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Abstract: We consider a singular control problem with regime switching that arises in
problems of optimal investment decisions of cash-constrained firms. The value function is
proved to be the unique viscosity solution of the associated Hamilton-Jacobi-Bellman equa-
tion. Moreover, we give regularity properties of the value function as well as a description
of the shape of the control regions. Based on these theoretical results, a numerical deter-
ministic approximation of the related HJB variational inequality is provided. We finally
show that this numerical approximation converges to the value function. This allows us to
describe the investment and dividend optimal policies.
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1 Introduction

In a frictionless capital market, Modigliani and Miller theorem demonstrates that firms can
fund all valuable investment opportunities. However, if we introduce capital market imper-
fections, it is now a standard result that cash-constrained firms have to rely more on internal
financial resources: cash holdings and credit line to fund investment opportunities. In re-
cent years, there has been an increasing attention in the use of singular control techniques
to model investment problems of a cash-constrained firm. As references for the theory of
singular stochastic control, we may mention the pioneering works of Haussman and Suo [9]
and [10] and for application to investment/dividend problems Jeanblanc and Shiryaev [15],
Højgaard and Taksar [11], Asmussen, Højgaard and Taksar [1], Choulli, Taksar and Zhou [4],
Paulsen [19] while more recent studies in corporate finance include Bolton, Chen and Wang
[3], Décamps, Mariotti, Rochet and Villeneuve [6] and Hugonnier, Malamud and Morellec
[14].
Singular control is an important class of problems in stochastic control theory. The associ-
ated HJB equation, which takes the form of variational inequalities with gradient constraints
turns out to be very difficult to solve. In particular, the regularity of the solution are still not
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well understood. For concrete problems as those arising from dynamic corporate finance, it
is thus important to propose a numerical approximation of the value function and to ensure
that this numerical approximation converges to the targeted value function. It turns out
from the paper by Barles and Souganidis [2] that when the value function of a singular
control problem is the unique viscosity solution of the associated HJB variational inequality,
a consistent, stable and monotone numerical scheme converges to the value function.
It is now well-established that there exist several approaches to approximate the value func-
tion of singular stochastic control problems. First, probabilistic methods based on Markov
Chain approximations are essentially explicit finite difference schemes and thus suffer from
the stability curse limiting the choice of time step (see [17]). On the other hand, analytical
methods based on the tracking of control regions have been developed in [16]. They appear
to be quite complex because they necessitate a good guess about the shape of control regions
especially in the presence of multiple controls.
Our paper builds on the theoretical model of cash-constrained firms developed in [22] with
the modification that the investment levels are here discrete. This assumption appears to
be reasonable for big industries investing in capacity. The objective is to determine the
firm value as well as the investment and dividend optimal policies leading to a singular
control problem with regime switching where the regimes correspond to the different levels
of production. Our main contributions are

• We prove that the value function is the unique viscosity solution of the HJB variational
inequality. Moreover, we prove the regularity of the value function under a mild
assumption about the existence of left and right derivative everywhere. Finally, we
prove that it is optimal to pay dividends for high value of cash which allow us to set
boundary conditions at right for our numerical scheme.

• We carry out a rigorous analysis of the direct control method proposed by [12], in
the context of HJB variational inequality arising from cash management problem.
Having proved a strong comparison theorem, we show that our direct control method
is consistent, stable and monotone. In our context, the stability result appears to be a
little bit tricky and its proof needs to prove a growth condition on the value function
(see Lemma 2).

• Finally, the numerical approximation of the HJB variational inequality leads to the
resolution of a linear system AU = B. We present a fixed-point iteration scheme
similar to [12] for solving the linear system. To show the convergence of this iterative
procedure, we need to prove that the tridiagonal block matrix A is a M-matrix (see
Lemma 8) which necessitates an extension of the result proved in [12].

The paper is organized as follows: in section 2, we present the model and derive a
standard analytical characterization of the value function in terms of viscosity solutions.
Furthermore, we give regularity properties of the value function and a description of the
shape of the control regions. Section 3 and 4 are devoted to the presentation of the nu-
merical approximation and contains the convergence result which builds on an extension
of the classical techniques developed in [12]. Section 5 concludes the paper with numerical
illustrations.
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2 The Model

We consider a firm characterized at each time t by the following balance sheet :
Kt +Mt = Lt +Xt where

• Kt represents the firm’s productive assets,

• Mt represents the amount of cash reserves or liquid assets,

• Lt represents the volume of outstanding debt,

• Xt represents the book value of equity.

We suppose that the firm is able to choose the level of its productive assets, by investment
or disinvestment, in a range of N strictly positive levels : Kt ∈ {ki}i∈[1,N ] . Without loss of
generality, we suppose that {ki}i∈[1,N ] satisfy

∀i ∈ [1, N ], ki = k1 + (i− 1)h.

The productive assets continuously generate cash-flows (Rt)t≥0 over time. We assume

dRt = β(Kt)(µdt+ σdBt)

where µ and σ are positive constants and (Bt)t≥0 is a standard Brownian motion on a com-
plete probability space (Σ,F ,P) equipped with a filtration (Ft)t≥0. In this model, we assume
a decreasing-return-to-scale technology by introducing the increasing bounded concave func-
tion β. We denote β̄ the maximum taken by the gain function on {ki}i∈[1,N ] i.e.

β̄ = β(kN)

In order to finance its working capital requirement, we consider that the firm has access to a
secured credit line. The collateral of the credit line is given by the market value of the firm
assets. If we introduce γ > 0 the cost to disinvest the productive assets and M the level of
cash, the credit line’s depth is assumed to be

Lmax = (1− γ)K +M. (1)

When this credit line limit is reached, the company is no longer able to meet its financial
commitments and is therefore forced to go bankrupt. At this point, the manager liquidates
the firm assets in order to refund the creditors with priority for debt holders over sharehold-
ers. However, we assume that there is a probability 1− ζ that the firm does not manage to
sell its assets at their market value . Introducing P the expected loss for the debt holders,
we have

P = ζ(1− γ)K.

This loss makes the credit line risky and thus it is subject to interest payments variable
modeled by a function α depending only on the volume of debt the firm has issued. Finally,
we suppose the access to equity market is excessively costly.
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Assumption 1 α is a strictly continuously differentiable convex function. Furthermore, it
is assumed that the collateralized debt is risky, that is

∀x ≥ 0, α′(x) > r and α(0) = 0.

This assumption is consistent with what we observe in practice. The convexity of α allows
us to model the fact that the interest payments asked by the creditors increase with the
level of debt. Note that the model doesn’t exclude a linear cost of the debt since α is not
supposed to be strictly convex. In [22], it has been proved in a similar framework that it is
optimal to use the credit line if and only if the cash reserves are depleted meaning that

Lt = (Kt −Xt)
+ (2)

We therefore have the following dynamics for the book value of equity and the productive
assets ([22]): {

dXt = β(Kt)(µdt+ σdBt)− α((Kt −Xt)
+)dt− γ|dIt| − dZt

dKt = dI+
t − dI−t

where Z = (Zt)t≥0 is an increasing right-continuous (Ft)t adapted process representing
the cumulative dividend payments up to time t and I+ = (I+

t )t≥0 (respectively I−) is the
cumulative investment process (respectively disinvestment). Here we suppose that the cost
to investment is the same as the cost of disinvestment γ.
The manager acts in the interest of the shareholders and maximizes the expected discounted
value of all future dividend payout. Shareholders are assumed to be risk-neutral and future
cash-flows are discounted at the risk-free rate r. Thus, the objective is to maximize over the
admissible control π = (I+, I−, Z) the functional

V (x, ki; π) = Ex,ki
(∫ τ

0

e−rtdZπ
t

)
where x and ki are the initial values of equity capital and productive capital. τ is the time
of bankruptcy and according to (1) and (2), we have

τ = inf
t≥0
{Xπ

t ≤ γKπ
t }

We denote by Π the set of admissible control variables and define the shareholders value
functions by

∀i ∈ [1, N ], vi(x) = v(x, ki) = sup
π∈Π

V (x, ki; π)

which are defined on the domains

∀i ∈ [1, N ],Ωi = [γki,+∞[
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2.1 Viscosity solutions

The aim of this section is to determine the HJB variational inequality (HJB-VI) satisfied by
the shareholders value functions (vi)i∈[1,N ]. This analytical characterization will allow us to
solve numerically the problem of optimal investment for a cash-constrained firm.

Proposition 1 The shareholders value functions vi are jointly continuous for every i ∈
[1, N ].

Proof: Take i ∈ [1, N ], x > γki and (xn)n∈N a sequence of Ωi that converges to x. We
consider two admissible strategies :

• Strategy π1
n : from (x, ki) wait until liquidation or the point (xn, ki). We denote

(X
π1
n

t , K
π1
n

t )t≥0 the process controlled by π1
n.

• Strategy π2
n : from (xn, ki) wait until liquidation or the point (x, ki). We denote

(X
π2
n

t , K
π2
n

t )t≥0 the process controlled by π2
n.

We define

θ1
n = inf{t ≥ 0, (X

π1
n

t , K
π1
n

t ) = (xn, ki)}

θ2
n = inf{t ≥ 0, (X

π2
n

t , K
π2
n

t ) = (x, ki)}

T 1
n = inf{t ≥ 0, X

π1
n

t = γK
π1
n

t )}

T 2
n = inf{t ≥ 0, X

π2
n

t = γK
π2
n

t )}

Dynamic programming principle and v(XT 1
n
, KT 1

n
) = 0 yield

vi(x) ≥ E

[∫ θ1n∧T 1
n

0

e−rtdZ
π1
n

t + e−r(θ
1
n∧T 1

n)1{θ1n<T 1
n}v(Xθ1n

, Kθ1n
)
)]

≥ E
[
e−rθ

1
n1{θ1n<T 1

n}vi(xn)
]

≥
(
E
(
e−rθ

1
n
)
− E

(
e−rθ

1
n1{θ1n≥T 1

n}
))
vi(xn)

≥
(
E
(
e−rθ

1
n
)
− P

(
θ1
n ≥ T 1

n

))
vi(xn)

On the other hand, using v(XT 2
n
, KT 2

n
) = 0 we have

vi(xn) ≥ E

[∫ θ2n∧T 2
n

0

e−rtdZ
π2
n

t + e−r(θ
2
n∧T 2

n)1{θ2n<T 2
n}v(Xθ2n

, Kθ2n
)
)]

≥ E
[
e−rθ

2
n1{θ2n<T 2

n}vi(x)
]

≥
(
E
(
e−rθ

2
n
)
− E

(
e−rθ

2
n1{θ2n≥T 2

n}
))
vi(x)

≥
(
E
(
e−rθ

2
n
)
− P

(
θ2
n ≥ T 2

n

))
vi(x)
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In [22], the authors proved that

lim
n→∞

P(θ1
n ≥ T 1

n) = 0

lim
n→∞

P(θ2
n ≥ T 2

n) = 0

and
lim

n→+∞
E(e−rθ

1
n) = lim

n→+∞
E(e−rθ

2
n) = 1

Then
vi(x) ≥ lim sup

n
vi(xn) ≥ lim inf

n
vi(xn) ≥ vi(x),

which proves the continuity of vi. �

Let Li be the next differential operator:

Liφ = (β(ki)µ− α((ki − x)+))φ′(x) +
β(ki)

2σ2

2
φ′′(x)− rφ (3)

The next lemma establishes a comparison principle which we shall use to prove a linear
growth condition for the shareholders value function.

Lemma 1 Suppose (ϕi)i∈[1,N ] are N smooth functions on (γki,+∞) such that ϕi(γki) ≥ 0
and

∀i ∈ [1, N ],∀x ≥ γki,min

[
−Liϕi(x), ϕ′i(x)− 1, ϕi(x)−max

j 6=i
ϕj(x− γ|ki − kj|)

]
≥ 0 (4)

then we have for all i ∈ [1, N ], vi ≤ ϕi.

Proof: Take i ∈ [1, N ], X(0) = x ∈ Ωi and π = (Z, I+, I−) an admissible control. We note
(In)n≥1 the moments of regime switching. Apply then Itô’s formula to e−rtϕi(X

π
t ) between

0 and the stopping time (I1∧ τ) noticing that for 0 ≤ t < I1∧ τ , the firm stays in the regime
ki.

e−r(I1∧τ)ϕi(X
π
(I1∧τ)−) =ϕi(x) +

∫ (I1∧τ)−

0

e−rsLiϕi(Xπ
s )ds

−
∫ (I1∧τ)−

0

e−rsϕ′(Xπ
s )dZπ,c

s

+

∫ (I1∧τ)−

0

e−rsϕ′(Xπ
s )σβ(ki)dWs

+
∑

0≤t<I1∧τ

e−rs[ϕ(Xπ
s )− ϕ(Xπ

s−)]
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Noting that the integrand in the stochastic integral term is bounded we have

E
[
e−r(I1∧τ)ϕi(X

π
(I1∧τ)−)

]
=ϕi(x) + E

[∫ (I1∧τ)−

0

e−rsLiϕi(Xπ
s )ds

]

− E

[∫ (I1∧τ)−

0

e−rsϕ′(Xπ
s )dZπ,c

s

]

+ E

[ ∑
0≤t<I1∧τ

e−rs[ϕ(Xπ
s )− ϕ(Xπ

s−)]

]
Since ϕ′ ≥ 1, by the mean-value theorem we have

ϕi(X
π
s )− ϕi(Xπ

s−) ≤ Xπ
s −Xπ

s− = −∆Zs

And so, by using the supersolution inequality of ϕi :

E
[
e−r(I1∧τ)ϕi(X

π
(I1∧τ)−)

]
≤ ϕi(x)− E

[∫ (I1∧τ)−

0

e−rsdZπ
s

]
(5)

Now, using again the supersolution property, we have

∀j 6= i, ϕi(X
π
(I1∧τ)−) ≥ ϕj(X

π
(I1∧τ)− − γ|ki − kj|)

But by definition, if I1 ≤ τ , there exists j ∈ [1, N ]\{i} such thatXπ
(I1∧τ)−−γ|ki−kj| = Xπ

(I1∧τ)

so we have in that case
ϕi(X

π
(I1∧τ)−) ≥ ϕj(X

π
(I1∧τ)) (6)

If T1 > τ , note that we directly have ϕi(X
π
τ ) = 0 and so

ϕi(x) ≥ E
[∫ τ

0

e−rsdZπ
s

]
Plugging (6) into (5), we have

ϕi(x) ≥ E

[∫ (I1∧τ)−

0

e−rsdZπ
s + ϕj(X

π
(I1∧τ))

]
Again, we can prove the result for every n ∈ N∗ and every ϕj where j is the regime for the
process between (In ∧ τ) and (In+1 ∧ τ)−.
So by iteration we have

ϕi(x) ≥ E

[∫ (In∧τ)−

0

e−rsdZπ
s + ϕj(X

π
(In∧τ))

]

≥ E

[∫ (In∧τ)−

0

e−rsdZπ
s

]
By sending n to infinity, we obtain the required result from the arbitrariness of the control
π. �

As a corollary, we prove a linear growth condition for the shareholders value functions
vi.
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Lemma 2 For all i ∈ [1, N ] and for all x ∈ Ωi, we have

vi(x) ≤ x− γki +
µβ̄

r

Proof: For all i ∈ [1, N ], we define

ϕi(x) = x− γki +
µβ̄

r

We prove easily that (ϕi)i∈[1,N ] are viscosity supersolutions of (4). Indeed,

∀i ∈ [1, N ], ϕ′i(x) ≥ 1

and
ϕi(x)− ϕj(x− γ|ki − kj|) = γ|ki − kj| − γ(ki − kj) ≥ 0

and
−Liϕi(x) = −(β(ki)µ− α((ki − x)+)) + r(x− γki) + µβ̄ ≥ 0

and we have ϕi(γki) = µβ̄
r
> vi(γki) using that vi(γki) = 0. Lemma 1 proves the result. �

Proposition 2 The shareholders value functions (vi)i∈[1,N ] are the unique continuous vis-
cosity solutions to the HJB variational inequality :

∀i ∈ [1, N ],∀x ≥ γki,

min

{
−Livi(x), v′i(x)− 1, vi(x)−max

j 6=i
vj(x− γ|ki − kj|)

}
= 0

(7)

with boundary conditions
∀i ∈ [1, N ], vi(γki) = 0 (8)

Proof: The proof is postponed to the Appendix and is somehow similar to the one in [22].
�

Remark 1 It is sufficient to impose the boundary condition (8) to have the uniqueness of
the viscosity solution.

Remark 2 Given the property vi(x) ≥ vj(x− γ|ki − kj|), the HJB-VI is equivalent to

∀i ∈ [1, N ],∀x ≥ γki,

min
{
− Livi(x), v′i(x)− 1, vi(x)−max

(
vi−1(x− γh), vi+1(x− γh)

)}
= 0
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2.2 Regularity

We set for all i ∈ [1, N ],

Sij = {x ∈ Ωi, vi(x) = vj(x− γ|ki − kj|)}
S+
i = ∪j>iSij
S−i = ∪j<iSij
Si = S+

i ∪ S−i

which define the investment region (S+
i ) and the disinvestment one (S−i ).

Before proving the main result of this section, we need to establish some preliminary
results on the value function.

Lemma 3 ∀i ∈ [1, N ], vi(x+ h) ≥ vi(x) + h

Proof: It is obvious if we consider the sub-optimal strategy from initial state (ki, x + h)
which consists on distributing h dollars as dividends at time t = 0 and following the optimal
strategy hereafter. By the dynamic programming principle we have :

vi(x+ h) ≥ vi(x) + h

�

Lemma 4 ∀i ∈ [1, N ],

1. ∀x ∈ S+
i , x− γh /∈ S−i+1

2. ∀x ∈ S−i , x− γh /∈ S+
i−1

Proof: We prove only the first assertion since the demonstration of the second assertion
is similar. Suppose on the contrary that there exists i ∈ [1, N ] and x ∈ S+

i such that
x− γh ∈ S−i+1. Therefore,

vi(x) = vi+1(x− γh) = vi(x− 2γh)

which is in contradiction with lemma 3. �
We proved in the previous section that the value function is continuous. It has been proved
in [20] that the convexity of the value function is a sufficient condition for the regularity of
its derivative. But, as proved in [22], the value function might be convex-concave when the
credit line interest rate is high. Nonetheless, we will give below a regularity result under the
following assumption about the existence of left and right derivatives.

Assumption 2 The value function admits left (D−) and right (D+) derivatives on its def-
inition domain.

Proposition 3 Under the assumption (2), the value functions vi are C1 for all i ∈ [1, N ], .
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Proof: Let be i ∈ [1, N ], x0 ∈ Ωi and suppose D+vi(x0) > D−vi(x0). Then take some
q ∈ (D−vi(x0), D+vi(x0)) and consider the function

ϕi(x) = vi(x0) + q(x− x0) +
1

2ε
(x− x0)2

with ε > 0. Then x0 is a local minimum of vi − ϕi, with ϕ′(x0) = q and ϕ′′(x0) = 1
ε
.

Therefore, we get a contradiction by writing the supersolution inequality :

0 ≤ −(β(ki)µ− α((ki − x)+))q + r(vi(x0))− σ2β(ki)
2

2ε

and choosing ε small enough. So we have the inequality

D+vi(x0) ≤ D−vi(x0)

Suppose now that there exists some x0 /∈ Si such that D−vi(x0) > D+vi(x0). We then fix
some q ∈ (D+vi(x0), D−vi(x0)) and consider the function

ϕ(x) = vi(x0) + q(x− x0)− 1

ε
(x− x0)2

with ε > 0. Then x0 is a local maximum of vi − ϕ with ϕ′(x0) = q > D+vi ≥ 1. Since
x0 /∈ Si, the subsolution inequality property implies

0 ≥ rvi(x0)− (µβ(ki)− α((ki − x)+))q +
σ2β(ki)

2

2ε

which leads to a contradiction by choosing ε sufficiently small. Therefore, we have that vi
is C1 on the open set Ωi\Si.
Let’s prove now that vi is still C1 on Si. Fix x0 ∈ S+

i (the proof for x0 ∈ S−i is similar) and
take j = min{l > i, x0 − γ|ki − kl| /∈ S+

l }. Then x0 is a minimum of vi − vj(.− γ(kj − ki)),
and so

D−vi(x0)−D−vj(x0 − γ(kj − ki)) ≤ D+vi(x0)−D+vj(x0 − γ(kj − ki))

But, from the definition of j, x0− γ(kj − ki) /∈ S+
j and from Lemma 4, x0− γ(kj − ki) /∈ S−j

so x0− γ(kj − ki) belongs to the open set Ωj\Sj and so D+vj(x0− γ(kj − ki)) = D−vj(x0−
γ(kj − ki)) and thus

D−vi(x0) ≤ D+vi(x0)

which proves the result since the reverse inequality has been proved previously. �

Since we prove, under the Assumption 2, that the value function is C1, we pose from
now on :

Di = {x ∈ Ωi, v
′
i(x) = 1}

Ci = Ωi\(Di ∪ Si)
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Proposition 4 For all i ∈ [1, N ], vi is C2 on Ci.

Proof: In this open set, we have that vi is a viscosity solution to

−Livi = 0, x ∈ Ci (9)

Now, for any arbitrary bounded interval (x1, x2) ∈ Ci consider the Dirichlet boundary linear
problem :

− Liw = 0

w(x1) = vi(x1), w(x2) = vi(x2)
(10)

Classical results (see for instance [8]) provide the existence and uniqueness of a smooth C2

function w solution on (x1, x2) to (10). In particular, this smooth function w is a viscosity
solution to (9). From standard uniqueness results, we get vi = w on (x1, x2) ∈ Ci which
proves that vi is C2 on Ci from the arbitrariness of (x1, x2). �

2.3 Properties of the dividend region

At this point, we only have the boundary condition :

∀i ∈ [1, N ], vi(γki) = 0

However, to solve numerically the problem, we need another boundary condition on the
right side. The next lemma gives us a property of the dividend region that will make the
numerical scheme well-posed.

Lemma 5 For all i ∈ [1, N ], we have

bi = sup{x ∈ Ωi, v
′
i(x) > 1} < +∞

Proof: We note I = {i ∈ [1, N ], bi < +∞} and we suppose that Ic = [1, N ]\I 6= ∅. For
all i ∈ [1, N ], the function x → vi(x) − x is an increasing bounded continuous function
(see lemma 2) and therefore admits a limit ai = limx→+∞(vi(x) − x). We have for all
(i, j) ∈ [1, N ]× [1, N ] :

aj − (ai − γ|ki − kj|) = lim
x→+∞

(vj(x)− vi(x− γ|ki − kj|)) ≥ 0

Take j0 ∈ Ic such that aj0 = max{aj, j ∈ Ic}. In particular, we have for all j ∈ Ic\{j0}, aj0 >
(aj − γ|kj0 − kj|). We prove easily that there exists x̄ ∈ R+ such that

x̄ > kj0
rvj0(x̄) > µβ(kj0)

vj0(x̄) > x̄+ max
j∈Ic\{j0}

(aj − γ|kj0 − kj|)

x̄ > bi + γ|ki − kj0|,∀i ∈ I
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We then define the function w such that

∀x ≤ x̄, w(x) = vj0(x)

∀x > x̄, w(x) = vj0(x̄) + x− x̄

Then by definition, for x ∈ [γkj0 , x̄], w is a viscosity solution of

min

{
−Lj0w,w′(x)− 1, w(x)−max

j 6=j0
vj(x− γ|kj0 − kj|)

}
= 0

We still have to prove that w is a viscosity solution on ]x̄,+∞[. First, for all x ∈]x̄,+∞[, w′(x) =
1. Moreover,

∀x > x̄,−Lj0w = r(vj0(x̄) + x− x̄)− µβ(kj0)

So using :
rvj0(x̄) > µβ(kj0)

we have that −Lj0w > 0. Finally, for all j ∈ Ic\{j0}, we have

∀x > x̄, w(x) > x+ aj − γ|kj0 − kj| ≥ vj(x− γ|kj0 − kj|)

For i ∈ I, as x̄− γ|ki − kj0| > bi, for all x > x̄, v′i(x− γ|ki − kj0|) = 1. Thereafter,

∀x > x̄, vi(x− γ|ki − kj0|)− w(x) = vi(x̄− γ|ki − kj0) + x− x̄− (vj0(x̄) + x− x̄)

= vi(x̄− γ|ki − kj0|)− vj0(x̄)

≤ 0

We proved that w is a viscosity solution to the variational inequality so by uniqueness,
w = vj0 , which is in contradiction with j0 ∈ Ic and the result is proved. �

Lemma 5 ensures that if x is large enough, we have vi(x+h) = vi(x) +h. This property,
with the left boundary condition at γki is enough to build a numerical scheme. However,
we can prove more about the dividend region. Proposition 5 below specifies the form of the
dividend region under certain assumption and builds on the two next lemmas.

Definition 1 We say that x ∈ Ωi is a left border (resp. right border) of a subset E if there
exists ε > 0 and (xn)n∈N /∈ E such that

lim
n→+∞

xn = x

and
∀y ∈]x, x+ ε[, y ∈ E

Lemma 6 For all i ∈ [1, N ], if ai is a left border of Di such that ai ∈ Sij then ai−γ|ki−kj|
is a left border of Dj.

Proof: Take ai a left border of Di such that ai ∈ Sij. There exists ε > 0 such that

∀x ∈ [ai, ai + ε[, vi(x) = vi(ai) + x− ai

12



And ai ∈ Sij so :

∀x ∈ [ai, ai + ε[, vi(x) = vj(ai − γ|ki − kj|) + x− ai

Since
vi(x) ≥ vj(x− γ|ki − kj|)

we have :
∀x ∈ [ai, ai + ε[, vj(x− γ|ki − kj|) ≤ vj(ai − γ|ki − kj|) + x− ai

and using Lemma 3, we obtain

∀x ∈ [ai, ai + ε[, vj(x− γ|ki − kj|) = vj(ai − γ|ki − kj|) + x− ai

so [ai − γ|ki − kj|, ai − γ|ki − kj| + ε[⊂ Dj. Moreover, if there exists δ > 0 such that
[ai − γ|ki − kj| − δ, ai − γ|ki − kj|] ⊂ Dj then

∀x ∈]ai − γ|ki − kj| − δ, ai − γ|ki − kj|], vj(x) = vj(ai − γ|ki − kj|) + x− ai + γ|ki − kj|
= vi(ai) + x− ai + γ|ki − kj|
> vi(x+ γ|ki − kj|)

which is a contradiction and the result is proved. �

Lemma 7 For all i ∈ [1, N ], if ai is a left border of Di then ai ≥ ki. Moreover,

ai ∈ C̄i ⇒ vi(ai) =
µβ(ki)

r

Proof: Take ai a left border of Di such that ai < ki.

First case : ai ∈ C̄i.
Let’s prove first that

vi(ai) =
µβ(ki)− α(ki − ai)

r

As −Livi ≥ 0 and v′i(x) = 1 on [ai, ai + ε[, we have

∀x ∈ [ai, ai + ε[,−(µβ(ki)− α((ki − x)+)) + rvi(x) ≥ 0

So,

vi(ai) ≥
µβ(ki)− α(ki − ai)

r

Moreover, as ai ∈ C̄i, it exists δ such that ]ai − δ, ai[⊂ Ci and vi is C2 over this interval (see
Proposition 4). Using Lemma 3, we have v′′i (a−i ) ≤ 0. So using the differential equation
satisfied by vi over ]ai − δ, ai[, we have

0 ≥ rvi(ai)− µβ(ki) + α(ki − ai)

13



So

vi(ai) =
µβ(ki)− α(ki − ai)

r

Because ai is a left border of Di and ai < ki, it exists ε > 0 such that ]ai, ai+ε[∈ Di∩]γki, ki[.
Then {

vi(x) = vi(ai) + x− ai
−Livi(x) ≥ 0

so,

−(µβ(ki)− α(ki − x)) + r

(
µβ(ki)− α(ki − x)

r
+ x− ai

)
≥ 0

It follows that
α(ki − x)− α(ki − ai) + r(x− ai) ≥ 0

which is a contradiction since α′ > r.

Second case : ai ∈ Sij. Suppose for example that j > i. In this case, using Lemma 6, we know
that ai−γ|ki−kj| is a left border of Dj. Therefore, taking l = min{j > i, ai−γ|ki−kj| /∈ S+

j }
we can use the first case and we have

ai − γ|ki − kl| ≥ kl

which implies that
ai ≥ ki

and the result is proved. �

Proposition 5 For all i ∈ [1, N ], if bi /∈ Si and µβ(ki) > α((1−γ)ki) then Di = [bi,+∞[∪E
where E is a set with empty interior.

Proof: Suppose there is another non-empty interior subset in Di, then it exists a right
and a left border that we note di and gi. We prove the result in two steps.

First step: Suppose gi = γki.
There exists ε > 0 such that [γki, γki + ε] ⊂ Di. So for all x ∈ [γki, γki + ε], v(x) = x− γki
and

−(µβ(ki)− α(ki − x)) + r(x− γki) ≥ 0

But
lim
x→γki

−(µβ(ki)− α(ki − x)) + r(x− γki) = −µβ(ki) + α((1− γ)ki) < 0

which is a contradiction.

Second step: gi > γki
Using Lemma 7 we know that gi ≥ ki, so di > ki. This means that there exists ε > 0 such
that di − ε ≥ ki and

∀x ∈]di − ε, di], vi(x) = vi(di) + x− di

14



Using then that −Livi(x) ≥ 0 over ]di − ε, di], we have that

vi(di) ≥
µβ(ki)

r

Using again Lemma 7, as bi /∈ Si, then

vi(bi) =
µβ(ki)

r

which is a contradiction since bi > di and vi is a strictly increasing function. �

3 Numerical Approximation

The aim of this section is to produce a grid and a discretization by means of central, forward
and backward differencing of the free boundary problem (7). We prove that the scheme is
monotone and therefore converges to the solution (see [7]).

3.1 Finite difference method

First we make the following change of variable :

wi(x) = vi(x+ γki).

Clearly, wi is the unique viscosity solution of the free boundary problem

min
(
− L′iwi(x), wi(x)− 1, wi(x)−max(wi−1(x− 2γh), wi+1(x− 2γh))

)
= 0 (11)

with,

L′iφ(x) = (µβ(ki)− α(((1− γ)ki − x)+))φ′(x) +
β(ki)

2σ2

2
φ′′(x)− rφ

which we will continue thereafter to note Li. We also define the operator Ĩ for a function φ
and a point x that gives the linear interpolation of φ at the point x− 2γh.

Remark 3 Remind that there isn’t investment for i = N neither disinvestent for i = 1.
So in the precedent definition, we suppose that the condition vi(x) − vi−1(x − γh) (resp.
vi(x)− vi+1(x− γh)) fades away when i = 1 (resp. i = N).

From the previous section, we know that for all i ∈ [1, N ], there exists bi such that w′i(x) = 1
over [bi,+∞[. So taking xmax > maxi{bi} we have the boundaries conditions :

∀i ∈ [1, N ], w′i(xmax) = 1

Problem (11) is therefore solved on the computational domain

(x, k) ∈ [0, xmax]× [k1, kN ] (12)

15



with the regular grid (xl)l∈[1,M ] = {(l − 1)∆x}l∈[1,M ] with

∆x =
xmax
M − 1

in order to have xM = xmax. Let Wl,i be the approximate solution of equation (11) at (xl, ki)
for every i ∈ [1, N ] and l ∈ [1,M ]. We use a direct method similar to [12] to discretize
equation (11) as well as central differencing as much as possible in order to improve the
efficiency. Setting L̃i the discretization of Li, we have:

ρl,i

[
θl,i

(
−ψl,i(L̃W )l,i + (1− ψl,i)

(
Wl,i −Wl−1,i

∆x
− 1

))]
=− ρl,i(1− θl,i)(Wl,i −Wl,i−1)− (1− ρl,i)(Wl,i − ĨWl,i+1)

(13)

with,

{ρl,i, θl,i, ψl,i} = argminρ∈{0,1}
θ∈{0,1}
ψ∈{0,1}

{
ρl,i

[
θl,i

(
−ψl,i(L̃W )l,i + (1− ψl,i)

(
Wl,i −Wl−1,i

∆x
− 1

))]

+ ρl,i(1− θl,i)(Wl,i −Wl,i−1) + (1− ρl,i)(Wl,i − ĨWl,i+1)
}

The terminal boundary condition w′i(xM) = 1 is classically discretized :

WM,i = WM−1,i + ∆x, i ∈ [1, N ]

and we also have
W0,i = 0, i ∈ [1, N ]

If we denote 
C1(xl, ki) = µβ(ki)− α(((1− γ)ki − xl)+)

C2(xl, ki) =
σ2β(ki)

2

2
> 0

then to satisfy the positive coefficient condition and to maximize the efficiency, the dis-
cretized operator L̃i is given by :

(L̃W )l,i =



C2(xl, ki)
Wl+1,i +Wl−1,i − 2Wl,i

∆x2
+ C1(xl, ki)

Wl+1,i −Wl−1,i

2∆x
− rWl,i

if 2C2(xl, ki) ≥ |C1(xl, ki)|∆x (central differencing)

C2(xl, ki)
Wl+1,i +Wl−1,i − 2Wl,i

∆x2
+ C1(xl, ki)

Wl+1,i −Wl,i

∆x
− rWl,i

if 2C2(xl, ki) < |C1(xl, ki)|∆x and C1(xl, ki) ≥ 0 (forward differencing)

C2(xl, ki)
Wl+1,i +Wl−1,i − 2Wl,i

∆x2
+ C1(xl, ki)

Wl,i −Wl−1,i

∆x
− rWl,i

if 2C2(xl, ki) < |C1(xl, ki)|∆x and C1(xl, ki) < 0 (backward differencing)

Proposition 6 The scheme is monotone, consistent and stable.
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Proof: The scheme is, as a finite difference scheme, consistent. Moreover, we check easily
that in −(LW )i,l, the coefficients in front of Wl−1,i,Wl+1,i,Wl,i−1 are negatives. So are the
coefficients in front of Wk,i+1 for k acting in the interpolation ĨWl,i+1. On the contrary, the
coefficient in front of Wl,i is positive which proves the monotony. We still have to prove the
stability i.e. to prove that for all ∆x, the schema has a solution (Wl,i)i,l which is uniformly
bounded independently of ∆x. First, equation (13) implies that

∀i ∈ [1, N ],∀l ∈ [2,M ],Wl,i ≥ Wl−1,i + ∆x ≥ Wl−1,i (14)

so the sequence l → Wl,i is increasing. Let’s prove that WM,i is bounded independently of
∆x. We know by the terminal boundary condition that

∀i ∈ [1, N ],WM,i = WM−1,i + ∆x.

Let’s note d = max{j ∈ [1,M ],Wj,i > Wj−1,i + ∆x}. By equation (13), we have one of the
three next assertions which is true

1. −(L̃W )d,i = 0.

2. Wd,i −Wd,i−1 = 0.

3. Wd,i − ĨWd,i+1 = 0.

and by definition of d :
Wd+1,i = Wd,i + ∆x. (15)

Case 1 : Using the discretized operator, we have in the central differencing case :

−C2(xd, ki)
Wd+1,i +Wd−1,i − 2Wd,i

∆x2
− C1(xd, ki)

Wd+1,i −Wd−1,i

2∆x
+ rWd,i = 0.

Then, using (15),

−C2(xd, ki)
Wd−1,i −Wd,i + ∆x

∆x2
− C1(xd, ki)

Wd,i −Wd−1,i + ∆x

2∆x
+ rWd,i = 0.

Factoring,

rWd,i = C1(xd, ki) +

(
−C2(xd, ki)

∆x2
+
C1(xd, ki)

2∆x

)
(Wd,i −Wd−1,i −∆x)

so, using that Wd,i ≥ Wd−1,i + ∆x and the central differencing inequation, we have

Wd,i ≤
C1(xd, ki)

r
.

Moreover, C1(xd, ki) is bounded independently of (xd, ki) by µβ̄. Then,

Wd,i ≤
µβ̄

r
.
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But, by definition of d,
WM,i = Wd,i + (M − d)∆x,

so

WM,i ≤
µβ̄

r
+ (M − d)∆x ≤ µβ̄

r
+ xM

The proof for the forward and backward differencing is similar and therefore omitted.

Case 2 : In this case, let’s define p = max{j ∈ [1, i − 1],Wd,j − Wd,j−1 > 0}. At this
point, we necessarily have −L̃Wd,p = 0. Let’s prove that we also have

Wd+1,p = Wd,p + ∆x

Suppose that Wd+1,p > Wd,p + ∆x. Then, using that Wd,p = Wd,i

Wd+1,p > Wd,i + ∆x.

But by definition of d, Wd,i + ∆x = Wd+1,i, so

Wd+1,p > Wd+1,i

which is a contradiction since p < i. So we have

Wd+1,p = Wd,p + ∆x

and
−L̃Wd,p = 0

and we can use the first case to prove that

Wd,i ≤
µβ̄

r
+ xM

The proof in the third case is similar and is therefore omitted.
Finally, we have proved in all cases that

∀i ∈ [1, N ],∀l ∈ [1,M ],Wl,i ≤
µβ̄

r
+ xM

which is a bound independent of ∆x and the result is proved.
�

3.2 Matrix Form of the Discretized Equations

We denote U the vector of size N ×M and Ûi for i ∈ [1, N ] the vectors of size M such that

Ûi = (Wl,i)l∈[1,M ], U = (Û1, Û2, ..., ÛN)

With
j = l + (i− 1)M

18



we have
∀j ∈ [1, N ×M ], Uj = Wl,i

Then we can write (13) in a linear matrix form as follows :

A(ρ, ψ, θ)U +B(ρ, ψ, θ) = 0 (16)

where A(ρ, ψ, θ) is a square tridiagonal block matrix of size N ×M :

Z1 D1

C2

Ci Zi Di

DN−1

CN ZN





 N ×M

0

0

with Zi the tridiagonal matrix of size M given by,

Zi = T i + (ρl,i(1− θl,i) + (1− ρl,i))Id

with the coefficients of T i given, for all l ∈ [2,M − 1], by :

til,l = ρl,iθl,i

(
ψl,i

(
r +

2C2(xl, ki)

∆x2
+
|C1(xl, ki)|

∆x
1{2C2(xl,ki)<∆x|C1(xl,ki)|}

)
+

(1− ψl,i)
∆x

)
til,l+1 = ρl,iθl,i

(
−ψl,i

(
C2(xl, ki)

∆x2
+
C1(xl, ki)

2∆x
+
|C1(xl, ki)|

2∆x
1{2C2(xl,ki)<∆x|C1(xl,ki)|}

))
til,l−1 = ρl,iθl,i

(
−ψl,i

(
C2(xl, ki)

∆x2
− C1(xl, ki)

2∆x
+
|C1(xl, ki)|

2∆x
1{2C2(xl,ki)<∆x|C1(xl,ki)|}

)
− (1− ψl,i)

∆x

)
To fulfill the Dirichlet conditions, we force :

∀i ∈ [1, N ],∀l ∈ [1,M ],

{
Zi

1,l = δ1l

Di
1,l = Ci

1,l = 0

Also to satisfy the right boundary conditions, the controls are fixed for l = M :

∀i ∈ [1, N ],


ρM,i = 1

θM,i = 1

ψM,i = 0
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By doing this we make sure that at the right boundary of the grid, we are in the dividend
region.
Ci is the diagonal matrix of size M with

∀i ∈ [1, N ],∀l ∈ [1,M ], cil,l = −(1− θl,i)ρl,i

The form of the matrix Di is given by the operator Ĩ. To have a monotone scheme, we need
to use a linear operator. With a constant step, the form of the matrix is as follows :

0 0

0 0

−(1− ρ3,i)λ −(1− ρ3,i)(1− λ) 0

−(1− ρM,i)λ −(1− ρM,i)(1− λ) 0





0 0

Di =

The offset d with respect to the diagonal in the matrix Di, i.e the number of zero lines at
the beginning of Di, is equal to

d = 1 + E

(
2γh

∆x

)
where E is the floor function. We also define the fractional part :

λ =
2γh

∆x
− E

(
2γh

∆x

)
Last, the vector B, is of size N ×M and satisfies

∀j ∈ [1, N ×M ], bj = −ρl,iθl,i(1− ψl,i), j = l + (i− 1)M

Definition 2 A matrix A is a M-matrix if A is non singular, the off-diagonal coefficients
of A are negatives and A−1 ≥ 0.
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Remark 4 A matrix such that A−1 ≥ 0 satisfies

X ≥ 0⇔ A−1X ≥ 0

Lemma 8 The matrices Zi(ρ, ψ, θ) = (zil,j)l,j are M-matrices.

Proof: Take i ∈ [1, N ]. We observe that the matrix Zi satisfies for all l, zill > 0 and for all
l 6= j, zilj ≤ 0. Moreover Zi is a diagonally dominant matrix. Indeed,

∀l ∈ [2,M ], zill −
∑
j 6=l

|zil,j| =


r, ψliρl,iθl,i = 1

0, ψli = 0 et ρl,iθl,i = 1

1, ρliθli = 0

For l = 1, Dirichlet condition dictates that

zi11 −
∑
j 6=1

|zi1,j| = 1

However the matrix is not a strict diagonally dominant matrix since when there is distri-
bution of dividends (i.e. ψli = 0 and ρl,iθl,i = 1), the sum of the line coefficients is equal to
zero and thus the classical technique used in [12] does not apply. Another way to prove that
Zi(ρ, ψ, θ) is a M-matrix is to find a M-size vector W such that W > 0 and ZiW > 0 (see
[21]). Let’s prove that W the M-size vector given by

∀l ∈ [1,M ],Wl = 1 + lε

with

ε =
r∆x

µβ̄
> 0

satisfies this condition for all i ∈ [1, N ]. First, as Zi is a tridiagonal matrix, we have

∀l ∈ [2,M − 1], (ZiW )l = zil,l−1(1 + (l − 1)ε) + zil,l(1 + lε) + zil,l+1(1 + (l + 1)ε)

For l = 1
(ZiW )1 = (1 + ε)

and for l = M

(ZiW )M =
1 +Mε

∆x
− 1 + (M − 1)ε

∆x

Then, for all l ∈ [2,M ], we have :

(ZiW )l =


(1 + (l − 1)ε)r + ε(zill + 2zil,l+1), ρliθliψli = 1
ε

∆x
, ρliθli = 1 et ψli = 0

1 + lε, ρliθli = 0

Moreover, when ρliθliψli = 1, we have

zill + 2zil,l+1 = r − C1(xl, ki)

∆x
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So,

(1 + (l − 1)ε)r + ε(zill + 2zil+1,l) = (l − 1)rε+ r + ε

(
r − C1(xl, ki)

∆x

)
≥ lrε+ r − εC1(xl, ki)

∆x

Using the definition of ε and the fact that

∀i ∈ [1, N ],∀l ∈ [1,M ], C1(xl, ki) ≤ µβ̄

we have that
(1 + (l − 1)ε)r + ε(zill + 2zil+1,l) ≥ lrε

So
∀l ∈ [1,M ], (ZiW )l > 0

And we conclude that Zi is a M-matrix. �

Corollary 1 The matrix A(ρ, θ, ψ) is a M-matrix.

Proof: To prove the result we use the same technique as in Lemma 8. Choose

ε =
r∆x

µβ̄
> 0

and
0 < η < (d+ λ)ε

Thus, we define W the N ×M -size vector as follows

∀i ∈ [1, N ],∀l ∈ [1,M ],Wl+(i−1)M = 1 + lε+ iη

Then, using the results of Lemma 8, we obtain that for all i ∈ [1, N ] and for all l ∈ [2,M−1],

ρliθli = 1⇒ (AW )l+(i−1)M ≥ min
( ε

∆x
, lrε

)
+ (zil,l + zil,l−1 + zil,l+1)iη

Using that the matrices Zi are diagonally dominant, we have that

ρliθli = 1⇒ (AW )l+(i−1)M > 0

In the case (θli, ρl,i) = (0, 1), we have

(AW )l+(i−1)M = 1 + lε+ iη − (1 + lε+ (i− 1)η) = η > 0

and in the case ρl,i = 0, we have

(AW )l+(i−1)M =1 + lε+ iη − (1− λ)[1 + (l − d)ε+ (i+ 1)η]

− λ[1 + (l − 1− d)ε+ (i+ 1)η]

=(d+ λ)ε− η
>0

Thus, we display a vectorW > 0 such that, for all i ∈ [1, N ], for all l ∈ [1,M ], (AW )l+(i−1)M >
0 which proves he result.

�
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4 Convergence of the scheme

The main result of this section is that U is the solution of the following Newton algorithm :

AqU q+1 +Bq = 0 (17)

with

Aq = A(ρq, θq, ψq)

Bq = B(ρq, θq, ψq)

and is resumed in Theorem 1.

Algorithm 1 Policy Iteration

(ρ0, θ0, ψ0) = (1, 1, 1)
q = 0
while Error > ε do

Solve W q+1 solution of

ρql,i

[
θql,i

(
−ψql,i(L̃W

q+1)l,i + (1− ψql,i)

(
W q+1
l,i −W

q+1
l−1,i

∆x
− 1

))]
=− ρql,i(1− θ

q
l,i)(W

q+1
l,i −W

q+1
l,i−1)− (1− ρql,i)(W

q+1
l,i − Ĩ(W q+1

i+1 ))

(ρq+1, θq+1, ψq+1) solution of

(ρq+1, θq+1, ψq+1) = argmin(ρ,θ,ψ)∈{0,1}

{
ρl,iθl,i

[
− ψl,i(L̃W q+1)l,i

+(1− ψl,i)

(
W q+1
l,i −W

q+1
l−1,i

∆x
− 1

)]
+ρl,i(1− θl,i)(W q+1

l,i −W
q+1
l,i−1) + (1− ρl,i)(W q+1

l,i − Ĩ(W q+1
i+1 ))

}
Error= ||ρq+1−ρq ||

||ρq || + ||θq+1−θq ||
||θq || + ||ψq+1−ψq ||

||ψq ||
q = q + 1

end while

Theorem 1 Under the conditions

i) The matrices Aq are M-matrix

ii) ‖(Aq)−1‖ and ‖Bq‖ are bounded regardless of q.

the scheme in Algorithm 1 converges to the unique solution of equation (16).

Proof: The proof is classic and is posponed in appendix. �
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Lemma 9 The sequence (U q)q≥0 is bounded.

Proof: To prove the result, we have to prove that the matrices (Aq)−1 and Bq are bounded,
regardless of q. First, by definition, we have that for all q ≥ 0 and for all j ∈ [1, N ×M ],
bqj ≤ 1, so the matrix Bq is bounded. Moreover, since ρq, θq and ψq take discrete values :

∀q ≥ 0,∀l ∈ [1,M ], ∀i ∈ [1, N ], ρql,i, θ
q
l,i, ψ

q
l,i = 0 or 1

we have a finite number of invertible matrices Aq so also a finite number of (Aq)−1 and taking
the maximum over all the possible combinations lead to a supremum of (Aq)−1 regardless of
q and the result is poved. �

5 Numerical results

5.1 Description of the optimal regions

In chapter 2.3, we proved that for all i ∈ [1, N ] there exists bi > ki such that the dividend
region contains at least [bi,+∞[, which allows us to define in the numerical scheme a border
condition. The numerical results give us much more information about the optimal control
regions. Next Proposition resumes those results :

Proposition 7 The optimal control regions satisfy

1. ∀i ∈ [1, N ],Di = [bi,+∞[.

2. ∀i ∈ [2, N ],∃di ∈ Ωi,S−i = [γki, di]

3. ∃k∗ ∈ [1, N ],∀i ≥ k∗,S+
i = ∅

4. ∀i < k∗,∃ai ∈]di, bi],S+
i = [ai,+∞[

Figure 1 illustrates Proposition 7. The results are obtained using a linear debt and an
exponential gain function :

• Linear debt : α(x) = λx

• Exponential gain function : β(x) = β̄
(

1− exp(− η
β̄
x)
)

and the next values for the different parameters :

[µ = 0.25, σ = 0.40, r = 0.02, λ = 0.10, β̄ = 2, η = 1, γ = 1e−3, N = 20,M = 1e5]
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Figure 1: Optimal control regions.

In figure 1, we differentiate six areas :

1. S−i (Orange zone) : Disinvestment area where the book value of equity is low in
comparison to the level of the firm’s productive assets. In this zone, it is optimal to
disinvest to lower the risk of bankruptcy.

2. S+
i (Blue area) : Investment area where the ratio book value of equity over firm’s

productive assets is high. It is optimal to invest to increase the rentability via the gain
function. The risk increases proportionnaly but the cash reserves protect the company
against bankrupcy.

3. Ci (Black area) : In between, there is the continuation area where it is optimal to not
activate the controls.

As proved in chapter 2.3, we observe that on the right side of figure 1, corresponding to a
high level of equity, it is always optimal to pay dividends leading to three different areas :

4. S+
i ∩ Di (Green and blue area) : for a low level of productive assets. In this zone, it

is optimal to pay dividends and invest until reach the optimal level k∗.

5. S−i ∩ Di (Green and orange area) : for a high level of productive assets. In this zone,
it is optimal to disinvest until a maximum level of productive assets kmax in order to
distribute dividends.
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6. Di (Green area) : in between, it isn’t optimal to invest neither to disinvest but just to
pay dividends.

Those results are consistent with the economic theory. Furthermore, they bring to light two
meaningful conclusions :

• It is optimal to pay dividends only once the company has reached a optimal size
depending of its sector.

• There exists a maximum size that the company shouldn’t exceed.

Those conclusions are directly attributable to the characteristics of the gain function chosen.
Indeed, the rentability increases with the gain function which is concave with a finite limit
at the infinity. So at some point, the marginal gain is small compared to the value for the
shareholders to receive dividends.

5.2 Impact of the cost of investment

The cost of investment γ (and of disinvestment) plays an important role in the form of the
switching regions. Figure 2 to 4, present the optimal control regions for different values of
γ and the same parameters than figure 1.

Figure 2: Optimal control regions for γ = 0.05.

26



Figure 3: Optimal control regions for γ = 0.1.
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Figure 4: Optimal control regions for γ = 0.5.

We observe that the higher γ is, the wider the continuation region is. Which is consistent
since if the cost is low the manager is prone to invest since he knows that he could desinvest
at lower prices.

6 Appendix

6.1 Proof of Proposition 2

Supersolution
Let i ∈ [1, N ], x̄ ∈ Ωi and ϕ a C2 function such that x̄ is a minimum of vi − ϕ and
vi(x̄) = ϕ(x̄).
First, let us consider the admissible control where the manager decide to invest at time
t = 0. From the dynamic programming principle, we have

vi(x̄) ≥ vi−1(x̄− γh)

In the same way, we also have
vi(x̄) ≥ vi+1(x̄− γh)

Second, let us consider the admissible control π from x̄ where the manager decide neither to
invest (or disinvest) nor paying dividends until the liquidation, and (Xπ

t , ki)t≥0 the process
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controlled by π. Then, from the dynamic programming principle, we have between [0, τ ∧h]
with h > 0 :

ϕi(x̄) = vi(x̄) ≥ E
(∫ τ∧h

0

e−rtdZπ
t + e−r(τ∧h)v(Xπ

τ∧h, K
π
τ∧h)

)
≥ E(e−r(τ∧h)vi(X

π
τ∧h))

≥ E(e−r(τ∧h)ϕi(X
π
τ∧h)).

(18)

Applying Itô’s formula to the process e−rtϕi(Xt) between 0 and τ ∧ h and taking the expec-
tation, we have

E(e−r(τ∧h)ϕi(X
π
τ∧h)) = ϕi(x̄) + E

(∫ τ∧h

0

Lϕi(Xπ
t )dt

)
+ E

[ ∑
t≤τ∧h

e−rt(ϕi(X
π
t )− ϕi(Xπ

t−))

]
.

We then observe that Xπ is continuous on [0, τ ∧ h], so

E(e−r(τ∧h)ϕi(X
π
τ∧h)) = ϕi(x̄) + E

(∫ τ∧h

0

Lϕi(Xπ
t )dt

)
(19)

Therefore using (18) and (19)

0 ≥ E
(∫ τ∧h

0

Lϕi(Xπ
t )dt

)
By dividing the above inequality by h with h→ +∞, we conclude that

−Lϕi(x̄) ≥ 0

Proceeding analogously, we prove that ϕ′i(x)−1 ≥ 0 and the supersolution property is proved.

Subsolution
We prove the subsolution property by contradiction. Suppose that the claim is not true.
Then, there exists i ∈ [1, N ], x̄ ∈ Ωi and ϕ ∈ C2 such that ϕ(x̄) = vi(x̄), x̄ is a maximum of
vi − ϕ and

min{−Liϕ(x̄), ϕ′(x̄)− 1, vi(x̄)− vi−1(x̄− γh), vi(x̄)− vi+1(x̄− γh)} > 0.

Otherwise

− Liϕ(x̄) > 0

ϕ′(x̄)− 1 > 0

vi(x̄)− vi−1(x̄− γh) > 0

vi(x̄)− vi+1(x̄− γh) > 0

But ϕ ∈ C2 and we proved (proposition 1) that vi is continuous so it exists η > 0 and ε > 0
such that

∀x ∈]x̄− ε, x̄+ ε[,− Liϕ(x) > η

ϕ′(x)− 1 > η

vi(x)− vi−1(x− γh) > η

vi(x)− vi+1(x− γh) > η.

(20)
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Let π be an admissible strategy and (Xπ
t , K

π
t ) the process controlled by π from (x̄, ki).

Consider the exist times

τε = inf{t ≥ 0, Xπ
t /∈]x− ε, x+ ε[}

τ1 = inf{t ≥ 0, Kπ
t 6= ki}

Applying Itô’s formula to the process e−rtϕ(Xπ
t ) between 0 and τ− = (τε ∧ τ1)−, we get

E[e−rτ
−
ϕ(Xπ

τ−)] =ϕ(x̄) + E

[∫ τ−

0

e−rtLiϕ(Xπ
t )dt

]

− E

[∫ τ−

0

e−rtϕ′(Xπ
t )dZπ,c

t

]

+ E

[ ∑
0≤t<τ

e−rt[ϕ(Xπ
t )− ϕ(Xπ

t−)]

] (21)

By the mean value theorem and using that for t < τ , we have ∆Xπ
t = −∆Zπ

t , where ∆Xπ
t

is the jump in the process Xπ
t at time t, there is some ρ ∈]0, 1[ such that

ϕ(Xπ
t )− ϕ(Xπ

t−) = ∆Xπ
t ϕ
′(Xπ

t + ρ∆Xπ
t )

= −∆Zπ
t ϕ
′(Xπ

t + ρ∆Xπ
t ).

So using (20),
ϕ(Xπ

t )− ϕ(Xπ
t−) ≤ −(1 + η)∆Zπ

t .

Putting into (21) and using again(20), we have

vi(x̄) = ϕ(x̄) ≥E

[∫ τ−

0

e−rtdZπ
t + e−rτ

−
ϕ(Xπ

τ−)

]

+ ηE

[∫ τ−

0

e−rtdt+

∫ τ−

0

e−rtdZπ
t

]

≥E

[∫ τ−

0

e−rtdZπ
t + e−rτ

−
ε ϕ(Xπ

τ−ε
)1τε<τ1 + e−rτ

−
1 ϕ(Xπ

τ−1
)1τε≥τ1

]

+ ηE

[∫ τ−

0

e−rtdt+

∫ τ−

0

e−rtdZπ
t

]

Because Xπ
τε is not in ]x̄− ε, x̄+ ε[, there exists θ ∈ [0, 1] such that

X(θ) = Xπ
τ−ε

+ θ∆Xπ
τε

= Xπ
τ−ε
− θ∆Zπ

τε

with X(θ) in the frontier of ]x̄− ε, x̄+ ε[. So as before,

ϕ(X(θ))− ϕ(Xπ
τ−ε

) ≤ −θ(1 + η)∆Zπ
τε
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Observe that
X(θ) = Xπ

τε + (1− θ)∆Zπ
τε

so by the dynamic programming principle

vi(X
(θ)) ≥ vi(X

π
τε) + (1− θ)∆Zπ

τε

We then have using that vi − ϕ ≤ 0,

ϕ(Xπ
τ−ε

) ≥ vi(X
π
τε) + (1 + θη)∆Zπ

τε .

Therefore,

vi(x̄) ≥E

[∫ τ−

0

e−rtdZπ
t + e−rτεvi(X

π
τε)1τε<τ1 + e−rτ

−
1 ϕ(Xπ

τ−1
)1τε≥τ1

]

+ ηE

[∫ τ

0

e−rtdt+

∫ τ−

0

e−rtdZπ
t + θe−rτε∆Zπ

ε 1τ1>τε

]
+ E[e−rτε∆Zπ

τε1τ1>τε ]

For τε ≥ τ1, we have for all t ≤ τ1, Xπ
t ∈]x− ε, x+ ε[, so using again (20),

ϕ(Xτ−1
) ≥ vi(Xτ−1

) > η + vj(Xτ−1
− γh)

where j = i+ 1 ou j = i− 1. Then

vi(x̄) ≥E

[∫ τ−

0

e−rtdZπ
t + e−rτεvi(X

π
τε)1τε<τ1 + e−rτ1vj(X

π
τ1

)1τε≥τ1

]

+ ηE

[∫ τ

0

e−rtdt+

∫ τ−

0

e−rtdZπ
t + e−rτ11τ1≤τε + θe−rτε∆Zπ

ε 1τ1>τε

]
+ E[e−rτε∆Zπ

τε1τ1>τε ]

(22)

We now claim that there is a constant c0 > 0 such that for every admissible strategy π

E

[∫ τ

0

e−rtdt+

∫ τ−

0

e−rtdZπ
t + e−rτ11τ1≤τε + θe−rτε∆Zπ

ε 1τ1>τε

]
≥ c0 (23)

Let us consider the function C2, ψ(x) = c0

[
1− (x−x̄)2

ε2

]
, with

0 < c0 ≤ min

{
ε

2
, 1,

(
r +

2(µβ(ki)− α(ki))

ε
+
σ2β2(ki)

ε2

)−1
}

Then ψ satisfies {
min{Liψ + 1, 1− ψ′,−ψ + 1} ≥ 0, x ∈]x̄− ε, x̄+ ε[

ψ = 0, x ∈ ∂(]x̄− ε, x̄+ ε[)
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Applying Itô’s formula to the process e−rtψ(Xπ
t ) between 0 and τ−, we obtain

0 < c0 = ψ(x̄) ≤ E
[
e−rτψ(Xπ

τ−)
]

+ E

[∫ τ−

0

e−rtdt+

∫ τ−

0

e−rtdZπ
t

]
(24)

Moreover ψ′(x) ≤ 1, so
ψ(Xπ

τ−ε
)− ψ(X(θ)) ≤ (Xπ

τ−ε
−X(θ))

which is equivalent, using that ψ(X(θ)) = 0, to

ψ(Xπ
τ−ε

) ≤ θ∆Zτε .

Then, plugging into (24), we have

0 < c0 ≤ E
[
e−rτ1ψ(Xπ

τ−1
)1τ1≤τε

]
+ E

[∫ τ−

0

e−rtdt+

∫ τ−

0

e−rtdZπ
t

]
+ E

[
θe−rτε∆Zτε1τε<τ1

]
.

Using that ψ(x) ≤ 1 for all x ∈]x̄− ε, x̄+ ε[, we have the result (23). Finally, by taking the
supremum over all the admissible strategies and using the dynamic programming principle,
(22) implies that vi(x̄) ≥ vi(x̄) + ηc0 which is a contradiction. So the subsolution property
of vi is proved.

Uniqueness property

Suppose that (vi)i∈[1,N ] are continuous viscosity subsolutions of (7) and (wi)i∈[1,N ] continuous
viscosity supersolutions, satisfying the boundary conditions

ui(γki) ≤ wi(γki)

and the linear growth

∀x ∈ [γki,+∞[, |ui(x)|+ |wi(x)| < C1 + C2x

We will show that ui(x) ≤ wi(x) for x ∈ [γki,+∞[.
Step 1
We first construct strict supersolutions to (7) with pertubations of wi. Set :

∀x ≥ γki, p(x) = A+Bx+ x2

with

A =
1 + µβ̄B + σ2β̄2

r
+
∑
i∈[1,N ]

wi(γki)

B = 2 + 2γh+
2µβ̄

r
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Remark 5 The constant A is expressed as the sum of two terms. The first one assures the
strict supersolution property while the second one, the sum of wi(γki), assures in the second
step of the demonstration that for all i ∈ [1, N ], limx→γki(ui(x)− wθi (x)) < 0.

We then define for all θ ∈]0, 1[, the next continuous functions on [γki,+∞[ :

∀i ∈ [1, N ], wθi = (1− θ)wi + θp

First, we observe that

p(x)− p(x− γh) = A+Bx+ x2 −
(
A+B(x− γh) + (x− γh)2

)
≥ [2γhx+ γhB − γ2h2]

≥ γ2h2

Moreover, we have
p′i(x)− 1 = B + 2x− 1 ≥ 1.

It remains to prove that
−Lip(x) > 0.

By definition,

−Lip(x) = rp(x)− (β(ki)µ− α((ki − x)+))p′(x)− β(ki)
2σ2

2
p′′(x)

= r(A+Bx+ x2)− (β(ki)µ− α((ki − x)+))(B + 2x)− β(ki)
2σ2

=
(
rA− β(ki)

2σ2 − (β(ki)µ− α((ki − x)+))B
)

+
(
rB − 2(β(ki)µ− α((ki − x)+))

)
x+ rx2

so using the values of A and B :

−Lip(x) ≥ 1

We then have

min {−Lip(x), p′(x)− 1, p(x)− p(x− γh)} ≥ min{1, γ2h2} (25)

Finally, take x̄ > γki and ϕi ∈ C2 such that x̄ is a minimum of wθi − ϕi. Then with
ϕ2 = ϕi−θp

1−θ , x̄ is also a minimum of wi − ϕ2. So using that wi is a viscosity supersolution of

(7) and the result (25) we have that wθi is a supersolution of the system

min
{
−Liϕ(x), ϕ′(x)− 1, wθi (x)− wθj (x− γh)

}
≥ θmin{1, γ2h2} = δ

Step 2
Assume by a way of contradiction that there exists θ ∈]0, θ̃[ and i ∈ [1, N ] such that

λ = sup
i∈[1,N ]
x≥γki

(ui − wθi )(x) > 0
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Because ui and wi have linear growth, we have limx→+∞(ui(x)−wθi (x)) = −∞ and limx→γki(ui(x)−
wθi (x)) < 0. So by continuity of the functions ui et wθi , there exists x0 ∈]γki,+∞[ such that

λ = ui(x0)− wθi (x0)

For ε > 0, let us consider the functions

Φε(x, y) = ui(x)− wθi (y)− φε(x, y)

φε(x, y) =
1

4
|x− x0|4 +

1

2ε
|x− y|2

By standard arguments in comparison principle of the viscosity solution theory, we know
that the function Φε attains a maximum in a point (xε, yε), which converges to (x0, y0) when
ε goes to 0. Moreover,

lim
ε→0

|xε − yε|2

ε
= 0

Applying theorem 3.2 in Crandall Ishii Lions ([5]), we get the existence of Mε, Nε ∈ R such
that

(pε,Mε) ∈ J2,+ui(xε)

(qε, Nε) ∈ J2,−wλi (yε)

and, (
Mε 0

0 −Nε

)
≤ D2φε(xε, yε) + ε(D2φ(xε, yε))

2 (26)

with

pε = Dxφε(xε, yε) =
1

ε
(xε − yε) + (xε − x0)3,

qε = −Dyφε(xε, yε) =
1

ε
(xε − yε)

and

D2φε(xε, yε) =

 3(xε − x0)2 +
1

ε
−1

ε

−1

ε

1

ε


so

D2φε(xε, yε) + ε(D2φε(xε, yε))
2 =


3

ε
+ 9ε(xε − x0)4 + 9(xε − x0)2 −3

ε
− 3(xε − x0)2

−3

ε
− 3(xε − x0)2 3

ε


Therefore multiplying by the vector (1, 1) and its transpose, (26) implies that

Mε −Nε ≤ 3(xε − x0)2(1 + 3ε(xε − x0)2) (27)
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Because ui et wθi are respectively subsolution and strict supersolution, we have

min
{
−
(

1

ε
(xε − yε) + (xε − x0)3

)
(µβ(ki)− α((ki − x)+))− σ2β2(ki)

2
Mε + rui(xε),(

1

ε
(xε − yε) + (xε − x0)3

)
− 1,

ui(xε)− uj(xε − γh)
}
≤ 0

(28)

min
{
−
(

1

ε
(xε − yε)

)
(µβ(ki)− α((ki − x)+))− σ2β2(ki)

2
Nε + rwθi (yε),

1

ε
(xε − yε)− 1,

wθi (yε)− wθj (yε − γh)
}
≥ δ

(29)

We then distinguish the following cases :

• Case 1 : If 1
ε
(xε− yε) + (xε− x0)3− 1 ≤ 0 then using (29), we have δ+ (xε− x0)3 ≤ 0

which is a contradiction when ε goes to 0.

• Case 2 : If ui(xε)− uj(xε − γh) ≤ 0 then when ε goes to 0, we obtain

ui(x0) ≤ uj(x0 − γh)

And using (29), we have
wθi (yε)− wθj (yε − γh) ≥ δ

So when ε goes to 0 and using the continuity of wθi we obtain

wθi (x0) ≥ wθj (x0 − γh) + δ.

Therefore

λ = ui(x0)− wθi (x0) ≤ uj(x0 − γh)− wθj (x0 − γh)− δ
≤ λ− δ

which is a contradiction.

• Case 3 : If−
(

1
ε
(xε − yε) + (xε − x0)3

)
(µβ(ki)−α((ki−x)+))− σ2β2(ki)

2
Mε+rui(xε) ≤ 0.

Then using (29), we have

−
(

1

ε
(xε − yε)

)
(µβ(ki)− α((ki − x)+))− σ2β2(ki)

2
Nε + rwθi (yε) ≥ δ

So,

−(xε − x0)3(µβ(ki)− α((ki − x)+))− σ2β2(ki)

2
(Mε −Nε) + r(ui(xε)− wθi (yε)) ≤ −δ
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But according to (27), we have

σ2β2(ki)

2
(Mε −Nε) ≤

3σ2β2(ki)

2
(xε − x0)2(1 + 3ε(xε − x0)2)

Therefore

r(ui(xε)−wθi (yε)) ≤ (xε−x0)3(µβ(ki)−α((ki−x)+))−δ+3σ2β2(ki)

2
(xε−x0)2(1+3ε(xε−x0)2)

so when ε goes to 0 and using the continuity of the functions, we have the contradiction

rλ ≤ −δ < 0.

Thus we have proved that for all

∀θ ∈]0, θ̃[,∀i ∈ [1, N ], sup
x∈[γki,+∞[

(ui − wθi ) ≤ 0

and the final result is proved by sending θ to 0.

6.2 Proof of Theorem 1

Using the approximations q and q + 1, the system (17) can be written as :

Aq+1(U q+2 − U q+1) + Aq+1U q+1 − AqU q+1 = −Bq+1 +Bq

Aq+1(U q+2 − U q+1) = AqU q+1 +Bq − (Aq+1U q+1 +Bq+1)

We know that (ρq+1, ψq+1, θq+1) minimize A(ρ, ψ, θ)U q+1 +B(ρ, ψ, θ) so

Aq+1(U q+2 − U q+1) ≥ 0

Then using that Aq+1 is a M-matrix we have

U q+2 − U q+1 ≥ 0

Therefore the scheme is non-decreasing. Morevover (Aq)−1 and Bq are bounded regardless
of q so using that

U q+1 = −(Aq)−1Bq

we know that U q is also bounded so the scheme is convergent. We note U∗ the limit of
(U q)q∈N. We still have to prove that the limit is unique and independent of U0. Suppose
there exists U∗ and Ū∗ two limits. U∗ and Ū∗ are both solutions of (13) so

A∗U∗ +B∗ = 0

Ā∗Ū∗ + B̄∗ = 0

then subtracting the two equations we have,

Ā∗(Ū∗ − U∗) = B∗ + A∗U∗ − (B̄∗ + Ā∗U∗)
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But (ρ̄∗, ψ̄∗, θ̄∗) minimize ĀŪ∗ +B so

Ā∗(Ū∗ − U∗) ≤ 0

Then using that Ā∗ is a M-matrix we have

Ū∗ − U∗ ≤ 0

We prove in the same way that
Ū∗ − U∗ ≥ 0

which achieves the demonstration.
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