 and τ2 = 1/2.9 Given the seller’s randomization over prices,

nature will not put a strictly positive probability mass below τ1. Since the agent does not buy

the good for any valuation θ ≤ τ1, any such mass could be pushed up to τ1 to get a new distribu-

tion with an expected value strictly above µ. In the resulting distribution one could shift some

of the mass from above τ1 to τ1 and still have the expected value larger or equal to µ. Under

the new distribution the seller would, however, obtain a strictly smaller payoff. Expanding on

the above reasoning one can see that nature will only ever randomize over τ1, τ2 and θ̄ = 1.

It is easy to see that nature never chooses a distribution with a mean strictly above µ.

Therefore, there are just three possible candidates for the nature’s distribution. A distribution

on {τ1, 1}with mean µ, a distribution over {τ2, 1}with mean µ, and distributions with the support

{τ1, τ2, 1} and mean µ. It is easy to see, that one only needs to compare nature’s payoff from

the first two distributions. Namely, if one of them yields a higher payoff then the other, a

distribution with full support cannot be optimal.10

If nature randomizes over {1/2, 1} it must do so with probability 0.5, due to µ = 3/4. In

this case the seller’s payoff is 7/24. That is, with probability half he charges 1/3 and sells

irrespective of the type. With probability half he charges 1/2 and sells half of the time (when

the valuation is 1). On the other hand, when nature chooses a distribution on {1/3, 1} it assigns

the probability 3/8 to the value 1/3. In that case the seller’s payoff is 25/96. Nature, thus, fares

better when randomizing over {1/3, 1}. But even in that case the seller’s expected payoff is

9One can think of this mechanism as the seller committing to a randomization over prices. Then the randomiza-
tion is executed, and finally the buyer decides whether he wants to buy the object at the price.

10Suppose the distribution over {τ1, 1} is F1 and the distribution over {τ2, 1} is F2. If it is the case that nature gets
a higher payoff from F2 then F1 and a distribution F3 with a support {τ1, τ2, 1} is optimal, it has to be the case that
nature gets a higher payoff from F3 then from F1. Since F1’s support is contained in F3’s, one can write F3 as a
convex combination of F1 and some other distribution on {τ1, τ2, 1}, i.e., F3 = αF1 + (1 − α)F4. Since both F1 and
F3 have mean µ, so does F4. But then F4 is a viable distribution for nature that gives a strictly higher payoff than
F3, contradicting that the latter is optimal.
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strictly larger than his maxmin payoff of 0.25 achieved under the optimal (deterministic) price.

The above example shows that the seller benefits from posting a random pricing policy.

In the maxmin problem nature gets to choose its preferred strategy after the seller picks a

mechanism. When the seller posts a price nature has the upper hand due to the informational

advantage of knowing what action the seller chose. By randomizing over prices the seller

makes it harder for nature to target its reply. Thus stochastic pricing levels the playing field by

decreasing nature’s second mover advantage.

In the rest of this section we characterize the optimal random pricing policy. We describe

a random pricing policy by the cumulative distribution function over prices H that it induces.

We write H(θ̄) for the set of all distribution functions with support in [0, θ̄]. Let U(H, F) be

the principal’s expected payoff when he chooses the price distribution H and the buyer’s type

is drawn from the distribution F, i.e.

U(H, F) =

∫ θ̄

0
u(τ, F)dH(τ),

where

u(τ, F) = τ(1 − F(τ)).

The principal’s problem can now be written as

max
H∈H(θ̄)

inf
F∈F (µ,µ̄,θ̄)

U(H, F). (2)

Instead of directly tackling this problem, we solve for a saddle point of the payoff functional

U(H, F). That is, we look for a pair of distributions (F∗,H∗) such that

U(H∗, F) ≥ U(H∗, F∗) ≥ U(H, F∗)

holds for all feasible pairs (H, F). A standard result states that if such a saddle point exists,

then

H∗ ∈ arg max
H∈H(θ̄)

 inf
F∈F (µ,µ̄,θ̄)

U(H, F)
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and

U(H∗, F∗) = sup
H∈H(θ̄)

inf
F∈F (µ,µ̄,θ̄)

U(H, F).

One can think of the seller’s optimization problem also as the problem of finding a sub-

game perfect equilibrium of a sequential zero-sum game played between the seller and nature

in which the seller moves first and nature’s payoff is the negative of the seller’s.11 Instead

of solving directly for such a subgame perfect equilibrium we solve for a Nash equilibrium

(H∗, F∗) of the simultaneous move version of this zero-sum game, which corresponds to a sad-

dle point of the payoff functional U. The properties of a saddle point imply that the seller’s

equilibrium strategy in the simultaneous move game, H∗, is also his maxmin strategy (i.e. his

equilibrium strategy in the subgame perfect equilibrium of the sequential game). See Appendix

B for the corresponding formal result.

In what follows we derive properties of a saddle point, should one exist. As we go along,

we impose several additional assumptions to facilitate the derivation. These assumptions will,

of course, be verified before our analysis concludes.

Characterizing nature’s distribution F∗: Suppose there exists a saddle (H∗, F∗). If the

stochastic posted price H∗ solves

max
H(θ̄)

U(H, F∗),

then it must be the case that each element in its support yields the saddle value U∗ = U(H∗, F∗).

That is,

u(τ, F∗) = τ[1 − F∗(τ)]

must be constant in τ over the support of H∗.12

We conjecture that the support of H∗ is some interval [τ, θ̄] for τ such that 0 < τ < µ.

If this is the case, then this interval must also be the support of nature’s strategy F∗. To see

this, observe first that [τ, θ̄] must be contained in the support of F∗ for otherwise there would

be an open subset of [τ, θ̄] over which nature would not randomize and therefore F∗ would be

11In this game between, the seller has a possibility to commit. Therefore if the seller commits to a randomization
over prices, nature has to choose a distribution before the outcome of the realization is revealed.

12In the saddle (equilibrium ) of the auxiliary simultaneous move zero sum game between the seller and nature
the seller needs to be indifferent over all the prices in the support of his distribution. Of course, from a mechanism
design perspective (in the original problem) the seller has commitment and thus can offer mechanisms in which he
randomizes over prices even if he is not indifferent between them.
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constant. But then τ[1−F∗(τ)] would not be constant over the same open interval, contradicting

the assumption that [τ, θ̄] is the support of H∗. It remains to be argued that it is suboptimal for

nature to assign any probability mass to types strictly below τ. Notice that the expected revenue

generated by any type below τ is 0, which is the same expected revenue that is generated by

type τ itself. Therefore, shifting the probability mass from the interval [0, τ) to τ does not

alter the expected revenue of the seller. At the same time such a shift relaxes nature’s mean

constraint. This slack in the mean constraint can be exploited to shift probability mass that is

placed above µ down to τ. Doing so strictly reduces the seller’s expected revenue.

The above arguments imply that there is some U∗ > 0 such that [1 − F∗(τ)]τ = U∗ for all

τ ∈ (τ, θ̄), and F∗(τ) = 0 for all τ < τ. The first one of these two conditions is equivalent to

F∗(τ) = 1 − U∗/τ (3)

for all τ ∈ (τ, θ̄). Thus, once τ and U∗ are pinned down so is F∗. Consider first the choice of

U∗ for given τ. Notice that the seller can guarantee himself a payoff that is arbitrarily close

to τ by setting a price just below τ. This implies that U∗ ≥ τ. At the same time, in order for

the condition F∗(τ) = 1 − U∗/τ ≥ 0 to be satisfied for all τ ∈ (τ, θ̄), we must have U∗ ≤ τ.

Combining these two observations yields

U∗ = τ. (4)

Equations (3) and (4) have two important implications. First,

F∗(τ) = 0,

which means that there is no atom at τ. And second,

lim
τ↗θ̄

F∗(τ) = 1 − τ/θ̄,

meaning that F∗ has an atom of mass τ/θ̄ at θ̄.

We are left to determine τ. The type distribution F∗ derived in the preceding paragraphs

for a given τ, is a feasible type distribution only if it satisfies the mean constraint

∫ θ̄

0
θdF∗ = µ,

which after using the functional form of F∗ becomes,

τ
[
1 + ln(θ̄) − ln(τ)

]
= µ.
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The expression τ
[
1 + ln(θ̄) − ln(τ)

]
− µ is strictly negative for values of τ close to zero and

strictly positive for values of τ close to µ. Moreover, it is continuous and strictly increasing

in τ. Thus, there can be only one value of τ for which the above condition is satisfied. In the

proof of Proposition 4 below we show that solving for this unique value delivers

τ = −
µ

W−1(−µ/eθ̄)
,

where W−1 is the lower branch of the Lambert W function. For further details regarding the

Lambert W function see Appendix C.

Characterizing the seller’s randomization over prices H∗: Having determined the distri-

bution of the types, F∗, that renders the seller indifferent, we move to the question of how the

posted prices need to be distributed for F∗ to be an optimal choice for nature.

When characterizing nature’s strategy we required that the seller be indifferent between all

the points in the support of his strategy. This approach can not be applied in the same way when

characterizing the seller’s optimal strategy. That is, it does not make sense to require that the

nature be indifferent between all types, or degenerate distributions corresponding to them, in the

support of its distribution. Such degenerate distributions might not represent viable strategies

for nature due to the mean restriction. We show that if F∗ is to be nature’s best response, nature

has to be indifferent over a particular set of two-point-distributions. Furthermore, nature’s

indifference on this set implies indifference over all the distributions with mean µ and support

in [τ, θ̄]. We have encountered such distributions in the analysis of optimal (deterministic)

posted prices.

Definition 1. For each τ ∈ [τ, θ̄], let Fτ be a distribution that concentrates the probability mass

on at most two points and has an expected value µ. If τ ∈ (µ, θ̄], the support of Fτ are the two

points τ and τ; if instead τ ∈ [τ, µ), then the support of Fτ is {τ, θ̄}. Finally, if τ = µ, then µ is

the only element of the support of Fτ. We refer to Fτ as the τ−distribution.

The distribution Fτ, for τ < µ, assigns the largest possible weight to τ among all distribu-

tions with expected value µ. Indeed, the weight on τ ≤ τ < µ can be increased, while preserving

the mean at µ as long as it is possible to place sufficient mass somewhere above µ. Thus the

limit is reached if the entire mass which is not placed on τ itself is concentrated on the most

effective counterweight, namely the point θ̄. Similarly, for µ < τ ≤ θ̄ the best counterweight

in [τ, θ̄] is τ. In what follows we denote the weight that the τ-distribution assigns to τ by p(τ).
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For later reference:

p(τ) =


θ̄ − µ

θ̄ − τ
if τ ≤ τ < µ,

µ − τ

τ − τ
if µ < τ ≤ θ̄.

(5)

The following lemma shows that indifference over all τ−distributions is a necessary condi-

tion for the optimality of F∗.

Lemma 1. If the type distribution F∗ is a best response to a price distribution Ĥ, then Fτ is a

best response to Ĥ for every τ ∈ [τ, θ̄].

This result follows from the following observation. Suppose that there is a saddle point

where nature uses a distribution F∗ with support [τ, θ̄]. If the distribution Fτ gives a strictly

higher payoff to nature, then Fτ is a profitable deviation. If, on the other hand, it gives a strictly

smaller payoff than F∗, then so do distributions Fτ′ for every τ′ in a small enough neighborhood

of τ. But then nature would be better of by reducing the probability F∗ assigns to all such Fτ′ .13

Next we show that indifference over the set of all τ-distributions is not only necessary

but also sufficient for F∗ to be a best reply to a price distribution Ĥ. More specifically, the

following lemma tells us that indifference over all τ−distributions implies indifference over all

distributions with mean µ and support in [τ, θ̄]. It is easy to see that nature is worse off by

choosing a distribution that assigns mass below τ or has a mean above µ.

Lemma 2. Suppose that H is a price distribution such that every τ-distribution yields the same

payoff Ū, i.e. U(H, Fτ) = Ū, for all τ ∈ [τ, θ̄]. Then

U(H, F) = Ū,

for all F with mean µ and support in [τ, θ̄].

Lemmata 1 and 2 imply that type distribution F∗ is a best reply to a price distribution

H if and only if the latter yields the same payoff against all τ-distributions. We have yet to

determine, however, the price distribution that yields the same payoff for all Fτ.

13More precisely, F∗ can be written as a convex combination of a distribution G, which is a randomization over
Fτ′ for τ′ in a small neighborhood around τ, and some other distribution H. Notice that H also has the mean
µ. Since G yields a strictly smaller payoff to nature than F, H must yield a higher payoff, and thus represent a
profitable deviation. This is the continuous counterpart of what was discussed in footnote 10.
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Consider first the case where the buyer’s valuations are drawn from Fτ, for τ ≤ µ. Equation

(5) implies

p(τ) =
θ̄ − µ

θ̄ − τ
.

Moreover, assume that the distribution according to which the seller picks the price, H∗, is

twice differentiable.14 The seller’s payoff is

p(τ)
∫ τ

τ
tdH∗(t) + (1 − p(τ))

∫ θ̄

τ
tdH∗(t).

With probability p(τ) nature draws the value τ in which case the seller sells at a price t if t < τ.

With probability 1 − p(τ) nature draws valuation θ̄ and the seller sells for every price t < θ̄. If

the payoff is to remain constant across all τ-distributions, it must be the case that the derivative

of the payoff with respect to τ is equal to zero. That is,

p′(τ)
∫ τ

τ
th∗(t)dt + p(τ)τh∗(τ) − p′(τ)

∫ θ̄

τ
th∗(t)dt = 0,

must hold for all τ in (τ, µ). Equality (5) implies p(τ)/p′(τ) = θ̄ − τ, which can be used to

simplify the above equation to

(θ̄ − τ)τh(τ) −
∫ θ̄

τ
th∗(t)dt = 0. (6)

Condition (6), in turn, can hold for every τ only if the derivative of the left hand side is zero

over the entire interval (τ, µ):

(θ̄ − 2τ)h∗(τ) + (θ̄ − τ)τ
dh∗(τ)

dτ
+ τh∗(τ) = 0, (7)

or equivalently,

h∗(τ) + τ
dh∗(τ)

dτ
= 0. (8)

This latter expression is a simple differential equation the solutions of which are of the form

h(τ) =
a
τ
,

where a is a constant. Notice that (6) holds for any such solution. Thus, (7) is not only

14This assumption will be verified later, as will be the question of whether there exist equilibria in which H∗ is
not twice differentiable.
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necessary but also sufficient for (6).

For τ ∈ (µ, θ̄), the seller’s payoff when he adopts the price distribution H∗ and nature replies

with the distribution Fτ, τ ∈ (µ, θ̄), is

p(τ)
∫ τ

τ
th∗(t)dt.

Nature draws the valuation τwith probability p(τ) and valuation τwith the remaining probabil-

ity. In the first case the seller sells at a price t if t is below τ. In the second case, the seller does

not sell the good. Following the above procedure one obtains the same differential equation

h∗(τ) + τ
dh∗(τ)

dτ
= 0.

The preceding analysis implies that there is a twice differentiable price distribution against

which F∗ is a best response if and only if there is a constant a such that the function h(τ) = a/τ,

is a density, i.e., h integrates to 1 over [τ, θ̄].15 This pins down the constant a:

a =
1

ln(θ̄) − ln(τ)
> 0.

The following result characterizes the seller’s optimal behavior.

Proposition 3. Suppose the seller knows that valuations are drawn from a distribution with

a mean in [µ, µ̄] and with a support that is contained in [0, θ̄], where µ ≤ µ̄ ≤ θ̄. Then, it is

optimal for the seller to commit to a randomization over prices described by the distribution

H∗(τ) =


0, if τ < τ
ln(τ) − ln(τ)
ln(θ̄) − ln(τ)

, if τ ≤ τ ≤ θ̄,

where τ is the unique solution to τ
[
1 + ln(θ̄) − ln(τ)

]
= µ.

We have shown that (H∗, F∗) is a saddle point of the seller’s payoff functional given in (2).

Since in the saddle both the seller and nature randomize over the interval [τ, θ̄] and the seller

sells with probability one when he charges the price τ, his expected payoff is τ.

Interestingly, the randomization over prices H∗ makes the seller’s payoff dependent only on

the mean of nature’s distribution; bar a class of suboptimal distributions. More precisely, when

15Strictly speaking, the above argument establishes that the density must be a1/τ on [τ, µ), and a2/τ on [µ, θ̄], for
some two positive constants a1 and a2. It is then easy to verify that nature’s indifference over all binary distributions
Fτ implies a1 = a2.
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the seller randomizes over prices with density h(τ) = a/τ as specified above and the valuations

are distributed with a distribution F, the seller’s payoff is

∫ θ̄

τ
x(1 − F(x))h(x)dx = a

∫ θ̄

τ
(1 − F(x))dx

= aµ − a
∫ τ

0
(1 − F(x))dx,

where µ is the mean of distribution F, and where the last equality follows from
∫

(1−F(x))dx =

µ. It is thus optimal for nature to set F(τ) = 0 for all τ ≤ τ. In words, nature does not want

to assign positive probability to valuations below τ. But then the seller’s payoff is simply aµ.

The seller, in a sense, insures himself against the information about the parameters of the type

distribution he does not have by making his payoff dependent only on the mean.

Uniqueness. We strengthen the above result by showing that (H∗, F∗) is the unique saddle

of U and therefore H∗ the unique optimal strategy for the seller. We first argue that F∗ is the

only type distribution that can be part of a saddle point. Suppose that (Ĥ, F̂) is another saddle

point. Then, (H∗, F̂) is a saddle point too; this is a standard result, an immediate consequence,

for example, of Lemma 36.2 in Rockafellar (1997) (see also Appendix B). Since the support of

H∗ is the entire interval [τ, θ̄], the seller must be indifferent between all prices in the interval,

i.e.

(1 − F̂(τ))τ = U∗

for all τ ∈ [τ, θ̄]. We have seen earlier that F∗ is the only distribution function which satisfies

this condition. Therefore, it must be the case that F̂ = F∗.

Next we argue Ĥ = H∗. First we show that if (Ĥ, F̂) is a saddle point, then Ĥ is strictly

increasing and continuous on [τ, θ̄].

Lemma 3. If (Ĥ, F̂) is a saddle point then Ĥ has no mass points. Moreover, the support of Ĥ

is [τ, θ̄].

As mentioned before, if there is a second solution to the seller’s problem, Ĥ, then (Ĥ, F∗)

must also form a saddle. Moreover, the two saddles have the same value. Lemma 1 then implies

that when the seller uses Ĥ, all the τ-distributions must give the same payoff , i.e.,

p(τ)
∫ τ

τ
tdH(t) + (1 − p(τ))

∫ θ̄

τ
tdH(t) = U∗, (9)
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for all τ ∈ [τ, µ] and H ∈ {Ĥ,H∗} and

p(τ)
∫ τ

τ
tdH(t) = U∗, (10)

for all τ ∈ (µ, θ̄] and H ∈ {Ĥ,H∗} . Equality (10) implies
∫ τ

τ
tdĤ =

∫ τ

τ
tdH∗ for all τ ∈ (µ, θ̄].

Moreover, using
∫ θ̄

τ
tdĤ =

∫ θ̄

τ
tdH∗ with (9) yields

∫ τ

τ
tdĤ(t) =

∫ τ

τ
tdH∗,

for all τ ∈ [τ, µ]. Since Ĥ is continuous by Lemma 3, it follows that Ĥ(τ) = H∗(τ) for all

τ ∈ [τ, θ̄].16

The above analysis implies that the saddle point (H∗, F∗) identified in Proposition 3 is the

unique saddle point of the seller’s problem given by (2). The result in Appendix B then implies

that the seller’s optimal strategy is unique.

Proposition 4. The randomization over prices H∗ identified in Proposition 3 is the unique

optimal selling strategy for the seller when he believes that nature chooses a type distribution

with a mean in [µ, µ̄] and with a support in [0, θ̄].

4.2.1 Comparative statics

Throughout the analysis we fixed the lower bound on the mean of the distributions of valua-

tions, µ, and the upper bound on the buyer’s valuation θ̄. The analysis showed that the upper

bound on the mean of valuations, µ̄, plays no role. The seller’s pessimism leads him to expect

nature to choose a distribution with the smallest possible mean µ. Whether µ̄ is just slightly

above µ or equal to θ̄ is then irrelevant.

The lower bound on the mean µ allows for more interesting comparative statics. A higher µ

forces nature to assign more weight to higher types. Since those types are willing to pay higher

prices the seller’s payoff increases. In more detail: for any seller’s randomization over prices

his payoff cannot decrease if µ increases, and his payoff will increase if the randomization

over prices assigns positive probability to prices below µ. More can be said in the extreme

cases. When µ is close to zero there are virtually no restrictions left on the seller’s pessimism.

16Suppose two continuous distributions functions Ĥ and H∗ do not coincide. Then there must be points τ′ and τ′′

such that i) the two functions coincide on [τ, τ′]∪{τ′′} and ii) one strictly exceeds the other for every τ ∈ (τ′, τ′′). But
that means that if one conditions on prices below τ′′, one conditional distribution strictly first order stochastically
dominates the other. Consequently, the corresponding (conditional) expected prices must be strictly ranked as well.
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Consequently, his maxmin payoff must go to zero. On the other hand, when µ is close to θ̄ the

buyer’s valuation is with high probability close to θ̄, and so is therefore the seller’s payoff.

As θ̄ increases, the buyer can have higher valuation. However, the seller’s maxmin ex-

pected payoff decreases. An increase of θ̄, ceteris paribus, expands nature’s set of strategies. In

particular, the weight that any τ−extreme distribution with τ < µ assigns to τ increases because

the counterweight θ̄ is larger. But if nature is able to concentrate more probability mass on low

types the seller’s maxmin payoff must decrease. In fact, when θ̄ goes to infinity the seller’s

payoff collapses to zero.

Proposition 5. Denote the maximal payoff that the seller can achieve when nature has to

choose a price distribution from F (µ, µ̄, θ̄) by U∗(µ, µ̄, θ̄). U∗ is strictly increasing in µ, con-

stant in µ̄, and strictly decreasing in θ̄. Furthermore, U∗(0, µ̄, θ̄) = 0, U∗(θ̄, θ̄, θ̄) = θ̄ and

limθ̄→∞U∗(µ, µ̄, θ̄) = 0.

The above result is illustrated in the following figure. The panel on the left hand of the

figure shows the seller’s optimal payoff U∗ in dependence of µ with θ̄ fixed at 1.

Figure 1: U∗ as function of µ (left) and θ̄ (right)

The result on the behavior of U∗ has immediate implications for how the seller’s optimal

strategy, H∗ varies with the parameters µ and θ̄ . This is so because U∗ coincides with τ,

and from Proposition 3 we know that µ enters H∗ only through τ. The following proposi-

tion provides the details. We write H∗
µ,θ̄

for the optimal price distribution in the environment

characterized by the parameters µ and θ̄.17

17We drop µ̄ from the list of parameters since the optimal choices do not depend on it.
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Proposition 6. The following holds:

i) If µ′ > µ, then H∗
µ′,θ̄

first order stochastically dominates its counterpart H∗
µ,θ̄

.

ii) Let θ̄′ > θ̄. There exists a τ̃ such that H∗
µ,θ̄′

(τ) > (<)H∗
µ,θ̄

(τ) for all τ < (>)τ̃.

Part i) of the above proposition is illustrated in the following figure. The panel on the left

hand of the figure shows the price distributions corresponding to the parameter pairs (µ, θ̄) =

(1/3, 1) (blue curve) and (µ, θ̄) = (2/3, 1) (red curve). The right hand panel shows the type

distributions for the same two parameter pairs (with the same coloring).

Figure 2: Price distributions H∗1
3 ,1

and H∗2
3 ,1

.

4.3 Posted prices vs. randomized prices

Deterministic posted prices are desirable due to their simplicity. However, the above analysis

shows that the seller achieves a higher profit by using a randomized pricing policy. In this

section we study how large the loss is when the seller forgoes the possibility to randomize over

prices and how this loss varies with the parameters of the model.

In order to simplify the interpretation of the results we express the loss as a fraction of the

maximally achievable payoff (i.e. the payoff that the optimal randomized price generates), and

denote it by ρ(µ, θ̄). It is straightforward to show that both the optimal payoff with randomiza-

tions, U∗, and its counterpart in the case of (deterministic) posted prices are homogeneous of

degree one in (µ, θ̄). Therefore, we normalize θ̄ = 1 and analyze how ρ(µ, 1) varies with µ.
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Proposition 7. The relative loss ρ(·, 1) is strictly decreasing and satisfies ρ(0, 1) = 1 and

ρ(1, 1) = 0. That is, the principal’s relative loss is large (100%) when µ converges to 0, and

it vanishes only when his knowledge of the mean type implies knowledge of the exact type:

µ = θ̄ = 1.

When µ is close to 1 most of the probability over valuations must be close to 1 too, therefore

there is little loss in using deterministic prices. One might then think that the same result would

obtain when µ is close to the lower bound of the support, but this is not the case. The relative

loss is strictly decreasing and approaches 100% when µ approaches 0. This is a consequence of

the fact that when the seller offers a deterministic price τ, nature optimally uses a distribution

on {τ, 1}.

The above result is illustrated in the following figure.

Figure 3: The relative loss of foregoing the option to randomize

5 Variance

The bound on the support of nature’s distribution implicitly imposes a bound on the variance of

the same distribution. Therefore it is natural to explore what the optimal selling mechanism are

when in addition to bounding the mean of nature’s distribution, one also bounds the variance.

Suppose that on top of knowing that the mean of the type distribution belongs to the interval

[µ, µ̄] the seller also has some information about the dispersion. In particular, assume that he

knows that the variance is in the interval [σ2, σ̄2].
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From the analysis in the preceding sections we know that the relevant part of the infor-

mation with respect to the mean is its lowest possible value, µ. In particular, the beliefs that

determine the seller’s behavior have mean µ. This insight carries over to the analysis of this

section. Indeed, any type distribution with a mean µ̃ > µ can be shifted downward until it

satisfies the mean constraint with equality.18 Such a shift can at most lead to a reduction of the

variance (depending on whether or not the shift creates a mass point at 0) and could at most

decrease the seller’s payoff. In what follows we therefore only consider type distributions with

mean µ to start with. Given this restriction it is convenient to simplify notation by writing µ

instead of µ.

To derive the seller’s optimal mechanism we proceed again as in the case with a bound on

the highest type. That is, we look for a saddle point (H∗, F∗) of the seller’s payoff functional

U. We conjecture that the saddle has certain properties, derive how the saddle should behave

given the assumptions, and at the end verify that the derived object is indeed a saddle.

Suppose the seller randomizes over some interval [τ, τ̄]. If that is the case, then nature’s

distribution must be such that the seller is indifferent between all the prices in the same interval.

Following the reasoning from the case where there was an upper bound on the support of

nature’s distributions, it can be shown that the indifference implies that nature’s distribution F∗

must be of the form

F∗(τ) = 1 − τ/τ, (11)

for all τ ≤ τ < τ̄, with a mass point τ̄/τ at τ̄. In addition, nature’s distribution must satisfy the

mean constraint ∫ τ̄

τ
τdF∗ = µ,

which using the functional form for F∗ yields

τ[1 + ln(τ̄) − ln(τ)] = µ, (12)

and the variance constraint. We further conjecture that nature chooses a distribution with the

highest possible variance. We have shown before that when unrestricted by variance nature

can hold the seller to an arbitrarily low payoff by mixing over two points, for example 0 and

τ̂ where the latter is chosen very large, with a distribution that has mean µ. If the variance of

nature’s optimal distribution was strictly smaller than σ̄2, then the nature could achieve a higher

payoff by mixing this distribution with the before mentioned binary distribution and achieve a

18Of course, the probability mass distributed over [0, µ̃ − µ) has to be concentrated on the point 0.
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higher payoff. The variance constraint reads∫ τ̄

τ
τ2dF∗ − µ2 = σ̄2,

which, using the functional form for F∗, simplifies to

τ[2τ̄ − τ] − µ2 = σ̄2. (13)

The following lemma establishes that (12) and (13) have for each pair of parameters (µ, σ̄2) a

unique solution in terms of τ and τ̄. The assumption that the seller randomizes over an interval,

therefore, fully pins down the type distribution.

Lemma 4. The system comprised of equations (12) and (13) has a unique solution for each

pair (µ, σ̄2).

Thus far we have assumed that the seller randomizes over an interval, and derived nature’s

distribution that makes the seller indifferent over all prices in an interval. Notice that given the

restrictions on mean and variance, and assuming nature chooses a distribution with the highest

variance, nature’s distribution is uniquely pinned down. We are left to determine how the seller

should randomize in order for the distribution F∗ to be optimal for nature.

In the case with an upper bound on valuations, H∗ was chosen so that nature was indifferent

among all distributions with mean µ. To identify this price distribution we have exploited the

fact that general indifference holds for nature if it holds on the set of τ-distributions. This class

of distributions allowed for a one dimensional parametrization, which we used to characterize

the density of the price distribution through a simple differential equation.

An analogous approach works when a variance constraint is imposed. However, binary

distributions cannot be used here. A binary distribution corresponding to a τ too far above

or below µ might have too high a variance. The relevant set of elementary distributions over

which we need to guarantee indifference is a class of ternary distributions that have mean µ

and variance σ̄2. In particular, for each type τ ∈ [τ, τ̄] this class contains a distribution whose

support includes τ itself and two points from the set {τ, µ, τ̄} (ternary τ-distribution).

More precisely, the index set of (ternary) τ-distributions with mean µ and variance σ̄2, can

be split into three segments, [τ̄, τ1], [τ1, τ2] and [τ2, τ̄] depending on τ. For low values of τ,

τ ∈ [τ, τ1], those are the distributions on {τ, µ, τ̄}. For the intermediate values, τ ∈ [τ1, τ2];

the relevant distributions have the support {τ, τ, τ̄}. Finally, for the high values, τ ∈ [τ2, τ̄], the

distributions are on {τ, µ, τ}. The threshold τ1 is the largest τ in [τ, τ̄] for which there exists a
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distribution with support {τ, µ, τ̄}, mean µ, and variance σ̄2. On the other hand, τ2 is the smallest

τ ∈ [τ, τ̄] such that there exists a distribution with support {τ, µ, τ}, mean µ, and variance σ̄2.

The condition that the payoff across these distributions has to be constant can again be

translated into a differential equation for the density of the price distribution. Solving this

differential equation yields the result that the density is of the form

h(τ) = a/τ + b,

for τ ∈ [τ, τ̄], where a and b are some constants.

Two conditions are used to determine the constants a and b. The first is to incentivize

nature not to assign probability outside of [τ, τ̄]. The next lemma shows that this will be the

case precisely when a/τ̄ + b = 0, for a > 0 and b < 0. The second condition is the requirement

that h is indeed a density:
∫

h(t)dt = 1.

Lemma 5. Suppose that the seller randomizes over prices on the interval [τ, τ̄] with distribu-

tion that has density

h(τ) =
a
τ

+ b,

for τ ∈ [τ, τ̄], 0 otherwise, and h(τ̄) = 0. Then, for every nature’s distribution F that satisfies

the mean and the variance restriction, there exists a distribution F̂ with the same mean and

variance, such that the support of F̂ is contained in [τ, τ̄] and the distribution F̂ yields a smaller

payoff to the seller. Moreover, if F is nature’s distribution with support in [τ, τ̄], then the seller’s

payoff is

aµ + 0.5bµ2 + 0.5bσ2,

where µ is the mean and σ2 the variance of distribution F.

The above lemma shows that when the seller randomizes over prices with density h(τ) =

a/τ + b on [τ, τ̄] that satisfies h(τ̄) = 0, nature optimally chooses a distribution whose support

is contained in [τ, τ̄]. More importantly, the seller’s payoff in the latter case depends only

on the mean and the variance of nature’s distribution. With other words, the seller can by

randomizing over prices with a density h as specified above, in a sense, insure himself against

the information about the parameters of the distribution he does not have.
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The requirements h(τ̄) = a
τ̄ + b = 0 and

∫ t̄
t h(t)dt = 1 fully pin down the constants a and b:

a =
τ̄

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
,

b = −
1

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
.

It is easy to see that a > 0 and b < 0 using the inequality ln(x) ≤ x − 1, where the inequality is

strict for x > 0.

The upcoming result provides a characterization of the seller’s optimal pricing policy when

he has information only about the mean and the variance of the distribution over valuations.

Let H∗ and F∗ be two distributions with support [τ, τ̄] where the pair {τ, τ̄} is the unique

solution of the system

τ[1 + ln(τ̄) − ln(τ)] = µ,

τ[2τ̄ − τ] − µ2 = σ̄2.

Let

H∗(τ) =
τ̄[ln(τ) − ln(τ)] − (τ − τ)
τ̄[ln(τ̄) − ln(τ)] − (τ̄ − τ)

,

for τ ∈ [τ, τ̄], with H∗(τ) = 0 for τ < τ, and H∗(τ) = 1 for τ > τ̄, and

F∗(τ) = 1 −
τ

τ
,

for τ ∈ [τ, τ̄), and F∗(τ) = 1 for τ ≥ τ̄.

Proposition 8. If the seller believes that the buyer’s valuations are drawn from a distribution

with mean µ and variance in the interval [σ2, σ̄2] it is optimal for him to randomize over prices

with distribution H∗. The seller’s max-min expected payoff is τ.

Proof. We started by conjecturing that the seller randomizes over an interval. Assuming further

that nature chooses a distribution with the highest possible variance enabled us to derive the

unique nature’s distribution, F∗, that makes the seller indifferent over some interval. As a

byproduct we obtained the interval over which the seller randomizes, i.e. τ an τ̄.

Lemma 5 shows that when the seller randomizes with H∗ it is optimal for nature to choose

a distribution with a support in [τ, τ̄]. Moreover, once nature chooses such a distribution the

seller’s payoff depends only on the mean and the variance of the distribution. In particular it is

increasing in the mean and decreasing in the variance. The distribution F∗ with the mean σ̄2
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therefore minimizes the seller’s payoff, given his randomization over the prices, and is therefore

optimal for nature. The pair (H∗, F∗) is thus indeed a saddle. �

Uniqueness. Here we argue that the above established saddle, and therefore the optimal

selling strategy for the seller, are unique. Suppose that there was another saddle (Ĥ, F̂). Then

(H∗, F̂) is a saddle too. The reasoning behind why F̂ = F∗ is the same as in the case of upper

bound on the support. The idea is, the support of H∗ is [τ, τ̄], therefore this must also be the

support of F̂. But then the seller must be indifferent over all the prices in the interval. This pins

down F̂. In particular, F̂ = F∗.

On the other hand, if (Ĥ, F̂) is a saddle, so is (Ĥ, F∗). In a result paralleling Lemma 1

we show that if the distribution of valuations F∗ is a best response to a price distribution Ĥ,

then nature is indifferent between ternary distributions Fτ for every τ ∈ [τ, τ̄] (when the seller

chooses Ĥ).

Lemma 6. If the type distribution F∗ is a best response to a price distribution Ĥ, then also Fτ

is a best response to Ĥ for every τ ∈ [τ, τ̄].

The above Lemma implies

pτ(τ)
∫ τ

τ
tdĤ + pτ(µ)

∫ µ

τ
tdĤ + pτ(τ̄)

∫ τ̄

τ
tdĤ = U∗,

for all τ ∈ [τ, τ1], where pτ(x), for x ∈ {τ, µ, τ̄}, is the probability the ternary distribution Fτ

assigns to point x; similar expressions are obtained for τ ∈ [τ1, τ2] and τ ∈ [τ2, τ̄]. The left

hand side of the above equation can, therefore, be thought of as a constant function and is thus

differentiable in τ. Since pτ(·) is differentiable in τ for τ ∈ (τ, τ1) one can show that H must be

differentiable. Even more, we argue that the fact that the left hand side of the above equation

is identical to U∗ implies that H is three times differentiable.

Lemma 7. If (F∗, Ĥ) is a saddle, then Ĥ must be three times differentiable.

Differentiating (19) three times one obtains a differential equation, the solutions of which

are of the form h(τ) = a/τ + b, for τ ∈ [τ, τ̄] and 0 elsewhere.

Lemma 8. If (Ĥ, F∗) is a saddle, then Ĥ must have a density of the form h(τ) = a/τ + b on

[τ, τ̄] and 0 otherwise.
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Thus far we have shown that in any saddle (Ĥ, F̂), F̂ = F∗ and Ĥ must have density of the

form h(τ) = a/τ + b. Proposition 8 showed that for

a =
τ̄

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
,

b = −
1

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
,

one obtains an optimal distribution. Here we show that this is the only combination of a and b

that yields an optimal distribution over prices.

Lemma 9. Let (Ĥ, F̂) be a saddle, where Ĥ has a density of the form h(τ) = a/τ + b on [τ, τ̄]

and 0 otherwise. Then

a =
τ̄

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
,

b = −
1

τ̄[ln(τ̄) − ln(τ)] − [τ̄ − τ]
.

The above sequence of lemmata delivers the following result.

Proposition 9. The distribution over prices H∗ is the unique optimal seller’s distribution.

Proof. Suppose there was a saddle (Ĥ, F̂) , (H∗, F∗). We have argued in the text that F̂ = F∗.

Moreover, (Ĥ, F∗) must also be a saddle. Therefore Ĥ is three times differentiable by Lemma

7. In turn, Ĥ has a density of the form h(τ) = a/τ+ b, for τ ∈ [τ, τ̄] and 0 otherwise by Lemma

8. Constants a and b are then pinned down by Lemma 9. Therefore Ĥ = H∗, which contradicts

(Ĥ, F̂) , (H∗, F∗). �

Comparative Statics. The seller’s optimal strategy is independent of σ2. What matters is

the upper bound on the variance of the type distribution σ̄2. The seller fears nature choosing

a distribution that places most of the weight on very low types. To preserve the mean µ, it

must pick with some probability large types. Thus, what the seller fears are strongly dispersed

distributions which are characterized by a large variance. The following result formalizes the

above idea.

Proposition 10. The seller’s payoff is strictly decreasing in σ̄2.
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Proof. Since an increase of σ̄2 means that the variance constraint on nature is relaxed it follows

that nature must be able to do weakly better against any strategy of the seller. In particular, this

is true also vis-a-vis the equilibrium pricing strategy. Thus, the seller’s payoff cannot possibly

increase as σ̄2 increases.

In order to show that it must actually strictly decrease remember that the seller’s payoff is

τ and notice that the condition

τ
[
1 + ln(τ̄) − ln(τ)

]
= µ

implies

dτ
dσ̄2

[
1 + ln(τ̄) − ln(τ)

]
+ τ

[
dτ̄

dσ̄2

1
τ̄
−

dτ
dσ̄2

1
τ

]
= 0,

which can be rewritten in the following more compact format (using 1 + ln(τ̄) − ln(τ) = µ/τ)

dτ
dσ̄2

µ − τ

τ
+

dτ̄
dσ̄2

τ

τ̄
= 0

Therefore, whenever τ is constant in σ̄2 so is τ̄. But if neither of the two limits of the support

of F∗ change, then F∗ itself remains unchanged and so also its variance stays the same. A

constant variance of F∗ is in contradiction with the fact that the variance constraint must be

binding. �

While the seller attaches no value to information about the mean only, as long as he con-

templates as possible all non-negative valuations, additional information about the mean or the

variance can have an effect on the seller’s payoff when he has some information about the mean

and the variance to start with.

An interesting implication of Proposition 8 is that whenever the variance constraint is bind-

ing a high enough upper bound on the set of possible types can be imposed without altering

the problem’s solution or value. Thus, in a sense one can replace the bounds on the set of

feasible types with a bound on the variance of the types and vice versa. More precisely, in the

problem where the seller knows the mean belongs to the interval [µ, µ̄] and the upper bound on

the valuations is θ̄, the seller and nature randomize over the interval [τ, θ̄] where τ is defined by

τ
[
1 + ln(θ̄) − ln(τ)

]
= µ.

If the seller knew instead that the mean belongs to the interval [µ, µ̄] and the variance to [σ2, σ̄2]
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he would randomize over the interval [τ, τ̄] where τ and τ̄ are defined by

τ[1 + ln(τ̄) − ln(τ)] = µ,

τ[2τ̄ − τ] − µ2 = σ̄2.

The two intervals of randomization coincide when τ̄ = θ̄ and therefore σ̄2 = τ[2θ̄ − τ] − µ2.

Furthermore, in both cases the seller’s payoff is precisely τ. Therefore the seller knowing

µ ∈ [µ, µ̄] and that the possible valuations are in [0, θ̄] is payoff equivalent for the seller to

knowing that µ ∈ [µ, µ̄] and σ2 ∈ [σ2, σ̄2] for the σ̄2 as derived above (and any σ2 ≤ σ̄2).

This notwithstanding, the two types of constraints are not equivalent. In fact, there is no pair

θ̄ and σ̄2 such that the σ̄2-constrained and the θ̄ constrained problem yield the same solution to

the seller’s problem. The following proposition elaborates on this point. It states that whenever

the two types of constraint lead to the same support for the price and type distributions, the price

distribution that corresponds to the case with a bound on the type set first order stochastically

dominates the price distribution that corresponds to the case with a constraint on the variance.

Therefore, one could discern from the data whether the seller’s information is about the mean

and the variance or about the mean and the upper bound on the valuations.

Proposition 11. Let µ, θ̄ and σ̄2 be such that the pairs (µ, θ̄) and (µ, σ̄2) induce the same

supports for the price distribution [τ, θ̄]. If the two optimal price distributions are denoted by

H∗
θ̄

and H∗
σ̄2 , respectively, then for all τ < τ < θ̄,

H∗
σ̄2(τ) > H∗

θ̄
(τ).

The above result is illustrated in the following figure which shows the price distributions

for the pairs (µ, θ̄) = (1/2, 1) and (µ, σ2) = (1/2, 0.088).
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Figure 4: Optimal price distributions: bounded variance (blue), bounded type set (red)

6 Conclusion

We showed that the seller who only has information about the mean expects payoff zero re-

gardless of which mechanism he uses. However, the choice of the seller’s mechanism does

become important when he has information both about the mean and the variance. In that case

more information benefits the seller. However, even when he knows the mean and the variance

he entertains as possible a rather “large” set of distributions. To connect the model with the

Bayesian setting it would be of interest to explore the seller’s optimal mechanisms when he

also has the information about higher order moments. This is left for future research.
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7 Appendix A

Proof of Proposition 1. Let H be a distribution over prices for which
∫ ∞

0 τdH exists and is

finite. Let F̃ be the binary distribution that assigns probability p to some θ > 0, probability

1 − p to 0, and has mean µ; thus, p =
µ

θ . The seller’s payoff from H can be bounded as follows

inf
F∈F (µ,µ̄)

U(H, F) ≤ U(H, F̃)

= p
∫ θ

0
tdH

=
µ

θ

∫ θ

0
tdH

≤
µ

θ

∫ ∞

0
tdH,

where the second line is due to nature randomizing over values 0 and θ, and the fact that the

seller receives the price t when the said price is below θ.

Since θ can be chosen arbitrarily large and
∫ ∞

0 tdH is finite, the upper bound on the seller’s

payoff can be made arbitrarily small. That is, infF∈F (µ,µ̄) U(H, F) = 0. �

Proof of Lemma 1. If for some τ ∈ [τ, θ̄], Fτ gives nature a strictly higher payoff against Ĥ

than F∗, then F∗ is not a best response to Ĥ. Thus if F∗ is to form a saddle with Ĥ, then it must

be the case that U(Ĥ, Fτ) ≥ U(Ĥ, F∗) for every τ ∈ [τ, θ̄].

Next we argue that no Fτ can give nature a strictly smaller payoff than F∗. Suppose,

to the contrary, that U(Ĥ, Fτ̂) > U(Ĥ, F∗) for some τ̂ ∈ [τ, µ) (the case τ̂ ∈ [µ, θ̄] is very

similar and is thus omitted). We claim that this implies that there is a (small) ε > 0, such that

U(Ĥ, Fτ′) > U(Ĥ, F∗) holds for every τ′ ∈ (τ̂, τ̂ + ε). Since

U(Ĥ, Fτ) = p(τ)
∫ τ

τ
xdĤ(x) + (1 − p(τ))

∫ θ̄

τ
xdĤ(x),

it follows that for every τ′ > τ̂,

U(Ĥ, Fτ̂) − U(Ĥ, Fτ′) = (p(τ′) − p(τ̂))
∫ θ̄

τ̂
xdĤ(x) − p(τ′)

∫ τ′

τ̂
xdĤ(x).

When τ′ converges to τ̂ from above the first term of the above expression vanishes, while

the second may not if Ĥ has atoms at τ̂ or around it. Therefore, either U(Ĥ, Fτ′) converges

to U(Ĥ, Fτ) (when Ĥ is atomfree around τ̂) or, U(Ĥ, τ) < U(Ĥ, τ′) for every τ′ > τ̂ that is
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sufficiently close to τ̂; notice that in this latter case, Fτ′ gives nature a strictly lower payoff

against Ĥ than F∗. Thus, in either of the two cases there exists an ε > 0 such that nature

obtains a smaller payoff from Fτ′ for τ′ ∈ [τ̂, τ̂ + ε) than it does from F∗. Let τl = τ̂ and

τh = τ̂ + ε/2.

The next step of our argument is to show that F∗ can be written as a convex combination of

two distribution functions, Fα and G, where the latter is defined as a mixture of Fτ′-distributions

with τ′ ∈ [τl, τh]. Thus, by construction G is a type distribution that yields to nature a strictly

lower payoff when played against Ĥ than F∗ does. But then Fα must be a distribution that does

better against Ĥ than F∗, meaning that (Ĥ, F∗) cannot be a saddle of U.

Let

G(t) =
1

τh − τl

∫ τh

τl

Fτ(t)dτ,

for t ∈ [0, θ̄], be a uniform mixture over Fτ for τ ∈ [τl, τh]. It is easy to verify that G is a

distribution on [0, θ̄] with mean µ. Using the definitions of Fτ one can rewrite G as follows

G(t) =
1

τh − τl

∫ t

τl

pτdτ

=
1

τh − τl

∫ t

τl

θ̄ − µ

θ̄ − τ
dτ,

for t ∈ [τl, τh] and G(t) = 1
τh−τl

∫ τh

τl

θ̄−µ

θ̄−τ
dτ, for t ∈ (τh, θ̄) (also, G(t) = 0 for t < τl). For later

reference, the derivative

G′(t) =
1

τh − τl

θ̄ − µ

θ̄ − t

attains its maximum on [τl, τh] at τh where G′(τh) = (θ̄ − µ)/[(θ̄ − τh)(τh − τl)].

Define

Fα =
1

1 − α
[F∗ − αG].

We will argue that for sufficiently small α, Fα is a distribution. Clearly Fα(0) = 0 and Fα(θ̄) =

1. Since both F∗ and G are right continuous so must be Fα. The main point is to show that Fα

is nondecreasing for small enough (but positive) α. Towards that, notice that

F′α(t) =
1

1 − α
[F′(t) − αG′(t)],

at all the points of differentiability of F and G. The critical region of t is [τl, τh] and the point
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t = θ̄ where Fα exhibits a jump that it inherits from F∗ and G∗. Below this interval G = 0 and

above it G is again constant except for the jump at θ̄.

For t ∈ [τl, τh]

F′α(t) =
1

1 − α
[F′(t) − αG′(t)]

=
1

1 − α

τt − α 1
τh − τl

θ̄ − µ

θ̄ − t


≥

1
1 − α

 ττh
− α

1
τh − τl

θ̄ − µ

θ̄ − τh

 ,
where the second equality uses the above derived expressions for F′ and G′, and the inequality

is due to the fact that the derivative F′(t) is minimized and the derivative G′ maximized at τh.

The expression in the last bracket is clearly positive for α small enough. Notice also that for α

small enough the jump that Fα exhibits at θ̄ must be an upward jump.

Now fix some (sufficiently small but strictly positive) α such that Fα is a distribution func-

tion and rewrite the defining equation of Fα as follows

F∗ = (1 − α)Fα + αG.

Since both G and F∗ have mean µ this equation implies that also Fα must have mean µ. There-

fore, Fα represents a viable strategy for nature. Since playing G against Ĥ yields for nature

a strictly smaller payoff than playing F∗, it must be the case that Fα yields a strictly higher

payoff against Ĥ than F∗ does. But then F∗ cannot be the best reply to Ĥ which contradicts our

starting assumption. �

Proof of Lemma 2. Let H be as in the statement of the result and take any type distribution

F ∈ F (µ, µ̄, θ̄) with the support in [τ, θ̄]. The seller’s expected payoff from (H, F) is

U(H, F) =

∫ θ̄

τ

∫ τ

τ
tdH(t)dF(τ). (14)

By assumption for every τ the payoff under the corresponding τ-extreme distribution is equal

to some constant c. That is

p(τ)
∫ τ

τ
tdH(t) + (1 − p(τ))

∫ θ̄

τ
tdH(t) = c for all τ ≤ τ < µ,

p(τ)
∫ τ

τ
tdH(t) = c for all µ < τ ≤ θ̄.
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Observe that the second line implies that the term
∫ θ̄

τ
tdH(t) in the first line can be replaced by

c/p(θ̄). Thus, the integrand of the outer integral in (14) is equal to

∫ τ

τ
tdH(t) =


c

p(τ)
−

1 − p(τ)
p(τ)

c
p(θ̄)

if τ ≤ τ < µ

c
p(τ)

if µ < τ ≤ θ̄.
(15)

Using (5) it is straightforward to show that both expressions on the right hand side simplify to∫ τ

τ
tdH(t) = c

τ − τ

µ − τ
.

Substituting this into (14) we obtain

U(H, F) =

∫ θ̄

τ

∫ τ

τ
tdH(t)dF(τ) =

c
µ − τ

∫ θ̄

τ
(τ − τ)dF(τ) = c, (16)

where the third equality follows from the fact that the expectation of τ under F is equal to

µ. �

Proof of Proposition 3. In the text preceding Proposition 3 we established that (H∗, F∗) is a

saddle. The fact that H∗ is then optimal for the seller follows from the result in Appendix

B. �

Proof of Lemma 3. Step 1: No mass point.

If (Ĥ, F̂) is a saddle point, so is (Ĥ, F∗), which in turn implies U(H∗, F∗) = U(Ĥ, F∗).

Suppose Ĥ has a mass point, at τ̂, and let ∆ = Ĥ(τ̂) − H(τ̂−) be the size of the mass point at τ̂.

The mass point at τ̂ implies that nature’s payoff from playing Fτ̂ is larger than its payoff from

playing Fτ for τ ∈ (τ̂, τ̂+ ε) for ε > 0 small enough. To see this, assume first that τ̂ < µ. In this

case the seller’s payoff when he randomizes according to Ĥ and nature replies with Fτ, is

p(τ)
∫ τ

τ
xdĤ(x) + (1 − p(τ))

∫ θ̄

τ
xdĤ(x),

where p(τ) = (θ̄ − µ)/(θ̄ − τ) is the probability that nature assigns to τ.

Therefore, for τ ∈ (τ̂, τ̂ + ε)

U(Ĥ, Fτ̂) − U(Ĥ, Fτ) = (p(τ̂) − p(τ))
∫ θ̄

τ̂
xdĤ(x) − p(τ)

∫ τ

τ̂
xdĤ(x).
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The first term can be made arbitrarily small by choosing ε small enough. The integral in the

second term, on the other hand, is bounded below by τ̂∆ because of the atom at τ̂. Therefore,

if ε is small enough then U(Ĥ, Fτ̂) −U(Ĥ, Fτ) < 0. Since nature’s objective is to minimize the

seller’s payoff, this inequality implies that nature is not not indifferent among all τ-distributions

when facing a seller who adopts the price distribution Ĥ. But then (Ĥ, F∗) cannot be a saddle

due to Lemma 1.

A perfectly analogous argument applies also in the case θ̄ > τ̂ ≥ µ. In principle this leaves

the possibility of a jump at θ̄. But the price p = θ̄ generates a zero revenue and is thus never

optimal. We can therefore conclude that Ĥ cannot exhibit any mass points.

Step 2: The support of Ĥ is [τ, θ̄].

The seller has no incentive to charge a price larger than θ̄ with positive probability (no type

buys at such a price), or a price lower than τ. In the latter case, the seller would be strictly better

off by increasing the price to τ, in which case he would still sell the good with probability one.

The support of Ĥ is therefore contained in [τ, θ̄].

Now suppose that there is some hole in the support. We argue that F∗ then cannot be

an optimal response to Ĥ since nature can improve upon it by reallocating the mass that F∗

assigns to the hole. Suppose that nature first shifts the mass that F∗ assigns to the hole to

the upper limit of the hole. Doing so yields a type distribution F′ which when played against

Ĥ generates the same payoff as F∗. But then nature can manipulate F′ further by shifting a

strictly positive share of the mass that F′ concentrates on the interval (µ, θ̄] to the lowest type τ

to obtain distribution F′′ with the mean µ. Clearly, this second shift strictly reduces the seller’s

payoff. �

Proof of Proposition 4. The result was proven in the text preceding the statement of the result.

Here we show how τ can be expressed as a function of Lambert function. The condition that

defines the lower limit of the support of the distributions H∗ and F∗ can be solved to yield the

expression

τ = −
µ

W−1(−µ/eθ̄)
.

To show this, remember that the defining condition of τ is

τ(1 + ln(θ̄) − ln(τ)) = µ.

Dividing both sides of the equation by τ and evaluating them with the exponential function we
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can rewrite this condition as follows

τ−1eθ̄ = eµτ
−1

⇔ −eθ̄(−µτ−1) = µeµτ
−1

⇔ −µτ−1e−µτ
−1

= −
µ

eθ̄
.

Remember that the lower branch of the Lambert W function, W−1, is defined on the interval

(−1/e, 0) and describes the corresponding part of the inverse of the functionz, defined by z(W) =

WeW . Using this function we can rewrite the above equation as follows

z
(
−
µ

τ

)
= −

µ

eθ̄
⇔ W−1

(
−
µ

eθ̄

)
= −

µ

τ

which is easily solved for τ

τ = −
µ

W−1
(
−
µ

eθ̄

) .
�

Proof of Proposition 5. U∗ coincides with τ. Taking the partial derivative of τ with respect to

µ yields

∂τ(µ, θ̄)
∂µ

=

[
−W−1(−µ/eθ̄) −

µ

eθ̄
W′−1(−µ/eθ̄)

]
/
[
W−1(−µ/eθ̄)

]2
.

From the implicit definition of the function W1 through the equation

z = W−1(z)eW−1(z),

for z ∈ [−1/e, 0), it immediately follows that

W′−1(z) =
W−1(z)

z[1 + W−1(z)]
.

Since W1 is strictly smaller than −1 on its entire domain we can conclude that its derivative,

W′
−1, must be strictly negative everywhere. This in turn means that ∂τ/∂µ is the sum of two

strictly positive expressions und thus must be strictly positive.

The partial derivative of τ with respect to θ̄ is

∂τ(µ, θ̄)
∂θ̄

=

[
µ2

eθ̄2
W′−1(−µ/eθ̄)

]
/
[
W−1(−µ/eθ̄)

]2
.

Thus this partial derivative shares the sign of W′
−1, which means that it is negative. �
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Proof of Proposition 6. Part i) is a rather immediate implication of Proposition 5. Both distri-

bution functions are everywhere decreasing in τ (except at the upper limit τ = θ̄). Since τ is an

increasing function of µ the result follows.

As for part ii) notice that

∂H∗(τ; µ, θ̄)

∂θ̄
= −

τθ̄
τ

[
ln(θ̄) − ln(τ)

]
−

1
θ̄

[
ln(τ) − ln(τ)

]
,

where τθ̄ indicates the partial derivative of τ with respect to θ̄. Both terms of the difference are

continuous in τ. The first one is strictly decreasing in τ and the second one is strictly increasing

in τ. Finally, for τ = τ the first term is strictly positive while the second one is equal to zero.

The converse is true for τ = θ̄. Thus, there must exist exactly one point, τ̃ were the derivative

is equal to zero. For smaller values of τ the derivative must be strictly positive and for larger

values it is strictly negative.

�

Proof of Proposition 7. The relative loss ρ is given by

ρ(µ, 1) =

τ −
(
1 −

√
1 − µ

)2

τ
.

Using τ = −µ/W−1(−µ/eθ̄) we can rewrite ρ as follows

ρ(µ, 1) = 1 +

W−1(−µ/e)
(
1 −

√
1 − µ

)2

µ
.

Since W−1(−1/e) = −1 it immediately follows that ρ(1, 1) = 0.

As for the behavior of ρ(µ, 1) when µ goes to 0 notice that we can write

ρ(µ, 1) = 1 +
α(µ)

β(µ)

where

α(µ) =

(
1 −

√
1 − µ

)2

µ
and β(µ) =

1
W−1(−µ/e)

.

Using L’Hopital’s Rule it can be shown that α(µ) → 0 as µ converges to 0. Moreover, since

limx↑0 W−1(x) = −∞ it follows that also β(µ) tends to zero when µ goes to zero. To compute the
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limit of the ratio of α and β we therefore apply L’Hopital’s Rule once more. Doing so yields

lim
µ→0

α(µ)

β(µ)
= lim

µ→0

α′(µ)

β′(µ)
=

1/4
−∞

= 0.

In order to see that we are entitled to apply l’Hopital’s rule notice that both α and β are dif-

ferentiable at all points µ > 0. That β is differentiable at all µ follows from the fact that the

(lower branch of the) Lambert W function is differentiable on (−1/e, 0). Moreover, it is also

straightforward to verify that β′(µ) , 0 for all µ > 0.

It remains to be shown that ρ(·, 1) is decreasing . Computing the derivative of ρ(·, 1) yields

∂ρ(µ, 1)

∂µ
=

W−1(−µ/e)
[
1 −

√
1 − µ

] [
W−1(−µ/e)

(
1 −

√
1 − µ

)
+ µ

]
[
1 + W−1(−µ/e)

]
µ2

√
1 − µ

.

Since W−1 ≤ −1 this expression is negative if and only if

−W−1(−µ/e) >
µ(

1 −
√

1 − µ
) . (17)

Both sides of this inequality are decreasing functions of µ and both go to 1 as µ goes to 1.

Moreover, while the rhs goes to 2 as µ approaches 0, the lhs diverges to ∞. Thus, the above

inequality holds at least in a neighborhood of 0. Suppose that contrary to our hypothesis there

is some µ′ ∈ (0, 1) at which the two sides of the inequality cross (are equal), i.e.

−W−1(−µ′/e) =
µ′(

1 −
√

1 − µ′
) .

At µ′ the slope of the lhs is

d(−W−1(−µ′/e))

dµ
= −

W−1(−µ′/e)

µ′
(
1 + W−1(−µ′/e)

) = −
1√

1 − µ′
(
1 −

√
1 − µ′

) .
The slope of the rhs is instead

−2 + µ′ + 2
√

1 − µ′

2
(
1 −

√
1 − µ′

)2 √
1 − µ′
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Dividing this expression by the slope of the lhs we obtain

1 −
µ′

2
(
1 −

√
1 − µ′

) < 1.

Thus, at every point of intersection of the two sides of (17) the lhs is decreasing faster than the

rhs. Consequently, there can be at most one point of intersection. Since the two curves meet at

µ = 1 it follows that there can be no intersection point in (0, 1). �

Proof of Lemma 4. Solving (13) for τ̄ yields

τ̄ =
µ2 + σ̄2

2τ
−
τ

2
.

Plugging this expression back into (12) delivers

τ

[
1 + ln

(
µ2 + σ̄2

2τ2 +
1
2

)]
= µ.

Write f (τ) for the expression on the lhs of the above equation. Since for τ = µ the expression

under the logarithm is larger than 1 it follows that f (µ) > µ. On the other hand, if τ tends to

zero then f (τ) converges to the limit of τ ln(1/τ2). Using L’Hopital’s rule it can be shown that

the latter expression goes to 0 as τ converges to 0. Since f is a continuous function of τ we can

conclude that there must be some admissible value of τ such that f (τ) = µ.

As for uniqueness of the solution it is more convenient to first solve (12) for τ and then

subsitute it into (13). We know from the preceding section that (12) has a unique solution in τ

and that this solution is given by τ(τ̄, µ) = −µ/W−1(−µ/τ̄e).

Substituting this solution into (13) we obtain

τ(τ̄, µ)[τ̄ − τ(τ̄, µ)] = σ̄2 + µ2. (18)

If the lhs of this equation is strictly increasing in τ̄ then the equation can have at most one

solution. The derivative of the lhs of (18) with respect to τ̄ is positive if and only if

τ′τ̄

τ
− τ′ ≥ −1.

where τ′ denotes the partial derivative of τ(τ̄, µ) with respect to τ̄. Using the definition of τ(τ̄, µ)
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this inequality can be rewritten as

−2
τ̄

µ
W−1(−µ/τ̄e) ≤

τ̄

µ
[W−1(−µ/τ̄e)]2 + 1.

Since W−1(−1/e) = −1, it follows that this inequality is satisfied with equality at the lowest

possible value for τ̄, τ̄ = µ. For τ̄ > µ, W−1(−µ/τ̄e) < −1. Thus, both sides of the inequality

increase with τ̄. But due to the quadratic expression on the rhs, that side grows faster than the

lhs, therefore we can conclude that for every µ, τ(·, µ) is strictly increasing. �

Proof of Lemma 5. Suppose nature chooses a distribution F. The seller’s payoff is then∫ τ̄

τ

x(1 − F(x))h(x)dx =

∫ τ̄

τ

(a + bx)(1 − F(x))dx

=

∫ ∞

0
(a + bx)(1 − F(x))dx −

∫ τ

0
(a + bx)(1 − F(x))dx −

∫ ∞

τ̄

(a + bx)(1 − F(x))dx

= aµ + 0.5bσ2 + 0.5bµ2 −

∫ τ

0
(a + bx)(1 − F(x))dx −

∫ ∞

τ̄

(a + bx)(1 − F(x))dx,

where µ is the mean and σ2 the variance of distribution F, and the last equality follows from∫ ∞

0
xk(1 − F(x))dx =

1
k + 1

∫ ∞

0
xk+1dF,

which implies
∫ ∞

0 (1 − F(x))dx = µ and
∫ ∞

0 x(1 − F(x))dx = (σ2 + µ2)/2.

In the next couple of lines we focus on the last two terms of the seller’s payoff; integrals∫ τ

0 (a + bx)(1 − F(x))dx and
∫ ∞
τ̄

(a + bx)(1 − F(x))dx. Assumption a/τ̄ + b = 0 together with

the requirement that h is a density (thus non-negative on [τ, τ̄]) implies a > 0, and therefore,

a + bτ < 0 for τ > τ̄, and a + bτ > 0 for τ ≤ τ. Nature, who wishes to minimize the

seller’s payoff, therefore optimally sets F(τ) = 0 for τ ≤ τ and F(τ) = 1 for τ ≤ τ̄. The

above calculation implies that for every distribution F that satisfies the mean and the variance

restriction, nature prefers a distribution F̂ with the same mean and variance and support within

the interval [τ, τ̄]. It is easy to see that such an F̂ always exist.

Next we focus on distributions whose support is within [τ, τ̄]. Let F be some such distribu-

tion. The seller’s payoff then simplifies to

aµ + 0.5bµ2 + 0.5bσ2.

Since a and b are such that a + bτ > 0 for τ ∈ [τ, τ̄), the seller’s payoff is increasing in the

mean on [τ, τ̄), implying that nature wants to decrease the mean as much as possible. On the

other hand, b < 0 implies that nature wants to increase the variance until it hits the upper bound
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σ̄2. �

Proof of Lemma 6. If for some τ ∈ [τ, τ̄], Fτ gives nature a strictly higher payoff against Ĥ

than F∗, then F∗ is not a best response to Ĥ. Thus if F∗ is to form a saddle with Ĥ, then it must

be the case that U(Ĥ, Fτ) ≥ U(Ĥ, F∗) for every τ ∈ [τ, τ̄].

Next we argue that no Fτ can give nature a strictly smaller payoff than F∗. Suppose, to the

contrary, that U(Ĥ, Fτ̂) > U(Ĥ, F∗) for some τ̂ ∈ [τ, τ1) (the two cases with τ̂ ≥ τ1 are very

similar and thus omitted). We claim that this implies that there is a (small) ε̄ > 0, such that

for every ε < ε̄ the ternary distribution with support {τ̂ + ε, µ + ε, τ̄}, mean µ and variance σ̄2,

generates a strictly smaller payoff against Ĥ than F∗. With a slight abuse of notation we write

Fε for this type of ternary distribution. Notice that

U(Ĥ, Fε) = pε(τ̂ + ε)
∫ τ̂+ε

τ
xdĤ(x) + pε(µ + ε)

∫ µ+ε

τ
xdĤ(x) + pε(τ̄)

∫ τ̄

τ
xdĤ(x).

Thus it follows that for every 0 < ε < ε̄,

U(Ĥ, F0) − U(Ĥ, Fε) = (p0(τ̂) − pε(τ̂ + ε))
∫ τ̂

τ
xdĤ(x) − pε(τ̂ + ε)

∫ τ̂+ε

τ̂
xdĤ(x)

+ (p0(µ) − pε(µ + ε))
∫ µ

τ
xdĤ(x) − pε(µ + ε)

∫ µ+ε

µ
xdĤ(x)

+ (p0(τ̄) − pε(τ̄))
∫ τ̄

τ
xdĤ(x).

When ε converges to 0 from above the first terms in all three lines of the above expression

vanish, while the other two do not if Ĥ has atoms at τ̂ and µ or around these points. Therefore,

either U(Ĥ, Fε) converges to U(Ĥ, F0) (when Ĥ is atom free around τ̂ and µ) or, U(Ĥ, F0) <

U(Ĥ, Fε) for every ε > 0 that is sufficiently close to 0; notice that in this latter case, Fε gives

nature a strictly lower payoff against Ĥ than F∗. Thus, in either of the two cases there exists an

ε̄ > 0 such that nature obtains a smaller payoff from Fε for ε ∈ [0, ε̄) than it does from F∗.

The next step of our argument shows that F∗ can be written as a convex combination of

two distribution functions, Fα and G, where the latter is defined as a mixture of Fε-distributions

with ε ∈ [0, ε̄]. Thus, by construction G is a type distribution that yields to nature a strictly

lower payoff when played against Ĥ than F∗ does. But then Fα must be a distribution that does

better against Ĥ than F∗, meaning that (Ĥ, F∗) cannot be a saddle of U.

For each t ∈ [0, τ̄] define G(t) as uniform mixture over all Fε distributions. That is, set

G(t) =
1
ε̄

∫ ε̄

0
Fε(t)dε,
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for all t ∈ [0, τ̄]. It is easy to verify that G is a distribution on [0, τ̄] with mean µ and variance

σ̄2. Clearly, G is constant over the intervals [0, τ̂), [τ̂ + ε̄, µ) and [µ + ε̄, τ̄). Over the intervals

[τ̂, τ̂ + ε̄) and [µ, µ + ε̄), G is strictly increasing. Notice that in the first case we can write

G(t) =
1
ε̄

∫ t

τ̂
pτ−τ̂(τ)dτ,

while in the second case we have

G(t) = G(τ̂ + ε̄) +
1
ε̄

∫ t

µ
pτ−µ(τ)dτ.

In either of the two cases G is differentiable in the interiors of the respective intervals and

the slope of G is proportional either to pt−τ̂(t) or pt−µ(t). Since both these expressions are

probabilities this means that G′(t) is bounded above. Notice that the same conclusion can be

drawn regarding the left and right hand derivatives of G at the endpoints of the two intervals

(where G is not differentiable).

Next define

Fα =
1

1 − α
[F∗ − αG].

We argue that for sufficiently small α, Fα is a distribution. Clearly, Fα(0) = 0 and Fα(θ̄) = 1.

Since both F∗ and G are right continuous so must be Fα. It thus only remains to show that Fα

is nondecreasing for sufficiently small (but positive) α. Towards that, notice that

F′α(t) =
1

1 − α
[F∗′(t) − αG′(t)],

at all the points of differentiability of G and F∗. Furthermore, F∗′(t) = τt−1 is bounded away

from 0. Since G′(t) is bounded above it follows that for sufficiently small α, F′α(t) is positive at

all points where it is defined. The only points where F′α is not well defined are the end points

of the intervals over which G is increasing and the point τ̄ where G exhibits a jump. Since F∗

also exhibits a jump at τ̄ it is easy to see that F∗ − αG must jump upward at τ̄ if α is small

enough. As for the endpoints of the intervals where G is increasing, we can apply the same

kind of argument as in the case of the points where G is differentiable, using left and right hand

derivatives.

Now fix some (sufficiently small but strictly positive) α such that Fα is a distribution func-

tion and rewrite the defining equation of Fα as follows

F∗ = (1 − α)Fα + αG.

43



Since both G and F∗ have mean µ and variance σ̄2 this equation implies that Fα must also have

mean µ and variance σ̄2. Therefore, Fα represents a viable strategy for nature. Since playing

G against Ĥ yields for nature a strictly smaller payoff than playing F∗, it must be the case that

Fα yields a strictly higher payoff against Ĥ than F∗ does. But then F∗ cannot be the best reply

to Ĥ which contradicts our starting assumption. �

Proof of Lemma 7. We start with a more detailed description of the relevant ternary distribu-

tions. The ternary τ-distribution, Fτ, satisfies the following conditions: i) the support of Fτ

is composed of τ itself and two elements from the set {τ, µ, τ̄}, ii) the mean of Fτ is µ and the

variance of Fτ is σ̄2.

More specifically, the support of Fτ is {τ, µ, τ̄} if τ ≤ τ1 = µ − σ2/(τ̄ − µ) and {τ, µ, τ} if

τ ≥ τ2 = µ + σ2/(µ − τ); for all remaining τ ∈ [τ, τ̄] the support is {τ, τ, τ̄}. The probability

weights of the elements of the support are

pτ(τ) =


σ2/[(τ̄ − τ)(µ − τ)] if τ ∈ [τ, τ1][
σ2 + (µ − τ)(τ̄ − µ)

]
/
[
(τ̄ − τ)(τ − τ)

]
if τ ∈ (τ1, τ2)

σ2/[(τ − τ)(τ − µ)] if τ ∈ [τ2, τ̄],

pτ(τ) =


0 if τ ∈ (τ, τ1 ][
σ2 − (τ̄ − µ)(µ − τ)

]
/
[
(τ̄ − τ)(τ − τ)

]
if τ ∈ (τ1, τ2)

σ2/
[
(µ − τ)(τ − τ)

]
if τ ∈ [τ2, τ̄],

pτ(µ) =


1 − σ2/[(τ̄ − µ)(µ − τ)] if τ ∈ [τ, τ1]

0 if τ ∈ (τ1, τ2), τ , µ

1 − σ2/[(µ − τ)(τ − µ)] if τ ∈ [τ2, τ̄],

pτ(τ̄) =


σ2/[(τ̄ − µ)(τ̄ − τ)] if τ ∈ [τ, τ1][
σ2 + (µ − τ)(µ − τ)

]
/
[
(τ̄ − τ)(τ̄ − τ)

]
if τ ∈ (τ1, τ2)

0 if τ ∈ [τ2, τ̄).

In the following figure we represent the probability weights for the parameter combination

τ = 0.1, µ = 1, τ̄ = 2, σ2 = 0.25.
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Figure 5: pτ(τ) (black), pτ(τ) (red), pτ(µ) (green) and pτ(τ̄) (blue)

Notice that the probabilities are differentiable at all points except τ1 and τ2; at those two

points they exhibit kinks but are still continuous.

By Lemma 6 we know that each Fτ produces the saddle value when played against an

optimal price distribution Ĥ. That is, U(Ĥ, Fτ) is equal to U∗ for all τ, or more explicitly,

pτ(τ)
∫ τ

τ
tdĤ + pτ(µ)

∫ µ

τ
tdĤ + pτ(τ̄)

∫ τ̄

τ
tdĤ = U∗, (19)

for τ ∈ [τ, τ1]; the other two cases are similar. Being constant in τ the sum on the lhs of (19)

is twice differentiable with respect to τ. Since the second and the third term of this sum are

themselves differentiable with respect to τ (except at the points τ1 and τ2), so must be the first

term. Since the first term is the product of two functions of τ, where the first one, pτ(τ), is

again differentiable (except at the two points τ1 and τ2), this means that also the second one,∫ τ

τ
tdH, must be differentiable with respect to τ.

Since the optimal price distribution Ĥ is continuous,19 we can use integration by parts to

write ∫ τ

τ
tdĤ = τĤ(τ) − τĤ(τ) −

∫ τ

τ
Ĥ(t)dt. (20)

This expression as a whole is differentiable with respect to τ, and since the second and the third

19Suppose it was not, and suppose that there is a discontinuity at some τ̃ in [τ, τ1) (the other cases are handled
similarly). Then a ternary distribution Fτ′ for a τ′ close enough but above τ̃ would yield strictly smaller payoff to
nature than τ̃. That would contradict Lemma 6.
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term are each individually differentiable it follows that so must be the first one. The derivative

of (20) is τH′(t), or in our notation, τh(t).

Using (19) we can write ∫ τ

τ
tdĤ = g(τ),

where

g(τ) =
1

pτ(τ)
U∗ −

pτ(µ)
pτ(τ)

∫ µ

τ
tdĤ −

pτ(τ̄)
pτ(τ)

∫ τ̄

τ
tdĤ.

Inspection of the function g reveals that it depends on τ only through the probabilities. Since

those are twice differentiable wrt τ (with exception of the points τ1 and τ2) and since by (20)

we know that the first derivative of g is equal to τh(τ), it follows that h(τ) must be differentiable

except possibly at τ = τ1 and at τ = τ2.

A similar argument can be used to show that h′ is differentiable. �

Proof of Lemma 8. Lemma 6 implies that if (Ĥ, F∗) is a saddle, then nature is indifferent

between all the ternary Fτ distributions. In particular, for τ ≥ τ2, the seller’s payoff from any

such ternary distribution is

pµ(τ)
∫ µ

τ
tdĤ + pτ(τ)

∫ τ

τ
tdĤ = U∗, (21)

the other two cases are handled in a similar fashion. By Lemma 7, Ĥ is (at least) three times

differentiable. Differentiating (21) with respect to τ yields

p′µ(τ)
∫ µ

τ
tdĤ + p′τ(τ)

∫ τ

τ
tdĤ + pτ(τ)τh(τ) = 0. (22)

for τ ∈ (τ2, τ̄). Dividing through by p′τ(τ) and taking once more the derivative with respect to τ

we obtain an expression of the type

A(τ)
∫ µ

τ
tdĤ + B(τ)τh(τ) + C(τ)

[
h(τ) + τh′(τ)

]
= 0,

for all τ ∈ (τ2, τ̄). Cumbersome but straightforward calculations show that B(τ)/A(τ) = −(µ−τ)

and C(τ)/A(τ) = (2τ − µ − τ)(µ − τ). Thus if we divide the above equation by A(τ) and
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differentiate again we obtain

−(µ − τ)[h(τ) + τh′(τ)] + (µ − τ)[h(τ) + τh′(τ)] + [2τ − µ − τ](µ − τ)[2h′(τ) + τh′′(τ)] = 0,

which simplifies to

2h′(τ) + τh′′(τ) = 0,

for all τ ∈ (τ2, τ̄). Solving this differential equation yields

h(τ) =
a
τ

+ b,

for all τ ∈ (τ2, τ̄). �

Proof of Lemma 9. We argue that h(τ̄) must be equal to 0. This, together with the requirement

that h integrates to 1, pins down a and b.

Suppose that (Ĥ, F∗) was a saddle with h(τ̄) = a/τ̄+ b > 0. Then for a small enough ε > 0,

a/τ+b > 0 for all τ ∈ (τ̄, τ̄+ ε). In the proof of Lemma 5 we show that the seller’s payoff when

using a distribution with a density of the the form h(τ) = a/τ + b on [τ, τ̄], and the valuations

are distributed with distribution F, can be written as

aµ + 0.5bσ2 + 0.5bµ2 −

∫ τ

0
(a + bx)(1 − F(x))dx −

∫ ∞

τ̄
(a + bx)(1 − F(x))dx.

Since a + bx > 0 for x ∈ [τ̄, τ̄ + ε], nature would then strictly benefit from deviating to a

distribution F̃ that has the same mean and variance as F∗ but also assigns some probability

mass to the interval [τ̄, τ̄ + ε]. Such a deviation can be found as long as F∗ does not have

variance 0, which cannot happen in a saddle anyways. Therefore h(τ̄) > 0 cannot be the case

in a saddle. �

Proof of Proposition 11. Since the optimal randomization over prices has the same support in

both cases, τ̄ = θ̄. The optimal distribution for the seller when he knows the mean is µ and the

variance bounded above by σ̄2 can be written as

H∗
σ̄2(τ) =

θ̄[ln τ − ln τ] − (τ − τ)
θ̄[ln θ̄ − ln τ] − (θ̄ − τ)

,
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and the optimal distribution in the case when he knows that the valuations are distributed with

a distribution with mean µ and support in [0, θ̄]

H∗
θ̄
(τ) =

ln τ − ln τ
ln θ̄ − ln τ

.

The difference H∗
σ̄2(τ) − H∗

θ̄
(τ) has the same sign as

(ln τ − ln τ)(θ̄ − τ) − (ln θ̄ − ln τ)(τ − τ),

which in turn has the same sign as

ln τ − ln τ
τ − τ

−
ln θ̄ − ln τ
θ̄ − τ

.

The last expression is positive if (ln τ − ln τ)/(τ − τ) is decreasing in τ. Differentiating the

expression yields

d
dτ

(
ln τ − ln τ
τ − τ

)
=

1 −
τ

τ + ln
τ

τ

(τ − τ)2

≤ 0,

for τ ≥ τ and the inequality is strict for τ > τ. The inequality follows from ln x ≤ x − 1, with

strict inequality for x , 1. �

8 Appendix B

In this appendix we report the basic saddle point result on which parts of our analysis rely. For

a more detailed discussion see Rockafellar (1970).

We start by introducing some notation. Let X and Y be two arbitrary sets and let K be a

function that maps the Cartesian product X × Y into the extended real numbers, i.e.

K : X × Y → [−∞,+∞].

Define

f (x) = sup
y∈Y

K(x, y) and g(y) = inf
x∈X

K(x, y).
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Proposition 12. A pair (x̄, ȳ) satisfies the saddle point condition

K(x, ȳ) ≥ K(x̄, ȳ) ≥ K(x̄, y) for all x ∈ X, y ∈ Y,

if and only if x̄ solves

x̄ ∈ arg min
x∈X

f (x), and ȳ ∈ arg max
y∈Y

g(y),

and the saddle-value of K exists, i.e. one has

inf
x∈X

f (x) = sup
y∈Y

g(y).

Proof. Suppose first that x̄ ∈ arg minx∈X f (x), ȳ ∈ arg maxy∈Y g(y) and f (x̄) = g(ȳ). By the

definition of f and g it follows that

f (x) ≥ K(x, y) ≥ g(y) for all x ∈ X, y ∈ Y.

In particular, the inequalities must hold for x̄ and ȳ, i.e.

f (x̄) ≥ K(x̄, ȳ) ≥ g(ȳ).

But since f (x̄) = g(x̄) we can conclude that

sup
y∈Y

K(x̄, y) = K(x̄, ȳ) = inf
x∈X

K(x, ȳ),

which implies the saddle point condition.

Conversely, suppose that the saddle point condition holds, i.e.

K(x, ȳ) ≥ K(x̄, ȳ) ≥ K(x̄, y) for all x ∈ X, y ∈ Y.

This immediately implies that

g(ȳ) = inf
x∈X

K(x, ȳ) = K(x̄, ȳ) = sup
y∈Y

K(x̄, y) = f (x̄).

But since for all x ∈ X and y ∈ Y we have f (x) ≥ g(y) we also know that f (x̄) is an upper bound

of g(y) and since this upper bound is reached for y = ȳ we can conclude that g(ȳ) ≥ g(y) for all

y ∈ Y . Finally, a perfectly analogous argument delivers f (x̄) ≤ f (x) for all x ∈ X and thus

inf
x∈X

f (x) = sup
y∈Y

g(y).
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9 Appendix C

In this Appendix we report some basic facts regarding the Lambert W function.

The domain of the lower branch of the Lambert W function, W−1, is the interval [−1/e, 0).

The defining equation for W−1 is

W−1(x)eW−1(x) = x.

Implicit differentiation yields for all x ∈ (−1/e, 0)

x(1 + W−1(x))
dW−1(x)

dx
= W−1(x)

or equivalently
dW−1(x)

dx
=

W−1(x)
x(1 + W−1(x))

.
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