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ABSTRACT 16 

Agricultural production systems are facing new challenges due to an ever changing global 17 

environment that is a source of risk and uncertainty. To adapt to these environmental changes, farmers 18 

must adjust their management strategies and remain competitive while also satisfying societal 19 

preferences for sustainable food systems. Representing and modeling farmers’ decision-making 20 

processes by including adaptation, when representing farmers’ practices ,is therefore an important 21 

challenge for the agricultural research community. 22 

Bio-economic and bio-decisional approaches have addressed adaptation at different planning horizons 23 

in the literature. We reviewed approximately 40 articles using bio-economic and bio-decisional models 24 

in which strategic and tactical decisions were considered dynamic adaptive and expectation-based 25 

processes. The main results of this literature survey are as follows: i) adaptability, flexibility and 26 

dynamic processes are common ways to characterize farmers’ decision-making, ii) adaptation can be a 27 

reactive or a proactive process depending on farmers’ flexibility and expectation capabilities, and iii) 28 

different modeling approaches are used to model decision stages in time and space, and some 29 

approaches can be combined to represent a sequential decision-making process. Focusing attention on 30 

short- and long-term adjustments in farming production plans, coupled with sequential and 31 

anticipatory approaches should lead to promising improvements for assisting decision makers. 32 

 33 
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1. INTRODUCTION 65 

Agricultural production systems are facing new challenges due to a constantly changing global 66 

environment that is a source of risk and uncertainty, and in which past experience is not sufficient to 67 

gauge the odds of a future negative event. Concerning risk, farmers are exposed to production risk 68 

mostly due to climate and pest conditions, to market risk that impact input and output prices, and 69 

institutional risk through agricultural, environmental and sanitary regulations (Hardaker 2004). 70 

Farmers may also face uncertainty due to rare events affecting, e.g., labor, production capital stock, 71 

and extreme climatic conditions , which add difficulties to producing agricultural goods and calls for 72 

re-evaluating current production practices. To remain competitive, farmers have no choice but to adapt 73 

and adjust their daily management practices (Hémidy et al. 1996; Hardaker 2004; Darnhofer et al. 74 

2010; Dury 2011). In the early 1980s, Petit developed the theory of the “farmer’s adaptive behavior” 75 

and claimed that farmers have a permanent capacity for adaptation (Petit 1978). Adaptation refers to 76 

adjustments in agricultural systems in response to actual or expected stimuli through changes in 77 

practices, processes and structures and their effects or impacts on moderating potential modifications 78 

and benefiting from new opportunities (Grothmann and Patt 2003; Smit and Wandel 2006). Another 79 

important concept in the scientific literature on adaptation is the concept of adaptive capacity or 80 

capability (Darnhofer 2014). This refers to the capacity of the system to resist evolving hazards and 81 

stresses (Ingrand et al. 2009; Dedieu and Ingrand 2010) and it is the degree to which the system can 82 

adjust its practices, processes and structures to moderate or offset damages created by a given change 83 

in its environment (Brooks and Adger 2005; Martin 2015). For authors in the early 1980s such as Petit 84 

(1978) and Lev and Campbell (1987), adaptation is seen as the capacity to challenge a set of 85 

systematic and permanent disturbances. Moreover, agents integrate long-term considerations when 86 

dealing with short term changes in production. Both claims lead to the notion of a permanent need to 87 

keep adaptation capability under uncertainty. Holling (2001) proposed a general framework to 88 

represent the dynamics of a socio-ecological system based on both ideas above, in which dynamics are 89 

represented as a sequence of “adaptive cycles”, each affected by disturbances. Depending on whether 90 

the latter are moderate or not, farmers may have to reconfigure the system, but if such redesigning 91 

fails, then the production system collapses. 92 

Some of the most common dimensions in adaptation research on individual behavior refer to the 93 

timing and the temporal and spatial scopes of adaptation (Smit et al. 1999; Grothmann and Patt 2003). 94 

The first dimension distinguishes proactive vs. reactive adaptation. Proactive adaptation refers to 95 

anticipated adjustment, which is the capacity to anticipate a shock (change that can disturb farmers’ 96 

decision-making processes); it is also called anticipatory or ex-ante adaptation. Reactive adaptation is 97 

associated with adaptation performed after a shock; it is also called responsive or ex-post adaptation 98 

(Attonaty et al. 1999; Brooks and Adger 2005; Smit and Wandel 2006). The temporal scope 99 

distinguishes strategic adaptations from tactical adaptations, the former referring to the capacity to 100 



adapt in the long term (years), while the latter are mainly instantaneous short-term adjustments 101 

(seasonal to daily) (Risbey et al. 1999; Le Gal et al. 2011). The spatial scope of adaptation opposes 102 

localized adaptation versus widespread adaptation. In a farm production context, localized adaptations 103 

are often at the plot scale, while widespread adaptation concerns the entire farm. Temporal and spatial 104 

scopes of adaptation are easily considered in farmers’ decision-making processes; however, 105 

incorporating the timing scope of farmers’ adaptive behavior is a growing challenge when designing 106 

farming systems.  107 

System modeling and simulation are interesting approaches to designing farming systems which allow 108 

limiting the time and cost constraints (Rossing et al. 1997; Romera et al. 2004; Bergez et al. 2010) 109 

encountered in other approaches, such as diagnosis (Doré et al. 1997), systemic experimentation 110 

(Mueller et al. 2002) and prototyping (Vereijken 1997). Modeling adaptation to uncertainty, when 111 

representing farmers’ practices and decision-making processes, has been addressed in bio-economic 112 

and bio-decisional approaches (or management models) and addressed at different temporal and 113 

spatial scales.  114 

The aim of this paper is to review the way adaptive behavior in farming systems has been considered 115 

(modeled)in bio-economic and bio-decisional approaches. This work reviews several modeling 116 

formalisms that have been used in bio-economic and bio-decisional approaches, comparing their 117 

features and selected relevant applications. We chose to focus on the formalisms rather than the tools 118 

as they are the essence of the modeling approach.  119 

Approximately 40 scientific references on this topic were found in the agricultural economics and 120 

agronomy literature. This paper reviews approaches used to model farmers’ adaptive behavior when 121 

they encounter uncertainty in specific stages of, or throughout, the decision-making process. There is a 122 

vast literature on technology adoption in agriculture, which can be considered a form of adaptation, 123 

but which we do not consider here, to focus on farmer decisions for a given production technology. 124 

After presenting some background on modeling decisions in agricultural economics and agronomy and 125 

the methodology used, we present formalisms describing proactive behavior and anticipation decision-126 

making processes and formalisms for representing reactive adaptation decision-making processes. 127 

Then, we illustrate the use of such formalisms in papers on modeling farmers’ decision-making 128 

processes in farming systems. Finally, we discuss the need to include adaptation and anticipation to 129 

uncertain events in modeling approaches of the decision-making process and discuss adaptive 130 

processes in other domains. 131 



2. BACKGROUND ON MODELING DECISIONS IN AGRICULTURAL ECONOMICS AND 132 

AGRONOMY 133 

Two main fields dominate decision-making approaches in farm management: agricultural economics 134 

(with bio-economic models) and agronomy (with bio-decisional models). Agricultural economists are 135 

typically interested in the analysis of year-to-year strategical (sometimes tactical) decisions originating 136 

from long-term strategies (e.g., investment and technical orientation). In contrast, agronomists focus 137 

more on day-to-day farm management described in tactical decisions. The differences in temporal 138 

scale are due to the specific objective of each approach. For economists, the objective is to efficiently 139 

use scarce resources by optimizing the configuration and allocation of farm resources given farmers’ 140 

objectives and constraints in a certain production context. For agronomists, it is to organize farm 141 

practices to ensure farm production from a bio-physical context  (Martin et al. 2013). Agronomists 142 

identify relevant activities for a given production objective, their interdependency, what preconditions 143 

are needed to execute them and how they should be organized in time and space. Both bio-economic 144 

and bio-decisional models represent farmers’ adaptive behavior. 145 

 146 

Bio-economic models integrate both biophysical and economic components (Knowler 2002; Flichman 147 

2011). In this approach, equations describing a farmer’s resource-management decisions are combined 148 

with those representing inputs to and outputs from agricultural activities (Janssen and van Ittersum 149 

2007). The main goal of farm-resource allocation in time and space is to improve economic 150 

performance of farming systems, usually along with environmental performance. Bio-economic 151 

models indicate the optimal management behavior to adopt by describing agricultural activities. 152 

Agricultural activities are characterized by an enterprise and a production technology used to manage 153 

the activity. Technical coefficients represent relations between inputs and outputs by stating the 154 

amount of inputs needed to achieve a certain amount of outputs (e.g., matrix of input-output 155 

coefficients, see Janssen and van Ittersum 2007). Many farm-management decisions can be formulated 156 

as a multistage decision-making process in which farmer decision-making is characterized by a 157 

sequence of decisions made to meet farmer objectives. The time periods that divide the decision-158 

making process are called stages and represent the moments when decisions must be made. Decision 159 

making is thus represented as a dynamic and sustained process in time (Bellman 1954; Mjelde 1986; 160 

Osman 2010). This means that at each stage, technical coefficients are updated to proceed to the next 161 

round of optimization. Three major mathematical programming techniques are commonly used to 162 

analyze and solve models of decision under uncertainty: recursive models, dynamic stochastic 163 

programming, and dynamic programming (see Miranda and Fackler 2004). Agricultural economic 164 

approaches usually assume an idealized situation for decision, in which the farmer has clearly 165 

expressed goals from the beginning and knows all the relevant alternatives and their consequences. 166 

Since the farmer’s rationality is considered to be complete, it is feasible to use the paradigm of  utility 167 



maximization (Chavas et al. 2010). Simon (1950) criticized this assumption of full rationality and 168 

claimed that decision-makers do not look for the best decision but for a satisfying one given the 169 

amount of information available. This gave rise to the concept of bounded and adaptive rationality 170 

(Simon 1950; Cyert and March 1963), in which the rationality of decision-makers is limited by the 171 

information available, cognitive limitations of their minds and the finite timing of the decision.  In 172 

bounded rationality, farmers tend to seek satisfactory rather than utility maximization when making 173 

relevant decisions (Kulik and Baker, 2008). From complete or bounded rationality, all bio-economic 174 

approaches are characterized by the common feature of computing a certain utility value for available 175 

options and then selecting the one with the best or satisfactory value. In applied agricultural 176 

economics, stochastic production models are more and more commonly used to represent the 177 

sequential production decisions by farmers, by specifying the production technology through a series 178 

of operational steps involving production inputs. These inputs have often the dual purpose of 179 

controlling crop yield or cattle output level on the one hand, and controlling production risk on the 180 

other (Burt 1993; Maatman et al. 2002; Ritten et al. 2010). Furthermore, sequential production 181 

decisions with risk and uncertainty can also be specified in a dynamic framework, to account for 182 

intertemporal substitutability between inputs (Fafchamps 1993). Dynamic programming models have 183 

been used as guidance tools in policy analysis and to help farmers identify irrigation strategies (Bryant 184 

et al. 1993). 185 

Biophysical models have been investigated since the 1970s, but the difficulty in transferring 186 

simulation results to farmers and extension agents led researchers to investigate farmers’ management 187 

practices closely and develop decision models (Bergez et al. 2010). A decision model, also known as a 188 

decision-making process model or farm-management model, comes from on-farm observations and 189 

extensive studies of farmers’ management practices. These studies, which show that farmers’ technical 190 

decisions are planned, led to the “model for action” concept (Matthews et al. 2002), in which decision-191 

making processes are represented as a sequence of technical acts. Rules that describe these technical 192 

acts are organized in a decision schedule that considers sequential, iterative and adaptive processes of 193 

decisions (Aubry et al. 1998). In the 1990s, combined approaches represented farming systems as bio-194 

decisional models that link the biophysical component to a decisional component based on a set of 195 

decision rules (Aubry et al. 1998; Attonaty et al. 1999; Bergez et al. 2006; Bergez et al. 2010). Bio-196 

decisional models describe the appropriate farm-management practice to adopt as a set of decision 197 

rules that drives the farmer’s actions over time (e.g., a vector returning a value for each time step of 198 

the simulation). Bio-decisional models are designed (proactive) adaptations to possible but anticipated 199 

changes. By reviewing the decision rules, these models also describe the farmer’s reactive behavior.  200 



3. METHOD 201 

To achieve the above goal, a collection of articles was assembled through three steps. The first step 202 

was a search on Google Scholar using the following combination of Keywords: Topic = ((decision-203 

making processes) or (decision model) or (knowledge-based model) or (object-oriented model) or 204 

(operational model)) AND Topic = ((bio-economics or agricultural economics) or (agronomy or bio-205 

decisional)) AND Topic = ((adaptation) or (uncertainty) or (risk)). The first topic defines the tool of 206 

interest: only work using decision-making modeling (as this is the focus of this paper). Given that 207 

different authors use slightly different phrasings, the present paper incorporated the most-commonly 208 

used alternative terms such as knowledge-based model, object-oriented model, and operational model. 209 

The second topic restricts the search to be within the domains of bio-economics and agronomy. The 210 

third topic reflects the major interest of this paper, which relates to farmer adaptations facing uncertain 211 

events. This paper did not use “AND” to connect the parts within topics because this is too restrictive 212 

and many relevant papers are filtered out.  213 

The second step was a classification of formalisms referring to the timing scopes of the adaptation. We 214 

retained the timing dimension as the main criteria for the results description in our paper. The timing 215 

dimension is an interesting aspect of adaptation to consider when modeling adaptation in farmers’ 216 

decision-making processes. Proactive processes concern the ability to anticipate future and external 217 

shocks affecting farming outcomes and to plan corresponding adjustments. In this case, adaptations 218 

processes are time-invariant and formalisms describing static processes are the most appropriate since 219 

they describe processes that do not depend explicitly on time. Reactive processes describe the farmer’s 220 

capacity to react to a shock. In this case, adaptation concerns the ability to update the representation of 221 

a shock and perform adaptations without any anticipation. In this case adaptation processes are time-222 

dependent and formalisms describing dynamic processes are the most appropriate since they describe 223 

processes that depend explicitly on time (Figure 1). Section 4 will present the results of running this 224 

step. 225 

The third step was a classification of articles related to farm management in agricultural economics 226 

and agronomy referring to the temporal and spatial scopes of the adaptation. This last step aimed at 227 

illustrating the use of the different formalisms presented in the second step to model adaptation within 228 

farmer decision-making processes. This section is not supposed to be exhaustive but to provide 229 

examples of use in farming system literature. Section 5 will be presenting the results of running this 230 

step. 231 



4. FORMALISMS TO MANAGE ADAPTIVE DECISION-MAKING PROCESSES  232 

This section aims at listing formalisms used to manage adaptive decision-making processes in both 233 

bio-economic and bio-decision models. Various formalisms are available to describe adaptive 234 

decision-making processes. Adaptation processes can be time-invariant when it is planned beforehand 235 

with a decision tree, alternative and optional paths and relaxed constraints to decision processes. 236 

Adaptation processes can be time-varying when it is reactive to a shock with dynamic internal changes 237 

of the decision process via recursive decision, sequential decision or reviewed rules. We distinguish 238 

proactive or anticipated processes to reactive processes. Six formalisms were included in this review.  239 

4.1. Formalisms in proactive adaptation processes 240 

In proactive or anticipated decision processes, adaptation consists in the iterative interpretation of a 241 

flexible plan built beforehand. The flexibility of this anticipatory specification that allows for 242 

adaptation is obtained by the ability to use alternative paths, optional paths or by relaxing constraints 243 

that condition a decision.  244 

4.1.1. Anticipated shocks in sequential decision-making processes 245 

When decision-making process is assumed to be a succession of decisions to make, it follows that 246 

farmers are able to integrate new information about the environment at each stage and adapt to 247 

possible changes occurring between two stages. Farmers are able to anticipate all possible states of the 248 

shock (change) to which they will have to react. In 1968, Cocks stated that discrete stochastic 249 

programming (DSP) could provide solutions to sequential decision problems (Cocks 1968). DSP 250 

processes sequential decision-making problems in discrete time within a finite time horizon in which 251 

knowledge about random events changes over time (Rae 1971; Apland and Hauer 1993). During each 252 

stage, decisions are made to address risks. One refers to “embedded risk” when decisions can be 253 

divided between those initially made and those made at a later stage, once an uncertain event has 254 

occurred (Trebeck and Hardaker 1972; Hardaker 2004). The sequential and stochastic framework of 255 

the DSP can be represented as a decision tree in which nodes describe the decision stages and branches 256 

describe anticipated shocks. Considering two stages of decision, the decision-maker makes an initial 257 

decision (ݑଵ) with uncertain knowledge of the future. After one of the states of nature of the uncertain 258 

event occurs (k), the decision-maker will adjust by making another decision (ݑଶ௞) in the second stage, 259 

which depends on the initial decision and the state of nature k of the event. Models can become 260 

extremely large when numerous states of nature are considered; this “curse of dimensionality” is the 261 

main limitation of these models (Trebeck and Hardaker 1972; Hardaker 2004). 262 



4.1.2. Flexible plan with optional paths and interchangeable activities 263 

In manufacturing, proactive scheduling is well-suited to build protection against uncertain events into 264 

a baseline schedule (Herroelen and Leus 2004; Darnhofer and Bellon 2008). Alternative paths are 265 

considered and choices are made at the operational level while executing the plan. This type of 266 

structure has been used in agriculture as well, with flexible plans that enable decision-makers to 267 

anticipate shocks. Considering possible shocks that may occur, substitutable components, 268 

interchangeable partial plans, and optional executions are identified and introduced into the nominal 269 

plan. Depending on the context, a decision is made to perform an optional activity or to select an 270 

alternative activity or partial plan (Martin-Clouaire and Rellier 2009). Thus, two different sequences of 271 

events would most likely lead to performing two different plans. Some activities may be cancelled in 272 

one case but not in the other depending on whether they are optional or subject to a context-dependent 273 

choice (Bralts et al. 1993; Castellazzi et al. 2008; Dury et al. 2010; Castellazzi et al. 2010). 274 

4.1.3. Relaxed constraints on executing activities 275 

Management operations on biophysical entities are characterized by a timing of actions depending on 276 

their current states. The concept of bounded rationality, presented earlier, highlights the need to obtain 277 

satisfactory results instead of optimal ones. Following the same idea, Kemp and Michalk (2007) point 278 

out that “farmers can manage more successfully over a range than continually chasing optimum or 279 

maximum values”. In practice, one can easily identify an ideal time window in which to execute an 280 

activity that is preferable or desirable based on production objectives instead of setting a specific 281 

execution date in advance (Shaffer and Brodahl 1998a; Aubry et al. 1998; Taillandier et al. 2012). 282 

Timing flexibility helps in managing uncontrollable factors. 283 

4.2.  Formalisms in reactive adaptation processes 284 

In reactive decision processes, adaptation consists in the ability to perform decisions without any 285 

anticipation by integrating gradually new information. Reactivity is obtained by multi-stage and 286 

sequential decision processes and the integration of new information or the set-up of unanticipated 287 

path within forehand plan.  288 

4.2.1. Gradual adaptation in a repeated process 289 

The recursive method was originally developed by Day (1961) to describe gradual adaptation to 290 

changes in exogenous parameters after observing an adjustment between a real situation and an 291 

optimal situation obtained after optimization (Blanco-Fonseca et al. 2011). Recursive models 292 

explicitly represent multiple decision stages and optimize each one; the outcome of stage n is used to 293 

reinitialize the parameters of stage n+1. These models consist of a sequence of mathematical 294 

programming problems in which each sub-problem depends on the results of the previous sub-295 



problems (Day 1961; Day 2005; Janssen and van Ittersum 2007; Blanco-Fonseca et al. 2011). In each 296 

sub-problem, dynamic variables are re-initialized and take the optimal values obtained in the previous 297 

sub-problem. Exogenous changes (e.g., rainfall, market prices) are updated at each optimization step. 298 

For instance, the endogenous feedback mechanism for a resource (e.g., production input or natural 299 

resource) between sub-periods is represented with a first-order linear difference equation: ܴ௧ = 300 

௧ିଵGܺ௧ିଵܣ
∗  + Yܴ௧ିଵ + ܥ௧,where the resource level of period t (ܴ௧ ) depends on the optimal decisions 301 

(ܺ௧ିଵ
∗ ሻ and resource level at t-1 (ܴ௧ିଵሻ	and on exogenous variables (ܥ௧ሻ. The Bayesian approach is the 302 

most natural one for updating parameters in a dynamic system, given incoming period-dependent 303 

information. Starting with an initial prior probability for the statistical distribution of model 304 

parameters, sample information is used to update the latter in an efficient and fairly general way 305 

(Stengel 1986). The Bayesian approach to learning in dynamic systems is a special but important case 306 

of closed-loop models, in which a feedback loop regulates the system as follows: depending on the 307 

(intermediate) observed state of the system, the control variable (the input) is automatically adjusted to 308 

provide path correction as a function of model performance in the previous period.  309 

4.2.2. Adaptation in sequential decision-making processes 310 

In the 1950s, Bellman presented the theory of dynamic programming (DP) to emphasize the sequential 311 

decision-making approach. Within a given stage, the decision-making process is characterized by a 312 

specific status corresponding to the values of state variables. In general, this method aims to transform 313 

a complex problem into a sequence of simpler problems whose solutions are optimal and lead to an 314 

optimal solution of the initial complex model. It is based on the principle of optimality, in which “an 315 

optimal policy has the property that whatever the initial state and decisions are, the remaining 316 

decisions must constitute an optimal policy with regard to the state resulting from the first decisions” 317 

(Bellman 1954). DP explicitly considers that a decision made in one stage may affect the state of the 318 

decision-making process in all subsequent stages. State-transition equations are necessary to link the 319 

current stage to its successive or previous stage, depending on whether one uses a forward or 320 

backward DP approach, respectively. In the Bellman assumptions (backward DP), recursion occurs 321 

from the future to the present, and the past is considered only for the initial condition. In forward DP, 322 

stage numbering is consistent with real time. The optimization problem defined at each stage can 323 

result in the application of a wide variety of techniques, such as linear programming (Yaron and Dinar 324 

1982) and parametric linear programming (Stoecker et al. 1985). Stochastic DP is a direct extension of 325 

the framework described above, and efficient numerical techniques are now available to solve such 326 

models, even though the curse of dimensionality may remain an issue (Miranda and Fackler 2004). 327 



4.2.3. Reactive plan with revised and new decision rules 328 

An alternative to optimization is to represent decision-making processes as a sequence of technical 329 

operated organized through a set of decision rules. This plan is reactive when rules are revised or 330 

newly introduced after a shock. Revision is possible with simulation-based optimization, in which the 331 

rule structure is known and the algorithm looks for optimal indicator values or thresholds. It generates 332 

a new set of indicator thresholds to test at each new simulation loop (Nguyen et al. 2014). For small 333 

discrete domains, the complete enumeration method can be used, whereas when the optimization 334 

domain is very large and a complete enumeration search is no longer possible, heuristic search 335 

methods are considered, such as local searching and branching methods. Search methods start from a 336 

candidate solution and randomly move to a neighboring solution by applying local changes until a 337 

solution considered as optimal is found or a time limit has passed. Metaheuristic searches using 338 

genetic algorithms, Tabu searches and simulated annealing algorithms are commonly used. Control-339 

based optimization is used to add new rules to the plan. In this case, the rule structure is unknown, and 340 

the algorithm optimizes the rule’s structure and optimal indicator values or thresholds. Crop-341 

management decisions can be modeled as a Markov control problem when the distribution of variable 342 

௜ܺାଵ depends only on the current state ௜ܺ and on decision ܦ௜ that was applied at stage i. The decision-343 

making process is divided into a sequence of N decision stages. It is defined by a set of possible states 344 

s, a set of possible decisions d, probabilities describing the transitions between successive states and 345 

an objective function (sum of expected returns) to be maximized. In a Markov control problem, a 346 

trajectory is defined as the result of choosing an initial state s and applying a decision d for each 347 

subsequent state. The DSP and DP methods provide optimal solutions for Markov control problems. 348 

Control-based optimization and metaheuristic searches are used when the optimization domain is very 349 

large and a complete enumeration search is no longer possible. 350 

5. MODELING ADAPTIVE DECISION-MAKING PROCESSES IN FARMING SYSTEMS 351 

This section aims at illustrating the use of formalisms to manage adaptive decision-making processes 352 

in farming systems both in bio-economic and bio-decision models. Around 40 papers using the six 353 

formalisms on adaptation have been found. We distinguish strategic adaptation at the farm level, tactic 354 

adaptation at the farm and plot scale and strategic and tactic adaptation both at the farm and plot scale. 355 

5.1. Adaptations and strategic decisions for the entire farm 356 

Strategic decisions aim to build a long-term plan to achieve farmer production goals depending on 357 

available resources and farm structure. For instance, this plan can be represented in a model by a 358 

cropping plan that selects the crops grown on the entire farm, their surface area and their allocation 359 

within the farmland. It also offers long-term production organization, such as considering equipment 360 



acquisition and crop rotations. In the long-term, uncertain events such market price changes, climate 361 

events and sudden resource restrictions are difficult to predict, and farmers must be reactive and adapt 362 

their strategic plans.  363 

Barbier and Bergeron (1999) used the recursive process to address price uncertainty in crop and 364 

animal production systems; the selling strategy for the herd and cropping pattern were adapted each 365 

year to deal with price uncertainty and policy intervention over 20 years. Similarly, Heidhues (1966) 366 

used a recursive approach to study the adaptation of investment and sales decisions to changes in crop 367 

prices due to policy measures. Domptail and Nuppenau (2010) adjusted, in a recursive process, herd 368 

size and the purchase of supplemental fodder once a year, depending on the available biomass that 369 

depended directly on rainfall. In a study of a dairy-beef-sheep farm in Northern Ireland, Wallace and 370 

Moss (2002) examined the effect of possible breakdowns due to bovine spongiform encephalopathy 371 

on animal-sale and machinery-investment decisions over a seven-year period with linear programming 372 

and a recursive process.  373 

Thus, in the operation research literature, adaptation of a strategic decision is considered a dynamic 374 

process that should be modeled via a formalism describing a reactive adaptation processes (Table 1). 375 

5.2. Adaptation and tactic decisions  376 

5.2.1. Adaptation for the agricultural season and the farm 377 

At the seasonal scale, adaptations can include reviewing and adapting the farm’s selling and buying 378 

strategy, changing management techniques, reviewing the crop varieties grown to adapt the cropping 379 

system and deciding the best response to changes and new information obtained about the production 380 

context at the strategic level, such as climate (Table 1). 381 

DSP was used to describe farmers’ anticipation and planning of sequential decision stages to adapt to 382 

an embedded risk such as rainfall. In a cattle farm decision-making model, Trebeck and Hardaker 383 

(1972) represented adjustment in feed, herd size and selling strategy in response to rainfall that 384 

impacted pasture production according to a discrete distribution with “good”, “medium”, or “poor” 385 

outcomes. After deciding about land allocation, rotation sequence, livestock structure and feed source, 386 

Kingwell et al. (1993) considered that wheat-sheep farmers in western Australia have two stages of 387 

adjustment to rainfall in spring and summer: reorganizing grazing practices and adjusting animal feed 388 

rations. In a two-stage model, Jacquet and Pluvinage (1997) adjusted the fodder or grazing of the herd 389 

and quantities of products sold in the summer depending on the rainfall observed in the spring; they 390 

also considered reviewing crop purposes and the use of crops as grain to satisfy animal-feed 391 

requirements. Ritten et al. (2010) used a dynamic stochastic programming approach to analyze optimal 392 

stocking rates facing climate uncertainty for a stocker operation in central Wyoming. The focus was 393 

on profit maximization decisions on stocking rate based on an extended approach of predator-prey 394 

relationship under climate change scenarios. The results suggested that producers can improve 395 



financial returns by adapting their stocking decisions with updated expectations on standing forage 396 

and precipitation. Burt (1993) used dynamic stochastic programming to derive sequential decisions on 397 

feed rations in function of animal weight and accommodate seasonal price variation; he also 398 

considered decision on selling animals by reviewing the critical weight at which to sell a batch of 399 

animals. In the model developed by Adesina (1991), initial cropping patterns are chosen to maximize 400 

farmer profit. After observing low or adequate rainfall, farmers can make adjustment decisions about 401 

whether to continue crops planted in the first stage, to plant more crops, or to apply fertilizer. After 402 

harvesting, farmers follow risk-management strategies to manage crop yields to fulfill household 403 

consumption and income objectives. They may purchase grain or sell livestock to obtain more income 404 

and cover household needs. To minimize deficits in various nutrients in an African household, 405 

Maatman et al. (2002) built a model in which decisions about late sowing and weeding intensity are 406 

decided after observing a second rainfall in the cropping season. 407 

Adaptation of the cropping system was also described using flexible plans for crop rotations. Crops 408 

were identified to enable farmers to adapt to certain conditions. Multiple mathematical approaches 409 

were used to model flexible crop rotations: Detlefsen and Jensen (2007) used a network flow, 410 

Castellazzi et al. (2008) regarded a rotation as a Markov chain represented by a stochastic matrix, and 411 

Dury (2011) used a weighted constraint-satisfaction-problem formalism to combine both spatial and 412 

temporal aspects of crop allocation. 413 

5.2.2. Adaptation of daily activities at the plot scale 414 

Daily adaptations concern crop operations that depend on resource availability, rainfall events and task 415 

priority. An operation can be cancelled, delayed, replaced by another or added depending on the 416 

farming circumstances (Table 1). 417 

Flexible plans with optional paths and interchangeable activities are commonly used to describe the 418 

proactive behavior farmers employ to manage adaptation at a daily scale. This flexibility strategy was 419 

used to model the adaptive management of intercropping in vineyards (Ripoche et al. 2011); 420 

grassland-based beef systems (Martin et al. 2011a); and whole-farm modeling of a dairy, pig and crop 421 

farm (Chardon et al. 2012). For instance, in a grassland-based beef system, the beef production level 422 

that was initially considered in the farm management objectives might be reviewed in case of drought, 423 

and decided  a voluntary underfeeding of the cattle (Martin et al. 2011a). McKinion et al. (1989) 424 

applied optimization techniques to analyze previous runs and hypothesize potentially superior 425 

schedules for irrigation decision on cotton crop. Rodriguez et al. (2011) defined plasticity in farm 426 

management as the results of flexible and opportunistic management rules operating in a highly 427 

variable environment. The model examines all paths and selects the highest ranking path. 428 

Daily adaptations were also represented with timing flexibility to help manage uncontrollable factors. 429 

For instance, the cutting operation in the haymaking process is monitored by a time window, and 430 

opening predicates such as minimum harvestable yield and a specific physiological stage ensure a 431 



balance between harvest quality and quantity (Martin et al. 2011b). The beginning of grazing activity 432 

depends on a time range and activation rules that ensure a certain level of biomass availability (Cros et 433 

al. 1999). Shaffer and Brodahl (1998) structured planting and pesticide application event time 434 

windows as the outer-most constraint for this event for corn and wheat. Crespo et al. (2011) used time-435 

window to insert some flexibility to the sowing of southern African maize.  436 

5.3. Sequential adaptation of strategic and tactical decisions 437 

Some authors combined strategic and tactical decisions to consider the entire decision-making process 438 

and adaptation of farmers (Table 1). DP is a dynamic model that allows this combination of temporal 439 

decision scales within the formalism itself: strategic decisions are adapted according to adaptations 440 

made to tactical decisions. DP has been used to address strategic investment decisions. Addressing 441 

climate uncertainty, Reynaud (2009) used DP to adapt yearly decisions about investment in irrigation 442 

equipment and selection of the cropping system to maximize farmers’ profit. The DP model 443 

considered several tactical irrigation strategies, in which 12 intra-year decision points represented the 444 

possible water supply.  To maximize annual farm profits in the face of uncertainty in groundwater 445 

supply in Texas, Stoecker et al. (1985) used results of a parametric linear programming approach as 446 

input to a backward DP to adapt decisions about investment in irrigation systems. Duffy and Taylor 447 

(1993) ran DP over 20 years (with 20 decision stages) to decide which options for farm program 448 

participation should be chosen each year to address fluctuations in soybean and maize prices and select 449 

soybean and corn areas each season while also maximizing profit.  450 

DP was also used to address tactic decisions about cropping systems. Weather uncertainty may also 451 

disturb decisions about specific crop operations, such as fertilization after selecting the cropping 452 

system. Hyytiäinen et al. (2011) used DP to define fertilizer application over seven stages in a 453 

production season to maximize the value of the land parcel. Bontems and Thomas (2000) considered a 454 

farmer facing a sequential decision problem of fertilizer application under three sources of uncertainty: 455 

nitrogen leaching, crop yield and output prices. They used DP to maximize the farmer’s profit per 456 

acre. Fertilization strategy was also evaluated in Thomas (2003), in which DP was used to evaluate the 457 

decision about applying nitrogen under uncertain fertilizer prices to maximize the expected value of 458 

the farmer’s profit. Uncertainty may also come from specific products used in farm operations, such as 459 

herbicides, for which DP helped define the dose to be applied at each application (Pandey and Medd 460 

1991). Facing uncertainty in water availability, Yaron and Dinar (1982) used DP to maximize farm 461 

income from cotton production on an Israeli farm during the irrigation season (80 days, divided into 462 

eight stages of ten days each), when soil moisture and irrigation water were uncertain. The results of a 463 

linear programming model to maximize profit at one stage served as input for optimization in the 464 

multi-period DP model with a backward process. Thus, irrigation strategy and the cotton area irrigated 465 

were selected at the beginning of each stage to optimize farm profit over the season. Bryant et al. 466 

(1993) used a dynamic programming model to allocate irrigations among competing crops, while 467 



allowing for stochastic weather patterns and temporary or permanent abandonment of one crop in dry 468 

periods is presented. They considered 15 intra-seasonal irrigation decisions on water allocation 469 

between corn and sorghum fields on the southern Texas High Plains. Facing external shocks on weed 470 

and pest invasions and uncertain rainfalls, Fafchamps (1993) used DP to consider three intra-year 471 

decision points on labor decisions of small farmers in Burkina Faso, West Africa for labor resource 472 

management at planting pr replanting, weeding and harvest time.  473 

Concerning animal production, decisions about herd management and feed rations were the main 474 

decisions identified in the literature to optimize farm objectives when herd composition and the 475 

quantity of biomass, stocks and yields changed between stages. Facing uncertain rainfall and 476 

consequently uncertain grass production, some authors used DP to decide how to manage the herd. 477 

Toft and O’Hanlon (1979) predicted the number of cows that needed to be sold every month over an 478 

18-month period. Other authors combined reactive formalisms and static approaches to describe the 479 

sequential decision-making process from strategic decisions and adaptations to tactical decisions and 480 

adaptations. Strategic adaptations were considered reactive due to the difficulty in anticipating shocks 481 

and were represented with a recursive approach, while tactical adaptations made over a season were 482 

anticipated and described with static DSP. Mosnier et al. (2009) used DSP to adjust winter feed, 483 

cropping patterns and animal sales each month as a function of anticipated rainfall, beef prices and 484 

agricultural policy and then used a recursive process to study long-term effects (five years) of these 485 

events on the cropping system and on farm income. Belhouchette et al. (2004) divided the cropping 486 

year into two stages: in the first, a recursive process determined the cropping patterns and area 487 

allocated to each crop each year. The second stage used DSP to decide upon the final use of the cereal 488 

crop (grain or straw), the types of fodder consumed by the animals, the summer cropping pattern and 489 

the allocation of cropping area according to fall and winter climatic scenarios. Lescot et al. (2011) 490 

studied sequential decisions of a vineyard for investing in precision farming and plant-protection 491 

practices. By considering three stochastic parameters  infection pressure, farm cash balance and 492 

equipment performance  investment in precision farming equipment was decided upon in an initial 493 

stage with a recursive process. Once investments were made and stochastic parameters were observed, 494 

the DSP defined the plant-protection strategy to maximize income. 495 

6. DISCUSSION  496 

6.1. Adaptation: reactive or proactive process? 497 

In the studies identified by this review, adaptation processes were modeled to address uncertainty in 498 

rainfall, market prices, and water supply, but also to address shocks such as disease. In the long term, 499 

uncertain events are difficult to anticipate due to the lack of knowledge about the environment. A 500 

general trend can be predicted based on past events, but no author in our survey provided quantitative 501 



expectations for future events. The best way to address uncertainty in long-term decisions is to 502 

consider that farmers have reactive behavior due to insufficient information about the environment to 503 

predict a shock. Adaptation of long-term decisions concerned the selling strategy, the cropping system 504 

and investments. Thus, in the research literature on farming system in agricultural economics and 505 

agronomy approaches, adaptation of strategic decisions is considered a dynamic process. In the 506 

medium and short terms, the temporal scale is short enough that farmers’ expectations of shocks are 507 

much more realistic. Farmers observed new information about the environment, which provided more 508 

self-confidence in the event of a shock and helped them to anticipate changes. Two types of tactical 509 

adaptations were identified in the review: 1) medium-term adaptations that review decisions made for 510 

a season at the strategic level, such as revising the farm’s selling or technical management strategies, 511 

and changing the cropping system or crop varieties; and 2) short-term adaptations (i.e., operational 512 

level) that adapt the crop operations at a daily scale, such as the cancellation, delay, substitution and 513 

addition of crop operations. Thus, in the research literature, adaptations of tactical decisions are mainly 514 

considered a static process. 515 

6.2. Decision-making processes: multiple stages and sequential decisions 516 

In Simon (1976), the concept of the decision-making process changed, and the idea of a dynamic 517 

decision-making process sustained over time through a continuous sequence of interrelated decisions 518 

(Cerf and Sebillotte 1988; Papy et al. 1988; Osman 2010) was more widely used and recognized. 519 

However, 70% of the articles reviewed focused on only one stage of the decision: adaptation at the 520 

strategic level for the entire farm or at the tactical level for the farm or plot. Some authors used 521 

formalisms such as DP and DSP to describe sequential decision-making processes. In these cases, 522 

several stages were identified when farmers have to make a decision and adapt a previous strategy to 523 

new information. Sequential representation is particularly interesting and appropriate when the author 524 

attempts to model the entire decision-making processes from strategic to tactical and operational 525 

decisions; i.e., the complete temporal and spatial dimensions of the decision and adaptation processes 526 

(see section 5.3). For these authors, strategic adaptations and decisions influence tactical adaptations 527 

and decisions and vice-versa. Decisions made at one of these levels may disrupt the initial 528 

organization of resource availability and competition among activities over the short term (e.g., labor 529 

availability, machinery organization, irrigation distribution) but also lead to reconsideration of long-530 

term decisions when the cropping system requires adaptation (e.g., change in crops within the rotation, 531 

effect of the previous crop). In the current agricultural literature, these consequences on long- and 532 

short-term organization are rarely considered, even though they appear an important driver of farmers’ 533 

decision-making (Daydé et al. 2014). Combining several formalisms within an integrated model in 534 

which strategic and tactical adaptations and decisions influence each other is a good starting point for 535 

modeling adaptive behavior within farmers’ decision-making processes. 536 



6.3. What about social sciences? 537 

Adaptation within decision-making processes had been studied in many other domains than 538 

agricultural economics and agronomy. Different researches of various domains (sociology, social 539 

psychology, cultural studies) on farmer behavior and decision-making have contributed to identify 540 

factors that may influence farmers’ decision processes including economic, agronomic and social 541 

factors (Below et al. 2012; Wood et al. 2014; Jain et al. 2015). 542 

We will give an example of another domain in social sciences that also uses these formalisms to 543 

describe adaptation. Computer simulation is a recent approach in the social sciences compared to 544 

natural sciences and engineering (Axelrod 1997). Simulation allows the analysis of rational as well as 545 

adaptive agents. The main type of simulation in social sciences is agent-based modeling. According to 546 

Farmer and Foley (2009) “An agent-based model is a computerized simulation of a number of 547 

decision-makers (agents) and institutions, which interact through prescribed rules.” In agent-based 548 

models, farms are interpreted as individual agents that interact and exchange information, in a 549 

cooperative or conflicting way, within an agent-based systems (Balmann 1997). Adaptation in this 550 

regard is examined mostly as a collective effort involving such interactions between producers as 551 

economic agents, and not so much as an individual process. However, once the decision making 552 

process of a farmer has been analyzed for a particular cropping system, system-specific agent-based 553 

systems can be calibrated to accommodate for multiple farmer types in a given region (Happe et al. 554 

2008). In agent-based models, agents are interacting with a dynamic environment made of other agents 555 

and social institution. Agents have the capacity to learn and adapt to changes in their environment (An 556 

2012). Several approaches are used in agent-based model to model decision-making including 557 

microeconomic models and empirical or heuristic rules. Adaptation in these approaches can come 558 

from two sources (Le et al. 2012): 1) the different formalisms presented earlier can be used directly to 559 

describe the adaptive behavior of an agent, 2) the process of feedback loop to assimilate new situation 560 

due to change in the environment. In social sciences, farmers’ decision-making processes are looked at 561 

a larger scale (territory, watershed) than articles reviewed here. Example of uses on land use, land 562 

cover change and ecology are given in the reviews of Matthews et al. (2007 and An (2012). 563 

6.4. Uncertainty and dynamic properties 564 

The dynamic features of decision-making concern: 1) uncertain and dynamic events in the 565 

environment, 2) anticipative and reactive decision-making processes, 3) dynamic internal changes of 566 

the decision process. In this paper we mainly talked about the first two features such as being in a 567 

decision-making context in which the properties change due to environmental, technological and 568 

regulatory risks brings the decision-maker to be reactive in the sense that he will adapt his decision to 569 

the changing environment (with proactive or reactive adaptation processes). Learning aspects are also 570 

a major point in adaptation processes. Learning processes allow updating and integrating knowledge 571 



from observation made on the environment. Feedback loops are usually used in agricultural economics 572 

and agronomy (Stengel 2003) and social sciences (Le et al. 2012). In such situations, learning can be 573 

represented by Bayes’ theorem and the associated updating of probabilities. Two concerns have been 574 

highlighted on this approach: 1) evaluation of rare events, 2) limitation of human cognition (Chavas 575 

2012). The state contingent approach presented by Chambers and Quiggin (2000; 2002) can provide a 576 

framework to investigate economic behavior under uncertainty without probability assessments. 577 

According to this framework, agricultural production under uncertainty can be represented by 578 

differentiating outputs according to the corresponding state of nature. This yields a more general 579 

framework than conventional approaches of production under uncertainty, while providing more 580 

realistic and tractable representations of production problems (Chambers and Quiggin 2002). These 581 

authors use state-contingent representations of production technologies to provide theoretical 582 

properties of producer decisions under uncertainty, although empirical applications still remain 583 

difficult to implement (see O’Donnell and Griffiths 2006 for a discussion on empirical aspects of the 584 

state-contingent approach). Other learning process approaches are used in artificial intelligence such as 585 

reinforcement learning and neuro-DP (Bertsekas and Tsitsiklis 1995; Pack Kaelbling et al. 1996). 586 

7. CONCLUSION 587 

A farm decision-making problem should be modeled within an integrative modeling framework that 588 

includes sequential aspects of the decision-making process and the adaptive capability and reactivity 589 

of farmers to address changes in their environment. Rethinking farm planning as a decision-making 590 

process, in which decisions are made continuously and sequentially over time to react to new available 591 

information, and in which the farmer is able to build a flexible plan to anticipate certain changes in the 592 

environment, is important to more closely simulate reality. Coupling optimization formalisms and 593 

planning appears to be an interesting approach to represent the combination of several temporal and 594 

spatial scales in models. 595 
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TABLE CAPTION 873 

Table 1: Modeling adaptive decision-making processes in farming systems; typology of the literature 874 

according to adaptation dimensions (temporal scope, spatial scope and timing scope) (DSP: discrete 875 

stochastic programming; DP: dynamic programming) 876 

Adaptation dimensions 
Authors Year 

Formalis
m type 

Formalism 
Temporal 

Scope 
Spatial 
Scope 

Timing 
dimension 

Strategic 
decisions  
(years) 

Farm Reactive Barbier and Bergeron 1999 Dynamic Recursive 

Farm Reactive Heidhues  1966 Dynamic Recursive 

Farm Reactive Domptail and Nuppenau 2010 Dynamic Recursive 

Farm Reactive Wallace and Moss 2002 Dynamic Recursive 

Tactical 
decision 
(season) 

Farm Proactive Trebeck and Hardaker  1972 Static DSP 

Farm Proactive Kingwell et al.  1993 Static DSP 

Farm Proactive Jacquet and Pluvinage 1997 Static DSP 

Farm Proactive Adesina and Sanders  1991 Static DSP 

Farm Proactive Burt 1993 Static DSP 

Farm Proactive 
Maatman and 
Schweigman 

2002 Static DSP 

Farm Proactive Ritten et al. 2010 Static DSP 

Farm Proactive Detlefsen and Jensen  2007 Static Flexible crop-sequence 

Farm Proactive Castellazzi et al. 2008 Static Flexible crop-sequence 

Farm Proactive Dury  2011 Static Flexible crop-sequence 

Tactical 
decision 
(daily) 

Plot Proactive Ripoche et al. 2011 Static Optional execution  

Plot Proactive Martin et al. 2011 Static Optional execution  

Plot Proactive Chardon et al. 2012 Static Optional execution  

Plot Proactive Martin et al. 2011 Static Optional execution  

Plot Proactive McKinion et al. 1989 Static Proactive adjustments 

Plot Proactive Ripoche et al. 2011 Static Proactive adjustments 

Plot Proactive Martin et al. 2011 Static Proactive adjustments 

Plot Proactive Chardon et al. 2012 Static Proactive adjustments 

Plot Proactive Rodriguez et al. 2011 Static Proactive adjustments 

Plot Proactive Shaffer and Brodahl 1998 Static Time windows 

Plot Proactive Cros et al. 1999 Static Time windows 

Plot Proactive Crespo et al. 2011 Static Time windows 

Plot Proactive Martin et al. 2011 Static Time windows 

Strategic & 
tactical 
decision 
(years & 
season) 

Farm & 
Plot 

Reactive Reynaud 2009 Dynamic DP 

Farm & 
Plot 

Reactive Stoecker et al. 1985 Dynamic DP 

Farm & 
Plot 

Reactive Bryant et al. 1993 Dynamic DP 

Farm & Reactive Duffy and Taylor 1993 Dynamic DP 



Plot 

Farm & 
Plot 

Reactive Fafchamps 1993 Dynamic DP 

Farm & 
Plot 

Reactive Hyytiäinen et al. 2011 Dynamic DP 

Farm & 
Plot 

Reactive Bontems and Thomas 2000 Dynamic DP 

Farm & 
Plot 

Reactive Thomas 2003 Dynamic DP 

Farm & 
Plot 

Reactive Pandey and Medd 1991 Dynamic DP 

Farm & 
Plot 

Reactive Yaron and Dinar 1982 Dynamic DP 

Farm & 
Plot 

Reactive Toft and O’Hanlon  1979 Dynamic DP 

Farm & 
Plot 

Reactive & 
Proactive 

Mosnier et al. 2009 
Dynamic 
& Static 

Recursive & DSP 

Farm & 
Plot 

Reactive & 
Proactive 

Belhouchette et al.  2004 
Dynamic 
& Static 

Recursive & DSP 

Farm & 
Plot 

Reactive & 
Proactive 

Lescot et al.  2011 
Dynamic 
& Static 

Recursive & DSP 

877 
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 879 

1: Typology of models to manage adaptive decision-making processes according to model type, 880 

approach, and formalism.  881 
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