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Abstract

Why are some societies monogamous and some polygamous? The question matters

for all the reasons that families themselves matter: investment in children, reproductive

skew, gender di¤erences in well-being, and more. Most theories of polygyny invoke male

heterogeneity as a key driving factor. I argue that such heterogeneity itself depends

on males�willingness to �ght against each other to acquire more wives. I derive the

preferences of ex ante identical males over polygyny rates by focusing on evolutionary

fundamentals. Preferences are shown to depend on exogenously given factors such

as the cost of producing food and care, and the technology of defense. I �nd that

males never prefer intermediate numbers of wives: depending on the ecology, a male

either always bene�ts from having more wives, or he prefers both strict monogamy and

high polygyny rates to intermediate polygyny rates. Hence, depending on the ecology

evolution should lead either to monogamy, or to a signi�cant amount of polygyny.
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1 Introduction

Some of the oldest known written records, such as the Code of Hammurabi, show that hu-

mans have devised rules and customs to govern mating practices for at least 4000 years.

Marital norms have varied over space and time,1 but in broad terms polygyny has been

legal at some time in most societies, monogamy has gained in prevalence over time, and

polyandry has been virtually non-existent.2 Although rules imposing monogamous marriage

on all males appeared already in ancient Greece and Rome (Scheidel, 2008), polygynous

marriage is still legal in about one fourth of all countries (Zeitzen, 2008). Marital patterns

may a¤ect economic outcomes through several channels, such as fertility decisions, invest-

ment in children, reproductive skew, gender di¤erences in well-being, the inter-generational

transmission of material wealth and human capital, intra-family transfers, and more.3 It

is therefore important to understand why some societies are monogamous while others are

polygynous. This paper contributes to this understanding. In particular, it may help un-

derstand why two of the most common norms today are strict monogamy and an arguably

signi�cant amount of polygyny with a right to marry up to four wives, the former being

common in countries with a largely Christian past and the latter in countries with a largely

Muslim past.

Whether marital norms are driven by the wishes of the rulers (Lagerlöf, 2010) and/or of

the ruled (De La Croix and Mariani, 2015), grassroots individual preferences may in�uence

how marital norms develop, because norms that adhere to underlying preferences are not

likely to be contested.4 The theoretical literature on male and female preferences in this

context has given particular attention to the e¤ects of heterogeneity among males. The

1Recent analyses of distributions of Y-chromosome haplotypes provide hard evidence to this e¤ect; see

Balaresque et al. (2015), as well as the references therein.

2Of the 1231 societies covered by Murdock�s ethnographic atlas, 4 were polyandrous, 186 monogamous,

and the rest were classi�ed as polygynous (588 of which had frequent polygyny and 453 occasional polygyny).

See Gray (1998).

3For empirical and theoretical research on how family structure a¤ects economic outcomes, see, inter

alia, Becker (1991), Lundberg and Pollak (2008), Tertilt (2005, 2006), Cox and Fafchamps (2008), Edlund

and Lagerlöf (2006), Doepke and Tertilt (2009), Edlund and Kopczuk (2009), Edlund and Machado (2015),

Grossbard (2015), and Chiappori, Salanié, and Weiss (2016).

4This is reminiscent of Alexander (1987), who draws a distinction between ecologically imposed and

socially imposed norms.
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argument is that if females can choose whom they marry and if they rank males according

to some attributes such as wealth or intelligence, females should accept to share high-quality

males with other females, while low-quality males should attract at most one woman (Becker,

1974, 1991, Grossbard, 1976, Low, 1990, Bergstrom, 1994, Lagerlöf, 2005).5 It follows that

one should see low polygyny rates in societies where resource heterogeneity among men is

low (Orians, 1969, Kanazawa and Still, 1999).

That heterogeneity in the opposite sex matters in this context is a well-established fact.6

However, while the theoretical analyses cited above all take such heterogeneity as given,

the attributes of a male at the moment he enters the marriage market in fact depends

on his behaviors in the years preceding that moment. Importantly, his desire to accumulate

resources such as wealth or human capital during these years may depend on how strongly he

cares about achieving greater success in the marriage market. Speci�cally, a male�s eagerness

to compete with other males for the purpose of attracting more wives should depend on his

preferred number of wives. Following this logic, if all males would prefer to have only one

wife, one should expect little such competition, no or low heterogeneity, and monogamy; by

contrast, if all males would prefer to have many wives, one should expect males to compete

against each other in some way that generates heterogeneity, and polygyny for the winners

of this race. In this paper I rely on this logic to push the theory of mating systems one step

further by analyzing how natural selection shapes male preferences over polygyny rates in

the �rst place, and the consequences of these preferences for the males�willingness to �ght

to get mores wives.

Following evolutionary logic, I posit that the ultimate goal of individuals is to maximize

reproductive success. This allows to �nd the number of wives a man would like to have if he

could freely choose, and how this depends on exogenously given factors of the environment,

5While the focus of this paper is on male heterogeneity, this is not to say that female heterogeneity does

not matter (Gould, Moav, and Simhon, 2008). Relatedly, in the anthropology and biology literatures it

has been shown that the polygyny rate in a population may depend on the females�willingness to �trade�

faithfulness for a lower polygyny rate (Kokko and Morrell, 2005, Fortunato and Archetti, 2010, Gavrilets,

2012).

6Most human societies that allow polygyny have positive bride prices, so that wealthier men can acquire

more wives than poor ones (Gaulin and Boster, 1990). See also (Boserup, 1970) and Betzig (1993). In other

species, there is clear experimental evidence to this e¤ect, starting with Bateman�s famous experiments

on drosophilia melanogaster (Bateman, 1948). In evolutionary biology Bateman�s principle states that the

variability in reproductive success should be larger among males than in females in most species.
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or the ecology, in which the population at hand evolves.7 Given these preferences over

polygyny rates, the willingness of males to �ght for more wives can be deduced and used to

determine the set of polygyny rates that are sustainable in the sense that males who have

achieved this polygyny rate would not want to �ght further to acquire even more females.

The key contribution of the analysis is to show how male preferences over polygyny rates

and thus the sustainable polygyny rate(s) may ultimately depend on the ecology in which

the population evolves,8 absent any a priori heterogeneity among males.

In the model, males �rst go through a �ghting stage, in which they are sequentially

matched into pairs. In each pair where at least one male �ghts, one of the males is wiped

out from the marriage market. The �ghting stage ends when all the remaining males stop

�ghting. The amount of �ghting thus determines the number of males who can marry in the

end: the more �ghting there is, the smaller is the number of such lucky males.9 Following the

�ghting stage, a number of households are formed, each household consisting of one lucky

male and his spouse(s). In each household, decisions are taken with respect to fertility as well

as the division of labor between the male and the female(s), the goal being to maximize the

expected number of children that survive to sexual maturity, i.e., the reproductive success.10

The male provides protection, the female(s) provide(s) care, and both the male and the

female(s) may produce food; the labor division speci�es how each individual allocates time

between these tasks.

7The baseline model relies on a sexist approach, which consists in assuming that females are completely

passive. I relax this assumption when studying the robustness of the results.

8The quest for insights as to how ecological factors a¤ect the evolution of mating systems is common in

the biology literature (see, e.g., Bateman, 1948, Orians, 1969, Emlen and Oring, 1977, Clutton-Brock and

Vincent, 1991, as well as Kokko and Jennions, 2008, and the references therein), as well as in the anthropology

literature (see., e.g, Kaplan, Hooper, and Gurven, 2009, Nettle et al., 2013, and Moya, Snopkowski, and Sear,

2016). To the best of my knowledge, however, in this literature parental care is a one-dimensional variable

(while in my model parents provide three goods to their o¤spring) and focus is often on the e¤ects of spatial

and temporal availability of mates (features that are disregarded here).

9If there is polygyny, some males end up with a higher reproductive success than others. On average,

however, males and females have the same reproductive success.

10While mating success of o¤spring also matters, it is not modeled here. Moreover, I rule out female

heterogeneity because the focus is on male preferences over the number of wives of a given quality, and

I also rule out unfaithfulness by assumption, an approach which is reasonable for human societies where

grand-parents may monitor the behaviors of their sons or daughters in law.
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The exact way in which fertility and labor division impacts reproductive success in turn

depends on the ecology, which in the model is a vector of nine exogenously given parameters.

Some of the ecological parameters pertain to the relative importance of food, protection,

and care in determining child survival, thus allowing to compare, for instance, environments

where shelter is more important than in others, perhaps because of harsh weather conditions

or the prevalence of predators. Other ecological parameters measure the marginal returns

to time spent on di¤erent tasks: the returns to gathering food in the savannah may be quite

di¤erent from the returns to tending crops. Finally, two of the ecological parameters measure

the extent to which protection and care are public goods (food being a private good); for

example, protecting a given number of children against predators may require more of the

father�s time in nomadic pastoralist societies than in sedentary agricultural societies, since

in the latter a durable wall can be built for this purpose.

The analysis reveals whether or not a (lucky) male would bene�t, in terms of reproduc-

tive success, from having more wives. I �nd that males do not necessarily want to simply

maximize the number of wives. Depending on the ecology, the reproductive success of a

lucky male may be increasing, decreasing, or non-monotonic in the polygyny rate. This is

because males face a polygyny quantity-quality trade-o¤ : while a greater number of wives

implies a direct gain for the male in the form of a greater number of children, it also entails

an indirect loss in the form of a decrease in the probability that each child survives to sexual

maturity.11

While the presence of this trade-o¤ itself is not surprising per se, the analysis unveils a

striking result: males never prefer intermediate numbers of wives. Depending on the severity

of the quantity-quality trade-o¤, one of two scenarios arises: either a male either always

bene�ts from having more wives, or he prefers both monogamy and high polygyny rates to

intermediate polygyny rates. This �nding has deep implications for the males�willingness

to �ght for more wives, since it leads to a bang-bang result: one should either expect to see

a relatively high polygyny rate for successful males, or else monogamy. Indeed, in ecologies

where successful males always bene�t from having more wives, �ghting never ceases.12 By

11The only exception is when the male produces no food and protection is a pure public good: his average

contribution to child success is then not diluted by adding more wives.

12Unless the act of �ghting itself has a negative impact on reproductive success, for instance because it

weakens the male for life, or if the �ghting technology is such that the biological time constraint becomes

relevant.
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contrast, in ecologies where successful males prefer both monogamy and high polygyny rates

to intermediate polygyny rates, in a society with monogamy males would not want to �ght

to get one more wife, and hence monogamy would be sustainable. In sum, this result shows

that in certain environments monogamy is not a mystery that needs an explanation, for in

these environments it arises naturally, as a consequence of fundamental evolutionary forces.

The analysis further reveals a novel insight, namely, that the qualitative nature of male

preferences over polygyny rate is intimately linked with his involvement in food production.

In ecologies where the male never engages in food production, he always bene�ts from having

more wives. Indeed, since each wife can provide food and care to her own children, in such

ecologies the �rst-order e¤ect of adding one more wife always outweighs the second-order

e¤ect of diluting male protection among more children. Thus, male involvement in food

production is necessary for male reproductive success to decline in the number of wives.

Furthermore, I �nd that if a male engages in food production, this must happen for low

polygyny rates: indeed, because food is a fully private good, a male is better o¤ shifting his

time towards producing more protection as the number of children he has to raise grows. For

high enough polygyny rates, the male devotes all his time to protection, and a further increase

in the polygyny rate then enhances reproductive success. This explains why the polygyny

quantity-quality trade-o¤ is always more severe for low than for high polygyny rates, and

hence why males either prefer both monogamy and high polygyny rates to intermediate

polygyny rates, or always want more wives.

The approach used in this paper rests on the idea, delineated by Bergstrom (1996) and

Robson (2001, 2002), that economists may obtain valuable insights about human motiva-

tion by including evolutionary forces in their models.13 It is closely related to the growing

literature on preference evolution (see, e.g., Frank, 1987, Güth and Yaari, 1992, Dekel, Ely,

and Yilankaya, 2007, Heifetz, Shannon, and Spiegel, 2007, Rayo and Becker, 2007, Robson

and Samuelson, 2011, Alger and Weibull, 2010, 2013). To the best of my knowledge, this

is the �rst attempt to derive preferences over polygyny rates from �rst principles, however.

As mentioned above, the economics literature on polygyny has hitherto instead focused

on explaining how heterogeneity among males and/or among females impinge on marriage

market equilibria (Becker, 1974, Grossbard, 1976, Bergstrom, 1994, Francesconi, Ghiglino,

and Perry, 2016), on the dynamic feedback loops between polygyny rates and heterogeneity

13Note that the theoretical models in this literature, including the one proposed here, are silent as to

whether traits are genetically or culturally determined.
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(Lagerlöf, 2005, Gould, Moav, and Simhon, 2008, De La Croix and Mariani, 2015), on the

e¤ects of a mismatch in the ages at which males and females marry (Tertilt, 2006).

The paper is organized as follows. In the next section I describe and analyze the baseline

model. In Section 3 I lift some of the simplifying assumptions of the baseline model to

check the robustness of the results. While the baseline model focuses on male preferences, I

discuss female preferences over polygyny rates as well as e¢ ciency in Section 4. A conclusion

is provided in Section 5. All the mathematical proofs are in the Appendix.

2 Analysis

I model a population in which each individual lives for at most two periods; in the �rst period

as a non-productive and non-reproductive child, and in the second period as a productive

and reproductive adult. In each generation the sex ratio is assumed to be balanced at birth,

as evolutionary theory would predict (Fisher, 1930), and for simplicity also at the beginning

of the adult period. The model focuses on behaviors in the adult period, which has two

stages: �rst, a mate matching stage, and then a childbearing and child-rearing stage. The

baseline model uses a sexist approach, by assuming that males act while females simply obey

the orders of the males. Analytical convenience is only one of the three reasons for why this

modeling choice is valuable. It may also accurately capture some distant evolutionary past,14

and it allows to highlight the sources of disagreements between males and females, if any, by

determining the extent to which females would favor a di¤erent outcome than that obtained

in the baseline model with passive females; these matters will be analyzed and discussed in

Sections 3 and 4.

The broad lines of the baseline model are as follows. The mate matching stage consists

in �ghting between males. A key feature of the model is that the males are assumed to

be identical prior to �ghting, and that heterogeneity between males arises only as a result

of �ghting. At the end of the mate matching stage, some males have earned the right to

mate; any males who have not earned such a right get nothing (one interpretation being

that they were killed or disabled in the �ght). At the beginning of the childbearing and

child-rearing stage, there is thus a number of households, each composed of one male and his

(identical) spouse(s). The male imposes his preferred fertility and household labor division

14In this distant past females may have been completely dependent on males. In such a context, if males

could choose females, it may have been in their interest to choose obedient ones.
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on his spouse(s), his goal being to maximize his own reproductive success,15 de�ned as the

expected number of his o¤spring that survive to sexual maturity.16

I next proceed to describing and solving the baseline model, starting with a description

of the childbearing and child-rearing stage, and then analysis of the male-�ghting stage.

2.1 Childbearing and child-rearing

Consider a male who enters the childbearing and child-rearing stage with k wives.17 He

chooses the number of children per female and the division of labor within the household,

so as to maximize the expected number of children that survive to sexual maturity. The

probability that a child survives to sexual maturity depends on the quantities of food, pro-

tection, and care that it receives.18 Production technologies are given and �xed; females

are assumed to have identical production abilities, and likewise for men. The amounts of

food, protection, and care that are produced within a household are determined by the divi-

sion of labor; labor is measured in units of time and the lifetime time budget of each adult

is T 2 (0; 1]. Adults do not consume anything of what they produce,19 and interactions
between households, divorce, and unfaithfulness are ruled out by assumption.20

15This assumption is in line with the literature on the evolution of preferences in situations lacking strategic

interaction, such as the child-rearing stage in my model (Robson and Samuelson, 2011).

16In reality mating success of o¤spring who have survived to sexual maturity also matters for an adult�s

reproductive success. I can disregard this, however, since the model relies on the simplifying assumption

that all the men who enter the adult stage have an equal chance to mate, and likewise for all the women

who enter the adult stage.

17The term �wife�is used for convenience only, since marriage has no function per se. The key assumption

is that both males and females engage in parental care, which is a reasonable assumption for humans and

some other species (see Alger and Cox, 2013 for a review of the biology literature on parental care).

18The terms protection and care should be interpreted broadly. Thus, protection may include shelter

construction and maintenance, active protection against predators, as well as the transmission of human

capital pertaining to such activities. Likewise, care may include the production and mending of clothes,

storytelling, as well as the transmission of knowledge about social rules, plants, and animals.

19Alternatively, the time budget T can be interpreted as the time available to an adult once (s)he has

produced and consumed the amounts of food (s)he needs to survive.

20It would clearly be highly desirable to endogenize the degree of unfaithfulness, but this has to be left

for future research. For the time being, one interpretation of the benchmark model considered here is that
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While returns to labor on any given day are often decreasing, the scale of the analysis

at hand� the entire time spent in adulthood� calls for the opposite assumption, namely,

non-decreasing returns to labor in any given activity. As an illustration, consider a hunter-

gatherer society, in which there is food that can be hunted and food that can be gathered.

The skills required for successful hunting and gathering are by no means trivial, and it seems

reasonable to think that there are gains to specialization. Furthermore, hunting may require

similar skills as those required for protection against predators. There may also be economies

of scope between gathering and caring, especially if it is possible to engage in both activities

at the same time; for instance, an adult who is gathering food may bring a sleeping child

on her back, or let the child play next to her. Because breast-feeding ties a mother to her

baby and berries do not run away from crying babies, in such a society it would be natural

to assume, then, that females specialize in caring and gathering, while males specialize in

protecting and hunting.

More generally, there are four productive activities that any adult can engage in. The

male specializes in two of them while females specialize in the other two activities. Let

y 2 [0; T ] denote the time that the male devotes to one of the activities, so that he spends
T � y on the other activity, where T 2 (0; 1] is his time budget. Likewise, let xj 2 [0; T ]
denote the time that female j = 1; :::; k devotes to one of the two activities, the rest of

her time being spent on the other activity. The vector (x; y), where x = (x1; :::; xk), is the

household labor division. I focus on household labor divisions in which all the females adopt

the same time allocation, x. Such female-symmetric labor divisions are denoted (x; y).

Any labor division (x; y) gives rise to a certain basket of food, protection, and care. The

goods produced by the male are divided equally between the n �k children, while the goods of
a female are divided equally between her own n children; the case where the goods a female

produces are divided equally between all the n �k children in the household will be discussed
in Section 3. This in turn gives rise to a certain probability that each child survives to sexual

maturity. Formally, then, one can write the survival probability of a child as a function of

the labor division and the household stucture; I write s for this survival function. Letting

M denote the function that to each household structure (n; k) cum household labor division

(x; y) associates the male�s reproductive success, I let it take the form

M (x; y; n; k) = k � n � a (n) � s (x; y; n; k) ; (1)

there is strong social control (for instance, although they are not explicitly modeled here, there may be

grand-parents who monitor how their children behave in the adult stage, or the females monitor each other).
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where the function a, which is strictly decreasing, captures the physical toll that childbearing

in�icts on a female. For simplicity, I will allow n to take any real value above 1.

The male chooses (x; y; n) 2 [0; 1]2 � [1;+1) in order to maximize M (x; y; n; k) (recall

that k is given when this choice is made). For simplicity, I assume that for all parameter

values there exists a unique solution to this problem, and that there always exists some

(x; y; n) 2 [0; 1]2 � [1;+1) for which M (x; y; n; k) > 0. Writing (x� (k) ; y� (k) ; n� (k)) for

the unique solution, and fM (k) for the reproductive success thus achieved,

fM (k) =M (x� (k) ; y� (k) ; n� (k) ; k) : (2)

I will provide a detailed analysis of the characterstics of fM (k) after having shown the role

that fM (k) plays in the male �ghting stage in the next subsection.

2.2 Male �ghting

Turning now to the male-�ghting stage, which precedes the childbearing and child-rearing

stage, to �x ideas consider to begin the simplest possible approach. Suppose that when

entering the adult stage (from the teenage years) each male has one girlfriend, and that

males are then randomly matched into pairs to play a simultaneous-move game with two

pure strategies, Fight and Peace, and payo¤s as shown in Figure 1.

Peace Fight

Peace fM (1) ;fM (1) 0;fM (2)

Fight fM (2) ; 0 1
2
fM (2) ; 1

2
fM (2)

Figure 1. Payo¤s in the one-shot Fighting game

In this game, that I call the One-round �ghting game, if both play Peace, then each gets

to marry his teenage sweetheart and each achieves reproductive success fM (1) (see (2)). If

at least one male plays Fight, then one of them gets to marry both girlfriends while the other

one becomes mateless and remains so forever. The probability that a male who plays Fight

wins, is 1 if the other plays Peace and 1/2 if the other plays Fight. The lucky male achieves

reproductive success fM (2).

Applying a standard evolutionary game theory approach, suppose that each male is

programmed to play a certain strategy in this game, a strategy that he inherited from his

father, and suppose that the payo¤s in Figure 1 represent the payo¤s in the evolutionary
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game. Further allow for mixed strategies, and write � 2 [0; 1] for the probability of playing
Fight. Now ponder the following thought experiment: suppose that a given strategy � is

used by almost everyone in the population, except for a small fraction " > 0 of individuals

who use another strategy � 0: is there any �resident�strategy � that would outperform every

possible �mutant�strategy � 0 2 [0; 1], � 0 6= �, in the sense that those who carry the resident
strategy would get a strictly higher reproductive success on average than those who carry

the mutant strategy? More speci�cally: what is the set of Evolutionarily Stable Strategies

(ESS) of the One-round �ghting game?

Applying standard results (Weibull, 1995), and recalling that fM (k) > 0 for k = 1; 2, one

immediately obtains:

Proposition 1 In the One-round �ghting game, there is either one or two evolutionarily

stable strategies: � = 1 (Fight) is always evolutionarily stable, and � = 0 (Peace) is evolu-

tionarily stable if and only if fM (1) > fM (2).

This result has implications for the kind of marital patterns that could prevail in a

population in which all males would play the same evolutionarily stable strategy. First, it

says that bigyny can always be sustained: this is because if other males are expected to

Fight, then it never pays o¤ to play Peace (note that this would be true even under the less

stark assumption that playing Peace against someone playing Fight would give a positive

probability of winning, as long as this probability would be below 1=2). Second, it says that

monogyny can be sustained if only if a male would lose from trying to steal a peaceful male�s

girlfriend, i.e., if fM (1) > fM (2).

It may seem obvious that a male would always prefer having two wives rather than one,

since this allows him to double the number of children. However, this intuition misses the

fact that when the number of children doubles, the survival probability of each child typically

decreases due to the resulting decline in paternal resources �owing to each child. But this

intuition in turn misses the fact that if a male has two wives rather than one, he can adjust

the number of children per female downward to mitigate the decline in survival probability

per child. Overall, then, it is not clear whether a male would necessarily prefer to have

two rather than one wife. Before analyzing these trade-o¤s in greater detail in the next

subsection, I propose a generalization of the One-round �ghting game.

In this generalized game there may be up to R � 2 rounds, where R 2 N. In each round,
all the males who did not yet lose a �ght are matched pairwise, and each male plays either
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Peace or Fight, exactly as above. However, by contrast to the one-round game, now there

are fewer and fewer males around as the number of rounds of �ghting increases. Hence, the

stakes are di¤erent in each round, since the number of females per male increases with every

round. Formally, let a (pure) strategy be a number r 2 f0; 1; :::; Rg, which speci�es the
number of rounds in which the male will play Fight, following which he will play Peace. I

maintain the assumptions introduced in the one-round game that (a) in a pair where both

play Peace, both survive and settle down to form a household (thereby exiting the �ghting

game); (b) in a pair where one plays Peace and the other Fight, the former loses his females

to the latter; (c) in a pair where both play Fight, one of the males loses his females to the

other, with equal probability for both. Each male is programmed to play a speci�c strategy.

In a population where all males play strategy r, each male achieves expected reproductive

success
1

2r
� fM (2r) :

For each round of �ghting, the number of females per male is doubled, and there is a prob-

ability 1/2 of winning the �ght.

The following proposition identi�es the set of locally evolutionarily stable strategies, i.e.,

strategies r that are evolutionarily stable against the two mutant strategies r0 = r � 1 and
r0 = r + 1.21

Proposition 2 In the R-round �ghting game, r = R is locally evolutionarily stable, and

r 2 f0; 1; :::; R� 1g is locally evolutionarily stable if and only if fM (2r) > fM (2r+1).

This proposition shows that the two main qualitative features of the set of evolutionarily

stable strategies in the One-round �ghting game carry over to the R-round �ghting game.

First, any level of polygyny such that each lucky male would prefer not to further double the

number of wives by way of �ghting against a peaceful rival is locally stable. In particular,

monogyny is locally stable under the same condition as in the One-shot game (too see this,

note that when r = 0 the condition fM (2r) > fM (2r+1) boils down to fM (1) > fM (2)).

Second, it never pays o¤ for a male to stop �ghting before the other males do: �never stop

�ghting�(r = R) is always locally stable.22

21Note that I restrict attention to pure strategies; this is done for simplicity.

22Note that if one were instead to look for strategies that are globally stable, i.e., stable against all

alternative strategies, the condition fM (2r) > fM �
2r+1

�
would still be necessary for a strategy r < R to be

stable.
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The set of locally evolutionarily stable strategies in the �ghting game determines the set

of polygyny rates that are sustainable:

De�nition 1 A polygyny rate k is sustainable if and only if k = 2r for some locally evolu-

tionarily stable r.

Ultimately, then, the set of polygyny rates that are sustainable in a particular society

depends on males�preferences over polygyny rates, as captured by the characteristics of the

male reproductive success function fM . These are analyzed in detail in the next subsection.
2.3 Male preferences over polygyny rates

Acquiring more wives provides a male with the ability to sire a larger number of children,

but it may also reduce the probability that each child survives to sexual maturity. Can the

latter e¤ect be strong enough to outweigh the former e¤ect and thus make the male want to

restrict the number of wives? And if so, will this tend to happen for small or large polygyny

rates? To address these questions, I study the shape of the function fM (see (2)), assuming

for simplicity that it is a continuous function of k; below I will relate the �ndings to the

results in the �ghting game, stated for integer values of k.

Thus, assume thatM is continuously di¤erentiable in (x; y; n), for any (x; y; n) 2 [0; 1]2�
[1;+1). Then, from the envelope theorem:

dfM (k)

dk
=

@M (x� (k) ; y� (k) ; n� (k) ; k)

@k
(3)

= n � a (n) �
�
s (x; y; n; k) + k � @s (x; y; n; k)

@k

�
j(x;y;n;k)=(x�(k);y�(k);n�(k);k)

:

An increase in the number of wives a¤ects male reproductive success positively by increasing

the number of children; this �rst-order e¤ect is captured by the term s (x; y; n; k) > 0. How-

ever, such an increase also a¤ects reproductive success negatively if the survival probability

drops, something which would a¤ect the children of all wives, even the inframarginal ones;

this second-order e¤ect is captured by the second term inside the square brackets. Borrowing

terminology from price theory, I de�ne the child survival elasticity as:

�s =
@s (x; y; n; k)

@k
� k

s (x; y; n; k)
(4)

=
@s (x; y; n; k)

s (x; y; n; k)

�
@k

k
:
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As is shown in the second line, this elasticity measures the percent change in survival prob-

ability relative to the percent change in the number of wives. Since

dfM (k)

dk
= [n � a (n) � s (x; y; n; k) � (1 + �s)]j(x;y;n;k)=(x�(k);y�(k);n�(k);k) ;

I conclude:

Remark 1 The sign of d
fM(k)
dk

is determined by the sign of 1 + �s:

(i) dfM(k)
dk

> 0 i¤ child survival is inelastic (�s > �1);
(ii) dfM(k)

dk
= 0 i¤ child survival is unit elastic (�s = �1);

(iii) dfM(k)
dk

< 0 i¤ child survival is elastic (�s < �1).

Hence, male preferences for polygyny rates hinge on whether child survival is elastic or

not. From the expression in the second line of (4), it is clear that the denominator, @k
k
,

becomes smaller as k increases, a feature that contributes to rendering child survival more

elastic as k increases. But if the numerator moves in the opposite direction, the net e¤ect

may be that child survival becomes less elastic as k increases. In general, it is not clear what

the net e¤ect would be. However, the child survival elasticity may be expected to depend

on a number of factors in the environment in which the population evolves: how easy is it

to �nd food? how strong is the need to protect the children from predators? how much

education does a child need to learn how to survive? etc. In order to get a grip on how

factors in the environment may a¤ect the child survival elasticity, and therefore also male

preferences over polygyny rates, I study a speci�c child survival function, which is general

yet analytically tractable.

To make the description more concrete, I use a speci�c setting from our evolutionary

past, namely, a hunter-gatherer setting (other settings can easily be imagined). The four

productive activities that the adults can engage in are hunting game, gathering berries,

caring, and protecting. Letting Gi and Hi denote the amounts of gathered and hunted food

that child i receives, and Pi and Ci the amounts of protection and care that (s)he receives,

I assume that the probability that the child (whether a boy or a girl) survives to sexual

maturity is

a (n) � S (Ci; Gi; Hi; Pi) ;

where

S (Ci; Gi; Hi; Pi) = P
�
i � C�i � (�Gi +Hi)

� ; (5)
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for �; �; � 2 (0; 1] and � > 0. This functional form captures two realistic features. First,

food, protection, and care are all essential goods: food is useless unless some protection and

some care is provided, and vice versa. Second, gathered food and hunted food are perfectly

substitutable, except for the fact that gathered food may be more important than hunted

food (if � > 1), equally important (if � = 1), or less important (if � < 1), as this may

depend on the nutritional attributes of the gathered food in the location occupied by the

population at hand. The parameters �, �, and � measure how protection, care, and total

food intake, respectively, impact survival probability. Again, these parameter values would

typically depend on the local environment: protection and care is relatively more important

if there are many predators around and if there are many dangers that children need to learn

to avoid. I assume that �
+ � � 1; as will be seen below, this ensures that S always takes a
value between 0 and 1. Furthermore, below it will be assumed that a (n) = max f0; 1� bng
for b 2 (0; 1), where 1=b can be thought of as the maximum number of children a female can
have before she dies with certainty (in which case the children die since the mother�s inputs

are essential).23

The basket (Ci; Gi; Hi; Pi) that a child receives depends not only on the total amounts

of hunted and gathered food, protection, and care produced by the adults in the household,

but also on whether these are private or public goods. Let y denote the time that the male

devotes to hunting, T � y being the time he devotes to protecting the children, and let xj
denote the time that female j = 1; :::; k devotes to gathering, and T � �xj the time that she
spends on caring, where the parameter � 2 (0; 1) measures the extent to which a female may
gather food while providing care. While food is a private good, care and protection may be

public goods; for instance, a wall around the village protects all the children equally well,

and a class about poisonous plants may bene�t several children simultaneously. Letting an

index i = 1; 2; ::K refer to the i�th child in the household, where K � kn is the total number
of children, child i receives the amount

Hi (y) =
�y

kn
(6)

of hunted food, where � > 0 is the marginal return to male e¤ort devoted to hunting, and

the amount

Gi (xi) =

xi
n
; (7)

23Here the physical toll is modeled as a scaling factor: ceteris paribus, the more children a woman has,

the smaller is the survival probability of each of her children. Alternatively, one could let the physical toll

have an impact on female productivity. This is left for future research.
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of gathered food, where 
 > 0 is the marginal return to female e¤ort devoted to gathering.24

By contrast to food, protection may be a public good. Formally, let

Pi (y) =
T � y
(kn)�

(8)

be the amount of protection that child i receives, where � 2 [0; 1] measures the extent to
which protection is a public good. In the extreme case where � = 0, protection is a pure

public good, and each child receives the full bene�t of the total amount of protection produced

by the father: Pi (y) = T � y. At the other extreme, if � = 1, protection is a fully private
good, and each child receives 1=K of the total amount produced: Pi (y) = (T � y) =K. By
a slight abuse of language, henceforth � will be referred to as the degree of publicness of

protection, where a lower � means a greater degree of publicness. Likewise, the amount of

care that child i receives is

Ci (xi) =
T � �xi
n�

; (9)

where � 2 [0; 1] measures the extent to which care is a public good. If � = 0, care is a pure
public good, while if � = 1, it is a private good. Henceforth � will be referred to as the degree

of publicness of care (where a smaller value of � implies a greater degree of publicness).

This completes the description of the setup. In the extremely long run, everything in

life, including the features and the prevalence of animals and plants eaten by humans, is

endogenous. However, the speeds at which di¤erent elements of a human society evolve,

di¤er. In the model, I assume that the production technology, the degrees of publicness of

protection and care, and the child survival probability function, are exogenous and �xed,

and I refer to the associated set of parameters as the ecology. Formally, then, the ecology is

the vector � =(�; �; 
; �; �; �; �; � ; �). The ecology determines how parental time allocations

are transformed into o¤spring success. Below it will be seen how the ecology a¤ects the set

of sustainable polygyny rates.

Fixing the number of wives k and the ecology �, and replacing Hi, Gi, Pi, and Ci in

S (Ci; Gi; Hi; Pi) with the expressions in (6), (7), (8), and (9), the child survival probability

s as a function of the female-symmetric25 household labor division (x; y), the fertility rate

24Constant returns to e¤ort are perfectly compatible with specialization, if, for instance, the marginal

return to male e¤ort devoted to gathering and to caring is strictly lower than that of a female, and the

marginal return to female e¤ort devoted to hunting and to protecting is strictly lower than that of the male.

25Thanks to the constant returns to time devoted to gathering and to care, this focus entails no loss of

generality.
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n, and the number of wives k writes

s (x; y; n; k) =

�
T � y
(kn)�

��
�
�
T � �x
n�

��
�
�
�
x

n
+
�y

kn

��
; (10)

so that the male�s reproductive success (see (1)) writes

M (x; y; n; k) = k � n � a (n) �
�
T � y
(kn)�

��
�
�
T � �x
n�

��
�
�
�
x

n
+
�y

kn

��
: (11)

For any given number of wives k, the male chooses (x; y; n) 2 [0; T ]2�N in order to maximize
this. The solution is as follows.

Proposition 3 For any ecology � and any number of wives k, there exists a unique fer-

tility rate n� and a unique female-symmetric household labor division (x� (k) ; y� (k)) that

maximizes M (x; y; n; k).

The exact expressions for x� (k), y� (k), and n� are as follows. First, the preferred fertility

rate does not depend on k:

n� = max

�
1;
1� ��� �� � �
2� ��� �� � � �

1

b

�
: (12)

For any given polygyny rate k � 1, an increase in fertility means that each child gets

less food, and less (or as much) protection and care. The ensuing decline in average child

success eventually outweighs the direct, positive impact of fertility on male reproductive

success. This trade-o¤ may be so severe that having one child per female maximizes male

reproductive success. When the preferred number of children exceeds one, it is a fraction
1��������
2�������� of the maximum number of children that a female can get (1=b), and it varies in

intuitive ways with the ecology. First, if protection and/or care becomes a more private good,

i.e., � and/or � increases, there is less protection and/or care per child, and the preferred

fertility rate declines. The parameters �, �, and � have the same qualitative e¤ect, because

an increase of any of these parameter values is as if the corresponding good became more

private in nature. Finally, the preferred fertility rate does not depend on the relative e¤ect

of food produced by the male compared to that produced by the females (�= (�
)), nor on

the economies of scope in female production (�), because while these parameters a¤ect the

males�preferred household labor division, they do not a¤ect how food and care is being

shared among the household�s children.
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Second, for the household labor division, to simplify the notation let � � �= (�
); this

ratio measures the importance of food contributed by the male relative to that contributed

by the females. Two cases arise: if �
�+�

� �,

(x� (k) ; y� (k)) =

8>><>>:
�

�T
�(�+�)

; 0
�
if k � ��(�+�)

��
(�+�)kT����T
k�(�+�+�)

; ��(�+�)T��kT
��(�+�+�)

�
if k 2

h
���
�+�
; ��(�+�)

�

i
�
0; �T

�+�

�
if k � ���

�+�
;

(13)

and if �
�+�

> �,

(x� (k) ; y� (k)) =

8>>>>><>>>>>:

(T; 0) if k � ��
��

T; �T
�+�

� k�T
�(�+�)

�
if k 2

h
���

�+���(�+�+�) ;
��
�

i�
(�+�)kT����T
k�(�+�+�)

; ��(�+�)T��kT
��(�+�+�)

�
if k 2

h
���
�+�
; ���
�+���(�+�+�)

i
�
0; �T

�+�

�
if k � ���

�+�
:

(14)

A few features are noteworthy. First, the time that the male spends on food production,

y� (k), is weakly decreasing in k. This is because an increase in the number of wives k implies

that the male�s food output is shared between a larger number of children, and, hence, to

an increase in the relative impact of time spent by females on the total amount of food that

each child receives (it�s as if the females became more productive in food production). As

a result, an increase in k makes the male adjust the labor division by reducing male food

production and increasing female food production. Eventually, for k large enough, all the

food is produced by the females (y� (k) = 0). As will be seen below this feature is linked

with the qualitative characteristics of male preferences over polygyny rates. Second, most

comparative statics results stated in the proposition are straightforward. Thus, comparing

two ecologies, with � and � 0 > � , respectively, the marginal bene�t from producing food for

both males and females is larger in the latter and therefore both the male and the female(s)

spend more time on food production in the latter ecology. Likewise, the male spends less

time and the female(s) more time on food production in ecologies where protection is more

important (a higher �), while the opposite occurs in ecologies where female care is more

important (a higher �). Similarly, in ecologies with greater economies of scope between the

two female activities (a higher �), the cost for females of allocating time away from caring is

smaller, and hence, female food production is larger; this in turn entails a smaller marginal

e¤ect of male food production on child success, and hence the male devotes less time to food

production.

Proposition 3 implies that for any ecology � and any number of wives k, the achieved

male reproductive success is uniquely determined; in other words, there is a unique value
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associated to each k (formally, fM is a function rather than a correspondence). I am therefore

in a position to turn to the main question, namely, does fM increase or decrease as k increases?

In the following proposition, which states the answer to this question,

�̂ � �
x� (1) + (1� �) �y� (1)
� [�
x� (1) + �y� (1)]

; (15)

and k̂ is implictly de�ned by the equation

(1� ��) � �
x�
�
k̂
�
= (� � 1 + ��) �

�y�
�
k̂
�

k̂
: (16)

Proposition 4 Consider a male who, for any given number of wives k � 1, chooses (x; y; n)
so as to achieve reproductive success fM (k) (see (2)). For such a male:

(i) if y� (1) = 0 or if � � �̂, then dfM(k)
dk

� 0 for all k � 1 (the inequality being strict if

y� (1) = 0 and �� 6= 1, or if � < �̂);
(ii) if y� (1) > 0 and � > �̂, then there exists k̂ > 1 such that d

fM(k)
dk

< 0 for all k 2
�
1; k̂
�

and dfM(k)
dk

> 0 for all k > k̂;

(iii) if �� = 1, then fM (1) � fM (k) for all k > 1, the inequality being strict if and only if

y� (1) > 0.

In sum, male reproductive success follows one of three possible patterns: it may be

decreasing, increasing, or non-monotonic in the polygyny rate. Speci�cally, a male would:

(i) prefer monogamy to any polygyny rate if � = � = 1, the preference being strict if

y� (1) > 0; (ii) strictly prefer monogamy to low polygyny rates, and high polygyny rates

to monogamy, if y� (1) and � > �̂; and (iii) prefer any polygyny rate k > 1 to monogamy

otherwise. Interestingly, a male cannot prefer intermediate polygyny rates to both low and

high ones.

The proposition reveals that two key forces are at play. First, the degree of publicness

of protection, �, is central. The greater is the public nature of protection (i.e., the lower is

�), the more likely is the male to bene�t from an increase in the number of wives. In the

extreme case where protection is a pure public good (� = 0), he bene�ts from an increase

in k at all polygyny levels. By continuity, the same result obtains as long as � is su¢ ciently

small (� � �̂). This result is intuitive: if protection is quite public in nature, the male can
feed many mouths while also providing protection to many children.

The second key force, which is novel in the literature, is intimately linked to the division

of labor. The proposition indeed reveals that whether the male engages in food production or
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not matters for the qualitative nature of his preferences over polygyny rates, as long as � > 0

so that protection is not a pure public good. Thus, if he devotes all his time to protection for

any polygyny rate (a su¢ cient condition for this is that y� (1) = 0) he always bene�ts from

having more wives, whereas if he engages in food production for certain family structures (i.e.,

if y� (1) > 0) his reproductive success may exhibit decreasing marginal returns to polygyny.

The reason for this is as follows. If the male engages in food production, an increase in

k means that each child gets less food and also less protection. The resulting reduction

in child survival probability outweighs the �rst-order gain from increasing k if protection

is su¢ ciently private in nature (i.e., if � is high enough), which is intuitive. Interestingly,

if this happens, it happens either for all polygyny rates (case (iii) in the proposition) or

only for low polygyny rates (case (ii)). In other words, a male cannot prefer intermediate

polygyny rates to both low and high ones. This feature is intimately linked to the division of

labor: indeed, as k becomes larger, the male shifts the labor division in favor of more female

food production and less male food production, since his time then becomes relatively more

valuable when used protecting the children. But beyond some polygyny level the labor

division shift ceases: the male then produces only protection. Adding more wives must then

be bene�cial as long as the protection is somewhat public in nature (� < 1).

Thanks to Proposition 4, I am now in a position to characterize the set of sustainable

polygyny rates.

2.4 Sustainable polygyny rates

Here I return to the case where the number of wives k is an integer. To be more precise,

since any sustainable polygyny rate equals 2r for some r 2 f0; 1; 2; :::; Rg (see De�nition
1), I restrict attention to polygyny rates k 2

�
1; 2; 4; :::; 2R

	
. Combining the results on

the male �ghting game (Proposition 2) with those on male preferences over polygyny rates

(Proposition 4), I obtain the following proposition, where k̂ is de�ned in (16):

Proposition 5 Consider a population in which males play the R-round �ghting game, and

where, in each household formed following the �ghting game, the male imposes his preferred

fertility rate as well as his preferred division of labor on his wives. Then the set of sustainable

polygyny rates is as follows:

(i) if y� (1) = 0 or if � � �̂, the only sustainable polygyny rate is k = 2R;
(ii) if y� (1) > 0 and � > �̂, any polygyny rate k 2

�
1; 2; 4; :::; 2R

	
such that k � k̂ is
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sustainable, and so is k = 2R;

(iii) if �� = 1, any polygyny rate k 2
�
1; 2; 4; :::; 2R

	
is sustainable.

This result is striking for two reasons.26 First, there is a bang-bang e¤ect: either only

the highest possible polygyny rate is sustainable (case (i)), or the highest rate as well as the

lowest rates are sustainable (case (ii)). This is explained by the fact that whenever male

preferences are non-monotonic over polygyny rates, the male prefers small to intermediate

rates. Second, whether low polygyny rates are sustainable or not is correlated with the

extent to which the male engages in food production: for low rates to be sustainable, it must

be that the male engages in food production. Male engagement in food production means

that some of his time is used producing a good that is fully private, which in turn means

that adding more wives and therefore more children lessens the male�s contribution to child

survival. Put di¤erently, male engagement in food production is a sign that the ecology is

harsh enough for the male not to focus his entire time on producing the somewhat public

good protection. This in turn is a sign that the inframarginal children may su¤er so much if

more children are added, that the male�s reproductive success declines. Since, as discussed

above, male food production declines with the number of wives, this severe trade-o¤ can

only appear for low polygyny rates. Hence, in such ecologies monogamy and low polygyny

rates (below k̂) are sustainable, while intermediate polygyny rates (slightly above k̂) are not.

If, by contrast, the ecology is generous enough for the male to produce no food, or if the

degree of publicness of protection is large enough, male reproductive success never su¤ers

from adding more wives, and each male then always bene�ts from �ghting more than other

males, and the only sustainable poygyny rate is the maximal one.

Prior to moving on to the robustness analysis, it is worth noticing that in this model a

preference for monogamy over low polygyny rates go hand in hand with low fertility, since

both are favored by a high value of �.

3 Robustness

In this section I lift some of the simplifying assumptions used in the baseline model to check

the robustness of the results. I thus study three extensions of the baseline model.

26In this discussion I disregard the extreme and unlikely case where protection is a fully private good and

the marginal return to protection is constant, i.e., �� = 1.
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3.1 Decentralization of time allocation decisions

Until now I have assumed that the male imposes his preferred fertility and labor division

on his (obedient) wives. Do the results depend on this assumption? Here I investigate this

question by giving each woman full decision-making power over her own time allocation.

The interaction within a household unfolds as follows. Given that he has successfully

fought to get the right to marry k women, the male �rst chooses the fertility n per wife.

Each female j = 1; :::; k then chooses the time allocation xj that maximizes her reproductive

success (see below), taking the male�s and the other females�time allocations as given, and

the male chooses the time allocation y that maximizes his reproductive success, taking the

females� time allocations as given. Formally, given k and n, the situation at hand is a

simultaneous-move game with k + 1 players; each female player j = 1; :::; k has strategy

xj and strategy set [0; T ], while the male player has strategy y and strategy set [0; T ]. To

complete the description of the game, it is necessary to de�ne each player�s payo¤ as a

function of the strategy pro�le (x; y), where x = (x1; :::; xk). Starting with the females, the

reproductive success of female j, and hence her payo¤ in the game, writes

FD (xj; y) = n � a (n) � sD (xj; y) ; (17)

where

sD (xj; y) =

�
T � y
(kn)�

��
�
�
T � �xj
n�

��
�
�
�
xj
n

+
�y

kn

��
: (18)

Hence, the reproductive success of the male writes

MD (x; y) =
kX
j=1

F (xj; y) =
kX
j=1

a (n) � n � s (xj; y) ; (19)

where x = (x1; :::; xk). The letterD (for decentralization) is used to di¤erentiate the survival

and male success functions from the ones in the analysis above; note that I here omit the

arguments n and k, since those are given when time allocations are chosen.

The following proposition shows that this game has a unique Nash equilibrium, which

coincides with the male�s preferred labor division described in the previous section:

Proposition 6 Suppose that in each household the male imposes some fertility rate n on his

wives, and that the male as well as each wife then chooses his or her own time allocation. For

any ecology � and any household composition (k; n), there exists a unique Nash equilibrium

time allocation,
�
xD; yD

�
, which is female-symmetric and such that xD = x� (k) and yD =

y� (k), where (x� (k) ; y� (k)) is the male�s preferred labor division (see Proposition 3).

22



In this model the interests of the male and the females are aligned when it comes to

the division of labor: for a given family composition they all want to maximize the prob-

ability that the children survive.27 This explains why there exists a Nash equilibrium that

implements the male�s preferred division of labor. Of course, alignment of interest does not

necessarily imply that there is a unique equilibrium; however, the proposition shows that

uniqueness does obtain in this setting.

In sum:

Proposition 7 Consider a population in which males play the R-round �ghting game, and

where, in each household formed following the �ghting game, the male imposes his preferred

fertility rate on his wives, and the male as well as each wife then chooses his or her own time

allocation. Suppose further that in each household the male and his wives play the unique

Nash equilibrium time allocation. Then the set of sustainable polygyny rates is the same as

in a population where the male imposes his preferred division of labor.

3.2 Allomothering

In the analysis above, it was assumed that each mother provides only for her own children;

I will refer to this as private provisioning. Would the results be qualitatively di¤erent if,

instead, women had to share the food and the care that they produce equally among all the

children in the household? Here I characterize male and female behaviors and the ensuing

implications for the set of sustainable polygyny rates under the latter assumption, a state of

a¤airs I will refer to as allomothering (Hrdy, 2009).

Using a superindex A for �allomothering,�the reproductive success of each female is

FA (x; y) = n � a (n) � sA (x; y) ; (20)

where

sA (x; y) =

�
1� y
(kn)�

��
�
 Pk

j=1 (1� �xj)
(kn)�

!�
�
 
�

Pk

j=1 xj

kn
+
�y

kn

!�
: (21)

Compared to the expression in (10), the amount of care that a child receives now depends

on the sum of the females�contributions towards the production of care. It follows that the

27In particular, there is no opportunity cost of time. The results would likely be di¤erent in a model that

allows for unfaithfulness, an issue that is left for future research.
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reproductive success of a male is

MA (x; y) = k � n � a (n) � sA (x; y) : (22)

The following proposition characterizes the set of Nash equilibrium time allocations:28

Proposition 8 Suppose that in each household the male imposes some fertility rate n on

his wives, that the male as well as each wife then chooses his or her own time allocation, and

that allomothering applies. For any ecology � and any household composition (k; n), there

exists a unique Nash equilibrium time allocation,
�
xA; yA

�
, which is female-symmetric and

identical to the one under private provisioning: xA = x� (k) and yA = y� (k).

It may come as a surprise that the equilibrium time allocation is the same as under

private provisioning, since intuition suggests that under allomothering the females would

have an incentive to free ride on each other. However, the result is readily explained by

the fact that, by assumption, females must devote all of their time to either food or care

production: in other words, there is no opportunity cost of time, and therefore no incentive

to free ride.

Although the equilibrium time allocations are the same as under private provisioning,

reproductive success is generally higher under allomothering, since now each child bene�ts

from the care produced by all the females. Formally, let ~MA (k) denote male reproductive

success as a function of the polygyny rate k under allomothering. Then:

~MA (k) = k � a (n) � n � sA (x� (k) ; y� (k)) (23)

= k�(1��) � fM (k) ;

where fM (k) is the male reproductive success under private provisioning (see (2)). An im-

mediate implication of this equation is that the preferred fertility rate is the same as under

private provisioning. Another immediate remark is that as soon as care is a somewhat public

good (� < 1), reproductive success is higher than under private provisioning. Will this have

implications for the set of sustainable polygyny rates? In the next proposition, which states

the result,

�� � �̂+ � (1� �)
�

;

28Formally, the game that is being analyzed is a simultaneous-move game with k + 1 players, where each

player has strategy set [0; T ], where the strategy of female j = 1; :::; k is denoted xj , the strategy of the male

is denoted y, and the payo¤ to female j is given in (20) while the payo¤ to the male in (22).
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and �k is implicitly de�ned by the equation

[1� ��+ � (1� �)] � �
x�
�
�k
�
= [� � 1 + ��� � (1� �)] �

�y�
�
�k
�

�k
: (24a)

Proposition 9 Consider a population in which males play the R-round �ghting game, and

where, in each household formed following the �ghting game, the male imposes his preferred

fertility rate on his wives, that the male as well as each wife then chooses his or her own

time allocation, and that allomothering applies. Then the set of sustainable polygyny rates

is as follows:

(i) if y� (1) = 0 or if � � ��, the only sustainable polygyny rate is k = 2R;

(ii) if y� (1) > 0 and � > ��, any polygyny rate k � �k in the set
�
1; 2; 4; :::; 2R

	
is sustainable,

and so is k = 2R;

(iii) if ��� = 1, any polygyny rate in the set
�
1; 2; 4; :::; 2R

	
is sustainable.

In sum, the qualitative features of the set of sustainable polygyny rates obtained under

private female provisioning, are maintained under allomothering.

3.3 Cost of �ghting

In the analysis above, �ghting entailed no cost beyond that associated with losing a �ght.

Consider again the baseline model studied in Section 2, but suppose now that �ghting entails

a cost even for the winners. Speci�cally, assume that each round of successful �ghting means

that any gain is discounted by a factor � 2 (0; 1], the baseline model corresponding to the
special case � = 1. Clearly, Proposition 2 then generalizes to:

Proposition 10 In the R-round �ghting game, r = R is locally evolutionarily stable, and

any r 2 f0; 1; :::; R� 1g such that fM (2r) > � � fM (2r+1) is also locally evolutionarily stable.

Any polygyny rate such that a male would not have an incentive to �ght more than

other males is sustainable. Hence, whenever male reproductive success fM is decreasing in

the polygyny rate, the presence of a discount factor � 2 (0; 1] makes no di¤erence: whether
� = 1 or � < 1, a male does not have an incentive to �ght more than other males. By

contrast, such a discount factor can make a di¤erence when fM is increasing in the polygyny

rate. The following additional result on the shape of fM will be instrumental to state the

general result.
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Proposition 11 Whenever male reproductive success is increasing in the number of wives,

the rate at which it increases is bounded above: dfM(k)
dk

� [n� � a (n�) � s (x� (k) ; y� (k) ; n�; k)],
with a strict inequality if and only if � > 0 or y� (k) > 0. Furthermore, the value of

the upper bound declines as k increases unless � = y� (k) = 0, in which case dfM(k)
dk

=

n� � a (n�) � s (x� (k) ; y� (k) ; n�; k), which is then a constant.

Stated di¤erently, the marginal bene�t of adding more wives cannot exceed the �rst-order

e¤ect thereof. Moreover, this �rst-order e¤ect becomes smaller as k increases as soon as such

an increase means that each child gets less protection and/or food from the father. I am

now in a position to show:

Proposition 12 Consider a population in which males play the R-round �ghting game, and

where, in each household formed following the �ghting game, the male imposes his preferred

fertility rate as well as his preferred division of labor on his wives. Suppose further that

�ghting entails a cost, modeled by way of the discount factor � 2 (0; 1]. Then there exists �̂
such that:

(A) For any � 2 (0; �̂], any polygyny rate k in the set
�
1; 2; 22; :::; 2R

	
is sustainable;

(B) For any � 2 (�̂; 1], three cases arise:
(B.i) if y� (1) = 0 or � � �̂, there exists rP 2 f0; 1; 2; :::; Rg such that any polygyny rate k
in the set

�
1; 2; 22; :::; 2R

	
which is larger or equal to 2r

P
is sustainable;

(B.ii) if y� (1) > 0 and � > �̂, there exists rM 2 f0; 1; 2; :::; Rg and rN 2
�
rM ; rM + 1; :::; R

	
such that any polygyny rate k in the set

�
1; 2; 22; :::; 2R

	
which is smaller or equal to 2r

M
or

larger or equal to 2r
N
is sustainable;

(B.iii) if �� = 1, any polygyny rate in the set
�
1; 2; :::; 2R

	
is sustainable.

An intrinsic �ghting cost tilts the balance in favor of lower polygyny rates: for instance,

even when a male would always bene�t from having more wives, polygyny rates below the

highest possible one (2R) are sustainable. In fact, if the cost of �ghting is severe enough (�

is close to 0� case (A) of the proposition), males have an incentive to stop �ghting at all

polygyny levels, and all polygyny levels are then sustainable in any ecology. Still, for � large

enough, the qualitative results obtained in the baseline model are con�rmed, in the sense

that the bang-bang e¤ect is still present: either only a subset of the highest polygyny rates

are sustainable (case (B.i)), or a subset of the highest rates as well as the lowest rates are

sustainable (case (B.ii)).
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4 Discussion

4.1 Female preferences

The approach adopted in the baseline model was a sexist one: the males are the sole decision-

makers in the �ghting as well as in the childbearing and child-rearing stages, while the females

obey the orders of their husbands. It was shown in Section 3.1 that this assumption entails no

loss of generality when it comes to decisions pertaining to the childbearing and child-rearing

stages, because in this model the female interests are aligned with those of their husbands

at that point. However, is this also true when it comes to household composition? Here I

characterize the female�s preferences over polygyny rates, by studying the shape of female

reproductive success eF (k) = fM (k)

k
; (25)

where fM (k) is de�ned in (2).

The following proposition shows that female preferences di¤er starkly from male ones:

Proposition 13 Suppose that in each household composed of one male and k wives the

preferred fertility rate n� and the preferred time allocation (x� (k) ; y� (k)) are used, and that

private provisioning applies. Then, in each ecology � the reproductive success of a female is

strictly decreasing in the polygyny rate k, unless � = y� (1) = 0, in which case it is constant

in k.

The intuition behind this result is clear: an increase in the number of wives implies that

each female�s brood gets a smaller fraction of male outputs, and this necessarily reduces fe-

male reproductive success. The only exception to this rule arises in the (arguably inexistent)

case where the totality of the male output is a pure public good: this occurs if the male

produces no food (y� (1) = 0) and protection is a pure public good (� = 0).

In sum, under private provisioning, in any ecology female reproductive success declines

as the rate of polygyny rises, and the preferred family composition of females is monogamy.

By contrast, conditional on mating, males seldom prefer monogamy. In light of Propositions

4, 5, and 13 I conclude that there exists only one case in which both males and females

are fully satis�ed with a sustainable polygyny rate, in the sense that they would not prefer

any other polygyny rate: this occurs when �� = 1, in which case both males and females

prefer monogamy to any positive rate of polygyny. For ecologies in which �
 6= 1, one of
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the following three cases applies. (A) Females are fully satis�ed but males are not: this

happens when monogamy is sustainable and males do not �ght (r�0), although conditional
on mating males would in fact prefer the largest sustainable polygyny rate (k = 2R). (B)

Males are fully satis�ed and females are maximally dissatis�ed: this happens when r = R

in the �ghting game. (C) Both males and females are dissatis�ed: this happens when males

play some 0 < r < R in the �ghting game; males may in fact be maximally dissatis�ed in

this case.

The conclusions are di¤erent under allomothering, as is shown in the next proposition (the

proof is omitted, for it is readily seen that female reproductive success under allomothering

equals k�(1��)�1 times those of a male under private provisioning, so the proof of Proposition

4 can be directly adapted to the situation at hand). Let

~� � �̂� 1� � (1� �)
�

: (26)

Proposition 14 Suppose that in each household composed of one male and k wives the

preferred fertility rate n� and the preferred time allocation (x� (k) ; y� (k)) are used, and that

allmothering applies. Then, females:

(i) prefer monogamy to any polygyny rate if � � � (1� �) =�, the preference being strict if
and only if y� (1) > 0;

(ii) strictly prefer monogamy to low polygyny rates, and high polygyny rates to monogamy,

if y� (1) > 0 and � 2 (~�; � (1� �) =�);
(iii) (weakly) prefer any polygyny rate k > 1 to monogamy if y� (1) = 0 or if � 2 [0; ~�].

While polygyny still entails a reduction in the contribution of the male to each female�s

brood, females now also derive some bene�t from there being other wives as long as care

is a somewhat public good (� < 1). Hence, female preferences under allmothering are

qualitatively similar to male preferences under private provisioning. Importantly, however,

here also the privateness of care (�) matters. If care is very private (i.e., if � is high), a female

bene�ts only a little from other wives, and she then prefers monogamy over all polygyny

rates even if protection is almost a fully public good (i.e., even for low valus of �), while

under private provisioning, protection had to be fully private (� = 1=�) for males to prefer

monogamy over all polygyny rates. But if both � and � are small, females no longer have a

strict preference for monogamy. Thus, for intermediary degrees of �aggregate privateness�

(��+ ��), female preferences are non-monotonic in the polygyny rate, and for low levels of

aggregate privateness, females prefer polygyny to monogamy.
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Figure 1: The di¤erence between male and female reproductive success under allomothering,

as a function of the polygyny rate (k) and the degree of publicness of male care (�), for

� = � = 1, � = 0:5, � = 0:75, � = 1, 
 = 0:1, � = 0:6, and n = 5, and for two di¤erent

degrees of publicness of female care: in blue, a fully private good (� = 1), and in red, a

somewhat public good (� = 0:25)

4.2 Battle of the sexes

While the fact that females and males typically have di¤erent preferences over polygyny rates

is not surprising,29 an arguably interesting by-product of the model is its ability to provide

insights about how the magnitude of the disagreement between females and males depends

on the ecology. This disagreement being literally about life and death, it may be expected

to a¤ect the quality of relations between men and women. As an illustration, Figure 1 shows

the di¤erence between the reproductive success of a lucky male and that of a female, as a

function of the degree of publicness of male care and the polygyny rate. The graph suggests

that for any �, the di¤erence increases (from zero for k = 1) as k increases. Furthermore,

for any k, the di¤erence is smaller the higher is �: in sum, in this example relations between

males and females may be expected to be more paci�c in ecologies where male care is a

relatively private good.

29This is consistent with the observation that the degree of polygyny in a society may be expected to

depend on whether females are free to choose or are coerced into polygynous marriages (Gibson and Mace,

2007, Winking et al., 2013).

29



4.3 E¢ ciency

In a distant enough evolutionary past, there were no institutions. However, once institutions

emerged, they opened the door to re�ection about what is good for society as a whole.

This might have been particularly relevant in populations with intense competition between

groups, since more e¢ cient groups may have given their members an edge in the evolutionary

race. Modeling group competition is beyond the scope of this paper.30 Here I simply derive

an e¢ ciency result, which may provide some insights regarding the direction in which group

competition may have pushed rules on polygyny rates.

The male preferences derived above apply to lucky males, i.e., preferences conditional

on being successful at mating. But evolutionary theory predicts that at birth the expected

reproductive success of males must be equal to that of females, and that the sex ratio equals

one (Fisher, 1930). Hence, the polygyny rate that maximizes the reproductive success of

males at birth� and thus behind the veil of ignorance as to who will be lucky and who

will be unlucky in the �ghting game� coincides with the polygyny rate that maximizes

female reproductive success. Female preferences are thus of particular interest when it comes

to understanding how resources may be utilized e¢ ciently at the level of the group. In

a nutshell, my analysis suggests that while group competition may be expected to favor

monogamy in many ecologies, allomothering sometimes makes polygyny attractive for the

group, even absent the fact that polygyny makes some male labor available for �ghting wars.

Formally, Propositions 13 and 14 imply:

Corollary 1 Under private provisioning, monogamy (k = 1) is e¢ cient in any ecology �,

and it is the unique e¢ cient polygyny rate for any ecology such that � � y� (1) > 0. Under
allomothering, monogamy is e¢ cient in any ecology � such that � � � (1� �) =� (and it is
the unique e¢ cient polygyny rate if, moreover, y� (1) > 0), while maximal polygyny (k = 2R)

is the unique e¢ cient polygyny rate if � < � (1� �) =�.

There are two striking aspects here. First, polygyny can be e¢ cient only under allo-

mothering. Second, there is bang-bang result under allomothering: it is either minimal or

maximal polygyny that is e¢ cient. The intuition is clear: either the negative e¤ect of dilut-

ing male outputs over more than one female�s children always outweighs the positive e¤ect

30Henrich, Boyd, and Richerson (2012) show that monogamy is favored by between-group competition if

it leads to a reallocation of resources from wasteful activties to paternal investment.
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of sharing total female outputs among all the children in the household, or the former e¤ect

is small enough to be outweighed for high enough polygyny rates (when the male devotes all

his time to protection), which happens if protection is public enough in nature.31

5 Conclusion

This paper proposes a novel approach to the study of the evolution of polygyny. The key

argument is that in our evolutionary past male preferences over polygyny rates would have

depended on the ecology in which the population at hand was evolving, that these prefer-

ences in turn determined males�incentives to �ght with each other to acquire more wives,

incentives that ultimately may have shaped e¤ective polygyny rates. The originality of the

model stems from its ability to link the preferences to both the ecology and the division of

labor between males and females. In particular, the model predicts that either high or low,

but not intermediate, polygyny rates will tend to arise absent institutional involvement. Fur-

thermore, the analysis reveals that the outcome is intimately linked to the extent to which

males engage in food production, monogamy being sustainable only in ecologies in which

males engage in food production. This is because food is a private good, which implies that

the most severe drop in average child survival probability that results from adding wives

arises when the male spends time on food production.

The results challenge the view that the rise of monogamy is a mystery in a world driven by

evolutionary forces. Indeed, they instead suggest that there are two types of environments:

one in which natural selection favors both monogamy and high polygyny rates over interme-

diate polygyny rates, and one in which natural selection favors a high polygyny rate. In the

former type of environment, in our evolutionary past males simply did not achieve a higher

reproductive success by �ghting at the margin to get more than one wife; the associated lack

of incentive for males to compete against each other may have led to egalitarian societies

and the rise of monogamy a long time ago, prior to any intervention by rulers (Lagerlöf,

2010, De La Croix and Mariani, 2015). Interestingly, in this type of environment, there is

typically also a preference for low fertility rates. Hence, in such environments, even if male

heterogeneity eventually arose thanks to the intergenerational transmission of wealth, the

31Interestingly, the propensity for monogamy to be more e¢ cient than some levels of polygyny goes hand

in hand with the propensity for low fertility rates to be e¢ cient, since both are driven by a low average

publicness of care.
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population growth may not have been high enough to sustain polygyny through a mismatch

between male and female mating age, as it may have done in Africa (Tertilt, 2006). In

sum, the results suggest that human societies may have split into essentially two groups a

long time ago, the (mainly) monogamous ones and the highly polygynous ones, depending

on the ecology in which their populations had evolved. This split may in turn have laid

the basis for di¤erential success of religions, depending on their attitude towards polygynous

marriage. Indeed, I would even like to argue that this is consistent with the pattern observed

today in the two most represented religions today, Christianity and Islam: one imposes strict

monogamy while the other allows not for two or three wives, but four.

The analysis relies on a model from which many arguably important aspects were left out.

These should be included in future research. Speci�cally, it would be interesting to embed

households more explicitly in a market economy and allow for wealth accumulation over

generations. Allowing for uncertainty in food production, risk sharing within the extended

family, and teamwork between males might also be fruitful. Finally, the theoretical model

may perhaps also be extended in view of studying the evolution of preferences of mothers

and fathers for their children and for each other.
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6 Appendix

6.1 Proof of Proposition 2

Begin by considering some resident strategy r 2 f0; 1; :::; R� 1g, and suppose that the
mutant strategy r0 = r + 1 is present in a share " > 0 of the population. In this population

all males play Fight in the �rst r rounds; hence, in each round until round r, the male

population halves, but the share of residents who are still in the race is 1 � ". Consider
now round r + 1. In this round, residents play Peace while mutants play Fight. Thus, the

expected reproductive success of a resident who is alive at the beginning of round r + 1 is

(1� ") � 1
2r
� fM (2r) + " � 0:

With probability 1� " he is matched with another resident, in which case both play Peace,
both survive and each gets to keep the 2r women that he had at the beginning of round

r + 1; otherwise he is matched with a mutant, in which case he gets 0 since he plays Peace

while the mutant plays Fight. The expected payo¤ to a mutant in round r + 1 is

(1� ") � 1
2r
� fM �

2r+1
�
+ " � 1

2r+1
� fM �

2r+1
�
:

If matched with a resident, he wins for sure, and gets 2r+1 women; if matched with another

mutant, he gets 2r+1 women with probability 1/2. Since 1
2r+1

�fM (2r+1) > 0, a necessary and

su¢ cient condition for strategy r to be evolutionarily stable against r0 = r + 1 is that

fM (2r) > fM �
2r+1

�
: (27)

Turning now to the mutant strategy which consists in starting to play Peace one round

before residents do, consider some r 2 f1; :::; Rg, and suppose that the mutant strategy
r0 = r � 1 is present in a share ". In this population all males play Fight for r � 1 rounds,
and at the beginning of round r there is still a share 1 � " of residents and a share " of
mutants. In round r the expected payo¤ to a resident is

(1� ") � 1
2r
� fM (2r) + " � 1

2r�1
� fM (2r) :

With probability " he is matched with a mutant, in which case he survives with certainty to

round r + 1. Otherwise he is matched with another resident, in which case both play Fight.

In round r + 1 there will only be residents around, so any resident who survives to round

r + 1 gets 2r women. The expected payo¤ to a mutant in round r is

(1� ") � 0 + " � 1

2r�1
� fM �

2r�1
�
:
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Since 1
2r
� fM (2r) > 0, it is immediate that any r 2 f1; :::; Rg is evolutionarily stable against

mutant strategy r0 = r � 1.

6.2 Proof of Proposition 3

To begin, note that the male�s maximization problem can be treated as two separate maxi-

mization problems, one for n and one for (x; y), since the objective function can be written

M (x; y; n; k) = k1��� � g (n) � ~s (x; y) ; (28)

where

g (n) = n1�������� � a (n) (29)

and

~s (x; y) = (T � y)� � (T � �x)� �
�
�
x+

�y

k

��
: (30)

Speci�cally, choosing (x; y; n) 2 [0; T ]2 � [1;+1) to maximize M (x; y; n; k) boils down to

choosing n 2 [1;+1) to maximize g (n) and (x; y) 2 [0; T ]2 to maximize ~s (x; y).

Starting with the choice of (x; y), note �rst that y� 6= T , since for any x 2 [0; T ],

~s (x; T ) = 0 while ~s (x; y) > 0 for any y 2 (0; T ). Moreover, (x�; y�) 6= (0; 0), since ~s (0; 0) = 0
while ~s (x; y) > 0 for any (x; y) 2 [0; T ] � (0; T ). Next, since ~s is strictly concave in (x; y),
it is su¢ cient to study the two �rst-order partial derivatives to determine (x�; y�). Starting

with y:

@~s (x; y)

@y
=

��

k
� (T � y)� � (T � �x)� �

�
�
x+

�y

k

���1
(31)

�� (T � y)��1 (T � �x)� �
�
�
x+

�y

k

��
:

Dividing this by the strictly positive term (T � y)��1 � (T � �x)� �
�
�
x+ �y

k

���1
and simpli-

fying, one obtains that the sign of @~s(xj ;y)
@y

is the same as the sign of

T�� � k��
x� � (�+ �) y: (32)

This expression is strictly decreasing in y. It is non-negative for all y 2 [0; T ] i¤ it is non-
negative for y = T , i.e., if T�� � k��
x � � (�+ �) � 0, which is false. The expression in
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(32) is non-positive for all y 2 [0; T ] i¤ it is non-positive for y = 0, i.e., i¤ T�� � k��
x � 0,
or

x � T��= (k��
) � x1: (33)

Thus, if x 2 (0; x1), there exists a unique y such that the expression in (32) equals zero:

y =
T�

�+ �
� k��


� (�+ �)
x: (34)

In sum, (
y� = 0 if x � x1

y� = T�
�+�

� k��

�(�+�)

x if x 2 [0; x1] :
(35)

Turning now to x:

@~s (x; y)

@x
= ��
 � (T � y)� � (T � �x)� �

�
�
x+

�y

k

���1
(36)

� (T � y)� � �� � (T � �x)��1 �
�
�
x+

�y

k

��
:

Dividing this by the strictly positive term (T � y)� � (T � �x)��1 �
�
�
x+ �y

k

���1
and simpli-

fying, one obtains that the sign of @~s(x;y)
@x

is the same as the sign of

Tk��
 � (� + �) k�
�x� ���y: (37)

This expression is strictly decreasing in x. It is non-negative for all x 2 [0; T ] i¤ it is

non-negative for x = T , i.e., if Tk��
 � (� + �) k�
�X � ���y � 0, i.e., i¤

y �
�
k��


���
� (� + �) k�


��

�
T � y0: (38)

Note that y0 � 0 i¤ �
�+�

� �: The expression in (37) is non-positive for all x 2 [0; T ] i¤ it is
non-positive for x = 0, i.e., i¤ Tk��
 � ���y � 0, or

y � Tk��
= (���) � y1: (39)

Thus, if y 2 (max f0; y0g ; y1), there exists a unique x such that the expression in (37) equals
zero:

x =
T�

(� + �)�
� ��

(� + �) k�

y: (40)

In sum, 8>><>>:
x� = 0 if y � y1

x� = T�
(�+�)�

� ��
(�+�)k�


y if y 2 [max f0; y0g ; y1]
x� = T if y � max f0; y0g .

(41)

35



Combining (35) and (41), two cases may be distinguished, depending on whether y0 � 0 or
y0 > 0. First, if �

�+�
� � (i.e., if y0 � 0),

(x� (k) ; y� (k)) =

8>><>>:
�

�T
�(�+�)

; 0
�
if k � ��(�+�)

�
��
(�+�)kT����T
k�(�+�+�)

; ��(�+�)T��kT
��(�+�+�)

�
if k 2

h
���

�
(�+�)
; ��(�+�)

�
�

i
�
0; �T

�+�

�
if k � ���

�
(�+�)
;

(42)

Second, if �
�+�

> � (i.e., if y0 > 0)

(x� (k) ; y� (k)) =

8>>>>><>>>>>:

(T; 0) if k � ��
�
��

T; �T
�+�

� k�T
�(�+�)

�
if k 2

h
���

�
[�+���(�+�+�)] ;
��
�
�

i�
(�+�)kT����T
k�(�+�+�)

; ��(�+�)T��kT
��(�+�+�)

�
if k 2

h
���

�
(�+�)
; ���
�
[�+���(�+�+�)]

i
�
0; �T

�+�

�
if k � ���

�
(�+�)
:

(43)

Turning now to the choice of n, one obtains

g0 (n) = (1� ��� �� � �) (1� bn) � n�������� � bn1�������� ;

which implies that two cases arise. First, if 1�������� � 0, g0 (n) < 0 for all n 2 [1;+1),
which implies that n� = 1. Second, if 1� ��� �� � � > 0,

g00 (n) = (1� ��� �� � �)
�
� (��+ �� + �) (1� bn)n���������1 � 2bn��������

�
is strictly negative, so that either n� = 1 (if g0 (1) � 0), or there exists n > 1 that satis�es
the necessary �rst-order condition for an interior solution, g0 (n) = 0. Since g0 (n) = 0 i¤

n = 1��������
(2��������)b , the solution writes:

n� = max

�
1;

1� ��� �� � �
(2� ��� �� � �) b

�
:

6.3 Proof of Proposition 4

Using the notation introduced in the proof of Proposition 3, and letting

s� (x� (k) ; y� (k) ; k) = [T � y� (k)]� � [T � �x� (k)]� �
�
�
x� (k) +

�y� (k)

k

��
;

one obtains the following expression for male reproductive success as a function of k (see

equation (2)):

fM (k) = M (x� (k) ; y� (k) ; n�; k) (44)

= g (n�) � k1��� � s� (x� (k) ; y� (k) ; k) :

36



Upon dividing the expression in (44) by the strictly positive constant g (n�), one obtains

that d
fM(k)
dk

has the same sign as

(1� ��) � k��� � s� (x� (k) ; y� (k) ; k) (45)

+k1��� � ds
� (x� (k) ; y� (k) ; k)

dk
;

where

ds� (x� (k) ; y� (k) ; k)

dk
=

@~s (x; y)

@x

����
(x;y)=(x�(k);y�(k))

� @x
� (k)

@k
(46)

+
@~s (x; y)

@y

����
(x;y)=(x�(k);y�(k))

� @y
� (k)

@k

+
@s� (x� (k) ; y� (k) ; k)

@k

(for the de�nition of ~s (x; y), see (30)). From the proof of Proposition 3, one obtains

@~s (x; y)

@x

����
(x;y)=(x�(k);y�(k))

� @x
� (k)

@k
=
@~s (x; y)

@y

����
(x;y)=(x�(k);y�(k))

� @y
� (k)

@k
= 0;

so that (46) reduces to

ds� (x� (k) ; y� (k) ; k)

dk
=

@s� (x� (k) ; y� (k) ; k)

@k
(47)

= ���y
� (k)

k2
� [T � y� (k)]� � [T � �x� (k)]� �

�
�
x� (k) +

�y� (k)

k

���1
= ���y

� (k)

k2
�
�
�
x� (k) +

�y� (k)

k

��1
� s� (x� (k) ; y� (k) ; k) :

Plugging this expression into that in (45), dividing by the strictly positive term s� (x� (k) ; y� (k) ; k)�
k��� �

h
�
x� (k) + �y�(k)

k

i�1
, and rearranging the terms, one obtains that d

fM(k)
dk

has the same

sign as

A (k) � (1� ��) �
�
�
x� (k) +

�y� (k)

k

�
� � � �y

� (k)

k
: (48)

Note the following:

Remark 1. For any (�; �) 2 [0; 1] � (0; 1], 1 � �� � 0 . Furthermore, 1 � �� = 0 if and
only if � = � = 1, in which case A (k) has the same sign as �y� (k). The remaining
remarks all pertain to the case � � � 6= 1.
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Remark 2. The term �
x� (k)+ �y�(k)
k
, which is the total amount of food produced for each

brood of n� children, writes

�
x� (k) +
�y� (k)

k
=

8>><>>:
�
�T
�(�+�)

if k � ��(�+�)
�
�

�(�
k+��)T
k�(�+�+�)

if k 2
h

���
�
(�+�)

; ��(�+�)
�
�

i
��T

k(�+�)
if k � ���

�
(�+�)

(49)

if �
�+�

� �, and

�
x� (k) +
�y� (k)

k
=

8>>>>><>>>>>:

�
T if k � ��
�
�

�(�
k+�)T
k(�+�)

if k 2
h

���
�
[�+���(�+�+�)] ;

��
�
�

i
�(�
k+��)T
k�(�+�+�)

if k 2
h

���
�
(�+�)

; ���
�
[�+���(�+�+�)]

i
��T

k(�+�)
if k � ���

�
(�+�)

(50)

if �
�+�

> �. In either case, this term is always strictly positive. Furthermore, it is

strictly decreasing in k whenever y� (k) > 0 and constant in k whenever y� (k) = 0.

For further use below, let ~k � 0 denote the threshold value such that y� (k) > 0 i¤

k < ~k, and y� (k) = 0 i¤ k � ~k (note that ~k may be smaller than 1):

~k �
(

��
�
�

if �
�+�

> �
��(�+�)
�
�

if �
�+�

� �:
(51)

Remark 3. y�(k)
k
is strictly decreasing in k for any k < ~k and constant in k for any k � ~k.

Remark 4. Suppose that ~k > 1. Then A (k) changes sign at most once for k 2 [1; ~k).

Indeed, suppose that there exists some k̂ 2 [1; ~k) such that A
�
k̂
�
= 0, i.e.,

(1� ��) � �
x�
�
k̂
�
= (� � 1 + ��) �

�y�
�
k̂
�

k̂
: (52)

(Note that k̂ must indeed be strictly smaller that ~k since A (k) > 0.for any k � ~k.)

Note that since �
x� (k) + �y�(k)
k

> 0 for all k, and since (1� ��) � �
 > 0, both

the left-hand side and the right-hand side of this expression must be strictly positive.

Then, since x� (k) is increasing in k and
�y�(k̂)
k̂

is decreasing in k, it must be that

(1� ��) � �
x�
�
k̂
�
> (� � 1 + ��) � �y

�(k̂)
k̂

for any k > k̂.

Remarks 1 - 4 together imply:

A. If �� = 1 and y� (1) = 0, then dfM(k)
dk

= 0 for all k � 1.
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B. If �� = 1 and y� (1) > 0, then dfM(k)
dk

< 0 for all k 2 [1; ~k) and dfM(k)
dk

= 0 for all k � ~k.

C. If �� < 1 and y� (1) = 0, then dfM(k)
dk

> 0 for all k � 1.

D. If �� < 1 and y� (1) > 0, then dfM(k)
dk

> 0 for all k � ~k > 1. Moreover, a su¢ cient

condition for fM to be non-monotonic in k is that dfM(k)
dk

���
k=1

< 0, which is true if and

only if

(1� ��) [�
x� (1) + �y� (1)] < ��y� (1) : (53)

Because x� (1) and y� (1) do not depend on �, and since �
x� (1) + �y� (1) > 0, the

left-hand side can be viewed as an a¢ ne and strictly decreasing function of �, which

takes the value 0 for � = 1=� and the value �
x� (1) + �y� (1) > 0 for � = 0. Hence,

(53) is equivalent to

� >
�
x� (1) + (1� �) �y� (1)
� [�
x� (1) + �y� (1)]

� �̂: (54)

Because A (k) changes sign at most once (see Remark 4), the condition � > �̂ is

also necessary for fM to be non-monotonic in k. Furthermore, if � > �̂, there exists

k̂ 2
�
1; ~k
�
such that dfM(k)

dk
< 0 for all k 2 [1; k̂), dfM(k)

dk
< 0 if k = k̂, and dfM(k)

dk
> 0

for all k > k̂. Finally, if � � �̂, dfM(k)
dk

� 0 for all k � 1, with a strict inequality for all
k � 1 if and only if � < �̂.

6.4 Proof of Proposition 5

Recall from Proposition 2 that any r 2 f0; 1; :::; R� 1g such that fM (2r) > fM (2r+1) is locally

evolutionarily stable. Thus, any k 2
�
20; 21; 22; :::; 2R

	
such that dfM(k)

dk
< 0 is sustainable,

and so is k = 2R (see Proposition 2).

6.5 Proof of Proposition 6

A strategy pro�le
�
xD1 ; x

D
2 ; :::; x

D
k ; y

D
�
�
�
xD; yD

�
is a Nash equilibrium if and only if(

xDj 2 argmaxxj2[0;1] a (n) � n � sD
�
xj; yD

�
8j = 1; :::; k

yD 2 argmaxy2[0;1] a (n) � n �
Pk

j=1 s
D
�
xDj ; y

�
;

(55)

where (from (18))

sD (xj; y) =

�
T� y
(kn)�

��
�
�
T� �xj
n�

��
�
�
�
xj
n

+
�y

kn

��
: (56)
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To begin, note that y = T cannot be part of an equilibrium strategy pro�le. Suppose,

to the contrary, that
�
xD; yD

�
=
�
xD;T

�
for some xD 2 [0;T]k. Then sD

�
xDj ; y

D
�
= 0 for

any xDj 2 [0;T], while for any y 2 (0;T), sD
�
xDj ; y

�
> 0. Similarly,

�
x�; yD

�
= (0; 0), where

0 =(0; 0; :::; 0), cannot be an equilibrium strategy pro�le. Indeed, sD (0; 0) = 0, while, for

any y 2 (0;T), sD (0; y) > 0.

Next, it is straightforward to verify that sD (xj; y) is strictly concave in xj. This implies

that for each y 2 [0;T) there is a unique xj that maximizes sD (xj; y), implying that any
equilibrium must be female-symmetric. Hence, it is su¢ cient to use a two-dimensional

vector,
�
xD; yD

�
, to describe any equilibrium strategy pro�le. Noting that the term a (n) � n

is irrelevant, and that for xD1 = ::: = x
D
k = x

D,
Pk

j=1 s
D
�
xDj ; y

�
= k � sD

�
xD; y

�
, the system

of k + 1 equations (6) reduces to the following system of two equations:(
xD 2 argmaxx2[0;T] sD

�
x; yD

�
yD 2 argmaxy2[0;T] sD

�
xD; y

�
;

(57)

where

sD (x; y) =

�
T� y
(kn)�

��
�
�
T� �x
n�

��
�
�
�
x

n
+
�y

kn

��
: (58)

Note that, in fact, then, the original k + 1-player game may be viewed as a game between

one male and one female; since the payo¤ functions are continuous and the strategy spaces

are compact and convex, equilibrium existence is guaranteed.

It has already been noted that for each male time allocation y 2 [0;T), there exists a
unique x that is a best response for the female to y. Likewise, for each female time allocation

x 2 [0;T], s is strictly concave in y, implying that for each x 2 [0;T], there exists a unique
y that is a best response for the male to x. Moreover,

sD (x; y) =
1

(kn)�� n��n�
� (T� y)� � (T� �x)� �

�
�
x+

�y

k

��
:

Letting ~sD (x; y) = (T� y)� � (T� �x)� �
�
�
x+ �y

k

��
, it is clearly su¢ cient to study the

�rst-order partial derivatives of ~sD (x; y) to determine the best response functions.

Thus, for the male:

@~sD (x; y)

@y
=

��

k
� (T� y)� � (T� �x)� �

�
�
x+

�y

k

���1
(59)

�� (T� y)��1 (T� �x)� �
�
�
x+

�y

k

��
:
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Dividing this by the strictly positive term (T� y)��1 � (T� �x)� �
�
�
x+ �y

k

���1
and simpli-

fying, one obtains that the sign of @~s
D(xj ;y)

@y
is the same as the sign of

T�� � k��
x� � (�+ �) y: (60)

This expression is strictly decreasing in y. It is non-negative for all y 2 [0;T] i¤ it is non-
negative for y = T, i.e., if T�� � k��
x � � (�+ �) � 0, which is false. The expression in
(60) is non-positive for all y 2 [0;T] i¤ it is non-positive for y = 0, i.e., i¤T�� � k��
x � 0,
or

x � x1;

where x1 was de�ned in (33). Thus, if x 2 (0; x1), there exists a unique y such that the
expression in (60) equals zero:

y =
T�
�+ �

� k��


� (�+ �)
x: (61)

Hence, the male�s best response to the female strategy x (where x is chosen by each of the

k females) is: (
ym = 0 if x � x1

ym = T�
�+�

� k��

�(�+�)

x if x 2 [0; x1] :
(62)

Turning now to the female:

@~sD (x; y)

@x
= ��
 � (T� y)� � (T� �x)� �

�
�
x+

�y

k

���1
(63)

� (T� y)� � �� � (T� �x)��1 �
�
�
x+

�y

k

��
:

Dividing this by the strictly positive term (T� y)� � (T� �x)��1 �
�
�
x+ �y

k

���1
and simpli-

fying, one obtains that the sign of @~s
D(x;y)
@x

is the same as the sign of

Tk��
 � (� + �) k�
�x� ���y: (64)

This expression is strictly decreasing in x. It is non-negative for all x 2 [0;T] i¤ it is

non-negative for x = T, i.e., if Tk��
 � (� + �) k�
�T� ���y � 0, i.e., i¤

y � y0;

where y0 was de�ned in (38). The expression in (64) is non-positive for all x 2 [0;T] i¤ it is
non-positive for x = 0, i.e., i¤ Tk��
 � ���y � 0, or

y � y1;
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where y1 was de�ned in (39). Thus, if y 2 (max f0; y0g ; y1), there exists a unique x such
that the expression in (64) equals zero:

x =
T�

(� + �)�
� ��

(� + �) k�

y: (65)

Hence, a female�s best response to the male strategy y is:8>><>>:
xf = 0 if y � y1

xf = T�
(�+�)�

� ��
(�+�)k�


y if y 2 [max f0; y0g ; y1]
xf = 1 if y � max f0; y0g .

(66)

Noting that ym is linear and strictly decreasing in x (whenever x 2 [0; x1]), and that xf

is linear and strictly decreasing in y (whenever y 2 [y0; y1]), a necessary and su¢ cient

condition for equilibrium to be unique is that the (absolute value of the) slope of the male�s

best response curve be strictly smaller than the (absolute value of the) slope of the female�s

best response curve, which is true:
��dym
dx

�� = k��

�(�+�)

< (�+�)k�

��

=
���1=�dxfdy ����.

Hence, by combining (62) and (66), one gets the unique Nash equilibrium strategy pro�le�
xD; yD

�
. By comparing (62) to (35) and (66) to (41), it is immediate that xD = x� (k) and

yD = y� (k).

6.6 Proof of Proposition 8

For the purpose of this proof some additional notation is introduced. From equation (21)

it is clear that, for any given female it is only the sum of the e¤orts of the other females

that matter, and not how these e¤orts are distributed among these other females. As a

result, when it is necessary to single out how sA depends on the e¤ort of some female under

consideration, say female j, one can write sA (xj;x�j; y), where xj is the e¤ort of the female

at hand, and x�j is the vector of the other females�e¤orts.

A strategy pro�le
�
xA1 ; x

A
2 ; :::; x

A
k ; y

A
�
is a Nash equilibrium if and only if(

xAj 2 argmaxxj2[0;1] n � a (n) � s
�
xj;x

A
�j; y

A
�

8j = 1; :::; k
yA 2 argmaxy2[0;1] k � n � a (n) � s

�
xA; y

�
;

(67)

where (from (21))

sA (xj;x�j; y) =

�
1� y
(kn)�

��
�
 
1� �xj +

P
i6=j (1� �xi)

(kn)�

!�

�

24�

h
xj +

P
i6=j xi

i
kn

+
�y

kn

35�

42



and

sA (x; y) =

�
1� y
(kn)�

��
�
 Pk

j=1 (1� �xj)
(kn)�

!�
�
 
�

Pk

j=1 xj

kn
+
�y

kn

!�
:

Note �rst that y = 1 cannot be part of an equilibrium strategy pro�le. Suppose, to the

contrary, that
�
xA; yA

�
=
�
xA; 1

�
for some xA 2 [0; 1]k. Then sA

�
xA; yA

�
= 0, while, for

any y 2 (0; 1), sA
�
xA; y

�
> 0. Similarly,

�
xA; yA

�
= (0; 0), where 0 =(0; 0; :::; 0), cannot be

an equilibrium strategy pro�le. Indeed, sA (0; 0) = 0, while, for any y 2 (0; 1), sA (0; y) > 0.

Next, it is straightforward to verify that for each
�
xA�j; y

A
�
2 [0; 1]k�1�[0; 1), sA

�
xj;x

A
�j; y

A
�

is strictly concave in xj. This implies that any equilibrium must be female-symmetric. To

see this, suppose to the contrary that there exists some equilibrium in which k0 � 1 females
choose x0 while k00 females choose x00 > x0 (and where k0 + k00 = k). Then, it must be that

each female j is indi¤erent between x0 and x00. But strict concavity of sA in xj implies that

for any x000 2 (x0; x00), a female playing x000 rather than x0 achieves a strictly higher payo¤.

Finally, note that for each xA 2 [0; 1]k, sA
�
xA; y

�
is strictly concave in y.

Because any equilibrium is female-symmetric, any equilibrium srategy pro�le may be fully

described by a two-dimensional vector, denoted
�
xA; yA

�
. Furthermore, since sA (xj;x�j; y)

is strictly concave in xj for each (x�j; y) 2 [0; 1]k�1 � [0; 1), and sA (x; y) is strictly con-
cave in y for each x 2 [0; 1]k it is su¢ cient to analyze the �rst-order partial derivatives

@sA (xj;x�j; y) =@xj and @sA (x; y) =@y to determine the best response functions of the fe-

males and the male.

Writing xA�j to denote the (k � 1)-dimensional vector whose components all equal xA,
and xA to denote the k-dimensional vector whose components all equal xA, and noting that

the terms n � a (n), k � n � a (n), and 1

(kn)��+��+�
are irrelevant, female-symmetry implies that

the system of k + 1 equations (67) reduces to the following system of two equations:(
xA 2 argmaxxj2[0;1] (kn)

��+��+� � sA
�
xj;x

A
�j; y

A
�

yA 2 argmaxy2[0;1] (kn)��+��+� � sA
�
xA; y

�
;

(68)

where

(kn)��+��+� � sA
�
xj;x

A
�j; y

A
�
=

�
1� yA

�� � �1� �xj + (k � 1) �1� �xA��� (69)

�
�
�

�
xj + (k � 1)xA

�
+ �yA

��
and

(kn)��+��+� � sA
�
xA; y

�
= (1� y)� �

�
k
�
1� �xA

��� � ��
kxA + �y�� : (70)
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Next, disregarding the strictly positive term (kn)��+��+� , the sign of @sA
�
xj;x

A
�j; y

A
�
=@xj

is studied in order to determine a female�s best response to
�
xA�j; y

A
�
. It is straightforward to

verify that upon division by
�
1� yA

��
> 0 and simpli�cation, the sign of

@sA(xj ;xA�j ;yA)
@xj

����
xj=xA

is the same as the sign of

k�+��1 � ��
 �
�
1� �xA

�� � ��
xA + �yA
k

���1
(71)

�k�+��1 � �� �
�
1� �xA

���1 � ��
xA + �yA
k

��
;

which, since k�+��1 > 0, is proportional to and has the same sign as the expression in

(63), which was used to determine the equilibrium time allocation for a female under private

property. Hence, xA = x� (k). It follows directly that yA = y� (k) as well.

6.7 Proof of Proposition 9

The proof is based on the remark that the reproductive success achieved by a male living in

a household with k females under allomothering in an ecology � =(�; �; 
; �; �; �; �; � ; �),

~MA (k) = k�(1��) � fM (k) (72)

= k1���+�(1��) � g (n) � [1� y� (k)]� � [1� �x� (k)]� �
�
�
x� (k) +

�y� (k)

k

��
;

is the same as that achieved by a male living in a household with k females under private

provisioning in an ecology �0=(�0; �; 
; �; �; �; �; � ; �) where �0 = �� �(1��)
�
, as can be seen

by replacing �0 by �� �(1��)
�

in

fM (k) = k � g (n) �
�
1� y� (k)
k�0

��
� [1� �x� (k)]� � (73)�

�
x� (k) +
�y� (k)

k

��
:

The logic followed to determine the shape of fM can therefore be applied here to determine

the shape of ~MA. Speci�cally, one obtains that d
~MA(k)
dk

has the same sign as

B (k) � [1� ��+ � (1� �)] �
�
�
x� (k) +

�y� (k)

k

�
� � � �y

� (k)

k
: (74)

Suppose that ~k > 1 (for the de�nition of ~k see (51)). Then B (k) changes sign at most once

for k 2 [1; ~k). Indeed, suppose that there exists some �k 2 [1; ~k) such that B
�
�k
�
= 0, i.e.,

[1� ��+ � (1� �)] � �
x�
�
�k
�
= [� � 1 + ��� � (1� �)] �

�y�
�
�k
�

�k
: (75)
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(Note that �k must indeed be strictly smaller that ~k since B (k) > 0.for any k � ~k.) Note that
since �
x� (k)+ �y�(k)

k
> 0 for all k, and since [1� ��+ � (1� �)] ��
 > 0, both the left-hand

side and the right-hand side of this expression must be strictly positive. Then, since x� (k) is

increasing in k and
�y�(k̂)
k̂

is decreasing in k, it must be that [1� ��+ � (1� �)] ��
x�
�
�k
�
>

[� � 1 + ��� � (1� �)] � �y
�(�k)
�k

for any k > �k. Moreover, since 1� ��+ � (1� �) > 1� ��
and � �1+���� (1� �) < � �1+�� for any � (1� �) > 0, it follows that if � (1� �) > 0
then �k > k̂ (for the de�nition of k̂, see (52)).

Arguments similar to those used in the proof of Proposition 5) lead to the following

conclusions:

A. If ��� = 1 and y� (1) = 0, then d ~MA(k)
dk

= 0 for all k � 1.

B. If ��� = 1 and y� (1) > 0, then d ~MA(k)
dk

< 0 for all k 2 [1; ~k) and d ~MA(k)
dk

= 0 for all k � ~k.

C. If ��� < 1 and y� (1) = 0, then d ~MA(k)
dk

> 0 for all k � 1.

D. If ��� < 1 and y� (1) > 0, then d ~MA(k)
dk

> 0 for all k � ~k > 1. Moreover, a su¢ cient

condition for ~MA to be non-monotonic in k is that d ~MA(k)
dk

���
k=1

< 0, which is true if and

only if

[1� ��+ � (1� �)] [�
x� (1) + �y� (1)] < ��y� (1) : (76)

Because x� (1) and y� (1) do not depend on �, and since �
x� (1)+�y� (1) > 0, the left-

hand side can be viewed as an a¢ ne and strictly decreasing function of �, which takes

the value 0 for � = [1 + � (1� �)] =� and the value [1 + � (1� �)] [�
x� (1) + �y� (1)] >
0 for � = 0. Hence, (76) is equivalent to

� >
[1 + � (1� �)] �
x� (1) + [1 + � (1� �)� � ] �y� (1)

� [�
x� (1) + �y� (1)]
� ��:

Note that

�� =
�
x� (1) + (1� �) �y� (1)
� [�
x� (1) + �y� (1)]

+
� (1� �)

�
= �̂+

� (1� �)
�

;

where �̂ is de�ned in (54). Because B (k) changes sign at most once (see above), the

condition � > �� is also necessary for ~MA to be non-monotonic in k. Furthermore, if

� > ��, there exists �k 2
�
k̂; ~k
�
such that d ~MA(k)

dk
< 0 for all k 2 [1; �k), d ~M

A(k)
dk

< 0 if

k = �k, and d ~MA(k)
dk

> 0 for all k > �k. Finally, if � � ��, d
~MA(k)
dk

� 0 for all k � 1, with a
strict inequality for all k � 1 if and only if � < ��.
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6.8 Proof of Proposition 11

Recall, from equation (3), that

dfM (k)

dk
= n � a (n) �

�
s (x; y; n; k) + k � @s (x; y; n; k)

@k

�
j(x;y;n;k)=(x�(k);y�(k);n�(k);k)

:

Recalling the expression for s (x; y; n; k), one obtains

@s (x; y; n; k)

@k
= ��� � k����1

�
T � y
n�

��
�
�
(T � �x)
n�

��
�
�
�
x

n
+
�y

kn

��
�� � �y

k2n
� k���

�
T � y
n�

��
�
�
(T � �x)
n�

��
�
�
�
x

n
+
�y

kn

��
:

Since all the term in brackets are strictly positive, @s(x;y;n;k)
@k

has the same sign as ��� �
k����1�� � �y

k2n
�k���, an expression which is non-positive for all parameter values, and strictly

negative if � > 0 or y� (k) > 0. By the same token, and since n� (k) is constant in k, this

implies that the value of the upper bound, [n � a (n) � s (x; y; n; k)]j(x;y;n;k)=(x�(k);y�(k);n�(k);k), is
decreasing in k if � > 0 or y� (k) > 0, and is constant otherwise.

6.9 Proof of Proposition 12

Recall from Proposition 10 that any r 2 f0; 1; :::; R� 1g such that fM (2r) > � � fM (2r+1)

is locally evolutionarily stable. Clearly, any k 2
�
20; 21; 22; :::; 2R

	
such that dfM(k)

dk
� 0 is

sustainable. Turning to values of k for which dfM(k)
dk

> 0, Proposition 11 implies that there

exists some t 2 N n f0g such that fM (2t) > � � fM (2t+1) (where t may or may not be smaller

than R� 1, depending on the value of � and the value of R).

6.10 Proof of Proposition 13

Since eF (k) = fM (k)

k
= g (n�) � k��� � s� (x� (k) ; y� (k) ; k) ; (77)

and since g (n�) > 0, one obtains that d
eF (k)
dk

has the same sign as

��� � k����1 � s� (x� (k) ; y� (k) ; k) + k��� � ds
� (x� (k) ; y� (k) ; k)

dk
: (78)

The following arguments use some results shows in the proof of Proposition 5. First, the fact

that ds
�(x�(k);y�(k);k)

dk
� 0 (see equation (47)), together with the fact that s� (x� (k) ; y� (k) ; k) >
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0, implies that the expression in (78) is strictly negative for any � > 0. Furthermore, the

fact that ds�(x�(k);y�(k);k)
dk

� 0 if and only if y� (k) = 0 implies that if � = 0, d eF (k)
dk

= 0 for all

k � 1 if and only if y� (1) = 0.
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