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1. Introduction

In economic theory, free disposal is captured by the assumption that goods may be costlessly
thrown away. Under the standard hypothesis that preferences are monotone, free disposal im-
plies that the set of feasible utility allocations is comprehensive, which means that, whenever
it contains an allocation u, it also contains all allocations v satisfying v ≤ u. For instance, if
free disposal fails, an individual consumption set may be bounded below. In classical coope-
rative game theory with complete information, the possibility to disposing of utility at will is
usually taken as an innocuous assumption. The argument is that, when utility is transferable
(risk-neutrality in money), if players can agree on the utility allocation u, then they can achieve
any utility allocation v satisfying v ≤ u by agreeing that each player will “burn” an appropri-
ate amount of money after u has been implemented. In the case of non-transferable utility, the
reason for allowing free disposal (in utilities) is that we should not exclude utility allocations
from the feasible set, unless we are sure they will not be implemented. If some feasible utility
allocation is never chosen, this fact must be a consequence of the rationality of the players.
But why would a rational player ever agree to harm himself? The reason is that free disposal
increases the strategic possibilities (threats) a player has by allowing him to eliminate some part
of the proceeds of the cooperation.

The purpose of this supplementary note is to provide a detailed analysis of the free disposal
assumption in the study of some egalitarian-based solution concepts for non-transferable utility
games (NTU). In sections 2 and 3, we illustrate why free disposal is a technical assumption of
utmost importance for the existence of the egalitarian solutions, and a fortiori, of the Harsanyi
NTU value. In section 4, we show that when information is incomplete, incentive constraints re-
strict what is feasible in a way that makes the analysis of egalitarian solutions more difficult. In
particular, we exhibit some examples in which free disposal activities have an important effect
on the incentives structure of the game. Finally, section 5 is devoted to establish why the stan-
dard free disposal hypothesis does not help for the existence of the Egalitarian value. Instead,
we argue that free disposal of virtual utilities allows to solve the aforementioned difficulties.

IThis note corresponds to a supplementary appendix to the paper “An Egalitarian Value for Cooperative Games
with Incomplete Information”. For publication on-line.
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2. Egalitarian Solutions for Two-person Bargaining Problems

The free disposal assumption is of particular importance for the analysis of bargaining when
negotiations are guided by the principle of equal gains. For any two-person bargaining problem,
an egalitarian solution, as defined by Kalai (1977), will choose the (unique) efficient allocation
which grants both players with the same gains (with respect to which each would get in the
absence of agreement), i.e., the unique point u = (u1, u2) satisfying

(i) Efficiency: u ∈ ∂V

(ii) Egalitarianism: u1 − u0
1 = u2 − u0

2

where V ⊆ R
2 is the set of feasible utility allocations1, ∂V denotes the weak Pareto frontier of

V and u0
= (u0

1, u
0
2) ∈ R

2 is the allocation both players would get in case of disagreement.

To understand why free disposal is essential, consider the two-person bargaining problem de-
picted in panel A of figure 1. The set of feasible utility allocations is given by the set which is
the locus of all point over the line ~ow. Assume that in the absence of agreement each player
gets 0, so that the unique feasible allocation equalizing the gains between both players is (0, 0).
This allocation is however not efficient. Indeed, the only efficient allocation is the point w.

o

u2

u1

u1 = u2

�
w

Panel A

o

u2

u1

u1 = u2

� u∗

Panel B

Figure 1

Hence, an egalitarian solution for this example does not exist. This is due to a lack of com-
prehensiveness. In panel B of figure 1 we depict a bargaining problem in which the set of
feasible utility allocations is now the comprehensive hull2 of the points in the line ~ow. This new
problem, unlike the former, has an egalitarian solution located at u∗.

Interpersonal comparisons of utility in a bargaining situation can also be made according to the
principle of greatest good. For any two-person bargaining problem, a utilitarian solution selects
a feasible allocation maximizing the sum of utilities, i.e., a point u ∈ V satisfying

(iii) Utilitarianism: u1 + u2 = maxv∈V v1 + v2

1Notice that whenever the set of feasible decisions for both players is finite, the set V is convex.
2The comprehensive hull of a set A is the smallest comprehensive set containing A.
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Under the reasonable assumptions that V is closed and bounded above, a utilitarian solution
always exits. For instance, in our two previous examples (figure 1) the unique utilitarian solu-
tion is the allocation w. As evidenced by these examples, egalitarianism and utilitarianism may
yield different outcomes. More generally, we cannot expect these two criteria for utility compa-
risons to coincide. The reason is that both egalitarian and utilitarian solutions violate the scale-
covariance axiom3. To reconciliate these two principles we must admit a set λ = (λ1, λ2) > 0
of utility weights in which players make interpersonal utility comparisons. Formally, given a
vector λ, an allocation u ∈ V is a λ-egalitarian solution if it satisfies conditions (i) and

(ii’) λ-Egalitarianism: λ1(u1 − u0
1) = λ2(u2 − u0

2)

Similarly, an allocation u ∈ V is a λ-utilitarian solution if it satisfies

(iii’) λ-Utilitarianism: λ1u1 + λ2u2 = maxv∈V λ1v1 + λ2v2

These solutions apply the principles of equal-gains and greatest good when players make in-
terpersonal utility comparisons in some λ-weighted utility scale (which does not affect any
decision-theoretic property of the utility). A very well known result in the literature asserts
that the Nash (1950) bargaining solution is the unique efficient allocation for which there exists
utility weights λ such that the allocation is simultaneously both λ-egalitarian and λ-utilitarian
(see theorem 1 in Harsanyi (1963) and theorem 8.2 in Myerson (1991)). Hence, for the Nash
bargaining solution, utility weights λ are endogenously determined, while for the λ-egalitarian
and λ-utilitarian solutions they are externally given. The endogeneity of the utility weights is
the result of combining efficiency together with λ-utilitarianism. Observe that conditions (i) and
(iii′) requieres λ to be a supporting normal vector of ∂V at u. Then, the Nash bargaining solution
of a two-person bargaining problem can be constructed according to the following method of
fictitious transfers:

1. Take a vector λ ∈ R
2
+
, λ , 0.

2. The quotients of the coefficients of λ can be regarded as the (local) rates at which players
can transfer utility. Consider the game in which λ-weighted utility is transferable.

3. Suppose that the allocation u is such that both players can divide among themselves the
maximal transferable weighted-utility worth that they can get (i.e., condition (iii′)) in such
a way that each player gets the same weighted-utility gain over what he would get in the
absence of agreement (i.e., condition (ii′)).

4. If u is actually feasible without the fictitious transfers (i.e., condition (i)), then it is a Nash
bargaining solution.

Notice that the free disposal assumption is not required for the existence of a Nash bargaining
solution4. For instance, the Nash bargaining solution of the bargaining problems in figures
1 and 2 is the allocation w. This solution is λ-egalitarian and λ-utilitarian for the weights

3According to the scale-covariance axiom, increasing affine transformations of utilities affect the solution in
the same way. In particular, this implies that interpersonal comparisons of utility have no decision-theoretic sig-
nificance. The reader is referred to Myerson (1991, sec. 8.3) for a more detailed discussion on this issue.

4The reader familiar with the literature on two-person bargaining problems will remember that a Nash bargain-
ing solution always exists.
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(λ1, λ2) = (w2,w1). Notice however, that for any vector λ , (w2,w1) a λ-egalitarian solution
does not exist unless we take the comprehensive hull of the points in the line ~ow as in panel B
of figure 1.

3. Egalitarian Solutions for General NTU Games

For general n-person cooperative games with non-transferable utility, there exist generalizations
for the λ-utilitarian and λ-egalitarian solutions. Given a set of positive weights λ = (λi)i∈N in
which utilities are interpersonally compared, a (general) λ-egalitarian solution is defined to be
the unique allocation uN = (ui

N)i∈N for the grand coalition N such that there exist coalitional
allocations (uS )S⊂N , with uS = (ui

S )i∈S , satisfying:

(i’) Efficiency: uS ∈ ∂V(S ), ∀S ⊆ N

(ii”) λ-Egalitarianism: λi(ui
S − ui

S \ j) = λ j(u
j
S − u j

S \i), ∀i, j ∈ S , ∀S ⊆ N

where for each coalition S , V(S ) denotes the set of feasible utility allocations5 for S (see
Harsanyi (1963), and Kalai and Samet (1985)). Conditions (i′) and (ii′′) naturally extend the def-
inition of a λ-egalitarian solution from two-person bargaining problems to general NTU games.
A λ-egalitarian solution is constructed recursively: for each coalition S , given the allocations
(uS \i)i∈S , the allocation uS is determined by conditions (i′) and (ii′′). The resulting allocation
uN is the λ-egalitarian solution. Here again, the free disposal assumption is crucial for the exis-
tence of a λ-egalitarian solution for every λ (see Kalai and Samet (1985, sec. 5)). To illustrate
the difficulties, let us consider the three-person cooperative game (with complete information)
presented in the following example.

Example 1. The set of players is N = {1, 2, 3} and the sets of feasible joint actions for each
coalition are

S DS

{i} di

{1, 2} [d1, d2], d12

{1, 3} [d1, d3]
{2, 3} [d2, d3], d23

N [d1, d2, d3], [d12, d3], [d1, d23]

Utility functions are defined as follows:

d (u1, u2, u3)
[d1, d2, d3] (0, 0, 0)
[d12, d3] (2, 2, 0)
[d1, d23] (0, 1, 1)

5Sets (V(S ))S⊆N are assumed to be closed and bounded above.
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Let us show that for any vector λ = (λ1, λ2, λ3) such that λi = λ j for all i, j ∈ N, this game
has no egalitarian solution. Here a player can only get 0 by himself. Consider coalition S =
{1, 2}. Since λ1 = λ2, the unique allocation meeting conditions (i′) and (ii′′) is (u1

S , u
2
S ) = (2, 2).

Similarly, when looking at coalition S = {2, 3}, we have that (u2
S , u

3
S ) = (1, 1). Finally, for

coalition S = {1, 3}, (u1
S , u

3
S ) = (0, 0). Then, condition (ii′′) for the grand coalition N reduces to

u1
N − u3

N = 1
u2

N − u1
N = 1

It can be easily checked that there is no feasible utility allocation for the grand coalition sat-
isfying the previous two equations. For that, let µN be a mechanism for the grand coalition
(probability distribution on ∆(DN)). Notice that u2

N − u1
N = 1 implies that µN([d1, d23]) = 1, thus

µN([d12, d3]) = 0. However, equation u1
N − u3

N = 1 implies that µN([d12, d3]) = 1, which is a con-
tradiction. Therefore, this game has no λ-egalitarian solution with respect to such values of λ.
As in the case of two-person bargaining problems, this difficulty is due to a lack of comprehen-
siveness of the feasible set of utility allocations. For instance, we can expand the set of feasible
utility allocations for the grand coalition by introducing a new joint decision allowing player
1 to dispose of 1 unit of his utility. Let d̃ such that ũN = (u1(d̃), u2(d̃), u3(d̃)) = (1, 2, 0), and
consider the new game in which the set of feasible joint decisions for N is D̃N = DN ∪ d̃. Notice
that decision d̃ is equivalent to implementing the decision [d12, d3] and then player 1 agrees to
dispose of 1 units of his utility. In this new game, unlike the former, there is a λ-egalitarian
solution (with λi = λ j for all i, j ∈ N) given by the allocation ũN . �

As for the Nash bargaining solution, one would like to impose an additional utilitarian re-
quirement on the λ-egalitarian solutions in order to deal with the indetermination of the utility
weights. Harsanyi (1963) proposed that utility weights were endogenously determined using
the following utilitarian criterion: given a vector λ, an allocation uN for the grand coalition is a
(general) λ-utilitarian solution if it satisfies

(iii”) λ-Utilitarianism:
∑

i∈N λiui
N = maxv∈V(N)

∑

i∈N λivi
N

As for the two-person bargaining problem, combining criteria (i′) and (iii′′) requires that the
vector λ be a supporting normal to ∂V(N) at uN.

A Harsanyi value for a general NTU game is obtained by the following procedure:

1. Take a vector λ ∈ R
N
+

, λ , 0
2. A λ-egalitarian solution uN ∈ ∂V(N) is (recursively) constructed according to (i′) and

(ii′′).
3. If uN is also λ-utilitarian (i.e., it satisfies (iii′′)), then uN is a Harsanyi NTU value.

Clearly, both the Nash bargaining solution and the Harsanyi NTU value of a two-person bargain-
ing problem coincide. However, unlike the former, the Harsanyi NTU value may fail to exist for
general n-person games if the sets (V(S ))S⊆N are not comprehensive. Two difficulties appear.
First, it may happen that, for given utility weights λ, a λ-egalitarian solution does not exist (see
example 1). Second, it may also occur that for the values of λ for which a λ-egalitarian solution
exists, the solution is not λ-utilitarian. The following example illustrates this latter situation.
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Example 2. The set of players is N = {1, 2, 3} and the sets of feasible joint actions for each
coalition are

S DS

{i} d0
i

{i, j} [d0
i , d

0
j ], di j

N [d0
1, d

0
2, d

0
3], [d12, d0

3], [d13, d0
2], [d23, d0

1]

Utility functions are defined as follows:

d (u1, u2, u3)
[d0

1, d
0
2, d

0
3] (0, 0, 0)

[d12, d0
3] ( 1

3 ,
2
3 , 0)

[d13, d0
2] ( 1

3 , 0,
2
3 )

[d23, d0
1] (0, 1

2 ,
1
2 )

The sets of feasible utility allocations for all two-person coalitions are as in figure 2.

o

u j

u1

2
3

1
3

� u(d1 j)

S = {1, j} ( j = 2, 3)

o

u3

u2

1
2

1
2

� u(d23)

S = {2, 3}

Figure 2: Feasible utility allocations

Let us construct an λ-egalitarian solution for this example. In this game each player can only
get zero by himself. Then, for any two-person coalition S = {i, j} condition (ii′′) reduces to
λiui

S = λ ju
j
S . Hence, allocations (uS )S,N satisfying (i′) and (ii′′) can only be constructed if

λ = (λ1, λ2, λ3) = (2, 1, 1). Given these utility weights, coalitional allocations satisfying (i′) and
(ii′′) are (u1

{1, j}, u
j
{1, j}) = ( 1

3 ,
2
3 ) (for j = 2, 3) and (u2

{2,3}, u
3
{2,3}) = ( 1

2 ,
1
2 ). Then, condition (ii′′) for

the grand coalition becomes
u2

N = u3
N

u2
N = 2u1

N −
1
6

The set of efficient utility allocations for the grand coalition is presented in figure 3.

Condition (i′) is equivalent to u1
N + u2

N + u2
N = 1 and uN ∈ V(N). Then, the unique λ-egalitarian

solution is the allocation6 (u1
N , u

2
N, u

3
N) = ( 8

30 ,
11
30 ,

11
30 ). On the other hand, given the vector λ, we

have that
∑

i∈N

λiui
N =

19
15 <

4
3 = max

v∈V(N)

∑

i∈N

λivi
N

6This allocation is implemented by a mechanism µN([d12, d0
3]) = µN([d13, d0

2]) = 1 − µN ([d23, d0
1]) = 2

5
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u1 u2

u3

�

�

�

( 1
3 ,

2
3 , 0)

( 1
3 , 0,

2
3 )

(0, 1
2 ,

1
2 )

Figure 3: ∂V(N)

Hence, uN is not λ-utilitarian. Since a λ-egalitarian solution does not exist for any other vector
λ, we conclude that this game has no Harsanyi NTU value. The difficulty in this example can
alternatively be understood as follows: condition (iii′′) requires that the vector of utility weights
λ be a supporting normal to ∂V(N). Then, the natural candidate is λ = (1, 1, 1), since it supports
∂V(N) at any efficient allocation. However, a λ-egalitarian solution cannot be constructed for
these utility weights.

Let us proceed as in example 1. We expand the set of feasible utility allocations for coalitions
{1, j} (with j = 2, 3) by introducing a new joint decision allowing player j to dispose of 2/3
units of his utility. Let d̃ j (with j = 2, 3) be such that (u1(d̃ j), d j(d̃ j)) = ( 1

3 , 0), and consider the
new game in which D̃{1, j} = D{1, j} ∪ d̃ j for j = 2, 3. The superadditivity assumption implies that
the set of joint decisions for the grand coalition is now

D̃N = DN ∪ {[d̃2, d0
3], [d̃3, d0

2]}

By orthogonality of coalitions, utility functions are extended as follows:

d (u1, u2, u3)
[d0

1, d
0
2, d

0
3] (0, 0, 0)

[d12, d0
3] ( 1

3 ,
2
3 , 0)

[d13, d0
2] ( 1

3 , 0,
2
3 )

[d23, d0
1] (0, 1

2 ,
1
2 )

[d̃2, d0
3] ( 1

3 , 0, 0)
[d̃3, d0

2] ( 1
3 , 0, 0)

Observe that decision [d̃ j, d0
N\{1, j}] (for j = 2, 3) is equivalent to implement the decision

[d1 j, d0
N\{1, j}] and then player j agrees to dispose 2

3 units of his utility. The set of (weakly)
efficient utility allocations of the expanded game is represented in figure 4. Notice that adding
new feasible decisions to (DS )S⊆N may change not only the Pareto frontier of V(S ), but also
that of V(N). This is so because of our assumption of superadditivity. Fortunately, when infor-
mation is complete, adding (strongly) Pareto dominated decisions (i.e., allowing for partial free
disposal, as in our example) can be done while keeping unaffected the original Pareto frontier of
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V(N). Of course this may add linear leveled segments7 to ∂V(N). For instance, in our example,
introducing decisions (d̃ j) j=2,3 enlarges the weak Pareto frontier of V(N) by including strong
Pareto dominated outcomes. The rest of the original Pareto frontier remains unchanged. Thus,
utility weights λ = (1, 1, 1) continue to be the natural scale factors for a Harsanyi NTU value.

u1 u2

u3

�

�

	




( 1
3 ,

2
3 , 0)

( 1
3 , 0,

2
3 )

(0, 1
2 ,

1
2 )

( 1
3 , 0, 0)

Figure 4: Efficient allocations in the expanded game

Let us show that in the expanded game there exists a Harsanyi NTU value. Fix the utility weights
λ = (1, 1, 1). Now we construct a λ-egalitarian solution for these weights. Since nothing has
changed for coalition {2, 3} in the expanded game, the unique allocations satisfying (i′) and (ii′′)
for this coalition is (u2

{2,3}, u
3
{2,3}) = ( 1

2 ,
1
2 ), as in the original game. Consider now a coalition {1, j}

with j = 2, 3, for which the set of feasible allocations is represented in figure 5.

o

u j

u1

2
3

1
3

u1 = u j

1
3

Figure 5: Feasible allocations for S = {1, j}

An allocation u{1, j} satisfies (i′) and (ii′′) if and only if (u1
{1, j}, u

j
{1, j}) = ( 1

3 ,
1
3 ). This allocation is

equivalent to implement the decision d1 j and then player j agrees to dispose 1/3 units of his
utility. Thus, condition (ii′′) for the grand coalition becomes

u2
N = u3

N

u2
N = u1

N +
1
6

7A linear segment L ⊂ ∂V(S ) is leveled if there exist x, y ∈ L such that x ≤ y and x , y.
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Straightforward algebra shows that the previous two equations cannot be satisfied by an allo-
cation lying on the part of the weak Pareto frontier consisting of strong Pareto dominated out-
comes. Then, condition (i′) requires that u1

N + u2
N + u2

N = 1 and uN ∈ V(N). The unique
λ-egalitarian solution is the allocation8 (u1

N , u
2
N, u

3
N) = ( 4

18 ,
7

18 ,
7

18 ). On the other hand, given the
vector λ, we have that

∑

i∈N

λiui
N = 1 = max

v∈V(N)

∑

i∈N

λivi
N

Hence, condition (iii′′) is satisfied and uN is a Harsanyi NTU value. �

Examples 1 and 2 exhibit why the free disposal assumption is particularly important for gua-
ranteeing the existence of the egalitarian solutions and a fortiori of the Harsanyi NTU value.
Example 2 also shows why free disposal is usually taken as an innocuous assumption: adding
strongly Pareto dominated decisions can be done while keeping unaffected the original Pareto
frontier of V(N). As a consequence of this, when information is complete, cooperative games
can reasonably be described as a collection (V(S ))S⊆N of fully comprehensive feasible utility
sets. Full comprehensiveness guarantees that a λ-egalitarian solution always exists for any vec-
tor of utility weights λ. This characteristic (coalitional) representation suppresses any explicit
mention of the decisions generating the utilities. Although implicitly, we assume that a utility
allocation uS is feasible for coalition S if the players in S together have a joint feasible strategy
that enables them to allocate uS (this may include the implementation of a correlated strategy
or a joint decision, burning utility or even transferring utility).

It is worth emphasizing that free disposal, apart from its significance as a strategic option, is
a technical assumption that has been widely integrated in the study of NTU games. Other hy-
pothesis of this kind include the non-levelness assumption9 which guarantees that only strictly
positive weights can emerge in a value allocation. The analysis of general NTU games is diffi-
cult due to the arbitrariness of the outcomes that the players can achieve. Free disposal serves
as a very weak form of “transferability” that makes the study of these games more tractable.

4. Free Disposal in the Presence of Incentive Constraints

When information is incomplete, the free disposal assumption must be carefully considered.
Take for instance the case of a pure exchange economy with differential information in which
consumers enter in coalitional contracts at the interim stage (i.e., once every agent has private
information). We can assume free disposal by allowing mechanisms to throw away goods (be-
fore the reallocation of goods). When information is complete, this disposability assumption
implies a comprehensive characteristic representation of the economy. However, when informa-
tion is differential, even if goods are fully disposable, incentive constraints may lead to feasible
(interim) utility sets that are not comprehensive. This will be illustrated in example 3 (see also
de Clippel (2012)). The way incentive constraints restrict what is feasible makes free disposal
and comprehensiveness two different notions. Difficulties of this kind suggest that a coopera-
tive game cannot be simply described as a collection of comprehensive utility sets, one for every

8This allocation is implemented by a mechanism µN([d12, d0
3]) = µN([d13, d0

2]) = µN([d23, d0
1]) = 1

3
9A game is non-leveled if for all S ⊆ N, V(S ) is non-leveled, that is, for all uS , vS ∈ ∂V(S ), uS ≥ vS implies

that uS = vS .
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coalition on each possible information state. In particular, we require to keep track of the incen-
tives constraints and its effects on feasibility. Indeed, the fact that a utility vector is feasible at
some type profile does not allow us to determine what would be the utility an individual would
get by reporting a different type. Thus, strategies or decisions should be explicitly included in
the structure of the game.

Example 3. Let us consider the following two-person bargaining problem with incomplete in-
formation. Player 1 may be one of two possible types, H or L. Types are chosen according
to the probability distribution p(H) = 1 − p(L) = 0.9. Player 1’s type is private information.
Suppose that there are three possible decisions, D = {(di)i=0,1,2}, and the two individuals’ payoffs
(u1, u2) depend on the decision and types as follows:

(u1, u2) L H
d0 (0, 0) (0, 0)
d1 (−1, 2) (0, 2)
d2 (1, 0) (2, 0)

In case of disagreement, both players have (type-independent) reservation utilities normalized
to zero. Let us start assuming that when the final agreement is implemented player 2 can
costlessly verify the true type of player 1. This implies that 1’s type is public information at the
implementation stage and incentive constraints are not required. Then, a mechanism is feasible
if it is (interim) individually rational. The set of feasible interim utility allocations under the
verifiability assumption is depicted in panel A of figure 6. Given a point d in some Euclidean
space R

m, and a set V ⊆ R
m, we say that the set V is d-comprehensive if d ≤ v ≤ u and u ∈ V

implies that v ∈ V . According to this definition, the set of feasible allocations in panel A is
0-comprehensive.

Let us comme back to our original set-up in which information is not verifiable and feasibility
is constrained by individual rationality and incentive compatibility. The set of feasible utility
allocations in this case is illustrated in panel B. When comparing panels A and B, it is clear that
incentive compatibility restricts feasibility. In particular, it reduces interim efficiency and wipes
out 0-comprehensiveness. �

UH
1 UL

1

U2

�

�



�

(2,1,0)

(2,0,0.1)

(0,0,1.9)

(0,1,1.8)

Panel A: Feasible allocations under verifiable types

UH
1 UL

1

U2

�

�

�

�(1,0,1)

(2,1,0)

(0,0,1.8)

Panel B: Feasible allocations under incentive constraints

Figure 6

10



Example 4 puts in evidence one of the issues that must be addressed for an appropriate gener-
alization of the principle of equal gains to bargaining situations with incomplete information.
For instance, de Clippel (2012) introduces an egalitarian solution for social choice problems in
which an uninformed mediator acts as a mechanism designer. His solution straightforwardly
generalizes conditions (i) and (ii) to social choice problems with incomplete information. As-
sume that reservation utilities are type-independent and normalized to zero. A mechanism µ
(for the grand coalition) satisfies the interim egalitarian criterion if

(i”) Efficiency: µ is interim incentive efficient.

(ii”’) Egalitarianism: Ui(µ | ti) = U j(µ | t j), ∀i, j ∈ N, ∀t ∈ T

That is, an interim utility allocation is an egalitarian solution in de Clippel’s terms if it is incen-
tive efficient and all individuals experience the same interim expected utility whatever the true
information state might be. It can be easily seen from panel B of figure 6 that in the bilateral
bargaining problem of example 4 there is no feasible mechanism passing the interim egalita-
rian criterion10. Here again, the difficulty comes from the fact that the feasible utility set is not
0-comprehensive, thus making the intersection between the line U H

1 = UL
1 = U2 and the weak

Pareto frontier empty. Then, one is tempted to proceed as in examples 1 and 2, and expand the
feasible utility set by introducing a new decision allowing player 1 to dispose of his utility (in
state H). Let d̃ be such that u1(d̃,H) = 0, u1(d̃, L) = 1 and u2(d̃,H) = u2(d̃, L) = 0. Decision
d̃ is equivalent to implement decision d2 in both states but then player 1 agrees to dispose of 2
units of his utility in state H. Now consider the expanded problem with decisions set D̃ = D∪ d̃.
The set of feasible utility allocations is depicted in figure 7.

UH
1 UL

1

U2

�

�

�

�

�

�(1,0,1)

(2,1,0)

(0,0,1.9)

(0,1,0)

(0,1,1.8)

Figure 7

As required, in the expanded problem the utility allocation (U H
1 ,U

L
1 ,U2) = ( 19

20 ,
19
20 ,

19
20 ) meets

the egalitarian criterion. However, unlike the complete information case, here the game has

10In de Clippel’s (2012) words, the game in example 4 is not simple. Because not every mechanism design
problem is simple, only a partial axiomatic characterization of the interim egalitarian criterion can be provided in
terms of a weak monotonicity property.
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substantially changed after d̃ was introduced. Permitting free disposal for type H of player 1
facilitated the fulfillment of incentive constraints, thus allowing both players to achieve higher
interim utilities with respect to the original problem11. In particular, any incentive-efficient
allocation in the expanded game is ex-post efficient, which is not the case in the original game
(see figures 6 and 7). This implies, for instance, that the normal vector to the Pareto frontier of
the original bargaining problem is no longer the same as in the expanded problem.

Example 3 has shown that free disposal may have an important effect on the incentives structure
of the game. The following example will enhance our understanding of this phenomenon.

Example 4. Consider a two-person bargaining problem with incomplete information in which
player 1 may be of two possible types, H or L. Types are chosen according to the probability
distribution p(H) = 1 − p(L) = p > 0. Player 1’s type is private information. The decision set
is D = {dH, dL}. Individuals’ payoffs depend on decisions and types as follows:

(u1, u2) L H
dH (u1 + m, 0) (u1 + M, u2)
dL (u1, u2) (u1, 0)

where 0 < m < M and u1, u2 > 0. Player 1 prefers the action dH in both states while player 2
prefers the decision that matches the true state. Hence, a mechanism is incentive compatible if
and only if it is non-revealing, that is, µH = µL where µt denotes the probability of decision dH

in state t.

Now we introduce a new decision allowing player 1 to dispose of his utility in both states. Let
d̃ be such that u1(d̃,H) = u1(d̃, L) = 0 and u2(d̃,H) = u2(d̃, L) = u2. Decision d̃ is equivalent to
implement dH (resp. dL) in state H (resp. L) and then player 1 agrees to dispose u1 + M (resp.
u1) units of his utility. Given r ∈ (0, 1), consider the mechanism µr defined by

µr
H =

{

dH, with probability 1 − r;
d̃, with probability r. , µr

L = dL

This mechanism is equivalent to implement dH (resp. dL) in state H (resp. L) and then player 1
agrees to dispose r(u1+M) units of his utility in state H. Furthermore, µr is incentive compatible
in the expanded game if and only if

u1

u1 + M
≤ 1 − r ≤

u1

u1 + m

Since 0 < m < M, then r can be chosen such that µr is incentive compatible. Moreover, if m
is close enough to zero, r can be arbitrarily small, so that the mechanism µr is almost-fully-
revealing and player 1 decreases his utility only by an arbitrary small amount. Then, free dis-
posal enlarges the set of incentive feasible mechanisms: recall that non-revealing mechanisms
are always incentive compatible. �

11This example shares some features in common with an exchange economy with differential information pro-
posed by Forges, Mertens and Vohra (2002, sec. 2.5).
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5. Free Disposal of Virtual Utility

The method of fictitious transfers of weighted utility has proven to be a very useful approach
to generalize (almost) any solution concept for transferable utility (TU) games to general NTU
games. In particular, the Harsanyi NTU value extends simultaneously both the Nash bargaining
solution and Shapley’s (1953) TU value to general NTU games. Unfortunately, the method
of fictitious transfers does not immediately extend to games with incomplete information. The
difficulty is that allowing players to transfer utilities at the interim stage may affect the incentives
structure of the game in the same way free disposal does (see examples 3 and 4). Let us illustrate
this fact by means of the following example.

Example 5. Consider again the game analyzed in example 3. Because of the presence of in-
centive constraints, both players are constrained in their abilities to share the total gains from
cooperation, so that they face a lack of transferability. In fact, the mechanism that gives the
entire surplus to player 2 in both states is not incentive compatible, i.e., the interim allocation
(UH

1 ,U
L
1 ,U2) = (0, 0, 1.9) is not incentive compatible (see panel B of figure 6). Assume now

that player 1 is given the additional option to transfer the proceeds of cooperation to player 2.
For that, let d̃ be such that u1(d̃,H) = u1(d̃, L) = 0, u2(d̃,H) = 2 and u2(d̃, L) = 1, and consider
the bargaining problem where D̃ = D ∪ d̃. Decision d̃ is equivalent to implement d2 and then
player 1 transfer his total utility to player 2 in both states. Then, the set of feasible (i.e., interim
individually rational and incentive compatible) utility allocations is as in figure 8.

UH
1 UL

1

U2

�

�

�

�(1,0,1)

(2,1,0)

(0,0,1.9)

Figure 8: Feasible allocations with transferable utility

As for the free disposal, allowing bounded utility transfers made easy the fulfillment of incentive
constraints, thus permitting both players to attain higher payoffs with respect to the original
bargaining situation. Indeed, unlike the original game, when utility is transferable any incentive-
efficient allocation is ex-post efficient (see figures 6 and 8). �

Aware of this difficulty, Myerson (1984) developed the virtual utility approach for generalizing
the method of fictitious transfers to cooperative games with incomplete information (see section
2.2 of the paper). The advantage of his approach is that, for any interim utility allocation on the
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Pareto frontier of the grand coalition, it associates a set of additional decisions that extends the
original game in such a way that players can make bounded virtual utility transfers conditionally
on every state, while leaving the original utility allocation efficient in the expanded problem,
exactly as in the case of complete information (see also lemma 4 in de Clippel (2012)). Then,
we may consider the fictitious game in which each player’s payoff is represented in the virtual
utility scales, players’ types are verifiable, so that there are no incentive constraints, and virtual
payoffs are transferable among the players (conditionally on every state).

For the virtual game, we would like to identify mechanisms that are efficient and equitable in
any well defined sense. In our theory, virtual efficiency requires the total virtual utility worth of
a coalition to be maximal (virtual ex-post efficiency). Because virtual payoffs are transferable,
this condition is a counterpart of (i′). On the other hand, equity requires, according to our
egalitarian criterion (see proposition 1 in the paper), expected average marginal contributions
to be balanced. This last condition is an analogous version of (ii′′). Thus, considerations of
equity and efficiency in the virtual game lead to our optimal threat criterion (see definition 3 in
the paper). Because types are verifiable in the virtual game, optimal egalitarian threats are not
required to be incentive compatible.

Since the definition of an optimal egalitarian threat generalizes conditions (i′) and (ii′′), it is
not surprising that all difficulties identified in section 2 of this note are inherited by our optimal
threat criterion. In particular, for given virtual utility scales, problem (3.7) (in the paper) may
not be feasible. It may also happen that the virtual utility scales for which the problem (3.7)
has a solution, do not support any incentive efficient allocation which is equitable in the virtual
game. Then, for a general existence result of our egalitarian value to be proven, feasibility
of problem (3.7) must be guaranteed for given virtual utility scales, exactly as in the case of
complete information. A sufficient condition for this is that the feasible virtual utility sets
be comprehensive on each state, i.e., that virtual utility be disposable conditionally on every
state (see section 4.2). Unfortunately, virtual free disposal cannot be accommodated within our
model by introducing decisions in each DS allowing players to discard utility. The reason for
this was discussed in section 3 of this complementary note: adding new decisions may change
not only the incentives structure, but also the efficient frontier of the game.

In order to examine this issue in depth, recall that virtual scales are defined by a vector of utility
weights λ together with a vector of Lagrange multipliers α for the incentives constraints of the
primal problem. As in the case of complete information, λ is a supporting normal to the interim
efficient frontier. Fix (λ, α) and assume that you can expand the set of feasible virtual utility
allocations for a coalition S by introducing a new decision d̃S allowing some player j ∈ S to
dispose some amount of his virtual utility in some state t̄ ∈ T . Let ṽ = (ṽi(t))i∈N, t∈T be the vector
of virtual utilities associated to d̃S . Now, we need to translate virtual payoffs ṽ into real utilities.
Consider the linear function υλ,α : R

N×T → R
N×T that maps any profile of (ex-post) utilities to

its associated virtual utilities:

(υλ,α(u))i(t) =
1

p(ti)

































λi(ti) +
∑

τi∈Ti

αi(τi | ti)

















ui(t) −
∑

τi∈Ti

αi(ti | τi)ui(τi, t−i)

















,

for each u ∈ R
N×T , each t ∈ T and i ∈ N. Then, in order to determine the real utilities associated

to ṽ we need the map υλ,α(·) to be invertible, which is only known to be possible whenever λ
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is strictly positive12. However, due to the incentive constraints, we cannot prevent λ to vanish
in some (but not all) of its components. Assume for simplicity that λ > 0 so that we can
associate real utilities ũ = (ũi(t))i∈N, t∈T to decision d̃S . Now consider the expanded game in
which D̃S = DS ∪ d̃S . The superadditivity assumption implies that the set of joint decisions
for the grand coalition in the expanded game is D̃N = DN ∪ DN\S × d̃S . Orthogonal coalitions
together with ũ expand the definition of ui(·) to the enlarged game. As it was illustrated in
examples 3 to 5, adding decisions to DN may alter the incentives inside N so that the vector of
dual variables α may change after introducing d̃S . Also, the efficient frontier can be modified
so that the utility weights λ are not longer the same. Besides the fact that the expanded game
may have substantially changed with respect to the original game, it may also occur that, for the
new scales (λ, α), the virtual utilities (υλ,α(ũ))i(t̄) associated to d̃S in the expanded game do not
correspond any more to a disposal activity for player j ∈ S in state t̄.

We solve the preceding dilemma by considering a class of mechanisms that allow players to
agree to unilaterally decrease their individual virtual utility levels by any arbitrary amount,
conditional on every state. Free disposal of virtual utility is a weak linear activity that can be
embedded into virtual utility transfers. Thus, we think that there is very little loss of generality
in assuming that virtual payoffs are freely disposable in the fictitious game. For the grand
coalition N, any incentive efficient mechanism is ex-post efficient in terms of the virtual utility
scales. Then, permitting or not free disposal of virtual payoffs for N can be done without loss of
generality. Furthermore, our solution concept is based on the idea that payoffs are granted by the
grand coalition, and therefore coalitional agreements for all coalitions S , N are only important
as an expression of the power structure of the game. Hence, the possibility to “burn” virtual
utilities is mainly used for providing the players with additional threats during the bargaining
process within the grand coalition.
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