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Abstract

In this paper we solve the revenue maximization problem of multi-product
monopolist when the products are substitutes. We consider a Hotelling
model with two horizontally differentiated goods located at the endpoints of
the segment. Consumers are located uniformly on the segment, their valua-
tions for each of the goods equal to base consumption value minus distance
costs. We consider different specifications for the distance cost function: lin-
ear, concave, and convex. When base consumption value is high, the seller
maximizes her expected profit by offering a menu of base and opaque goods.
A continuum of type-specific opaque goods is optimal under convex costs,
whereas a single half-half lottery over base goods is optimal under concave
and linear costs. When base consumption value is low, only base goods
are sold. Finally, when base-consumption value is intermediate, the optimal
mechanism may entail the offering of lotteries with positive probability of no
delivery. Our findings can explain the emergence of opaque goods sales (e.g.
hotel bookings without complete description of the hotel by hotwire.com or
priceline.com) as the outcome of the industries search for the optimal selling
scheme.
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1 Introduction

In recent years, as internet access becomes more widespread, online retailers have
been experimenting with novel business strategies to succeed in a wider and more
heterogeneous market. One notable innovation is the design and sale of opaque
goods. A good is opaque when at the moment of sale its characteristics are
purposely not (fully) revealed by the seller to the buyer. We can explain the
emergence of opaque goods as the outcome of industries’ search for the optimal
way to sell.

Opaque goods are especially popular in the traveling and hospitality industry
for selling hotels, plane tickets and car rentals, with Hotwire and Priceline being
the top two users of such strategies.1 For instance, at hotwire.com, a customer
can either book a room at the hotel of her choice or select an opaque option
and pay less. When opting for the latter, the customer is asked to specify some
preferences (i.e., a city neighborhood, rating, extra requirements: a four star
hotel with a gym in the Union Square area of San Francisco) and learns the
hotel’s actual identity only after the payment. In the case of plane tickets, the
opaque option conceals the name of the airline and the exact flight time, whereas,
for car rentals, the opaque offer is such that the name of the rental company and
pick-up location are hidden. Opaque-goods sellers have appeared also in the
clothing retail business and the passenger transportation industry.2

The common element of these business applications is that an opaque good
can be any of a few clearly identified base goods that are horizontally differen-
tiated substitutes and that are independently available for purchase. An often
mentioned reason for opaque sales is that they enable sale of perishable inven-
tory in an anonymous fashion. However, opaque goods can be purchased long
in advance and in both high and low seasons. Why to offer a cheaper way for
customers to acquire the same goods?

In this paper, we show that opaque goods, specifically lotteries over the base
goods, are a way to implement the revenue-maximizing selling mechanism for the
multi-product monopolist. We solve the optimal problem for the monopolist in
the market with two horizontally differentiated substitute goods, represented by a
Hotelling model (Hotelling (1929)) with goods located at the opposite ends of the

1Green & Lomanno (2012, p. 95) report that in 2010 online travel agencies accounted for
9.4% of all hotel bookings in the US, a quarter of which (2.3%) involved opaque goods.

2Web-store swimoutlet.com offers their customers a “grab bag” option at a discounted price.
By purchasing it, a customer buys a swimsuit which color and pattern is revealed only after
payment is made. Uber offers customers two options for booking a ride in a luxury car in San
Francisco: the customer can specify the model (UberBLACK) or not (UberSELECT). In the
second case, the cost of the booking is lower.
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segment. We show that the optimal mechanism entails the offer of base goods and
lotteries (i.e. opaque goods). Lotteries are used to price-discriminate consumers
based on how strongly they prefer one base good over the other. Consumers with
strong idiosyncratic preferences buy their favorite base goods at higher prices,
while more indifferent consumers choose lotteries in order to take advantage of
the lower price. Hence, opaque goods or lotteries play the role of damaged goods
(see Deneckere & McAfee (1996)).

Depending on the shape of the buyers’ preferences, the number and format
of the optimal lotteries change. Consumers’ utility for each good is a function
of a base-consumption value and a distance cost. We consider settings in which
the distance cost function which is assumed to be concave, convex, or linear,
respectively. These different characterizations of the distance cost function allow
us to represent different type of markets. Given the symmetry of our environment,
without loss of generality, we can focus on each half-segment separately.

When the costs are concave, the two conditions for standard price discrim-
ination are verified (e.g., see Tirole (1994)). First, consumers located at the
extremes of the Hotelling line have a higher willingness-to-pay for their favorite
base good and for any lottery that yields it with higher probability than the other
good. Second, consumers at the end-points are the least likely to change their
purchasing decision in order to take advantage of a price difference. This implies
that the single-crossing condition holds. Concave cost settings can be thought of
as representing markets where high income consumers, with low marginal utility
of income and low price-sensitivity, are willing to pay more for the benefit of
having their favorite good instead of the lottery.

When the costs are convex, on the contrary, there is no universal ranking of
high-valuation and low-valuation consumer types: each lottery implies a different
ranking. Given a lottery, the consumers with the highest willingness-to-pay for
it may be located in the middle of the Hotelling line, in the region of indifferent
consumers. Still, as in the concave costs case, consumers at the extremes are
the least likely to modify their purchasing decision because of price differences
across lotteries. Therefore, under convex costs, high income consumers (i.e. with
the highest willingness-to-pay for a lottery) may be also the most price-sensitive.
If we accept that wealth is positively correlated with sophistication or informa-
tion level,3 convex cost settings may represent markets in which the difference
between base products is overvalued by customers with less cognitive ability or
information.4 This can be the case because lower income and less sophisticated

3In this regard, see, for example, Ellison (2005) and Hausman & Sidak (2004).
4An instance may be the market of substitute generic drugs in which less sophisticated

customers overvalue specific brands (see Bronnenberg, Dubé, Gentzkow & Shapiro (2015)).
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consumers are less able to take advantage of complex price discrimination mech-
anisms that often require high ability to process information and familiarity with
internet.

The optimal mechanism is such that the monopolist always sells the base
goods. When the base-consumption value is low, the seller only sells the base
goods. However, for higher base-consumption values, the seller finds it optimal
to add opaque goods to her menu of offerings. When the distance costs are linear,
one opaque good, i.e. a lottery with 1

2 probability of winning each base good,
is sufficient to maximize the seller’s profits. The optimal lottery is sure-prize:
the buyer receives a prize for sure.5 The same three-items menu (i.e. the two
base goods and the

(
1
2 ,

1
2

)
lottery) is generally optimal in settings in which the

distance costs are concave. However, under certain conditions, a different, more
complex mechanism guarantees higher expected profits. In this case, the optimal
menu includes an additional continuum of non-sure-prize lotteries with only one
base good as prize and lower than 1 probability of winning. Finally, when the
distance cost is convex, it is optimal to offer a continuum of type contingent
sure-prize lotteries.

To derive the optimal mechanism, we follow the method used in Balestrieri
& Izmalkov (2014). They consider a seller who is privately informed about the
characteristics of the only good on sale and find that the optimal mechanism
may entail only partial and private information disclosure and probabilistic allo-
cations. In our setting, instead, the seller does not hold any private information
and has multiple goods on sale. This implies not only a different setting but
leads to a different optimal mechanism.

In our environment we depart from more standard mechanism design settings
of pure vertical differentiation, because the horizontal differentiation assumption
implies that consumers are exposed to countervailing incentives: reporting a more
distant location from a base good automatically implies a higher proximity to
the other base good (see Maggi & Rodriguez-Clare (1995)).

Our analysis contributes to the literature of optimal contracts for multi-
product monopolists. Whereas a take-it-or-leave-it offer is known to be the
optimal selling strategy for a single-product monopolist (Myerson (1981), Ri-
ley & Zeckhauser (1983)), the question regarding the optimal mechanism for a
multi-product monopolist remains open. The problem has been tackled mostly in
environments in which consumers have additive utility over the goods and multi-
dimensional types.6 Under these assumptions, Stigler (1963) and Adams & Yellen
(1976) have showed that the sale of bundles can be revenue improving.7 McAfee

5We borrow the terminology from Pavlov (2011b).
6A survey of works on multidimensional screening is Rochet & Stole (2003).
7Adams & Yellen (1976) introduce the concepts of pure bundling: when a bundle is the only
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& McMillan (1988) determined conditions under which the optimal mechanism
problem can be solved by deriving the optimal price of base goods and bun-
dles.8 Since then, several works have focused on determining the optimal price
of deterministic allocations in complex multi-dimensional settings.9

More recently, it was shown that stochastic allocations (i.e. lotteries) could be
part of the optimal mechanism in multi-goods environments (see Rochet & Choné
(1998)). This is in stark contrast with the findings of Riley & Zeckhauser (1983)
in single-good settings. They were the first to examine the use of lotteries (with
different probability of delivering the good) as devices to price-discriminate across
consumers; they proved that lotteries are not part of the optimal selling strategy.
Thanassoulis (2004) showed by numerical examples that the no-lottery result does
not extend to a setting with two substitute goods and two-dimensional buyer’s
types: lotteries can be revenue improving for a monopolist. Other examples
were later shown by Manelli & Vincent (2006), Manelli & Vincent (2007), Pycia
(2006), and Hart & Reny (2015) in settings with multiple goods and additive
utility.10

Pavlov (2011a) and Pavlov (2011b) considered environments that satisfy the
conditions described in McAfee & McMillan (1988) and obtained some new re-
sults. Without deriving the optimal mechanism, Pavlov showed that sure-prize
lotteries are part of it, contrary to McAfee & McMillan (1988). Furthermore,
he presented examples in which multiple (but a finite number of) sure-prize lot-
teries are offered by the monopolist to maximize her profit. Briest, Chawla,
Kleinberg & Weinberg (2015) followed Pavlov (2011a) by estimating the monop-
olist maximal potential benefit obtained with sure-prize lotteries using dynamic
programming techniques; still, they did not provide an analytical solution for
the optimal mechanism. They proved that when the number of goods is at least
three, there is no finite bound on the ratio between the revenue obtained by pric-
ing lotteries and the revenue obtained by pricing only the base goods. On the
other hand, Chawla, Malec & Sivan (2015) showed that in specific environments
(i.e. when the private valuations of a buyer for the multiple goods are either
independent or subject to a specific kind of positive correlation) the gains from
lotteries are limited.

purchasing option offered by the seller to the buyer; and mixed bundling: when both the bundle
and individual goods are offered.

8Such conditions were revised in a more restrictive sense by Manelli & Vincent (2006).
9Prominent examples are McAfee, McMillan & Whinston (1989), Armstrong (1996), Arm-

strong (1999), McAdams (1999), and Cai & Daskalakis (2015).
10Thanassoulis & Rochet (2015) offered a characterization of the optimal mechanism for a

settings with two goods and additive utility. They showed that conditional stochastic bundles
are part of the optimal mechanism: if the buyer buys a first good, he receives also a lottery
according to which the second good is delivered to him with some probability.
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We propose an alternative approach. Instead of considering different dis-
tributions over the buyer’s valuations for the base-goods, we take advantage of
the well-known structure of the Hotelling model and examine different types of
markets by considering different distance cost functions. Our optimal mecha-
nism changes sharply as the cost function switches from concave to convex and
presents features (e.g. non-sure-prize lotteries, continuum of lotteries) that are
novel in the literature.11 We prove that lotteries are optimal even in a setting
with uni-dimensional buyer’s types. In other words, the multi-dimensionality of
the buyers’ type space is not a necessary condition for lotteries to be optimal
price-discrimination devices. Furthermore, we show that restricting the search
for the optimal mechanism to sure-prize lotteries as in Pavlov (2011b) and Briest
et al. (2015) may lead to forfeited profits. Finally, we identify precise conditions
under which Thanassoulis (2004) conjecture is true: a simple menu with the
two base goods and the

(
1
2 ,

1
2

)
lottery is optimal. In our setting this is the case

for sufficiently high base consumption value and under linear or concave cost
functions.

To the best of our knowledge, we are the first to fully characterize the optimal
mechanism for a monopolist selling two substitute goods. We do so in a setting
with a natural structure of consumers’ preferences, i.e. the Hotelling model.12

Our modeling choice is consistent with a relatively extensive literature that stud-
ies the properties of opaque goods as price-discrimination devices. Examples are
Jiang (2007), Fay & Xie (2008), and Fay & Xie (2010). In all these works buyers
preferences are modeled according to Hotelling models with linear costs and only
one opaque good, the

(
1
2 ,

1
2

)
lottery, is considered. Instead, we do not impose any

restriction on the mechanism space available to the monopolist and we consider
a more general set of preferences. In our analysis, the types of opaque goods
emerge as an endogenous decision of the profit maximizing seller, rather than
being an exogenous attribute of the environment.

The rest of the paper is organized as follows. We present the model in Section
2. In Section 3 we set-up the optimization problem and in Section 4 we present
the solution under different assumptions over the shape of the cost function. In
Section 5 we consider several extensions of the model and offer an interpretation
of our results for the product line design problem. Conclusions are in Section 6;
proofs are in the Appendix.

11Daskalakis, Deckelbaum & Tzamos (2015) present a two-good example in which a continuum
of lotteries is optimal. In their environment buyers have additive utilities and their valuations
for the goods are independent and distributed according to very specific Beta distributions.

12Variations of our environment are considered in Thanassoulis (2004), Pavlov (2011a), Briest
et al. (2015).
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2 Model

We consider a variation of the Hotelling (1929) model of horizontal differentiation.
There are two goods, indexed by i = {0, 1}, located at the two endpoints of
a segment [0, 1]. There is a continuum of unit demand consumers uniformly
distributed along the segment. The utility that a consumer (he) receives from
consuming a good is represented as a function of his distance from that good.
The utility of consuming good 0 for a consumer located at x, where x ∈ [0, 1], is
given by

U0 (x) = V − c (x)− p,

where V is a positive constant value, p is the price, and c (x) is a generic trans-
portation cost function. We assume that c (·) and c′ (·) are continuous functions,
c(0) = 0, and c′ (x) > 0. Similarly, the utility of consuming good 1 is

U1 (x) = V − c (1− x)− p.

Not consuming any good represents the outside option and its utility is zero. The
consumer type, given by its location x, is private information. We consider both
concave and convex transportation cost functions.

A monopolist (she) sells both goods with the objective of maximizing rev-
enues. We assume that the marginal cost of producing each good is the same,
and, without loss of generality, we set it equal to zero.

3 Optimization Problem

We want to identify the monopolist’s optimal selling scheme. By the direct
revelation principle, for any equilibrium of any selling mechanism there exists
an outcome-equivalent equilibrium of a direct mechanism in which each player
reports truthfully his private information. Then, without loss of generality, we
can limit our attention to direct mechanisms, where each consumer reveals his
location x. In order for truthtelling to be an equilibrium, individual rationality
and incentive compatibility constraints have to hold.

Any direct mechanism µ consists of an allocation and a payment function, and
can be represented as µ = (q0, q1, p), where qi(x) is the probability of obtaining
good i, for i ∈ {0, 1}, and p(x) is the required payment for the consumer reporting
type x.

As consumers have unit demand, without loss of generality we can consider
only feasible allocations such that

∀x ∈ [0, 1] , q0 (x) ≥ 0, q1 (x) ≥ 0, q0 (x) + q1 (x) ≤ 1. (F)
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These probabilities can be thought of as parameters of a lottery with the two
goods as prizes. Thus, we refer to a probabilistic allocation (q0 (x) , q1 (x)) as a
lottery l(x). Lottery l(x) is sure prize if q0(x) + q1(x) = 1.

Given mechanism µ = (l, p), let U (y | x) be the utility of a consumer of type
x reporting y, and U (x) = U (x | x). By definition,

U (y | x) = q0 (y) (V − c (x)) + q1 (y) (V − c (1− x))− p (y) .

Individual rationality requires that the utility from reporting his true type is
higher than the outside option.

∀x ∈ [0, 1] , U (x) ≥ 0. (IR)

Incentive compatibility requires that each consumer prefers to report the truth
when all other consumers are truthful.

∀x, y ∈ [0, 1], U (x) ≥ U (y | x) . (IC)

The monopolist’s problem is then

max
q0,q1,p

∫ 1

0
p (x) dx, (MP)

s.t. IC, IR, F.

A solution µ = (l, p) to (MP) is symmetric if q0(x) = q1(1− x) for all x ∈ [0, 1].

Proposition 1. There exists a symmetric solution to (MP).

Proof. Existence of any solution follows from the fact that the set of mechanisms
satisfying (IC), (IR), and (F) is convex, non-empty, and bounded. Clearly, if
µ1 and µ2 are solutions, then µ = λµ1 + (1− λ)µ2 is also a solution for any
0 ≤ λ ≤ 1. Finally, if µ = (l, p) is a solution, define µ′ = (l′, p′1) as q′0(x) =
q1(1−x), q′1(x) = q0(1−x), and p′(x) = p(1−x). Then, 1

2µ+ 1
2µ
′ is a symmetric

solution.

Lemma 1. Any symmetric solution satisfies

∀x ∈
[
0,

1

2

]
, q0(x) ≥ q1(x). (1)

Proof. Follows from IC constraints for types x and 1− x.
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Therefore, to find a solution to (MP) it suffices to consider only symmetric
mechanisms and solve (MP) over segment

[
0, 12
]

under additional constraint (1).
To solve the general problem of revenue maximization we proceed as in

Balestrieri & Izmalkov (2014), where the optimal mechanism is derived for a seller
who is privately informed about the attributes of a single good. In Balestrieri
& Izmalkov (2014), the good can be either of type 0 or of type 1 and allocation
probabilities qi are defined as contingent on the realization of good i. In our set-
ting, instead, both goods are simultaneously present and allocation probabilities
are subject to feasibility constraint q0 (x) + q1 (x) ≤ 1.

Consider the direct mechanism µ = (l, p). The utility function of type x

U(x) = q0 (x) (V − c (x)) + q1 (x) (V − c (1− x))− p (x) . (2)

Following Myerson (1981) approach, using local IC constraints we can show
that the derivative of U(x) exists almost everywhere, and when it exists, it is
defined by

U ′ (x) = −q0 (x) c′ (x) + q1 (x) c′ (1− x) . (3)

Accordingly, we can express U(x) as

U (x) = U (0)−
∫ x

0
q0 (t) c′ (t) dt+

∫ x

0
q1 (t) c′ (1− t) dt. (4)

Using (2) and (4), p(x) can be expressed as

p (x) = q0 (x) (V − c (x)) + q1 (x) (V − c (1− x))

− U(0) +

∫ x

0
q0 (t) c′ (t) dt−

∫ x

0
q1 (t) c′ (1− t) dt. (5)

If we let x∗ be a type with the lowest utility from mechanism µ, then using
(4), we can express

U(0) = U(x∗) +

∫ x∗

0
q0(t)c

′(t)dt−
∫ x∗

0
q1(t)c

′(1− t)dt. (6)

Then, using (5), (6), and collecting the double integrals, we can express the
maximization of the expected revenue in the incentive compatible mechanism
(l (x) , p (x)) as
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max
p,q0,q1

ER =

∫ 1

0
p (x) dx

= − U(x∗) +

∫ x∗

0
[q0(x)A(x) + q1(x)C(x)] dx (7)

+

∫ 1

x∗
[q0(x)B(x) + q1(x)D(x)] dx,

s.t. IC, IR, F.

where

A (x) = V − c (x)− c′ (x)x,

C(x) = V − c(1− x) + c′(1− x)x,

B(x) = A(x) + c′(x),

D(x) = C(x)− c′(1− x).
(8)

Notice that A (x) = D (1− x), B (x) = C (1− x), and A
(
1
2

)
= D

(
1
2

)
, C

(
1
2

)
=

B
(
1
2

)
.

Function A(x) is the virtual valuation or marginal revenue from selling good
0 to consumer x assuming that all consumers between 0 and x also purchase
good 0. Function C (x) can be interpreted as the lost marginal revenue from
not selling good 1 to consumers between 0 and x. A similar interpretation can
be applied to functions D(x) and B (x). Integrands q0(x)A(x) + q1(x)C(x) and
q0(x)B(x) + q1(x)D(x) are the marginal expected revenues from the consumer x
for x < x∗ and x > x∗, respectively, for an incentive compatible direct mechanism
µ = (q0, q1) with worst type x∗.

We define function W (x) as

W (x) = A (x) +
c′ (x)

c′ (1− x)
C (x) . (9)

Function W (x) is important for deriving and presenting the optimal mecha-
nism. It captures the effect of local trade-off (at and near of a specific type x)
in marginal (expected) revenue while keeping utility constant. Indeed, under
constraint U ′(x) = 0, from (3) we obtain that goods’ quantities have to satisfy

q1 (x) = q0 (x)
c′ (x)

c′ (1− x)
. (10)

Under this constraint and from (8), the marginal expected revenues for type x
in (7) are such that

q0(x)A(x) + q1(x)C(x) = q0(x)B(x) + q1(x)D(x) = W (x)q0(x).
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We assume that functions A(x), C(x), and A(x) + C(x) are regular, that
is, considering the interval

[
0, 12
]
, A(x) is strictly decreasing, C (x) is strictly

increasing, and A(x) + C(x) crosses the x-axis at most twice.13 Depending on
the shape of the cost function, some of these assumptions are automatically
satisfied. Strict concavity guarantees that C (x) is increasing, strict convexity
entails that A (x) is decreasing. Under linear costs, all assumptions on A (x),
C (x), and A (x) + C (x) are satisfied.

Definition 1. Let xA, xC , and xW be solutions to A(xA) = 0, C(xC) = 0, and
W (xW ) = 0, respectively. Let x= be the value x such that A(x=) = C(x=), and
V AC be the value V at which A(x=) = C(x=) = 0.

For arbitrary V and c(x) these equations may not have a solution or have
multiple solutions. We will be using xA, xC , and xW only when solutions exist and
are unique (on the interval of interest). Type x= exists for all V , as A(0) > C(0)
and A

(
1
2

)
< C

(
1
2

)
, and is independent of V . When V = V AC , it is that

x= = xA = xC = xW .
Given the regularity conditions, the following Lemma holds.

Lemma 2. For any transportation cost function c(x), we have

x= <
1

2
,

∂xA
∂V

> 0,
∂xC
∂V

< 0,

for any interior xA(V ) and xC(V ). Thus, if V > V AC , then xC < x= < xA; if
V < V AC , then xA < x= < xC .

4 The solution

To solve the general problem of revenue maximization, as in Balestrieri & Iz-
malkov (2014), we first guess one value (or a set of values) for x∗. Then we
compute q0(x) and q1(x) that maximize the expected revenue (7) type-by-type
on x ≤ 1

2 , subject to the feasibility constraints (F) and symmetry (1). Even
though functions A, B, C, D capture implications of local IC constraints, there
is no guarantee that the computed solution satisfies global IC constraints or the
IR constraints of types x other than x∗. We verify if any of such constraints are
violated and, if so, we recompute q0(x) and q1(x) taking into account violated
constraints. Finally, we optimize over x∗ (if needed).

13Irregular environments can be dealt with in a similar fashion as in the optimal auction
problem for the single good (Myerson (1981)): one has to select among several local maxima.
This is a straightforward albeit a cumbersome exercise.
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The optimal mechanism takes different shapes depending on whether the
transportation costs function is concave or convex. We examine each case sepa-
rately. But first we consider the environment with linear costs, which is a common
assumption in the literature and the limit case for both concave and convex costs.

4.1 Linear Costs

When costs are linear, i.e. c (x) = x, the utility of any lottery l = (q, q) is
constant across all consumers: V − qx − q (1− x) = V − q. Given that we look
for a symmetric solution, from (1) it is clear that x∗ = 1

2 .
The optimization problem (7) by symmetry and setting U(x∗) = 0, can be

rewritten as

max
q0,q1,p

∫ 1
2

0
[q0(x)A(x) + q1 (x)C (x)] dx, (11)

s.t. IR, IC, F

where U (x∗) = U
(
1
2

)
= 0.

Note that for x < x= we have A(x) > C(x), which implies that the marginal
revenue of good i = 0 is higher than the marginal revenue of any lottery, given
by q0A(x) + q1C(x). Hence, for x < x=, it is optimal to sell only good i = 0
whenever A(x) > 0. For x= < x ≤ 1

2 , we have C(x) > A(x). The pointwise
maximization of the integrand in (11) implies setting q1 as high as possible, that
is, offering lottery l =

(
1
2 ,

1
2

)
, whenever the (double) of its marginal revenue is

positive, A (x) + C (x) = 2V − 1 > 0.
Finally, if V > V AC = 1

2 , then both xA > x= and A(x) + C(x) > 0. This
implies that it is optimal to sell good 0 for x < x= and lottery l =

(
1
2 ,

1
2

)
for

x ∈ (x=,
1
2)#; and if V < V AC , the opposite inequalities are true and hence it is

optimal to sell good 0 for x < xA and nothing for x ∈ (xA,
1
2)

Given that, we introduce two mechanisms that are optimal for different base
consumption values V . Such mechanisms are relevant not only when the costs
are linear, but also in other settings (i.e. concave and convex). Therefore, for
the sake of generality, we offer definitions with respect to a generic function c (x)
and threshold y. To ease the notation and for clarity, in the description and
derivation of the optimal mechanisms we will omit the specification of allocation
and prices for threshold values: one can take either the left or the right limit.

Mechanism µbg (y) (base good) for a threshold value y < 1
2 is such that the

monopolist sells the closest good (i.e. the degenerate lotteries l = (1, 0) and
l = (0, 1)) to the consumers close to the extremes of the Hotelling line and
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nothing to the consumers close to the middle.

µbg (y) =


l(x) = (1, 0) , p (x) = V − c (y) , for x < y,

l(x) = (0, 0), p(x) = 0, for y < x < 1− y,

l(x) = (0, 1) , p (x) = V − c (y) , for x > 1− y.

Mechanism µl (y) (lottery) for the threshold value y < 1
2 is such that the

monopolist sells the base goods to consumers close to the extremes of the segment
and lottery l =

(
1
2 ,

1
2

)
to consumers close to the middle. Under the assumption of

linear costs, all consumers have the same willingness to pay U(x) = V − 1
2 for the

lottery. Therefore, the sale of the lottery is such that the market is fully-covered :
all consumers buy something (i.e. a good or the lottery) from the monopolist.

µl (y) =


l(x) = (1, 0) , p (x) = pg, for x < y,

l(x) =
(
1
2 ,

1
2

)
, p (x) = V − c

(
1
2

)
, for y < x < 1− y,

l(x) = (0, 1) , p (x) = pg, for x > 1− y,

where pg = V − 1
2c (y) + 1

2c (1− y) − 1
2 . The prices in both mechanisms are

determined by the IC constraint for threshold type y and the IR constraint for
the worst type x∗ = 1

2 .
We have established

Proposition 2. For the case of linear costs V AC = 1
2 and hence the optimal

mechanism is

µ∗ =

 µl
(
1
4

)
,

µbg
(
V
2

)
,

for V > 1
2 ,

for V < 1
2 .

Thus, the monopolist uses lotteries once the base-consumption value is suffi-
ciently high, and only one lottery is sufficient to maximize the expected revenues.
If the lottery is offered, the market is fully covered, and no surplus is left to the
consumers who buy the lottery; whereas the ones who buy the base goods earn
informational rents.

While offering lotteries brings more profits to the monopolist relative to the
optimal posted prices for V > 1

2 , the welfare implications are ambiguous. There
are two opposite effects from using lotteries: (i) an increase in market coverage,
which is positive; and (ii) allocating not the most preferred good, which is clearly
negative. The combined effect is zero at the threshold value V = 1

2 , when lotteries

13



appear. If V increases, then the total welfare impact of the lotteries grows at
first when the market coverage effect dominates, but then decreases and becomes
negative after V = 5

6 , when the market coverage effect disappears.

4.2 Concave Costs

We consider c (x) such that c′ > 0 and c′′ < 0 for all x ∈ [0, 1]. When the cost
function is concave, in any symmetric incentive compatible mechanism, U(x) ≥
U
(
1
2 | x

)
≥ U

(
1
2

)
; therefore x∗ = 1

2 is surely a type for whom IR binds. Thus,
as in the linear costs case, the optimization problem (MP) becomes (11).

Here we present a sketch of the solution, formulate the main proposition,
leaving the complete proof and all technical details to the Appendix.

Unlike the case of linear costs, straightforward type-by-type optimization of
(11) does not yield an incentive compatible mechanism for all V , and a careful
treatment of IC constraints is needed.

Definition 2. Let x+1 and x+2 be solutions to A(x)+C(x) = 0, so that A′(x+1)+
C ′(x+1) < 0 and A′(x+2) + C ′(x+2) > 0. Let

R∗ =

∫ 1
2

x=

A(x) + C(x)dx computed at V = V AC .

As for other threshold types, we will be using x+1 and x+2 only when such
solutions exist and are unique (on x ≤ 1

2). For the concave costs case, A(x)+C(x)
is strictly decreasing at x = 0 and is strictly increasing at x = 1

2 . Thus, given
our regularity assumption, A(x) +C(x) crosses 0 at most twice, and if it does so,
we have x+1 < x+2.

In Figure 1 we present the typical positioning of functions A(x), C(x), A(x)+
C(x) and value R∗ for the base consumption value V = V AC . As shown, x+1 =
x=, but this is not necessary. It can also be the case that x+2 = x=, in which
case R∗ > 0 surely.

Consider the case shown in the Figure. As A(x)+C(x) dips below 0, pointwise
optimization yields selling lottery l =

(
1
2 ,

1
2

)
for x > x+2 and selling nothing for

intermediate consumer types x ∈ (x+1, x+2). This is not incentive compatible, as
these intermediate types get positive utility from the lottery. Value R∗ constitutes
the (double of) expected revenue from selling lottery l =

(
1
2 ,

1
2

)
to all consumers

between x= and 1
2 . If the lottery l =

(
1
2 ,

1
2

)
were the only lottery that can be

offered, then, at V = V AC the optimal decision would be simple: if R∗ > 0, that
is if the gains exceed the losses, sell the lottery to types x > x=; if R∗ < 0, sell
nothing to types x > x=. However, the monopolist has a richer set of choices at
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x0 1
2x= = x+1

A(x)
C(x)

A(x) + C(x)

R∗

x+2

V AC

Figure 1: Functions A(x), C(x), A(x) +C(x), and the value of R∗ at V = V AC .

his disposal, and so, depending on the sign of R∗, there are two main cases to
consider.

Case 1: R∗ > 0. As we shall see, for V > V AC it is optimal to sell lottery
l =

(
1
2 ,

1
2

)
for all consumers x > x=.

For V < V AC , we show that if lottery l =
(
1
2 ,

1
2

)
is offered, then the best way

to minimize losses from the intermediate types depends on the sign of W (x). If
W (x) > 0, it is optimal to maximize q1 in the trade-off between q0 and q1 under
tight global IC constraint implied by l =

(
1
2 ,

1
2

)
; and if W (x) < 0, it is optimal to

maximize q0 in this trade-off. Thus, selling type-specific not-sure-prize one-good

lotteries l(x) = (β(x), 0) with β(x) = 1
2

(
1− c′(1−x)

c′(x)

)
to consumers located in the

interval (xA, xW ) generates a smaller marginal loss (negative marginal revenue)
than selling them lottery l =

(
1
2 ,

1
2

)
. We want to emphasize that a positive

“fraction” of good i = 0 has to be offered to these consumers to satisfy global IC
constraint given that lottery l =

(
1
2 ,

1
2

)
is also offered.

The decision on whether to offer any lotteries depends on the combined ex-
pected revenue from lotteries,

ER∗x>xA
=

∫ xW

xA

1

2
β(x)A(x) dx+

∫ 1
2

xW

1

2
(A(x) + C(x)) dx. (12)

Such value is well defined for V < V AC .

Definition 3. Let V # be the value of V at which ER∗x>xA
= 0.

Altogether, we will show that for V < V # mechanism µbg(xA) is optimal,
and for V # < V < V AC the following multiple lotteries mechanism µml (xA, xW )
is optimal.
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Mechanism µml (y, z) (multiple lotteries). Consider thresholds y < z < 1
2 .

For consumers x ∈ (y, z) a type-specific one good lottery is offered, such that the
probability of receiving the good is less than 1. The lottery l =

(
1
2 ,

1
2

)
is targeted

for consumers x ∈ (z, 1− z).

µml (y, z) =



l(x) = (1, 0) , p (x) = pg, for x < y,

l(x) = (β(x), 0) , p (x) = pl(x), for y < x < z,

l(x) =
(
1
2 ,

1
2

)
, p (x) = V − c

(
1
2

)
, for z < x < 1− z,

l(x) = (0, β(1− x)) , p (x) = pl(1− x), for 1− z < x < 1− y,

l(x) = (0, 1) , p (x) = pg, for x > 1− y,

where β(x) = 1
2

(
1− c′(1−x)

c′(x)

)
, pg = 1

2c (1− y)− 1
2c (y)+

(
V − c

(
1
2

))
, and pl(x) =

β(x)V +
(
1
2 − β(x)

)
c (x) + 1

2c (1− x)− c
(
1
2

)
.

The fact that mechanism µml (y, z) entails the sale of non-sure-prize lotteries
is noteworthy. To the best of our knowledge, we are the first to identify settings
in which such lotteries are optimal.

Riley & Zeckhauser (1983) considered non-sure-prize lotteries in environments
with one good and they proved that they are not optimal. Pavlov (2011a) shows
that a two-good monopolist uses only sure-prize lotteries to maximize her rev-
enues and such result is presented as an extension of Riley & Zeckhauser (1983):
it is optimal to always guarantee the delivery of some good to any buyer. In
our setting this is not the case. This is due to the combined effect of concave
costs, as long as R∗ > 0, and countervailing incentives. Indeed, given any lot-
tery l = (q0, q1), customers’ willingness-to-pay decreases, whereas its marginal
revenue (i.e. q0A (x) + q1C (x)) is not monotonic. When one good is on sale
and its marginal revenue is non-monotonic, the optimal solution is derived by
applying ironing techniques. With one control variable, the probability of sale,
the outcome is one of the extremes, either sell with probability 1 or not. When
two goods are on sale, there are two control variables with different marginal
benefits (A(x) and C(x)). Richer possibilities allow for non-extreme solutions to
be optimal.

Case 2: R∗ < 0. In this case it is not optimal to sell any lotteries for V ≤ V AC .
For V > V AC , if x= < x+1 < 1

2 , there is a choice whether to offer lottery
l =

(
1
2 ,

1
2

)
to all consumers x > x= or only to x ∈ (x=, x+1). This decision

depends on the difference in expected revenues from these two choices,

ER∗x>x+1
=

∫ 1
2

x+1

1

2
(A(x) + C(x)) dx. (13)
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Such value is well defined for V > V AC .

Definition 4. Let V ## be the value of V at which ER∗x>x+1
= 0.

Altogether, we will show that for V > V ## mechanism µl(x=) is optimal,
while for V AC < V < V ## the following mechanism with no sales region in the
middle µlns (x=, x+1) is optimal.

Mechanism µlns (y, z) (lottery with no sale region) for y < z < 1
2 is a modifi-

cation of µl (y). The lottery l =
(
1
2 ,

1
2

)
is priced in such a way that a “no sale”

region appears in the middle of the Hotelling line.

µlns (y, z) =



l(x) = (1, 0) , p (x) = pg, for x < y,

l(x) =
(
1
2 ,

1
2

)
, p (x) = pl, for y < x < z,

l(x) = (0, 0), p(x) = 0, for z < x < 1− z,

l(x) =
(
1
2 ,

1
2

)
, p (x) = pl, for 1− z < x < 1− y,

l(x) = (0, 1) , p (x) = pg, for x > 1− y,

where pg = V − 1
2 (c (y) + c (z)) + 1

2 (c (1− y)− c (1− z)), and pl = V − 1
2c (z)−

1
2c (1− z).

Proposition 3. For the case of concave costs the optimal mechanism is

µ∗ =



µl (x=) ,

µml(xA, xW ),

µbg(xA),

µl (x=) ,

µlns (x=, x+1) ,

µbg(xA),

for V > V AC ,

for V # < V < V AC ,

for V < V #,

∣∣∣∣∣∣∣∣∣ if R∗ > 0;

for V > V ##,

for V AC < V < V ##,

for V < V AC ,

∣∣∣∣∣∣∣∣∣ if R∗ < 0.

The proof of Proposition 3 is in Appendix A.
On Figure 2 we show the optimal allocation function for good i = 0, q0(x),

for different values of V and depending on R∗. Allocation function q1(x) can be
obtained by symmetric reflection of q0(x) over x = 1

2 axis (dashed lines).

When the transportation cost function is concave the monopolist uses lotteries
to price discriminate among consumer’s types based on their degree of indifference
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xA xW 1− xW

x= 1− x=

a) R∗ > 0

V < V #
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V > V AC
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1
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10 x
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1
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x= x+1
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1− x=
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b) R∗ < 0

V < V AC

V AC < V < V ##

V > V ##

Figure 2: Optimal allocation function q0(x) for concave costs depending on R∗.
Allocation function q1(x) can be obtained by symmetric reflection of q0(x) over
x = 1

2 axis (dashed lines). Horizontal arrows show how the relevant thresholds
move when V increases.
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between goods. For V high enough, the optimal mechanism involves charging a
relatively high price for the base goods and a lower price for a lottery over the
substitute goods. The base goods are sold to the consumer’s types with strong
preferences for each base good, who are located closer to the extremes of the
Hotelling segment. The lottery is sold to consumers that have a relatively higher
indifference between the substitute goods, located closer to the center of the
segment.

Compared to the linear case, there are three notable differences: (i) lotteries
do not necessarily cover the entire market; (ii) lottery buyers are left with some
surplus; and (iii) even though whenever lotteries are offered lottery l =

(
1
2 ,

1
2

)
is

always on sale, different (non-sure-prize) lotteries may be also components of the
optimal menu.

4.3 Convex Costs

We consider c (x) such that c′ > 0 and c′′ > 0 for all x ∈ [0, 1]. As for the
case of concave costs, here we offer a sketch of the solution, formulate the main
proposition, leaving details to Appendix A.2..

Unlike the linear and concave costs cases, when the with transportation costs
function is convex, we cannot say in advance which consumer type is the worst
type x∗ in any incentive compatible mechanism. The lottery l =

(
1
2 ,

1
2

)
is the

most preferred by consumers in the middle, the base goods are most preferred by
the consumers at the extremes. Thus, we can decompose the whole optimization
problem into two components: optimize given x∗ and then optimize over x∗.

For a symmetric mechanism, for x∗ < 1
2 , the objective of (7) can be rewritten

as

2

∫ x∗

0
[q0(x)A(x) + q1(x)C(x)] dx

+

∫ 1
2

x∗
[q0(x) (A (x) +B (x)) + q1(x) (C (x) +D (x))] dx. (14)

Let us take a look at x < x∗ first. If x∗ > x= and A(x) + C(x) > 0 for
x ∈ (x=, x

∗), then the type-by-type maximization of the first integrand of (14)
gives l(x) =

(
1
2 ,

1
2

)
. This allocation violates IR constraint for these customers.

Optimization of the first part of (14) under the binding IR constraint, U(x) =
U(x∗) on x ∈ (x=, x

∗) produces selling multiple type specific sure prize lotteries

l(x) = (γ(x), γ(1− x)), where γ (x) = c′(1−x)
c′(1−x)+c′(x) .

Considering x > x∗, it can be shown that the second integrand of (14) under
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the binding IR constraint can be rewritten as

q0(x) (A (x) +B (x)) + q1(x) (C (x) +D (x)) = 2W (x) q0 (x) .

As we show in the Appendix, W (x) > 0 on x < xW . Thus, if x∗ < xW , then the
type-by-type maximization of the second integrand gives l(x) = (1, 0). However,
this allocation violates IR constraint for customers x ∈ (x∗, xW ). Once the
binding IR constraint is taken into account, lotteries l(x) = (γ(x), γ(1− x)) are
optimal for customers for which W (x) > 0.

Given these observations, we can show that type specific lotteries are offered if
the base consumption value is sufficiently high, so that xA < x=, for all customer
types x > x= for which W (x) > 0. In turn, all of these customer types have their
surpluses fully extracted.

Accordingly, we define mechanisms µml2 (y) and µmlns (y). Mechanism µml2 (y)
for a threshold y < 1

2 is such that the monopolist price discriminates consumers
by selling a set of type-specific sure prize lotteries.

µml2 (y) =


l (x) = (1, 0) , p (x) = V − c (y) , for x < y,

l(x) = (γ (x) , 1− γ (x)) , p (x) = pl (x) , for y < x < 1− y,

l (x) = (0, 1) , p (x) = V − c (y) , for x > 1− y,

where γ (x) = c′(1−x)
c′(1−x)+c′(x) , p

l(x) = V − γ(x)c (x)− γ(1− x)c (1− x).

Mechanism µmlns (y) for two thresholds y < z < 1
2 is a variation of mechanism

µml2 (y) in which a “no-sale” region is introduced. Indeed, in equilibrium some
consumers do not buy neither a lottery nor the base good.

µmlns (y, z) =

 µml2 (y) , for x < z and x > 1− z,

l(x) = (0, 0), p(x) = 0, for z < x < 1− z.

Before we formulate the proposition, we would like to note that differently
from the setting with concave costs, when c(x) is strictly convex, threshold V AC

is such that V AC < c
(
1
2

)
.

Proposition 4. For the case of convex costs the optimal mechanism is

µ∗∗∗ =


µml2 (x=) ,

µmlns(x=, xW ),

µbg(xA),

for V > c
(
1
2

)
,

for V AC < V < c
(
1
2

)
,

for V < V AC .
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Figure 3: Optimal allocation function q0(x) for convex costs (drawn for c(x) =
1
2x

2). Allocation function q1(x) can be obtained by symmetric reflection of q0(x)
over x = 1

2 axis (dashed lines). Horizontal arrows show how the relevant thresh-
olds move when V increases.

The proof of Proposition 4 is in Appendix A.2.
On Figure 3 we show the optimal allocation function for good i = 0, q0(x), for

different values of V and depending on R∗. Allocation function q1(x) is symmetric
to q0(x) around 1

2 .
When V > c

(
1
2

)
, the marginal revenue of lottery l(x) = (γ (x) , 1− γ (x)) is

positive for all x in
(
0, 12
)
. Therefore, it is optimal for the monopolist to fully

cover the market by selling the base goods to consumers located in the interval
(0, x=) and type-specific lotteries l(x) = (γ (x) , 1− γ (x)) to each consumer x
such that x ∈

(
x=,

1
2

)
.

When V AC < V < c
(
1
2

)
, it is shown that the marginal revenue of lottery

l(x) = (γ (x) , 1− γ (x)) is positive for x < xW . Therefore, in this case it is
optimal to sell lotteries for x ∈ (x=, xW ) and sell nothing for x ∈ (xW ,

1
2).

When V < V AC , the marginal revenue from lottery l(x) = (γ (x) , 1− γ (x))
is negative for x > xA, and so no lotteries are offered.

As in the concave case, the optimal mechanism is such that the monopolist
price discriminates based on consumers’ degree of indifference between goods. In
this setting, however, the price discrimination is not obtained through one simple
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lottery (i.e. lottery l =
(
1
2 ,

1
2

)
). On the contrary, the optimal mechanism entails

a set of type-specific sure-prize lotteries. This result depends crucially on the
convexity of the transportation costs function.

As in the linear case, lotteries are priced in order to extract the full surplus
from consumers. However, in a setting with convex costs, it may or may not be
optimal for the monopolist to fully cover the market.

5 Extensions and an Application

The optimality of lotteries for multi-product monopolists is a robust result that
persists in symmetric environments with more than two products and asymmetric
settings.

The common extension of the Hotelling model to study multiple products is
the Salop model (Salop (1979)). Such model is represented as a circle and the
symmetric products can be interpreted as equally distant locations on it. Such
model implies that each customer can fully rank all products in the market and
can be indifferent between two products at most. In order to derive the optimal
mechanism in such context, it is sufficient to notice that each arc connecting any
pair of consecutive products is isomorphic to the Hotelling line that we studied
in the previous sections. Given that, if the number of products is n, then the
optimal mechanism entails n two-product lotteries. Allocation probabilities and
prices associated with the lotteries depend on the base-consumption value and
the shape of the transportation cost function as derived for the Hotelling model.

Another type of extension implies different assumptions on the information
regarding the base consumption value V . If such value is assumed to be seller’s
private information, then, as in Yilankaya (1999) and Mylovanov & Tröger (2012),
it is optimal for the seller to fully disclose ex-ante the value of V . This is
because the seller’s expected revenue is increasing in V and full separation is the
only equilibrium. Such result is indeed consistent with the observed behavior of
opaque good sellers assuring buyers about the equivalent quality of all base goods
in the opaque good’s support (e.g. grouping together only hotels with the same
rating or flights with the same number of stops). Hence, our optimal mechanism
is also the optimal solution in such “informed seller” setting.

Alternatively, we can assume that V is buyer’s private information. In such
environment buyer’s types are bi-dimensional: a type is defined as the tuple
(V, x). It is useful to observe that if types (V, x) and (V ′, x) for x 6= 1

2 are both
assigned sure prize lotteries, their allocations and prices have to be the same.
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Indeed, the incentive compatibility constraint for type (V, x) relative to (V ′x) is

q0 (V, x) (V − c (x)) + q1 (V, x) (V − c (1− x))− p (V, x) ≥
q0
(
V ′, x

)
(V − c (x)) + q1

(
V ′, x

)
(V − c (1− x))− p

(
V ′, x

)
.

When q0 + q1 = 1, it can be rewritten as

q0 (V, x) (c (1− x)− c (x))− p (V, x) ≥ q0
(
V ′, x

)
(c (1− x)− c (x))− p

(
V ′, x

)
.

Similarly, for type (V ′, x):

q0
(
V ′, x

)
(c (1− x)− c (x))− p

(
V ′, x

)
≥ q0 (V, x) (c (1− x)− c (x))− p (V, x) .

The incentive compatibility constraint is independent of V and, therefore, types
(V, x) and (V ′, x) can be assigned the same allocation q0 (and ergo q1) and pay-
ment p.

The value of V matters only for its role in the individual rationality constraint.
When the cost function is linear (i.e. c (x) = x) and V is distributed according
to a uniform distribution over a segment

[
V L, V H

]
where V L is a sufficiently

high value (so that the restriction on considering only sure-prize lotteries is not
binding), then the optimal mechanism is

µ∗
(
V ∗,

1

4

)
=



l = (1, 0) , p = pg, for (V, x) : V > V ∗ and x < 1
4 ,

l =
(
1
2 ,

1
2

)
, p = V ∗ − 1

2 , for (V, x) : V > V ∗ and 1
4 < x < 3

4 ,

l = (0, 1) , p = pg, for (V, x) : V > V ∗ and x > 3
4 ,

l = (0, 0) , p = 0, for (V, x) : V < V ∗ and ∀x,

where pg = V ∗ − 1
4 and

V ∗ = arg max
V

(∫ 1
4

0

(
V − 1

4

)
dx+

∫ 1
2

1
4

(
V − 1

2

)
dx

)(
V H − V
V H − V L

)
.

Similarly, when the cost function is concave, as long as the base consumption
value is sufficiently high, the optimal mechanism is derived by maximizing the
expected seller’s revenue with respect to V . The case of convex cost is more com-
plicated, because, in the pointwise (with respect to V ) optimal mechanism, the
individual rationality constraint defines the allocation and payment of multiple
types. As a result, V and x are not separable.
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A slightly more complicated extension is the one regarding asymmetric set-
tings. Several sources of asymmetry can be considered (e.g. different base-
consumption levels across goods, asymmetric cost functions, non-uniform dis-
tributions of customers, etc.). They can be treated with different degrees of
difficulties with the same methodology as considered here. Without symmetry,
one would have to “guess” x∗ and optimize on both x < x∗ and x > x∗ separately.

As an example, consider a setting with asymmetric locations. We propose a
slight variation of the two-good model: we replace good 0 with a good k that
is located at x = k, where k ∈ (0, 1). In this new framework, the subset [0, k]
represents a sort of captive market of consumers most interested in good k. The
asymmetry of the environment implies that the solution is also asymmetric. As
in our original model, the monopolist realizes price discrimination by offering
lotteries targeted to the consumers who are relatively more indifferent between
the goods. However, the base good k commands a higher price than the base
good 1 as its demand is relatively less elastic. Furthermore, the monopolist still
includes in its menu the symmetric l =

(
1
2 ,

1
2

)
lottery.

5.1 Product Line Design

The single lottery mechanism is often directly observed in the real world. For
example, in the market for hotels, hotwire typically only offers one lottery for
each city area and rating level. Instead, consumers are not typically offered
a selection among multiple lotteries options as it would be prescribed by the
optimal mechanism with convex costs. However, an alternative interpretation of
our setting can offer a way to reconcile what we derived with business practice.

As described in Lancaster (1971), goods can be studied as collections of dif-
ferent attributes. Consumers have preferences for attributes rather than goods.
Therefore, the process of determining which goods to market becomes equivalent
to the selection of which attributes to mix together (and in which proportions).
Then, multi-product mechanism design models with additive utility can be used
also to solve optimal product line design problems:14 goods are reinterpreted as
attributes and bundles (and lotteries) become products.15

To reinterpret our setting with substitute goods in terms of product design
choices (as in Pavlov (2011a)), few adjustments are necessary. The endpoints of
the Hotelling line can be seen as representing two ideal product configurations.
Buyers have different willingness-to-pay for them. Moreover, their preferences are
negatively correlated: the more a buyer is willing to pay for one configuration,

14The seminal paper Mussa & Rosen (1978) set up the optimal product line design problem.
More recent works are Johnson & Myatt (2014) and Anderson & Celik (2014).

15See McAfee & McMillan (1988), Rochet & Choné (1998), and Pycia (2006), for example.
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the less he is willing to pay for the other. Accordingly, each lottery represents a
mixed good of inferior quality which specifications have elements from the two
ideal configurations.16 Following this interpretation of the model, our optimal
mechanism offers insights on product assortment strategies based exclusively on
a price-discrimination argument.

Our solution shows that it is always optimal for the monopolist to sell goods
that perfectly match the ideal configurations (or pure goods). When the indif-
ferent buyers have the highest willingness-to-pay for mixed goods (i.e. the costs
are convex), then the monopolist maximizes her profits by adding a continuum
of products to his stock; when, instead, the indifferent consumers have the lowest
willingness-to-pay for mixed goods (i.e. the costs are concave), then the seller
optimally offers only one, unique mixed good. Our solution seems to offer a way
to rationalize the fact that we observe different firms successfully adopting op-
posite SKU (Stock Keeping Units) management practices at the same time. The
convex case justifies firms’ choice of marketing a wide array of different SKUs,
whereas the concave case explains how some firms prefer to keep a short product
list.17

6 Conclusion

In this paper we fully characterize the optimal selling mechanism for a two-
product monopolist. The solution depends on the value of the base-consumption
and on the shape of transportation costs. In general, as long as the base-
consumption value is sufficiently high, we show that the monopolist uses lotteries
to price discriminate consumers based on their degree of indifference between the
two substitute goods. The shape of the transportation costs determine which
lotteries are optimal. By considering different transportation cost functions, we

16An example is the market of high-end PCs that is divided between consumers that are
either “gamers” or “business analysts”. The PC device is size-constrained and different groups
request different components (e.g. a powerful graphic processor versus a big data storage disk).
There are two ideal configurations that cater to the two different segments; any mixed-specs
product is perceived as inferior by both segments. Alternatively, we can think of digital TV
subscriptions for soccer fans. A soccer fan is usually interested in watching all the season games
of his/her favorite team (i.e. the ideal configuration). Subscription options that mix games of
different teams are sold at cheaper prices (as lower quality goods).

17In 2013 Amazon USA was selling over 200 million products in the USA categorized into
35 departments. There were almost 5 million items in the Clothing department, almost 20
million in Sports & Outdoors, and over 4 million Office Products. There were 7 million items in
the Amazon Jewelry department, 24 million in Electronics, 1.4 million products in the Beauty
department, 570 thousand Baby products, and 600 thousand Grocery items. In 2012 Costco, a
US major retailer, was reported to hold only 3950 SKUs in total.
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model different kinds of markets.
We discuss the generality of the main features of our optimal mechanism

considering environments with vertical differentiation, multiple goods and asym-
metric settings. In particular, we stress the robustness of our results regarding
lotteries: it is optimal for a multi-product monopolist to sell lotteries in a variety
of settings.

After examining the optimality of lottery-based mechanisms in a setting with
a multi-product monopolist, we are interested in analyzing the appearance of
lotteries when there is competition. In our companion paper, we consider a
setting in which each substitute good is sold by an independent firm. All firms
compete with each other in a market with unit-demand consumers. In such
context, we look at the possibility for intermediaries to enter the market and offer
the service to organize (and sell) multi-good lotteries. We study the competitive
equilibria that arise under different conditions in terms of base-consumption and
transportation cost function.
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A Appendix

A.1 Concave Costs

In Section 4.2 we have already pointed out two essential elements of the proof.
First, since A(x) + C(x) can dip below 0 (as illustrated in Figure 1) for some
values of V , the point-wise optimization of the integrand in (11) yields selling
nothing to types x for which A(x) + C(x) < 0 and A(x) < 0, but that would
violate global IC constraint for these types if there are some other types closer
to x = 1

2 , for which A(x) + C(x) > 0, and which are offered a lottery l 6= (0, 0).
Second, the optimal way to account for global IC constraints depends on the sign
of function W (x).

Thus, before we proceed with the Proof of Proposition 3, we first establish
some properties of functions A(x)+C(x), W (x), and the relevant threshold types
and values.

Lemma 3. When c (x) is strictly concave, V AC > c
(
1
2

)
.

Proof. We follow Balestrieri & Izmalkov (2014). By strict concavity c
(
1
2

)
−

c (x=) < c′ (x=)
(
1
2 − x=

)
and c

(
1
2

)
− c (1− x=) < c′ (1− x=)

(
x= − 1

2

)
. By

definition, V AC = c (x=) + c′ (x=)x= and V AC = c (1− x=) − c′ (1− x=)x=.
This implies that c

(
1
2

)
− V AC < c′ (x=)

(
1
2 − 2x=

)
and that c

(
1
2

)
− V AC <

c′ (x=)
(
2x= − 1

2

)
for any x=. This can only be if V AC > c

(
1
2

)
.

Lemma 4. When c(x) is strictly concave:
i) type xW is well defined (exists and is unique) for values c

(
1
2

)
< V < V AC

and is decreasing in V ;
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ii) W (x) > 0 on xW < x < 1
2 ;

iii) xW < xA ⇔ V > V AC .

Proof. i) By differentiating (9), we obtain

W ′ (x) = w′(x) (V − c(1− x)) , w(x) =
c′ (x)

c′ (1− x)
. (15)

Since for strictly concave transportation costs w′(x) < 0, we have W ′(x) < 0
iff V > c(1−x). Thus, for V > c

(
1
2

)
, W ′

(
1
2

)
< 0. As W

(
1
2

)
= A

(
1
2

)
+C

(
1
2

)
> 0

for V > c
(
1
2

)
, function W (x) can cross 0 at most once and from below.

For V = V AC , W (x=) = 0, and xW = x= = xA = xC . For V = c
(
1
2

)
,

W
(
1
2

)
= 0. Thus, for each value c

(
1
2

)
< V < V AC , W (x) crosses 0 at xW ∈[

x=,
1
2

]
, and W ′ (xW ) > 0. By total differentiation of W (xW ) = 0, we obtain

∂xW
∂V

= −
∂W
∂V

W ′ (xW )
< 0.

iii) By Lemma 2, xA is increasing in V , while xW is decreasing, at V = V AC ,
xA = xW . ii) Straightforward.

Proof of Proposition 3. The simple cases are those for which the pointwise opti-
mization of the integrand in (11) satisfies IC constraints. This happens in two
extreme cases: (i) very low V : if V < V AC and A(x) + C(x) < 0 for all x > xA,
in which case mechanism µbg (xA) is optimal; and (ii) very high V : if V > V AC

and A(x) +C(x) > 0 for all x > x=, in which case mechanism µl(x=) is optimal.
In all other cases (with strict inequalities), the pointwise optimization violates

IC constraints, which has to be taken into account. Out treatment of the global
IC constraints follows the one by Balestrieri & Izmalkov (2014), accounting for
the differences in the setup.

A way to proceed is to account for the IC constraint explicitly. For any pair
x, z, the combination U(x) ≥ U(z|x) and U(z) ≥ U(x|z) gives

[U(x)− U(x|z)] ≥ [U(z|x)− U(z)]

(q0(x)− q0(z))(c(z)− c(x)) + (q1(x)− q1(z))(c(1− z)− c(1− x)) ≥ 0. (16)

Let r(x) = q0(x)− q1(x). By (1), r(x) ≥ 0. Rearranging terms, the local IC
constraints can be written as

r(x) + q1(x)δ(x, z) ≥ r(z) + q1(z)δ(x, z), (17)

where δ(x, z) = 1− c(1−x)−c(1−z)
c(z)−c(x) , x < z ≤ 1

2 . It is that δ(x, z) ∈ (0, 1).
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However, taking into account local IC is insufficient for the case of concave
costs, global IC constraints need to be accounted for any x ≤ z ≤ 1

2 with binding
U(x) = U(z|x). Since global IC implies that for all x ≤ z ≤ 1

2 , U(x) ≥ U(z|x),
and as U(x) is continuous and differentiable almost everywhere, we must have

U ′(x) ≤ U ′x(z|x). (18)

for any x ≤ z ≤ 1
2 with U(x) = U(z|x). That is, decreasing x, the utility of

truthtelling has to be increasing at least as fast as the utility of pretending to be
z. Constraint (18) can be written as

r(x) + q1(x)δ(x, x) ≥ r(z) + q1(z)δ(x, x), (19)

where δ (x, x) = 1 − c′(1−x)
c′(x) . In the optimal solution both constraints (17) and

(19) must hold.
Now, suppose the cost function and the value are such that A(x) + C(x)

dips below 0 and we need to account for IC constraints, so that x+2 > x=, and
A(z) + C(z) > 0 on z ∈

(
x+2,

1
2

)
, while A(x) + C(x) < 0 and A(x) < 0 for some

x < x+2. Suppose further that lottery l =
(
1
2 ,

1
2

)
is offered to each such z.

Then, constraint (19) becomes r(x) + q1(x)δ(x, x) = 1
2δ(x, x). Therefore, we

can express r (x) as

r (x) =

(
1

2
− q1 (x)

)
δ (x, x) (20)

for x ∈ (xA, x+2). In that interval, the expected revenue at x is

r (x)A(x) + q1 (x) (A (x) + C (x))

=

(
1

2
− q1 (x)

)
δ (x, x)A (x) + q1 (x) (A (x) + C (x)) .

Rearranging, we have

1

2
δ (x, x)A (x) + q1 (x)

c′ (1− x)

c′ (x)
W (x) .

Then, optimization of the expected revenue subject to global IC constraints (as-
suming l =

(
1
2 ,

1
2

)
is offered) yields: if W (x) > 0, set q1(x) = 1

2 and r(x) = 0, that
is, offer l(x) =

(
1
2 ,

1
2

)
; if W (x) < 0, set q1(x) = 0 and r(x) = 1

2δ (x, x) = β (x),
that is, offer l(x) = (β(x), 0).

Ultimately, whether lottery l =
(
1
2 ,

1
2

)
is to be offered depends on the com-

parison of gains from types z relative to losses from types x. Before we compare
the gains with losses, note that it would be suboptimal to offer any other lottery
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l(z) besides (0, 0) and
(
1
2 ,

1
2

)
to any z > x+2. Indeed, as lottery l =

(
1
2 ,

1
2

)
means

(r, q1) =
(
0, 12
)
, offering r(z) > 0 for some types z is suboptimal as it both gener-

ates negative revenue A(z)r(z) from z and puts an incentive “overhead” on types
x in consideration. Offering different q1(z) for different z is suboptimal as incen-
tive “overhead” would be the same as if qmax

1 = maxz>x+2 q1(z) is offered for all
z > x+2, while less revenue is generated. And, gains and losses are proportional
to qmax

1 .18

As described in Section 4.2, we have two cases to consider depending on R∗

(computed at V = V AC).
Case 1: R∗ > 0. If V > V AC , by Lemmata 2 and 4, we have xW < x= < xA.

Then, for each type x= < x < x+2 (if exists), it is optimal to offer l(x) =
(
1
2 ,

1
2

)
if such lottery is offered for z > x+2. Gains clearly exceed the losses as their sum
is increasing in V , and so they are higher than R∗. The optimal mechanism is
µl(x=).

If V < V AC , by Lemmata 2 and 4, xA < x= < xW . If lottery l =
(
1
2 ,

1
2

)
is offered, then the expected revenue on x > xA is ER∗x>xA

(see (12)), which is
strictly increasing in V . The relevant threshold is V #. For V < V # mechanism
µbg(xA) is optimal, and for V # < V < V AC mechanism µml (xA, xW ) is optimal.

Case 2: R∗ < 0. If V < V AC , mechanism µbg(xA) is optimal as expected
revenue ER∗x>xA

is lower than R∗. If V > V AC and lottery l =
(
1
2 ,

1
2

)
is offered,

then the expected revenue on x > x+1 is ER∗x>x+1
(see (13)), which is also strictly

increasing in V . Note that on x ∈ (x=, x+1) and as long as expected revenue in
(13) remains negative we have A(x) + C(x) > 0. Then, on V AC < V < V ##

mechanism with no sales for x > x+1, µ
lns (x=, x+1), is optimal, while for V >

V ## mechanism µl(x=) is optimal.
For all the mechanisms derived prices are determined using IR constraint

U
(
1
2

)
= 0, indifference conditions at threshold types, and (5).

A.2 Convex costs

Before we proceed with the Proof of Proposition 4, we first establish some prop-
erties of functions A(x) + C(x), W (x), and the relevant threshold types and
values.

Lemma 5. When c(x) is strictly convex, V AC < c
(
1
2

)
.

Proof. Similarly to the proof of Lemma 4, by strict convexity c
(
1
2

)
− V AC >

c′ (x=)
(
1
2 − 2x=

)
and c

(
1
2

)
− V AC > c′ (x=)

(
2x= − 1

2

)
have to hold simultane-

ously. This can only happen if V AC < c
(
1
2

)
.

18For a more detailed treatment see Balestrieri & Izmalkov (2014).
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Lemma 6. When c(x) is strictly convex:
i) W ′(x) < 0, W (x) > 0 for all x ≤ 1

2 on V > c
(
1
2

)
;

ii) type xW is well defined and is increasing in V for V AC < V < c
(
1
2

)
;

iii) xW < xA ⇔ V < V AC .

Proof. i) W ′(x) is given by (15). Note that w′ (x) > 0 because c (x) is convex.
V − c(1− x) < 0 for all x ∈

(
0, 12
)

by Lemma 5. The second statement is true as
for V = c

(
1
2

)
, W

(
1
2

)
= 0.

ii) For V = V AC , by expression (9), W (x=) = 0. We have

∂xW
∂V

= −
∂W
∂V

W ′ (xW )
> 0.

iii) By Lemma 2, xA < xC for V < V AC . For x < xA, since C(x) < 0 we
have A(x) > W (x). Therefore, xW < xA given W ′(x) < 0.

Proof of Proposition 4. We proceed in four steps. First, we put a lower bound
on the worst possible types in the optimal solution. Second, we give a partial
characterization of the optimal solution given the lowest worst type. Third, we
identify the lowest worst possible type depending on the primitives of the setup.
Finally, we derive the optimal mechanism.

Step 1. Let x∗∗ be the smallest x among the types with lowest utility in the
optimal solution. Then, x∗∗ ≤ min {xA, x=}.

Suppose not, then consider two cases. Case (i): if xA < x=, then for
x ∈ (xA, x=) we have A(x) + C(x) < 0. Optimization of the first integrand in
(14) gives l(x) = (0, 0), which means U(x) = 0 = U(x∗∗), contradicting the sup-
position. Case (ii): if xA > x=, then for x ∈ (x=, xA), we have A(x) +C(x) > 0.
The optimal unconstrained solution is l(x) =

(
1
2 ,

1
2

)
, and so U(x) < U(x∗∗|x) ≤

U(x∗). Thus, offering the lottery to consumer x violates IR constraint. This
means that the optimization under the binding IR constraint for the worst type
x∗∗ on x ∈ (x=, x

∗∗) has to result in binding IR constraint for at least some
x < x∗∗, again contradicting the supposition. If V = V AC and so x= = xA, then
there exist x ∈ (x=, x

∗∗) with either A(x) + C(x) > 0 or A(x) + C(x) < 0, and
the same argumentation leading to the contradictions applies.

Step 2. Considering the problem (14) on x > x∗ = x∗∗, note that A(x) +
B(x) > C(x) + D(x) for x < 1

2 . Therefore, the optimal solution given x∗ is
to maximize the probability q0(x) without violating the IR constraint for types
x > x∗. Under constraint (10), the second integrand of (14) can be expresses as

q0(x) [A (x) +B (x)] + q1(x) [C (x) +D (x)] = 2W (x)q0(x).
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Hence, when W (x) > 0 it is optimal to set q0 (x) = γ (x) = c′(1−x)
c′(1−x)+c′(x) and

q1 (x) = 1− γ (x), and when W (x) < 0 – to set l(x) = (0, 0).
Step 3. For V > V AC , x∗∗ = x=. Suppose not, that is x∗∗ < x= (by Step 1

and Lemma 2 we know that x∗∗ ≤ x= < xA). Since W (x) > 0 for x = x= and
W ′(x) < 0 by Lemma 6, W (x) > 0 for x ∈ (x∗∗, x=). Thus, the optimal solutions
computed given x∗ = x∗∗ and x∗ = x= differ only on x ∈ (x∗∗, x=). Note that
U(x=) = 0 for both of them. The optimal solution computed given x∗ = x=
generates strictly more revenue, as the unconstrained maximization of the first
integrand in (14) on x ∈ (x∗∗, x=) gives l(x) = (1, 0), which together with the
rest of the solution is IC and IR. For V < V AC , x∗∗ = xA by a similar argument.

Step 4. For V < V AC , we have x∗∗ = xA. By Lemma 6, xW < xA, and so
the optimal mechanism is µbg(xA).

For V AC < V < c
(
1
2

)
, we have x∗∗ = x= and x= < xW < 1

2 (follows from
Lemma 6). Thus, the optimal mechanism is µmlns(x=, xW ).

For V > c
(
1
2

)
, we have x∗∗ = x= and by Lemma 6, W (x) > 0 on x < 1

2 .
Thus, the optimal mechanism is µml2 (x=).

For all the mechanisms derived prices are determined using IR constraint
U (x∗) = 0, indifference conditions at threshold types, and (5).
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