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Abstract

We assume that the ex-post utility of an agent facing a menu of lotteries depends upon
the actual payoff together with its forgone best alternative, thereby allowing for the ex-
post emotion of regret. An increase in the risk of regret is obtained when the actual payoff
and its forgone best alternative are statistically less concordant in the sense of Tchen
(1980). The aversion to any such risk of regret is thus equivalent to the supermodularity
of the bivariate utility function. We show that more regret-risk-averse agents are more
willing to choose the risky act in a one-risky-one-safe menu, in particular when the payoff
of the risky choice is highly skewed. This is compatible with the "possibility effect" that
is well documented in prospect theory. Symmetrically, we define the aversion to elation-
risk that can prevail when the ex-post utility is alternatively sensitive to the forgone
worst payoff. We show that elation-risk-seeking is compatible with the "certainty effect".
We finally show that regret-risk-averse and elation-risk-seeking people behave as if they
had rank-dependent utility preferences with an inverse-S shaped probability weighting
function that reproduces estimates existing in the literature.
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1 Introduction
Regret and elation are emotional reactions to personal past acts. Regret is experienced when
realizing that one would have been in a better situation, if only one would have decided
differently. Symmetrically, elation is felt when realizing that we could have been in a worse
situation. For example, one can extract some pleasure from the status quo if the alterna-
tive would have been a loss, as it happens when declining to bet on an event that does not
materialize ex post. Regret can come from missed opportunities, such as failing to pass a
medical test that would have revealed a cancer, or as not buying that asset whose market
value has recently surged. It can also come from past actions yielding a bad outcome, such
as lost gambles and unsuccessful investments. These emotions are mediated by a cognitive
process known as counterfactual thinking involving the orbitofrontal cortex (Camille et al.
(2004), Stalnaker et al. (2015)). If regret and elation affect utility ex post, it should not be
a surprise that they do influence decisions ex ante. Since Gilovich and Medvec (1995), there
is indeed overwhelming evidence in the psychology literature that people alter their choices
in response to the anticipation of regret and elation (Zeelenberg and Pieters (2004), Zee-
lenberg and Pieters (2007)), with applications in marketing (Inman and McAlister (1994)),
medicine (Brehaut et al. (2003), Chapman and Coups (2006)), insurance (Braun and Muer-
mann (2004)), auctions (Filiz and Ozbay (2007)), and finance (Michenaud and Solnik (2008)
and Muermann et al. (2006)) for example.1

Regret and elation are two symmetric emotions. Since Bell (1982) and Loomes and
Sugden (1982), economists have explored the role of the anticipation of regret on optimal
choices under uncertainty.2 Under the modern economic theory of regret that we reexamine
in this paper, decision makers (DM) are assumed to maximize expected utility. But, when
confronted with a non-trivial menu of lotteries, it is assumed that the DM’s statewise utility
U depends not just on the state-specific payoff x of the chosen lottery but also on the largest
payoff y that could have been obtained within the menu in that state.3 Observe that the
distribution of the forgone best alternative is a function of the menu. This implies a potential
intransitivity of the preference ordering.4 In the spirit of Loomes and Sugden (1982, 1987a,b),
we measure the intensity of regret in any specific state by the difference between y and x
that prevails in that state.

How does the anticipation of regret affect choice? The answer to this question obviously
1Zeelenberg and Pieters (2007) documents an exponentially increasing number of papers published on

regret, starting around 1980 and culminating around 100 papers per year at the time of the publication of
their paper.

2Bleichrodt and Wakker (2015) recently published a survey of regret theory on the occasion of the 125th
anniversary of the Economic Journal, recognizing the Loomes-Sugden’s paper as one of the most pioneering
publications of that journal.

3The original theory proposed by Bell (1982, 1983), Loomes and Sugden (1982, 1987a,b) and Loomes (1988))
was limited to menus with only two lotteries, and allowed for rejoice when the chosen lottery generated the
largest payoff. In order to generalize the theory to menus containing more than two lotteries, and considering
that people focus more on regret than on rejoice, Quiggin (1994) introduced an additional assumption into
the model by claiming that statewise dominated alternatives should be irrelevant. This supports the theory
of regret that has been used by economists since then, and that is used in the first part of this paper.

4For more on intransitivity with regret-sensitive preferences, see Bikhchandani and Segal (2011).
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depends upon the properties of the bivariate utility function. One key concept here is regret
aversion. The problem is that the existing literature has not come up with a coherent and
consensual definition of regret aversion. For example, Sarver (2008) defines regret aversion
by the property that adding an ex ante suboptimal lottery in the choice menu makes the DM
worse off. This is because this lottery can yield an ex post payoff that is larger than the payoff
of the optimal lottery, thereby raising regret. Obviously, this definition of regret aversion
is supported by the assumption that the utility function is decreasing in the forgone best
alternative. Gee (2012) refers to this notion of regret aversion as first-order regret aversion.
First-order regret aversion yields by definition a preference for a reduction of dominated
options, and may justify regulations that reduce consumers’ menu of choices (Huang et al.
(2014)). In this paper, we introduce a new notion of aversion to risk of regret.5 In line
with the traditional way to define aversion, it would be consistent with the literature to say
that someone is averse to the risk of regret if, everything else unchanged, she dislikes any
mean-preserving spread in the distribution of the intensity of regret.

The primitive variables relevant for ex post utility is the actual payoff x and the forgone
best alternative y, from which one can derive the intensity of regret y − x. Ex ante, the
expected utility of the DM depends upon the joint probability distribution of (x, y). It is
thus important to define the risk of regret from these pair of primitive variables. In this
paper, we define an increase in risk of regret by a reduction in concordance between x and
y. The concept of comparative concordance was introduced in economics by Epstein and
Tanny (1980) and Tchen (1980). Concordance is reduced by transferring some probability
masses from the SW-NE corners to the NW-SE corners of any rectangle in the (x, y)-space,
so that this change does not affect the marginal distributions of the two random variables.
A reduction in concordance reduces covariance, but the opposite is not necessarily true. We
show that a reduction in concordance between x and y increases the risk of y−x in the sense
of Rothschild and Stiglitz (1970), thereby justifying our reference to an increase in risk of
regret. In other words, a reduction in concordance between the actual payoff and the forgone
best alternative makes regret riskier without affecting the marginal distributions of the actual
payoff and of the forgone best alternative. Our definition of aversion to risk of regret is that
the DM dislikes any such reduction in concordance. For example, consider the following two
menus described in Table 1. Menu M123 = {x∗1, x2, x3} has three lotteries whose payoffs all
depend upon the same draw of a fair coin. Let us contemplate the possibility to select lottery
x∗1 in this menu in which the best forgone alternative is 1 or 2 respectively in state H and T.
Because the actual payoff in these states are respectively 0 and 1, regret takes value 1 with
certainty. Let us alternatively contemplate the same choice x∗1 in menu M145 = {x∗1, x4, x5}.
In that context, the statewise forgone best alternative are reversed, so that regret takes
value 0 or 2 with equal probabilities. In short, the two risk contexts yields exactly the same
marginal distributions for x and y, but the second context has these variables less concordant.
That yields an increase in the risk in regret. Under our definition, any regret-risk-averse DM
should prefer the first menu over the second. The psychology and economics literature on
the subject suggests that people are regret-averse in that sense, but much remains to be done
to test this assumption. For example, Savage (1951), who introduced the notion of regret in

5Gee (2012) proposes a definition of second-order regret aversion that relies on the longshot bias. This is
not intuitive. As we show in this paper, this merely substitutes an assumption by a result.
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H T H T
Lottery x∗1 0 1 Lottery x∗1 0 1
Lottery x2 1 -1 Lottery x4 -1 1
Lottery x3 -2 2 Lottery x5 2 -2
y123 1 2 y145 2 1
Regret 1 1 Regret 2 0

Table 1: Regret-risk contexts in two menus of choices with a fair coin : M123 = {x∗1, x2, x3}
and M145 = {x∗1, x4, x5}.

economics, took the extreme view that a useful decision criterion under uncertainty is the
"minmax regret" criterion in which this aversion to the risk of regret is infinite.

We show that a DM is averse to risk of regret if and only if U is supermodular. We
define the regret-risk premium associated to a marginal-preserving reduction in concordance
between the actual payoff and its forgone best alternative as the sure reduction in actual
outcome that compensates for it. We show that, in the small, the regret-risk premium equals
the product of the increase in the covariance by an index of absolute aversion to risk of
regret measured by Uxy/Ux. Our approach differs much from the economic literature in
which most contributions assumed a specific functional form for the utility function, with
U(x, y) = u(x) − R(u(y) − u(x)).6 Although this specification is useful to intuitively sepa-
rate the "choiceless/regretless/elationless" utility function u from the penalty R coming from
the feeling of regret, we believe that it is too specific, with little benefit associated to this
restriction.

An important contribution of this paper is to show that, in spite of the fact that our
definition of regret-risk aversion is based on the attitude towards a second moment, this
concept implies a preference for longshots, which is a bias towards a third moment. Let us
consider a menu that contains a binary lottery and a sure payoff with the same mean. We
show in this paper that in this context, moving from the safe choice to the risky one entails
both an increase in the payoff-risk and a reduction in the regret-risk. This implies that the
optimal choice is ambiguous under the combination of risk aversion and regret-risk aversion.
Now, consider a mean-preserving reduction in the probability of gain that is compensated
by an increase in that gain, making the risky bet a longshot. This change in distribution
obviously increases the variance of the risky payoff. But we show that it reduces the risk of
regret so much that the net effect is to make it more likely that the regret-risk-averse DM
prefers the risky lottery over its safe alternative. To illustrate this result, consider a lottery
in which there is a probability p = 10−6 to earn 106 dollars against the paiement of one
dollar. If one accepts the lottery, the distribution of regret is zero with probability p, and is
1 with the remaining probability. If one doesn’t accept the lottery, the distribution of regret
is 106 − 1 dollars with probability p , and is zero otherwise. Clearly, accepting the lottery
reduces the regret risk, but it raises the payoff risk. And obviously, the large skewness of the

6Quiggin (1994) is an exception.
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lottery payoff makes this argument more convincing. In the case of racetrack betting, this
generates a preference for longshots, a bias that is well documented by Ali (1977), Thaler
and Ziemba (1988) and Jullien and Salanié (2000).7 Notice however that the preference for
positively skewed lotteries can potentially be explained by assuming that people are prudent
in the classical expected utility model (Kimball (1990)).

In decision theory, the longshot bias is called the "possibility effect" in which people tend
to overestimate the probability of low-probability high-payoff event (Wakker (2010)). In the
Rank-Dependent Utility (RDU) model, the possibility effect takes the form of a steep relation
between the objective probability p of the high payoff and its "weight" w used to measure well-
being ex ante, in the neighborhood of p = 0. However, regret-risk aversion cannot explain
another classical finding of experimental studies, namely the "certainty effect", in which people
have an incremental risk aversion towards risk yielding a low probability of the lower payoff.
In the binary RDU model, this certainty effect is reflected in a steep relation between p and
w in the neighborhood of p = 1. Combining the possibility effect and the certainty effect
suggests a concave-convex (or inverse-S shaped) probability weighting function w.8 We will
show that regret-risk aversion can explain the concave-convex probability weighting w, but
it fails to explain the certainty effect. In fact, the problem is that regret-risk aversion implies
an optimistic RDU transformation, with w(p) ≥ p for all p.

As explained earlier, another possible counterfactual emotion is elation or rejoicing, a
sensation felt when the actual payoff is larger than the worst alternative outcome. In Section
7, we develop a dual theory of elation-risk seeking that basically duplicates our theory of
regret-risk aversion in which the forgone best alternative is replaced by the forgone worst
alternative in the utility function. We show that elation-risk aversion yields a binary RDU
probability weighting in the domain of pessimism (w ≤ p), and that it can explain the
certainty effect. We also show that combining regret-risk aversion and elation-risk seeking in
the expected utility model can generate a binary RDU probability weighting w that almost
exactly duplicates the inverse-S shape one proposed by Tversky and Kahneman (1992), for
example.

Section 2 is devoted to the definitions and the characterization of the risk of regret and of
regret-risk aversion. We also show there the link between the risk of regret and the reduction
in concordance between the payoff and the forgone best alternative. In Section 3, we define
the regret-risk premium and we derive an index of regret-risk aversion that is consistent
with these definitions. We derive an approximation à la Arrow-Pratt of the former by using
the latter. In Section 4, we examine the role of regret-risk aversion in the risk attitude
towards menus that contain a binary lottery and its mean (or certainty equivalent), and we
characterize the link between regret-risk aversion and the preference for positively skewed

7See also Golec and Tamarkin (1998), Garrett and Sobel (1999), Harvey and Siddique (2000), Bhattacharya
and Garrett (2008), and Eichner and Wagener (2011). By showing that adding low-probability macroeconomic
catastrophes into the beliefs of the representative agent can explain the equity premium puzzle, Barro (2006,
2009) is in line with the idea that investors particularly dislike negatively skewed returns.

8See for example Tversky and Kahneman (1992), Wu and Gonzalez (1996), Abdellaoui (2000), Abdellaoui
et al. (2010). Wakker (2010) gives some dozens of references confirming the inverse-S probability weighting
function, together with some dissenting studies.
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lotteries. We generalize these results in Section 5 for non-binary lotteries. Section 6 links our
findings to the binary RDU model, whereas we present a dual theory of elation-risk seeking
in Section 7. Section 8 is devoted to a short analysis of the two-asset portfolio problem.

2 Definition and characterization of the aversion to regret-risk
The uncertainty is described by a set of S possible states of nature, indexed s = 1, ..., S.
There is an objective probability distribution of the states given by vector (p1, ..., pS) in the
simplex of RS . In this paper, the expectation operator is always related to the state of nature,
in the sense that Ef =

∑S
s=1 psf(s) for all f : S → R. A lottery (or an act) is defined by a

function from S to R that specifies the final payoff x(s) in each state s. The choice problem
is characterized by a menu M = {xθ : S → R |θ ∈ Θ} of lotteries indexed by θ in some index
set Θ. In the spirit of Bell (1982, 1983), Loomes and Sugden (1982, 1987a,b) and following
Quiggin (1994), we assume that the decision-maker is sensitive to regret in the sense that her
utility U in any state s is a function of two variables: (1) the actual payoff x(s) of the chosen
lottery, and (2) the maximal consumption yM (s) that could have been attained in that state if
another feasible choice had been made at the beginning of the period: yM (s) = maxθ∈Θ xθ(s)
for all s ∈ S. To keep the analysis simple, we assume that Θ is finite, so that such a function
yM exists. The choice problem ex ante takes thus the general form of a choice among the
different lotteries existing in menu M :9

max
θ∈Θ

EU(xθ, yM ). (1)

We assume that the decision-maker always prefers to consume more to less, and is averse
to risk on actual consumption. More precisely, U is increasing in x, which means that any
first-order stochastic improvement in the conditional distributions x |y = b increases welfare,
for any b ∈ R. Similarly, U is concave in x, which means that any increase in risk of x |y = b
reduces welfare. We now define the notion of regret aversion. To do this, we need to define a
preference order over menus. We say that a menu M is preferred to another menu N if and
only if the expected utility generated by the optimal choice in menu M is larger than the
optimal choice in menu N . Let x1 and x2 denote two lotteries. Sarver (2008) and Gee (2012)
define regret aversion as follows:10 If menu M2 = {x2} is preferred to menu M1 = {x1}, then
adding lottery x1 in a menu that already contains x2 cannot make that menu more attractive.
In particular, this means that

EU(x2, x2) ≥ EU(x1, x1)⇒ EU(x2, x2) ≥ EU(x2, y), (2)

with y(s) = max {x1(s), x2(s)} for all s ∈ S. The intuition is that adding an ex-ante dom-
inated lottery can potentially increase the best alternative outcome in some states, thereby
raising the negative feeling of regret in these states. It is obvious that regret aversion holds
if and only if U is decreasing in y. It is useful to measure the intensity of regret r(s) in any

9This formulation encompasses a wide variety of choice problems, such as the problem of choosing a portfolio
of assets, or of selecting the best insurance coverage of an insurable risk.

10In fact, Sarver (2008) calls this "regret", but this is clearly a concept of aversion to regret. Gee (2012)
refers to this notion as "first-order regret aversion".
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Ball number 0 1 ... 49 50 ... 99
Lottery x∗1 0 1 ... 49 50 ... 99
Lottery x0 100 0 ... 0 0 ... 0
y01 = max{x∗1, x0} 100 1 ... 49 50 ... 99
Regret 100 0 ... 0 0 ... 0

Table 2: Regret-risk context in a menu M01 with an urn containing 100 balls numbered from
0 to 99.

Ball number 0 1 ... 49 50 ... 99
Lottery x∗1 0 1 ... 49 50 ... 99
Lottery x2 1 2 ... 50 0 ... 0
Lottery x3 0 0 ... 0 51 ... 100
y123 = max{x∗1, x2, x3} 1 2 ... 50 51 ... 100
Regret 1 1 ... 1 1 ... 1

Table 3: Regret-risk context in a menuM123 with an urn containing 100 balls numbered from
0 to 99.

specific state s by the difference between the forgone best alternative y(s) and the actual
payoff x(s): r(s) = y(s) − x(s). It is menu-specific. By definition, the intensity of regret
is non-negative. Regret aversion means that the agent dislikes any increase in state regret.
Given the fact that y can only increase when enlarging the menu of choices, regret aversion
is a also a preference for reducing the choice opportunity set containing the optimal solution
(Sarver (2008)).

By contrast, our results rely on another concept that we call Aversion to Risk of Regret
(ARR). To illustrate, let us consider an urn that contains 100 balls numbered from 0 to 99.
A ball is randomly extracted from the urn. Lottery x0 yields a payoff of 100 if ball numbered
0 is extracted from the urn, and a payoff of 0 otherwise. Lottery x∗1 yields a payoff equaling
the number of the ball extracted from the urn. Suppose that the agent prefers lottery x∗1 in
menu M01 = {x0, x

∗
1}, as described in Table 2. Observe that the agent faces regret only if

ball 0 is obtained. In other words, the intensity of regret r is 100 with probability 1%, and
is 0 otherwise.

Let us contemplate alternatively menu M123 = {x∗1, x2, x3} described in Table 3. Lottery
x2 yields a payoff of s + 1 if the number of the ball is s if s is less or equal to 49, and 0
otherwise. Lottery x3 yields a payoff of s + 1 if the number of the ball is s if s is larger or
equal to 50, and 0 otherwise. Suppose that the agent also prefer lottery x∗1 in menu M123.
But the agent will always face regret from not having selected lottery x2 (if s ≤ 49) or lottery
x3 (if s ≥ 50) ex post, yielding an intensity of regret r equaling unity with certainty.
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Let us now compare the risk outcomes of the two menus M01 and M123 in more detail.
Because x∗1 is always preferred, the marginal distribution of the final payoff is the same in the
two menus. Observe also that the marginal distributions of the best alternative payoff y are
also identical in the two menus. More specifically, the marginal distribution of y is uniform
over the set {1, 2, ..., 100} in both menus. Thus, in terms of the marginal distributions of x
and y, the two menus are identical. However, the distributions of regret r are different. Their
expectations are equal, but menu M01 generates an increase in the risk of regret compared
to menu M123. Thus, a regret-risk-averse agent should prefer menu M123 over menu M01.

Because the intensity of regret is measured by the difference between x and y, risk on
regret increases when these two random variables are less statistically concordant, a concept
developed by Tchen (1980) and Epstein and Tanny (1980) in decision theory, and by Atkinson
and Bourguignon (1982) in welfare economics. To show this, let us compare two risk contexts
characterized respectively by (x1, y1) and (x2, y2). Let Fi : R2 → R denote the bivariate
distribution function associated to context i, i = 1, 2. Suppose that F2 is obtained from F1
through a Marginal-Preserving Reduction in Concordance (MPRC). A MPRC is based on two
transfers of probability masses among four realizations of (x, y), with x ∈ {a,A}, a < A and
y ∈ {b, B}, with b < B, as shown in Figure 1. First, probability mass ε in the neighborhood
of (a, b) is transferred upwards in the neighborhood of (a,B). Second, probability mass ε in
the neighborhood of (A,B) is transferred downwards in the neighborhood of (A, b). Observe
that this does not change the marginal distributions of x and y. A numerical application of
such a MPRC is described by moving from menu M123 to menu M145 in Table 1. Marginal-
Preserving Increases in Concordance (MPIC) are defined symmetrically.

Any MPRC reduces the correlation between x and y, and it yields a mean-preserving
spread in the distribution of the intensity r = y − x of regret in the sense of Rothschild and
Stiglitz (1970), as claimed in the following proposition.

Proposition 1. Any marginal-preserving reduction in concordance in (x, y) yields a mean-
preserving spread in regret r = y − x.

Proof. A mean-preserving spread in r is obtained by defining an interval I in the support of
r from which some probability mass is extracted to be transferred outside I, preserving the
mean of r. Define rmin = min{B−A, b− a} and rmax = max{B−A, b− a}. Let us consider
interval I = [rmin, rmax]. The MPRC described above transfers a probability mass ε in the
distribution of regret r = y−x from I to B− a > rmax, and another probability mass ε from
I to A − b < rmin. Moreover, this change in the distribution of regret preserves the mean.
This is because the MPRC preserves the mean of x and y, thereby preserving the mean of
r = y − x.

More generally, F2 is said to be less concordant than F1 if and only F2 is obtained from
F1 through a sequence of MPRCs. Tchen (1980) and Epstein and Tanny (1980) have shown
that F2 is less concordant than F1 if and only if they have the same marginal distributions
and

∀(a, b) ∈ [x, x]× [y, y] ⊂ R2 : F2(a, b) ≤ F1(a, b). (3)

8



Figure 1: Example of a marginal-preserving reduction in concordance (MPRC).

Remember that because a reduction in concordance has no effect on the marginal distributions
of x and y, it does not affect the riskiness of the final payoff and of the best alternative payoff.
But it increases the risk of regret since the sequence of MPRCs that generates it yields a
sequence of mean-preserving spreads in the distribution of regret, i.e., a Rothschild-Stiglitz
increase in risk of regret.

Definition 1. Let F1 and F2 be two cumulative distribution functions from [x, x] × [y, y] ⊂
R2 → R having the same marginal distributions. F2 exhibits more risk of regret than F1 if
and only if F2 is less concordant than F1, i.e., if and only if condition (3) is satisfied.

This justifies the following definition of ARR.

Definition 2. U is averse to risk of regret if any increase in risk of regret reduces expected
utility.

It is easy to show that in the numerical illustration described in tables 2 and 3, menuM01
yields a risk context (x, y) that is less concordant than menu M123, which implies an increase
in risk of regret.11 All agents that are averse to risk of regret should therefore prefer menu
M123 over menu M01. Observe now that the MPRC described in Figure 1 reduces expected
utility EU(x, y) if and only if for all a ≤ A and b ≤ B,

U(a, b) + U(A,B) ≥ U(a,B) + U(A, b). (4)
11This reduction of concordance can be obtained through a sequence of 100 MPRCs. The first is to move

the 0.01 probability mass at (0, 100) downward to (0, 99), and to compensate this by an upward move of the
same probability mass from (99, 99) upward to (99, 100).
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By definition, this is true if and only if u is supermodular. When U is twice differentiable,
this means that Ux is increasing in y, or Uxy ≥ 0. This yields the following result, which is an
application of Epstein and Tanny (1980). This result implies in particular that an increase
in risk of regret reduces the covariance between x and y.
Theorem 1. U is averse to risk of regret if and only if U is supermodular.

Of course, by symmetry, regret-seekers have a submodular utility function. Thus, the
aversion to regret corresponds to U being decreasing in y, whereas the aversion to risk of
regret corresponds to Ux being increasing in y. Because y is a bad under regret aversion,
the aversion to risk of regret can also be interpreted as a preference for mixing good (x)
with bad (y), a common property of individual preferences first suggested by Eeckhoudt and
Schlesinger (2006).12

3 Measure of aversion to risk of regret
It is natural to define the premium associated to an increase in risk of regret by the sure
reduction in consumption that has the same effect on expected utility.
Definition 3. Consider an increase in risk of regret from F1 to F2. The associated regret
risk premium π is defined as follows:∫∫

U(x− π, y)dF1(x, y) =
∫∫

U(x, y)dF2(x, y) (5)

Because U is increasing in its first argument, the regret-risk premium is non-negative
under regret-risk aversion. Condition (5) can be rewritten as∫∫

[U(x, y)− U(x− π, y)]dF1(x, y) =
∫∫

U(x, y)d(F1(x, y)− F2(x, y)) (6)

Suppose that the increase in risk of regret is limited to a sequence of small MPRCs in the
neighborhood of (a, b). The left-hand side of equation (6) can then be approximated by
Ux(a, b)π. Using a second-order Taylor approximation, and taking advantage of the fact that
the marginals are unaffected by the change in distribution, we also have that

∫∫
U(x, y)d(F1(x, y)− F2(x, y))

≈ Uxy(a, b)
∫∫

(x− a)(y − b)d(F1(x, y)− F2(x, y))

= Uxy(a, b)[cov1(x, y)− cov2(x, y)]
= Uxy(a, b)4cov(x, y),

(7)

where covi(x, y) is the covariance between x and y under distribution Fi, and 4cov(x, y)
is the reduction in covariance in (x, y) that is associated to this increase in risk of regret.
Equation (6) then implies that

π ≈ Uxy(a, b)
Ux(a, b) 4cov(x, y), (8)

12These authors examined the special case of a univariate utility function. Eeckhoudt et al. (2007) extended
this analysis to the case of a multivariate utility function.
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This justifies the following definition of an index of absolute aversion to risk of regret (AARR),
which parallels the standard Arrow-Pratt definition of absolute risk aversion. Gollier and
Salanié (2012) used this definition to characterize optimal portfolios and asset prices in an
Arrow-Debreu economy with regret-risk-averse agents.
Definition 4. We define the indexes of absolute risk aversion α and of absolute regret-risk
aversion ρ as follows:

α(a, b) = −Uxx(a, b)
Ux(a, b) , and ρ(a, b) = Uxy(a, b)

Ux(a, b) . (9)

When the increase in risk of regret is localized in the neighborhood of (a, b), ρ(a, b) is
the certainty equivalent reduction in consumption corresponding to a unit reduction in the
covariance between the actual payoff and the forgone best alternative. For example, if (A,B)
is in the neighborhood of (a, b) in Figure 1, the corresponding MPRC has a regret risk
premium that can be approximated by this equation:

π ≈ ∆p ∆x ∆y ρ(a, b), (10)
with ∆p = ε, ∆x = A− a and ∆y = B − b.

Various specifications of the bivariate utility function U exist in the literature. Bell (1982)
proposed to use a function U(x, y) = u(x) − R(u(y) − u(x)), where u is an increasing and
concave "choiceless" utility function, and R is a regret penalty function.13 Several authors,
such as Braun and Muermann (2004), Muermann et al. (2006), Sarver (2008), Michenaud
and Solnik (2008), and Gee (2012) for example, have followed this tradition. Under this
specification, the index of regret-risk aversion equals ρ(a, b) = u′(b)R′′/(1 + R′) where the
derivatives of R are evaluated at u(b) − u(a). Notice that disentangling regret-risk aversion
from risk aversion is only partial in this model, since the index of risk aversion α obviously
depends upon the shape of R.

Savage (1951) proposed the decision criterion in which the DM minimizes the maximum
statewise regret r(x, y) = y−x. This can be interpreted as an extreme version of our general
model with U(x, y) = u(r(x, y)) and u(r) = −A−1 exp(Ar) for A ∈ R+. This implies indexes
α(a, b) = ρ(a, b) = A. Let us define the certainty equivalent regret R as u(R) = Eu(r(x, y)).
This is equivalent to R equaling A−1 lnE exp(Ar), which is the cumulant-generating function
of random variable r. As is well-known, when A tends to infinity, R tends to the maximum
statewise regret. Because u is decreasing in R, maximizing u(R) = EU(x, y) is equivalent
to minimizing R. So this specification of our general model leads to the minmax regret
criterion that has played an historical role in the development of decision theory during the
last century.

Finally, in the spirit of this exponential specification, we propose a multiplicative formu-
lation with U(x, y) = u(x)v(y), with u′ ≥ 0, u′′ ≤ 0, v ≥ 0. Under this specification, the
agent is averse to risk of regret if and only if v is increasing: v′ ≥ 0. The index of regret-risk
aversion is ρ(a, b) = v′(y)/v(y), whereas the index of risk aversion is α(a, b) = −u′′(a)/u′(a).
This specification allows for a full separation of risk and regret-risk attitudes in the small.

13Loomes and Sugden (1982, 1987b) considered the special case of this specification with u(x) = x.
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4 The one-risky-one-safe-lottery menu with two states: Pref-
erence for longshots

In this section, we explore the link between the attitude towards skewed risk and the aversion
to risk of regret as defined in the previous section. Although we defined ARR strictly in
relation to mean-preserving spreads in the intensity of regret, we hereafter show that ARR
generates a form of preference in favor of skewed risks in consumption.

To do this, we examine simple menusM = {x1, x2} that contain two lotteries. We further
assume in this section that lottery x2 is safe as it generates a payoff equaling the mean of
x1 with certainty. Without loss of generality, we assume that Ex1 = 0. We examine the
conditions under which, in spite of her risk aversion, the decision-maker wants to select the
risky lottery over its mean in this menu. In this problem, the agent faces two risks of regret
depending upon her decision. First, if she takes the risky lottery, she will feel regret if she
makes a loss on this gamble. Second, if she does not take the risk, she will feel regret if
the payoff of the lottery is positive. If the risky lottery yields a large payoff with a small
probability, the risk of regret is larger in this second scenario than in the first. If the skewness
of the risky lottery is large enough, the effect of aversion to risk of regret may dominate the
effect of risk aversion to induce the decision-maker to prefer the risky lottery in menu M . In
this section, we consider the special case in which the risky lottery x1 of this menu is binary,
with payoffs K and −k respectively with probability p and 1−p, in the spirit of March (1996).
We assume that K = k(1 − p)/p in order to have Ex1 = 0. This lottery can be interpreted
as betting k > 0 on a horse whose probability to win the race is p, under an actuarially fair
pricing. Without loss of generality, let’s assume at this stage k = 1. Obviously, a reduction
in p raises the skewness of x1. Because the alternative choice in menu M is x2 =p 0, the
distribution of forgone best alternative y associated to this menu is characterized by y = 0 if
x1 = −k and y = K if x1 = K.

4.1 Selecting the risky lottery yields an increase in payoff-risk and a re-
duction in regret-risk

In Figure 2, we drew in red the distribution of the risk context (x2, y
M ) if the safe lottery x2

is selected. It takes value (0, 0) and (0,K) respectively with probability 1− p and p. We also
drew in blue the distribution of (x1, y

M ) when the risky lottery is selected.

We hereafter show how to transfer probability masses to transform the risk context where
the safe lottery x2 is selected in menu M into the one in which the risky lottery x1 is
selected, i.e., when moving from red to blue. A sequence of three transfers of probability
masses will generate this transformation, two yielding a mean-preserving spread (MPS) in
the distribution of x conditional to y, and one yielding a marginal-preserving increase in
concordance (MPIC):

• A MPS in x conditional to y = 0: The probability mass 1 − p at (0, 0) is split into
(1− p)2 and p(1− p). These masses are transferred horizontally respectively to (−k, 0)
and to (K, 0).

12



Figure 2: Transfers of probability masses in the x, y-space in the context of a menu M =
{x1 ∼ (K, p;−1, 1− p), x2 =p 0}.

• A MPS in x conditional to y = K: The probability mass p at (0,K) is split into
p(1− p) and p2. These masses are transferred horizontally respectively to (−k,K) and
to (K,K).

• A MPIC: The two probability masses p(1−p) now at (−k,K) and (K, 0) are transferred
vertically respectively at (−k, 0) and (K,K).

This sequence of three transfers of probability masses are represented in Figure 2. They
transform the risk environment (x1, y

M ) into (x2, y
M ). Because the agent is risk-averse in

x (Uxx ≤ 0), the two mean-preserving spreads in x | y reduce expected utility. But the
marginal-preserving increase in concordance reduces the risk of regret. Under the regret risk
aversion (Uxy ≥ 0), the MPIC involved in the transformation of the risk context (x, y) from
the safe lottery to the risky one raises expected utility, thereby making the optimal choice in
M ambiguous.

4.2 The case of small risk

This ambiguity can be removed if we examine the special case of x1 being a small binary risk,
as shown in our next proposition.

Proposition 2. Consider a menu M = {x1, x2} with x1 ∼ (k(1 − p)/p, p;−k, 1 − p) and
x2 =p 0. In this menu, switching from the safe lottery x2 to the risky one x1 yields a MPS
in x|y = x1, a MPS in x|y = x2, and a MPIC. The corresponding increase in expected utility
equals
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EU(x1, y
M )− EU(0, yM ) = k2 1− p

p
Ux(0, 0)

[
(1− p)ρ0 − 0.5α0

]
+O(k3), (11)

where ρ0 = ρ(0, 0) and α0 = α(0, 0) are the aversion to respectively regret-risk and risk, as
defined by equation (9).

Proof. We rewrite the left-hand side of equation (11) as follows:

f(k) = pU

(
k

1− p
p

, k
1− p
p

)
+ (1− p)U (−k, 0)− pU

(
0, k1− p

p

)
− (1− p)U (0, 0) . (12)

It is easy to check that f(0) = f ′(0) = 0 and that

f ′′(0) = Uxx(0, 0)1− p
p

+ 2Uxy(0, 0)(1− p)2

p
= 1− p

p
Ux(0, 0) [2(1− p)ρ0 − α0] . (13)

This implies that

f(k) = 1
2k

2f ′′(0) +O(k3) = k2V ar(x1)Ux(0, 0)
[
(1− p)ρ0 − 0.5α0

]
+O(k3). (14)

This concludes the proof.

Suppose now that bet k is close to zero. In that context, the risk premium associated to
x1 is approximately to its Arrow-Pratt approximation 0.5α0Ex

2
1, with Ex2

1 = k2(1−p)/p and
α0 = α(0, 0). This measures the certainty equivalent loss in x associated to the sequence of
the two MPS described above. Similarly, following equation (10), the (negative) regret risk
premium associated to the MPIC can be approximated by −k2(1−p)2ρ0/p, with ρ0 = ρ(0, 0),
since ∆p = −p(1 − p), ∆x = k/p and ∆y = k(1 − p)/p. This provides an intuition to
Proposition 2.

Observe that the MPIC necessary to transform the risk context (x2, y
M ) into (x1, y

M )
reduces the covariance between x and y by (1 − p)2/p, whereas the increase in variance in
the final payoff equals (1− p)/p. This means that

∆cov(x, y) = (1− p)V ar(x1). (15)

Because the negative regret risk premium is approximately proportional to ∆cov(x, y) whereas
the positive risk premium is approximately proportional to V ar(x1), we can conclude that
the relative effect of the aversion to risk of regret is decreasing in p. In other words, our
definition of ARR is compatible with a preference for longshots. This is formalized in the
following corollary, which is a direct consequence of equation (11).

Corollary 1. Under the assumptions of Proposition 2, and assuming that the size k of the
bet is small, then

• the safe lottery is always preferred if and only if the regret-risk aversion is smaller than
half the risk aversion, i.e., iff ρ(0, 0) ≤ 0.5α(0, 0);
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• a mean-preserving reduction in the probability of success p makes the risky choice more
desirable. Technically, if the risky lottery x1 ∼ (k(1−p)/p, p;−k, 1−p) is preferred to 0
in menu M = {x1, 0}, then for all p′ ≤ p, the risky lottery x′1 ∼ (k(1−p′)/p′, p′;−k, 1−
p′) is preferred to 0 in menu M = {x′1, 0}.

The first result in this corollary states that there is a strictly positive lower bound (equal-
ing 0.5α0) for the regret risk aversion ρ0 below which the risky choice in M can never be
optimal. This lower bound is obtained from equation (11) by pushing the skewness of the
risky lottery to its extreme, with p → 0 and K/k → ∞. The second result illustrates a
preference for longshots when ρ0 > 0.5α0. In fact, under our assumption of an actuarially
fair pricing, betting on a horse whose probability to win is p is optimal if and only if p is
smaller than 1− 0.5α0/ρ0.

5 The general case of the one-risky-one-safe-lottery menu
In this section, we relax the assumption that the risky lottery has only two atoms. In other
words, we characterize the choice of regret-risk-averse agents who face a menu that contains
an arbitrary lottery and a safe bet. Since the impact of a change in the payoff of the safe
bet has a trivial consequence on the choice, we hereafter assume that the two choices yield
the same expected payoff. The generalization presented in this section is derived from the
following lemma, whose proof is relegated to the appendix.

Lemma 1. Any lottery with mean µ and S possible payoffs can be decomposed into a com-
pound lottery of S − 1 binary lotteries with mean µ.

Let x1 with Ex1 = µ have S = m+n possible outcomes in the union of A− = {a−1 , ..., a−m}
and A+ = {a+

1 , ..., a
+
n }, with a−1 < ... < a−m < µ < a+

1 < ... < a+
n . Let us decompose this

lottery into x1 ∼ (x1, π1; ...;xS−1, πS−1), where xk ∼ (ak−, pk, ak+, 1−pk) is a µ-mean binary
lottery with ak− ∈ A−, ak+ ∈ A+, and pk ∈ [0, 1], for all k ∈ {1, S − 1}. For each lottery xk,
define yk that takes value µ if xk = ak−, and ak+ otherwise. It is then obvious that

EU(x1, y
M )− EU(µ, yM ) =

S−1∑
k=1

πk
[
EU(xk, yk)− EU(µ, yk)

]
. (16)

In other words, comparing risk contexts (x1, y
M ) and (µ, yM ) can be performed by compar-

ing S − 1 pairs of risk contexts (xk, yk) and (µ, yk). Building on what we know on these
comparisons from Section 4.1, we obtain the following results.

Proposition 3. Consider any menu M containing two lotteries, a risky x1 and a safe x2
with the same mean. Let random variable yM denote the forgone best alternatives associ-
ated to M . The distribution of (x1, y

M ) can be obtained from the distribution of (x2, y
M )

through a sequence of mean-preserving spreads in x|yM and of marginal-preserving increases
in concordance between x and y.

Combining this with Proposition 2, this immediately implies the following corollary.

Corollary 2. Consider menu M = {x1, x2}, where x2 takes value Ex1 = µ with certainty.
Risk-averse and regret-risk-seeking agents always prefer the safe choice in this menu. If the
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riskiness of x1 is small in the sense of Arrow-Pratt, then the risky choice can potentially be
preferred only if the local aversion to risk of regret is larger than half the local aversion to
risk, i.e., iff ρ(µ, µ) ≥ 0.5α(µ, µ).

It is interesting to examine how a local mean-preserving spread in the distribution of the
risky lottery x1 in menu M affects its attractiveness. As we will show, it is important to
determine whether this MPS takes place to the regret domain or in the no-regret domain,
where regret is defined from the point of view of the risk-taker. To examine this, let us
formally decompose lottery x1 into its regret and no-regret domains, where the regret domain
corresponds to the state of nature in which the payoff of the risky lottery is less than the
payoff of the safe bet: x1 ∼ (kx+, p+; kx−, p−), with supp x+ ⊂ [µ,+∞[, supp x− ⊂]−∞, µ],
p+ > 0, p− > 0, p+ + p− = 1, and p+Ex+ + p−Ex− = µ. The risky lottery is preferred iff

p+E [U(x+, x+)− U(µ, x+)] + p−E [U(x−, µ)− U(µ, µ)] ≥ 0. (17)

We can rewrite this condition as follows:

p+Eu+(x+) + p−Eu−(x−) ≥ 0, (18)

where functions u+ and u− are defined as

u+(x) = U(x, x)− U(µ, x) (19)

and
u−(x) = U(x, µ)− U(µ, µ). (20)

This is a model of state-dependent expected utility. Obviously, the concavity of utility func-
tion u− in the regret domain is the same as the concavity of U(x, µ) with respect to x. This
means that the agent is risk-averse in the regret domain, in the sense that any local MPS
in the regret domain reduces the attractiveness of the risky lottery. Its risk aversion in this
domain is measured by α(x, µ). But the analysis is very different in the no-regret domain.
Indeed, the local risk aversion of u+ in this domain of payoffs is measured by

−
u′′+(x)
u′+(x) = −Uxx(x, x) + 2Uxy(x, x) + Uyy(x, x)− Uyy(µ, x)

Ux(x, x) + Uy(x, x)− Uy(µ, x) . (21)

The sign of this index of risk aversion is ambiguous. When x is only marginally larger than
µ, this can be approximated by

−
u′′+(µ)
u′+(µ) = α(µ, µ)− 2ρ(µ, µ). (22)

These results are summarized in the following proposition.

Proposition 4. Consider menu M = {x1, x2}, where x2 takes value Ex1 = µ with certainty.
Any mean-preserving spread of x1 in the regret domain x ≤ µ reduces the attractiveness of
the risky lottery. A mean-preserving spread of x1 in a small neighborhood above µ reduces its
attractiveness if and only if ρ(µ, µ) ≤ 0.5α(µ, µ).
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An alternative intuition of this result can be obtained by examining the case of small
risks. The following proposition, whose proof is skipped, generalizes Proposition 2.

Proposition 5. Consider a menu M = {x1, x2} in which the risky lottery x1 and the safe
bet x2 have the same mean kµ. Let x1 ∼ (kx+, p+; kx−, p−) with x− ≤p µ ≤p x+. In this
menu, the increase in expected utility when switching from the safe lottery x2 to the risky one
x1 equals

EU(x1, y
M )− EU(0, yM )
Ux(0, 0) = k2

[
p+ (ρ0 − 0.5α0)E(x+ − µ)2 − 0.5p−α0E(x− − µ)2

]
+O(k3),

(23)
where ρ0 = ρ(µ, µ) and α0 = α(µ, µ).

The intuition of this result goes as follows. For small risk, the outcome-risk premium is
proportional to V ar(x1), with

V ar(x1) = k2
[
p+E(x+ − µ)2 + p−E(x− − µ)2

]
. (24)

As we know from Section 3, this outcome-risk premium should be compared to the regret-
risk premium which is proportional to −∆cov(x, yM ). The increase in the covariance in (x, y)
when shifting risk context from the safe choice yielding (0, yM ) to the risky one (x1, y

M ) equals

−∆cov(x, yM ) = k2p+E(x+ − µ)2. (25)

The first term of the right-hand side of equality (23) is the difference between these two
premia, weighted respectively by 0.5α0 and ρ0.

Proposition 5 confirms our earlier findings. For example, in the small, a regret-sensitive
agent will never choose the risky option if her degree of regret-risk aversion is smaller than
half her absolute risk aversion. Indeed, in that case, the two terms in the right-hand side of
equation (23) are negative. Moreover, the bias in favor of the risky choice is increasing in
p+E(x+ − µ)2/p−E(x− − µ)2, which is a measure of positive asymmetry in the distribution
of x1. This generalizes our findings on the positive skewness bias of regret-risk-averse DM
when there are more than two possible outcomes in the risky choice.

6 Reinterpretation in the binary RDU framework
Our results in the case of binary lotteries presented in Section 4 provide an explanation
for some of the standard risk-seeking observations made by Tversky and Kahneman (1992),
among many others. First, people often prefer a small probability of winning a large prize
over the expected value of that prospect. Second, people also often prefer a large probability
of losing a substantial amount of money over the expected loss of that prospect. In decision
theory, these two phenomena are called the "possibility effect". In both cases, the risky
choice in the menu is positively skewed. This implies that people who contemplate the safe
choice particularly fear the risk of regret when the higher payoff materializes. In the RDU
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framework, this is usually explained by the hypothesis that people tend to overweight the
low probability of the best outcome. In this section, we translate our findings into this RDU
terminology.

The standard method to elicit probability distortions in RDU consists in asking re-
spondents to evaluate their certainty equivalent payoff c for various binary lotteries x1 ∼
(x+, p+;x−, p−), with x− < x+ and p− + p+ = 1. Suppose that x− and x+ are fixed, and
that respondents are asked to elicit their certainty equivalent for different values of p, as in
Tversky and Kahneman (1992) for example. Eliciting a certainty equivalent associated to a
lottery places the regret-sensitive respondent in a situation to recognize that she is indiffer-
ent between x1 and c when confronted with menu {x1, c}. In our ARR model, this certainty
equivalent payoff is defined as follows

p+U(x+, x+) + (1− p+)U(x−, c) = p+U(c, x+) + (1− p+)U(c, c). (26)

Suppose that the utility function U is multiplicative as described in the previous section:
U(x, y) = u(x)v(y). The absolute aversion to risk of regret equals ρ(x, y) = v′(y)/v(y). Under
this specification, equation (26) can be rewritten as

w(p+)u(x+) + (1− w(p+))u(x−) = u(c), (27)

with
w(p+) = p+v(x+)

p+v(x+) + (1− p+)v(c) . (28)

Equation (27) is the standard formulation of the binary RDU model. In our model, for each
value of p+, the probability-distortion w is jointly determined with the certainty equivalent
payoff c by solving system (27)-(28) with respect to these two unknowns. We can prove that
there is an interior solution to this system, as stated in the following proposition, whose proof
is releguated to the appendix.

Proposition 6. Suppose that U(x, y) = u(x)v(y) and that u is increasing. System (27)-(28)
has an interior solution with a certainty equivalent c in [x−, x+]. If v is increasing, i.e., if
the DM is regret-risk-averse, then

• the probability weighting w(p+) is larger than p+ for all p+ ∈ [0, 1];

• the probability weighting function is concave in the neighborhood of p+ = 0 and is convex
in the neighborhood of p+ = 1.

Moreover, w′(0) = v(x+)/v(x−) ≥ 1 and w′(1) = 1. These results are reversed if the DM is
regret-risk-seeking.

Consider an external observer who knows the agent’s utility function u and who tries to
elicit the weighting function w by observing a set of certainty equivalent payoffs associated
to different binary lotteries with the same support (x−, x+). For each possible probability p+
of the large payoff, the observer deduces w(p+) from the observation of c by solving equation
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Figure 3: Probability transformation functions induced by the aversion to risk of regret. It
is assumed that x− = 1 and x+ = 100, U(x, y) = x1−γyη/(1− γ), γ is equal to 0.5 (left) or 2
(right), and η ∈ {0, 0.1, 0.4, 1, 2, 3}.

(27). We showed in Proposition 6 that such an observer will deduce from this process that
the agent is RDU with a probability weighting function w that is optimistic (w(p+) ≥ p+) if
the agent is averse to risk of regret (and that is pessimistic if the agent is regret-risk-seeking).
The effect of optimism can dominate the effect of risk aversion to induce the DM to prefer the
risky choice, as shown in the previous section. Proposition 6 suggests that this probability
weighting function is inverse-S shaped, since it is concave for low probabilities, and convex
for large ones. In particular, this shows that ARR can explain the possibility effect, since
w′(0) = v(x+)/v(x−) ≥ 1: the ARR DM overweighs the probability of the best outcome. This
overweighing is increasing in the degree of regret-risk aversion and in the distance between
the two outcomes of the binary lottery.

However, as noticed earlier, this model is unable to generate both optimism for some
probabilities and pessimism for others. Using the wording in Abdellaoui et al. (2010), our
weighting function has an elevation which is too low. Moreover, because w′(1) = 1 in our
framework, we are unable to obtain the "certainty effect" typically observed in experimental
studies. ARR agents tend to underestimate the probability of unfavorable event and, at the
limit of a very unlikely catastrophe, they tend to use the objective probability. We will come
back to this question in Section 7.

To illustrate, we have drawn in Figure 3 the probability weighting function that would
emerge from this elicitation process when considering lotteries with payoffs 1 and 100, and
functions u(x) = x1−γ/(1 − γ), γ ≥ 0, and v(y) = yη, η ≥ 0. Observe that ρ(x, y) = η/y,
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so that η can be interpreted as an index of relative aversion to risk of regret. The left figure
corresponds to a relatively low risk aversion of γ = 0.5, whereas the right one corresponds
to a larger risk aversion of γ = 2. In each case, we have drawn the probability distortion
functions associated to different degrees of relative regret-risk aversion η = 0, 0.1, 0.4, 1, 2 and
3. Observe that an increase in ARR makes the agent more optimistic, with all probability
weighting functions exhibiting a typical inverse-S shape. The high discrepancy between the
true probability p+ and its distorted value w(p+) when p+ is close to zero illustrates the
possibility effect.

The two figures also illustrate the fact that the theory of regret aversion yields a probabil-
ity weighting function that cannot be disentangled from the utility function u. They suggest
in particular that more regret-risk-averse agents exhibit more optimism. It should also be
emphasized that the probability weighting function w is sensitive to the context given by
(x−, x+).

7 The dual theory of elation-risk seeking
Because only two-lottery menus were initially considered, the pioneering papers on regret-
risk aversion by Loomes and Sugden (1982) and Bell (1982) allowed for both regret and
rejoicing. Rejoicing (or elation) is the extra pleasure of knowing that, as matters turned out,
one’s choice generated a better outcome than the alternative. Quoting Loomes and Sugden
(1982), elation is the extra pleasure of winning a prize as the consequence of one’s own earlier
risky decision rather than from an external action (an unanticipated tax rebate for example).
By focusing the analysis on the forgone best alternative, Quiggin (1994) has oriented the
literature towards regret, and this paper has been build on this foundation. This has been
the price to pay to make regret aversion models useful for examining menus with more than
two choices. But it is straightforward from our work to imagine a dual theory of elation-risk
and of elation-risk aversion (or seeking). This is the objective of this section.

Consider again a decision-maker who is confronted to a menu M of lotteries, as described
in Section 2. Let zM (s) denote the forgone worst alternative of menu M in state s: zM (s) =
minxθ∈M xθ(s). We say than the decision-maker is sensitive to rejoicing if her utility ex-post
is a bivariate function of the actual consumption x and of the forgone worst alternative zM .
The intensity e of elation is measured by the difference between the actual payoff and the
forgone worst alternative: e(s) = xθ(s)− zM (s). The ex-ante problem of a rejoicing-sensitive
agent facing a menu M is to select the lottery xθ in M that maximizes EU(xθ, zM ).

As in Section 2, let us compare two risk contexts characterized respectively by (x1, z1)
and (x2, z2). Let Fi : R2 → R denote the bivariate distribution function associated to context
i, i = 1, 2. Suppose that F2 is obtained from F1 through a sequence of Marginal-Preserving
Reductions in Concordance. By definition of MPRCs, this shift in the joint distribution of
(x, z) necessarily generates a Rothschild-Stiglitz increase in the risk of elation e. Elation-
risk seekers are by definition people who like any such shift in the distribution of (x, z),
whereas elation-risk-averse people dislike any such shift. Obviously, elation-risk seekers have
a bivariate utility function U(x, z) that is submodular, whereas elation-risk-averse people
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Ball number 0-4 5-99 0-4 5-99
Lottery x∗1 0 100 Lottery x1 0 100
Lottery x2 95 95 Lottery x∗2 95 95
z12 0 95 z12 0 95
Elation 0 5 Elation 95 0

Table 4: Elation-risk contexts in a menu M12 with an urn containing 100 balls numbered
from 0 to 99.

have a supermodular U(x, z).

Tversky and Kahneman (1992) have observed that the median certainty equivalent of
lottery x1 ∼ (100, 95%; 0, 5%) is 78, which suggests an unrealistically large degree of risk
aversion. They referred to the "certainty effect" to explain this puzzle. This cannot be
explained by regret-risk aversion which tends to induce risk-seeking for binary lotteries, as
shown in the previous section. A plausible explanation for the certainty effect is that people
are elation-risk-seeking. To see this, consider Table 4 that describes a menu M12 of two
lotteries based on drawing a ball from an urn containing 100 balls numbered from 0 to 99.
Lottery x1 is the one proposed by Tversky and Kahneman (1992) with a probability of 95%
of winning 100. The alternative choice is to receive the expected gain 95 with probability 1.
It is clear that the safe choice yields a much riskier elation of 95 with probability of 5% than
the risky choice. People who are elation-risk seekers would be particularly prone to the safe
choice, and they will require a particularly large premium to accept this highly negatively
skewed lottery. To sum up, the certainty effect suggests that people are elation-risk seekers.

As in Section 4, let us examine a menu that contains two lotteries, a safe lottery yielding a
zero payoff, and a risky lottery x1 yielding either −k with probability 1−p or K = k(1−p)/p
with probability p, with k > 0 and p ∈ [0, 1]. In Figure 4, we draw the transfers of probability
masses in the (x, z)-space that is necessary to go from the safe choice to the risky choice. As
illustrated in this figure, it can be shown that it is always true that one can go from the safe
to the risky choice by a sequence of two conditional mean-preserving spreads in actual payoff
and one marginal-preserving increase in concordance between x and z. This MPIC implies
a reduction in the elation-risk. In other words, the safe choice always entails an increase in
the risk of elation, something that elation-risk seekers like.

It is easy to check that switching from the safe to the risky asset in this menu raises
expected utility by

EU(x1, z
M )− EU(0, zM ) =

[
pψ0 − 0.5α0

]
Ux(0, 0)V ar(x1) +O(k3), (29)

where ψ(a, b) = Uxz(a, b)/Ux(a, b) is the index of absolute elation-risk aversion and ψ0 =
ψ(0, 0). We see that elation-risk seeking goes with risk aversion to reject the risky lottery.
We also see from this equation that the effect of elation-risk seeking is larger when the
probability of success is larger, i.e., when the risky choice yields a negatively skewed payoff.
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Figure 4: Transfers of probability masses in the (x, z)-space in the context of a menu M =
{x1 ∼ (K, p;−1, 1− p), x2 =p 0}.

Following the method developed in Section 5, it is straightforward to extend these findings
to a one-risky-one-safe menu in which the risky choice has more than two outcomes.

We can also link elation-risk seeking to the RDU distortion of probabilities. Consider
again the problem of determining the certainty equivalent of a lottery x1 ∼ (x+, p+;x−, p−).
As in Section 4.3, let us interpret this certainty equivalent c as the payoff of a safe lottery x2
that makes the agent indifferent between the two lotteries in menu M12. If we assume that
U(x, z) = u(x)h(z), it is therefore defined by the following condition:

w(p+)u(x+) + (1− w(p+))u(x−) = u(c), (30)

where function w is the probability-distortion function defined as follows:

w(p+) = p+h(c)
p+h(c) + (1− p+)h(x−) . (31)

Equations (30) and(31) is a system of two equations with two unknowns , c and w. It can
be shown that function w has the following characteristics. First, w′(0) = 1, which confirms
that the elation-risk attitude does not affect the attitude towards highly skewed lotteries.
In other words, elation-risk seeking cannot explain the possibility effect. Moreover, under
elation-risk seeking, the agent is pessimistic (w(p) ≤ p), and w is locally concave and convex
in the neighborhood of 0 and 1 respectively. These properties are reversed if the agent is
elation-risk-averse. Figure 5 illustrates these findings.

When comparing this figure with Figure 3, a clear picture emerges from these two theories
on regret and elation. Regret-risk aversion can explain the "possibility effect" associated to
lotteries with a low probability of the best payoff (large w′(0)). Elation-risk seeking can
explain the "certainty effect" associated to lotteries with a low probability of the worst payoff
(large w′(1)). It is therefore tempting to associate the two concepts in the same preference
functional. We do this in an informal way in this paper, paving the way for further research
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Figure 5: Probability transformation function induced by the sensitivity to elation-risk. It
is assumed that x− = 1 and x+ = 10, U(x, z) = x1−γzη/(1 − γ). Relative risk aversion γ is
equal to 0.5, and the absolute aversion to elation-risk is η ∈ {−2,−0.5, 0, 0.5, 1, 1.5}.

in this domain. In order to model preferences that combine the anticipation of regret and
elation, let us consider a utility function U with three variables: the actual consumption
x(s), the forgone best alternative yM (s) = maxxθ∈M xθ(s), and the forgone worst alternative
zM (s) = minxθ∈M xθ(s). Suppose that

U(x, y, z) = u(x)v(y)h(z) (32)

with u(x) = x1−γ/(1 − γ), v(y) = yηy and h(z) = zηz , where γ is relative risk aversion,
ηy = ρ/y is relative regret-risk aversion, and ηz = ψ/z is relative elation-risk aversion. In a
menu containing a risky lottery (x+, p+;x−, p−) and its certainty equivalent c, the certainty
equivalent must satisfy condition (30) with

w(p+) = pv(x+)h(c)
pv(x+)h(c) + (1− p)v(c)h(x−) . (33)

This probability weighting function is described in Figure 6 when x− = 1, x+ = 2, γ = 0.5,
ηy = 2.3, and ηz = 3.5. We also draw in this figure the inverse-S weighting function that was
suggested by Tversky and Kahneman (1992):

w(p) = ph

(ph + (1− p)h)1/h , (34)

with h = 0.61. The almost perfect fit between these two curves suggests that the probability
distortions appearing in the RDU literature could be made endogenous by combining expected
utility with regret-risk aversion and elation-risk seeking.
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Figure 6: Probability distortion function (plain curve) induced by the sensitivity to both
regret-risk and elation-risk. It is assumed that x− = 1 and x+ = 2, U(x, y, z) =
x1−γyηyzηz/(1 − γ). We assume that γ = 0.5, ηy = 2.3 and ηz = −3.5. The dashed
curve corresponds to the weighting function (34) with h = 0.61, as proposed by Tversky
and Kahneman (1992).
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8 The portfolio problem with regret and rejoicing
In this section, we apply our definition of regret-risk aversion and elation-risk seeking to the
static one-risky-one-safe-asset portfolio. Consider an investor with initial wealth z who can
invest in a safe asset whose return is normalized to zero and in a risky asset whose return
is a random variable x with a known distribution function F . We normalize z to unity. To
make the problem interesting, let us suppose that 0 is in the interior of the support of x. If k
denotes the share of wealth invested in the risky asset, final wealth is 1 + kx. Let us assume
that the equity share k is restricted to belong to [k, k] for some arbitrary pair (k, k) ∈ R2

such that k < k. A typical example is k = 0 in which shorting the risky asset is prohibited.
Another example is k = 1, in which borrowing at the risk-free rate to invest in the risky asset
is prohibited. This analysis generalizes what has been done before in this paper by allowing
more than two choices in the menu.14

The portfolio menu is M = {1 + kx|k ∈ [k, k]}. The forgone best and worst alternatives
associated to this menu are as follows:

yM (s) =
{

1 + kx if x ≤ 0
1 + kx if x > 0,

(35)

and

zM (s) =
{

1 + kx if x ≤ 0
1 + kx if x > 0.

(36)

The decision problem can be written as

k∗ ∈ arg max
k∈[k,k]

V (k; k, k) = EU(1 + kx, yM , zM ). (37)

Notice that the objective function V is concave in k, so that the first-order condition is
necessary and sufficient. We hereafter suppose that the solution is interior, so that this
condition is

∂V

∂k
(k∗; k, k) = ExUx(1 + k∗x, yM , zM ) = 0. (38)

We assume that k∗ is positive. With an interior solution, the agent always feels a mixture
of regret and elation. For example, when the excess return is positive, the agent experiences
regret from not having invested the maximum k in the risky asset, and at the same time she is
elated from having invested something in the risky asset. We are interested in determining the
impact of a change in the lower and upper constraints on the optimal portfolio allocation k∗.15

14There exist other interpretations of this model. For example, consider the case of an insurable risk of loss
`, which is random. A coinsurance contract can be purchased in which the policyholder with initial wealth z0
gets indemnity (1 − k)` ex post against the payment of a premium (1 − k)P ex ante, where k is the retention
rate, and P is the full insurance premium. Final wealth is thus z0 − ` + (1 − k)` − (1 − k)P , which can be
rewritten as z + kx, with z = z0 − P and x = P − `. Sandmo (1971) provides another application for the case
of a price-taking firm that has to determine its capacity before knowing the demand.

15The welfare analysis is immediate in the case of regret. As shown by Sarver (2008), if Uy < 0, i.e., if
the investor is averse to regret, any reduction in the choice set (increase in k, reduction in k) that does not
eliminate the optimal solution k∗(k, k) raises welfare ex ante. See also Huang et al. (2014).
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Because V is concave in k, this comparative static analysis is driven by the cross-derivatives
of V . We have that

∂2V

∂k∂k

∣∣∣∣∣
k=k∗

=
∫ 0

−∞
x2Uxy(1+k∗x, yM , zM )dF (x)+

∫ −∞
0

x2Uxz(1+k∗x, yM , zM )dF (x). (39)

This is unambiguously positive under the joint assumptions of regret-risk aversion and elation-
risk aversion. Under these conditions, increasing the minimum risk exposure k always raises
the optimal risk exposure k∗. Similarly, we have that

∂2V

∂k∂k

∣∣∣∣∣
k=k∗

=
∫ 0

−∞
x2Uxz(1+k∗x, yM , zM )dF (x)+

∫ +∞

0
x2Uxy(1+k∗x, yM , zM )dF (x). (40)

This is also positive under regret-risk aversion and elation-risk aversion. This yields the
following proposition.

Proposition 7. Consider the portfolio problem in which final wealth is 1 + kx, with k ∈
[k, k], and suppose that the optimal solution k∗ is interior. Raising the lower limit k or the
upper limit k of the risk exposure always raises the optimal risk exposure k∗ under the joint
assumptions of regret-risk aversion and elation-risk aversion.

This means that regret-risk aversion and elation-risk aversion tend to push the optimal risk
exposure to the center of the opportunity set. An extreme illustration of this phenomenon
is obtained when assuming that the equity premium is zero, so that Ex = 0. As is well-
known, in the absence of counterfactual emotion, the optimal portfolio is fully invested in the
safe asset in that case. But it is a simple extension of the above proposition that imposing
a no-borrowing constraint k = 0 will induce the regret-risk-averse investor to accept some
equity risk in her portfolio. Braun and Muermann (2004), Muermann et al. (2006) and
Michenaud and Solnik (2008) derived this result respectively in the context of insurance,
portfolio choice and currency hedging decisions, under the Bell’s specification U(x, y) =
u(x)−R(u(y)−u(x)).16 Our result generalizes these findings to any preferences that exhibits
regret-risk aversion and/or elation-risk aversion.

Of course, these results are reversed when the agent is regret-risk seeking and/or elation-
risk seeking. The comparative statics analysis is more complex in the case of regret-risk
aversion combined with elation-risk seeking. Observe also that one can rewrite the first-order
condition (38) by using an indirect utility function u:

Exu′(1 + k∗x) = 0, (41)

with
16These results illustrate again the fact that the optimal choices of regret-sensitive DMs are menu-dependent.

Expanding the number of options in the menu changes the nature of the choice problem. In Gollier and Salanié
(2012), we explore the portfolio choice problem when the number of assets is large enough to make markets
complete.
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u′(w) =
{
Ux(W−(w)) if w < 1
Ux(W+(w)) if w ≥ 1, (42)

where W−(w) = (w, 1 +m(w− 1), 1 +m(w− 1)), W+(w) = (w, 1 +m(w− 1), 1 +m(w− 1)),
m = k/k∗, and m = k/k∗ . The index of absolute risk aversion of this indirect utility function
equals

−u
′′(w)
u′(w) =

{
α(W−(w))−mρ(W−(w))−mψ(W−(w)) if w < 1
α(W+(w))−mρ(W+(w))−mψ(W+(w)) if w > 1, (43)

where α = −Uxx/Ux is risk aversion, ρ = Uxy/Ux is regret-risk aversion and ψ = Uxz/Ux is
elation-risk aversion. Suppose that these indices are approximately constant in the relevant
support of W−(w) and W+(w). The above equation then shows that regret-risk aversion
plays a more important role to reduce risk aversion in the gain domain (w > 1) than in the
loss domain (w < 1). Similarly, elation-risk seeking plays a more important role to raise risk
aversion in the loss domain than in the gain domain. To keep the analysis simple, suppose
that k = m = 0. Then, the index of risk aversion of u goes down from α(1)−mψ(1) > α(1)
for small negative excess returns to α(1) −mρ(1) < α(1) for small positive excess returns,
where 1 is the triplet of 1. This suggests that the impact of a mean-preserving spread in
returns reduces the demand for the risky asset less if it concentrated in the domain of positive
excess returns than in the domain of negative excess returns. If counterfactual emotions are
large enough compared to risk aversion, such MPS in the gain domain can even raises the
demand for the risky asset.17 This is another illustration of the longshot bias that is generated
by regret-risk aversion.

9 Conclusion
In spite of its intuitive appeal and the many testable predictions of the theory, regret-risk
aversion has received relatively little attention by economists. A possible explanation is
the relatively weak theoretical foundation of our regret model. The theory has no clear
definition of what actually is regret and regret aversion, or regret-risk and regret-risk aversion.
For the sake of comparison, the axiomatic development of the EU theory after WWII has
quickly been followed by the building of the crucial tools of an index of risk aversion and
of stochastic dominance orders. This has opened the door to a myriad of applications in
finance, macroeconomics and IO researches for example. No such evolution has been possible
in regret theory. In this paper, we tried to fill this gap by proposing a coherent theory
and measurement of regret risk and regret risk aversion. We did that by using a general
formulation in which the decision maker maximizes the expectation of a bivariate utility
function which is not only sensitive to the actual payoff of the chosen act, but also to the
best alternative payoff if another action would have been selected ex ante.

When the decision maker is confronted to a menu of lotteries, we have defined regret in
each state as the difference between the best possible payoff and the actual payoff associated

17As shown by equation (41) and discussed in Rothschild and Stiglitz (1971) and Gollier (1995), what
matters to determine the impact of a MPS in the distribution of returns on the asset demand is the concavity
of the function xu′(1 + k∗x).
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to the chosen lottery. We used the concept of comparative concordance, which is a stochastic
order useful to measure the degree of dependence between two random variables. We have
shown that a reduction in concordance between the forgone best alternative and the actual
payoff yields an increase in risk of regret, without affecting the marginal distributions of
these two random variables. It is thus natural to define the notion of regret-risk aversion
by requiring that ex-ante welfare is reduced by any such reduction in concordance. We have
shown that this requires the bivariate utility function to be supermodular. We have defined
accordingly the concept of regret-risk premium together with a local index of regret-risk
aversion, and we have shown that in the small, the former is proportional to the latter. More
importantly, we have shown that regret-risk-averse agents exhibit a natural bias in favor of
positively skewed risks. If the menu contains a risky lottery and its certainty equivalent, as is
the case in most experiments used to elicit preferences under risk, the behavior of regret-risk-
averse agents is equivalent to the one of rank-dependent utility agents model which would use
a probability distortion function that exhibits both optimism and an inverse-S shape. But if
regret-risk aversion can explain the possibility effect, it cannot explain the certainty effect.
The dual theory of elation-risk seeking can do that. We have suggested that combining
regret-risk aversion and elation-risk seeking is able to explain the two effects, and that it
can duplicate the inverse-S probability weighting functions that have been estimated in the
literature.
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Appendix 1: Proof of Proposition 6

Eliminating w from (27)-(28) yields

F (c) = p+v(x+)
(1− p+)v(c) + p+v(x+)u(x+) + (1− p+)v(c)

(1− p+)v(c) + p+v(x+)u(x−)− u(c) = 0 (44)

We have that

F (x−) = p+v(x+)
(1− p+)v(x−) + p+v(x+) (u(x+)− u(x−)) ≥ 0 (45)

and
F (x+) = −(1− p+) (u(x−)− u(x+)) ≤ 0. (46)

Because F is continuous, there must exists a real c ∈ [x−, x+] such that F (c) = 0. This must
be the solution of system (27)-(28). Because c is less than x+, its is immediate from (28)
that w(p+) is larger than p+ if v is increasing.

We now examine the shape of the probability weighting function. To do this, we fully
differentiate system (27)-(28) with respect to p−. It yields (we simplify the notation by
replacing p+ = p)

dc

dp
= u(x+)− u(x−)

u′(c)
dw

dp
(47)

and

dw

dp
= wv(c) + (1− w)v(x+)

(1− p)v(c) + pv(x+) + (1− p)wv′(c)u(x+)−u(x−)
u′(c)

. (48)

Let us first examine the case p = 1. The above equations imply that c = x+ and w = 1, and
w′(1) = 1. Moreover differentiating the above equation around p = 1 yields

d2w

dp2

∣∣∣∣∣
p=1

= 2v′(x+)(u(x+)− u(x−))
u′(x+)v(x+) ≥ 0. (49)

Let us alternatively consider the case p = 0, which implies that c = x−, w = 0, c′(0) =
(u(x−)−u(x+)v(x+)/u′(x−)v(x−) and w′(0) = v(x+)/v(x−). Finally, differentiating equation
(48) in the neighborhood of p = 0 yields

d2w

dp2

∣∣∣∣∣
p=0

= −2v(x+)2v′(x−)(u(x+)− u(x−))
u′(x−)v(x−)3 − 2v(x+)(v(x+)− v(x−))

v(x−)2 ≤ 0. (50)

This concludes the proof of Proposition 6.

Appendix 2: Proof of Lemma 1
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Without loss of generality, let µ be zero. Let S = m + n, and let the risky lottery x1 in
menu M be

x1 = x0
1 ∼ (a−1 , p

−
1 ; ...; a−m, p−m; a+

1 , p
+
1 ; ...; a+

n , p
+
n ), (51)

with a−1 < ... < a−m < 0 < a+
1 < ... < a+

n , p−i > 0, i = 1, ...,m, p+
j > 0, j = 1, ..., n, and∑m

i=1 p
−
i +

∑n
j=1 p

+
j = 1. Assume that Ex1 = 0. Define pij as

pij = −a−i
a+
j − a

−
i

∈ [0, 1]. (52)

Define lottery xij ∼ (a+
j , pij ; a

−
i , 1−pij). By construction, Exij = 0. Initialize the probability

vector Q = (q0−
1 , ..., q0−

m , q0+
1 , ..., qn0+) such that for all i , q0,−

i = p−i and for all j, q0+
j = p+

j .
We also initialize two sets I = J = {∅}.

We consider the following n + m − 2 iterations. At the beginning of iteration k, I ∪ J
contains the k−1 states of nature whose lottery’s initial payoff has been replaced by a binary
zero-mean lottery.

Iteration k: Take an arbitrary pair (i, j), i ∈ {1, ...,m}/I, j ∈ {1, ..., n}/J . Consider
two cases.

Case 1: Suppose that qk−1−
i < −qk−1+

j a+
j /a

−
i . Then, define πk = qk−1−

i (a+
j − a

−
i )/a+

j .
Perform the following two operations on lottery xk−1:

• Replace the atom a−i by lottery xij , and raises the associated probability qk−1−
i up to

qk−i = πk.

• Reduce the probability associated to a+
j from qk−1+

j to qk+
j = qk−1+

j + (qk−1−
i a−i /a

+
j ) >

0.

Moreover, append state i into the set of negative states whose initial payoff a−i as been
replaced by a binary zero-mean lottery xij : Ik = Ik−1 ∪ i.

Case 2: Suppose that qk−1−
i ≥ −qk−1+

j a+
j /a

−
i . Then, define πk = −qk−1+

j (a+
j − a

−
i )/a−i .

Perform the following two operations on lottery xk−1:

• Replace the atom a+
j by lottery xij , and raises the associated probability qk−1+

j up to
qk+
j = πk.

• Reduce the probability associated to a−i from qk−1−
i to qk−i = qk−1−

i + (qk−1+
j a+

j /a
−
i ) ≥

0.

Moreover, append state j into the set of positive states whose initial payoff a+
j as been

replaced by a binary zero-mean lottery xij : Jk = Jk−1 ∪ j.

In both cases, this procedure yields a new lottery xk that has the same distribution of
payoffs, but in which one payoff has been replaced by a binary zero-mean lottery. After
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m + n − 2 iterations, all payoffs have replaced by such lotteries, expect two of them. By
construction, since the Exk = 0, the remaining two atoms (a−i , a

+
j ) must be opposite in sign

and have remaining probabilities qm+n−2−
i and qm+n−2+

j such that

a−i q
m+n−2−
i + a+

j q
m+n−2+
j = 0. (53)

This concludes the proof of Lemma 1.
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