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Abstract

This paper studies the consistency between a decision-maker’s choices

over menus in a first period and inside menus at a later date. The main

result shows that the comparison of commitment decisions and actual sub-

sequent choices reveals whether future taste contingencies are correctly an-

ticipated: a sophisticated individual chooses exactly the right commitment

options, whereas a naive decision-maker overlooks some profitable opportu-

nities. The paper provides absolute and comparative measures of naivete

and shows under which conditions pessimistic behavior can be attributed

to the presence of self-control costs. Finally, I implement an experimental

protocol based on the theoretical analysis and find substantial evidence of

naivete at the individual level.
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1 Introduction

The literature on time-inconsistent preferences distinguishes two types of in-

dividuals according to their beliefs regarding their own future behavior. Sophis-

ticated agents correctly anticipate their future choices, while naive individuals

underestimate their propensity to deviate from their long-term goals. A usual

observation is that present bias is not an issue per se as soon as it is correctly

forecast: a sophisticated agent has the opportunity to compensate future devia-

tions by engaging in appropriate actions (signing optimal contracts, buying com-

mitment devices, etc.). In contrast, the combination of self-control issues and

unrealistic expectations harms decision-makers. For instance, in applications of

the quasi-hyperbolic discounting model (Laibson, 1997), fixing β the present-bias

parameter, the assumptions made regarding the agent’s expectation of the future

value of β play an important role in welfare and policy analysis (Heidhues and

Köszegi, 2010; Köszegi, 2014; Rabin and O’Donoghue, 1999; Eliaz and Spiegler,

2006).

This paper proposes an axiomatic framework in which the sophistication hy-

pothesis can be tested by observing choice data only. The results are used to de-

sign an experimental method that offers several advantages: it allows to measure

naivete at the individual level; it allows to detect partial naivete; it is nonpara-

metric, robust to risk aversion and does not rely on functional forms or specific

hypotheses about the intertemporal preferences.

The axiomatic framework takes as a primitive the choices made by a decision-

maker at two successive periods. At a first stage, the decision-maker chooses the

set of options that will be available in the future, as in Kreps (1979) and Dekel

et al. (2001), according to a binary preference ≽ over menus. At a subsequent

period, the agent makes a stochastic choice inside the available menu according

to a random choice rule λ. The ex ante preference ≽ is represented by a Random

Strotz model (Dekel and Lipman, 2012): in this interpretation, the agent has a

certain normative preference over the prizes but expects possible deviations in the

future, which creates a preference for smaller menus. The relation ≽ identifies

the agent’s beliefs about the realization of future taste contingencies. The ex

post choice rule λ is represented by a Random Expected Utility model (Gul and

Pesendorfer, 2006): in this interpretation, the choice in the menu is driven by the

realization of an uncertain taste contingency, whose distribution is also uniquely

identified from the data.

The aim of the paper is to compare the ex ante anticipation of taste contin-

2



gencies suggested by ≽ with the actual realization of ex post preferences identified

from λ. Section 2 provides precise definitions of sophistication and naivete in this

framework. A sophisticated agent has the right model in mind about her future

choices, meaning that her beliefs over future taste contingencies are correct. In

contrast, a naive decision-maker underestimates her future deviations. To give

content to this notion, I build on Dekel and Lipman (2012) and parameterize each

possible deviation by two parameters, its direction and its intensity, the latter

being a measure of the frequency of preference reversals with respect to long-term

goals. Naivete is defined as the situation in which the agent underestimates in a

first-order stochastic sense the intensity of future deviations in each direction.

The main result characterizes the behavioral content of these definitions under

the form of conditions on the pair of preferences {≽, λ}. The axioms rely on simple

tests of the following form: observing the decision-maker’s preference between a

choice set {p, q} and a commitment device of the form {κp + (1 − κ)q}, where κ

is an exogenous probability chosen by the experimenter. {κp + (1 − κ)q} can be

interpreted as delivering p with probability κ and q with probability 1− κ. If p is

ex ante preferred to q and if κ is lower than λ{p,q}(p), the actual probability with

which the decision-maker chooses p ex post, the commitment device is rejected

by a sophisticated agent who understands that she would choose p with a better

probability from the whole choice set. This condition, called No Commitment to

Inferior Lotteries, rules out pessimistic anticipations. The second axiom, Com-

mitment to Superior Lotteries, rules out optimistic expectations: if κ > λ{p,q}(p),

a sophisticated decision-maker accepts the commitment device. The main result

of section 3 is that extensions of these axioms to larger menus characterize so-

phistication. In contrast, naive agents never commit to inferior lotteries but fail

to seize commitment opportunities that appear profitable in light of their ex post

behavior.

Another contribution of the paper is to introduce a subclass of representations,

the Unidimensional Random Strotz models, in which attention can be restricted to

menus of two elements. Section 2 defines and provides foundations for this class

of representations whose relevant deviations share a same direction but might

vary in intensity. This refers to situations where deviations occur for a unique

reason, but where the intensity of preference reversals is unknown ex ante. Since

most experimental settings are likely to belong to this class, assessing naivete and

sophistication is easily done by varying κ and observing the choices between menus

of the form {p, q} and {κp+ (1− κ)q}.
Comparing commitment choices with ex post behavior identifies the degree

3



to which the decision-maker’s ex ante anticipations are naive. The subjective

expectation regarding λ{p,q}(p) can be identified as the threshold κ that makes the

decision-maker indifferent between {p, q} and {κp + (1 − κ)q}. Comparing this

value with λ{p,q}(p) reveals whether the agent is sophisticated, naive or pessimistic,

and in these latter cases to which degree. Section 3 defines a local measure of

naivete that represents, for each menu, the first-order stochastic distance between

the ex ante and ex post beliefs regarding the choices made inside the menu. This

index is intuitively related to properties of the joint representations: fixing the ex

post behavior, a uniform increase in the index of naivete is equivalent to a first-

order stochastic downward shift in ex ante beliefs about the intensity of deviation,

and, equivalently, to a lower demand for commitment. Fixing the preferences

over menus, a (uniform) increase in the index of naivete is equivalent to a first-

order stochastic upward shift in ex post realized deviations and, equivalently, to

a higher propensity to make ex post choices that are suboptimal from the ex ante

perspective.

A possible caveat to this analysis is that the Random Strotz model is an ar-

bitrary interpretation of commitment choices: indeed, there exist other represen-

tations of preferences over menus that are consistent with the same behavior, but

that suggest a different system of beliefs. A false interpretation of the agent’s

cognitive process and preferences is thus a potential confound, since it could lead

to reject the sophistication hypothesis by mistake. As a robustness check, section

4 analyzes sophistication and naivete under the other prominent model of menu

choices, the Random Gul-Pesendorfer representation (Stovall, 2010). Under some

restrictions, this model is observationally equivalent to the Random Strotz model

for the preference over menus (Dekel and Lipman, 2012), but the ex post choices

that it suggests are different. The most important difference is that the Ran-

dom Gul-Pesendorfer model incorporates decision costs than cannot be observed

ex post : a decision-maker might be willing to remove an option from a choice set

even if this option is never chosen, as soon as its presence is unpleasant enough to

inflict a decision cost. Unsurprisingly, choices that appear naive under the Ran-

dom Strotz model are also naive under any equivalent Random Gul-Pesendorfer

representations: adding ex ante menu-contingent decision costs cannot rationalize

overconfident commitment choices. However, choices that appear pessimistic in

the Random Strotz interpretation might be rationalized by a model incorporating

decision costs, as is shown in section 4.

Finally, section 5 reports the results of an experimental design based on the

theoretical results. While the main application of the setting relates to temptation
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and self-control issues, the Random Strotz model is silent about the source of

preference reversals. The experimental protocol relies on this property and focuses

on naivete about future memory failures. Participants have the possibility to

earn a monetary prize p every day within a ten days period if they remember

to log in to an experimental website during the day. They earn nothing (q) if

they forget to do so. Prior to this ten days session, their indifference threshold κ∗

between this procedure and a payment rule that delivers the prize with probability

κ is elicited. This latter choice can be interpreted as the commitment device

{κp + (1 − κ)q}. Comparing κ∗ with the actual frequency of visiting the website

over the ten days session provides a precise measure of the difference between ex

ante expectations and ex post choices. I find that 66% of participants make naive

choices, while 22% make sophisticated choices and only 12% display pessimistic

expectations. The results show that considering stochastic choice substantially

refines our measurements, and a lot of information would be lost by considering

only perfectly sophisticated and completely naive decision-makers.

This work builds on the literature on menu choices, started by Kreps (1979)

and pursued by Dekel et al. (2001). This field is interested in finding represen-

tations for preferences over menus that are interpretable in terms of anticipation

of future subjective tastes. Applications usually include preference for flexibility,

reflected in a taste for larger menus, or the role of temptation, which leads the

agent to prefer smaller choice sets (Gul and Pesendorfer, 2001; Noor, 2007; Stovall,

2010; Dekel and Lipman, 2012; Kopylov, 2012; Kopylov and Noor, 2015; Noor and

Takeoka, 2010). However, this literature is silent about the actual choice inside

menus, which is usually left unmodeled, and it assumes that anticipations correctly

predict future behavior. For instance, Dekel and Lipman (2012) show that, while

the Random Strotz and Random Gul-Pesendorfer representations of choices over

menus are equivalent, the ex post behaviors that they predict are different. As a

result, observing ex post choices and assuming sophistication allows to separate

them. In contrast, relaxing the sophistication hypothesis and allowing for incorrect

anticipations breaks the identification: a naive Random Strotz model cannot be

disentangled from a naive Random Gul-Pesendorfer model. Consequently, results

that are robust to both specifications are useful since they do not require to take

a stand on which model is the most accurate representation of behavior.

The first paper to explicitly model choice inside menus, and to provide tools

to compare anticipations and realization of tastes, is the work by Ahn and Sarver

(2013). They study the correspondence between ex ante and ex post subjective

tastes in the particular case where the agent values flexibility. They use the Dekel
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et al. (2001) framework with a monotonicity assumption, in which the normative

utility is uncertain ex ante, and aligned with the decision utility ex post. Their

analysis shows that two axioms, Consequentialism and Foreseen Contingencies, are

necessary and sufficient conditions for a joint sophisticated representation1. The

contribution of this paper is to perform the same exercise under the assumption

that the decision-maker values commitment instead of flexibility, which is suited

to the analysis of sophistication and naivete in the context of preference reversals.

Variants of Consequentialism and Foreseen Contingencies are necessary but not

sufficient in the Random Strotz model, as explained in section 3. Finally, Ahn et al.

(2015) study a related setting in a recent paper conceived independently from this

work. They propose different absolute and comparative notions of naivete, as well

as an application to intertemporal discounting models, while the theoretical results

in this paper are more oriented towards testable behavioral properties.

2 Primitives

2.1 Objects of choice

Consider a finite set of prizes Z, and ∆(Z) the set of all probability distri-

butions on Z, written p, q, ... and called lotteries. ∆(Z) is endowed with the

Euclidian topology, each element of ∆(Z) being identified with a vector of R|Z|.

X is the set of finite non-empty subsets of Z, and elements of X are written x, y, ...

and called menus. X is endowed with the Hausdorff topology.

Let U be the set of all expected utilities on Z. An element of U can be identified

with a vector of R|Z|. Consider the subset W containing all elements u of U that

verify
∑

u(z) = 0 and
∑

u(z)2 = 1. Each nonconstant expected utility can be

identified with a unique element u of W .

The behavior of a decision-maker is observed in two periods. At the ex ante

stage, the agent has preferences over menus, as in Kreps (1979). A menu contains

the options that will be available to the decision-maker in the future. This choice

is described by a preference relation ≽ defined on X , x ≽ y meaning that the

agent prefers to choose inside the menu x rather than in y at the later period. As

usual, ≻ denotes the asymmetric part of ≽. At the ex post stage, the agent picks

one element in the set. Her choice process is modeled as a random choice rule, i.e.

as a function λ : X → ∆(∆(Z)) such that λx(x) = 1 for any menu x ∈ X . If y is

a subset of a menu x, λx(y) represents the probability with which an object in y

1Dean and McNeill (2015) find some support for these axioms experimentally.
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is picked when the agent chooses in x. To lighten the notation, λx({p}) is simply

written λx(p). (≽, λ) is our primitive.

To define sophistication and naivete in this setting, we need to put more struc-

ture into these objects in order to introduce anticipated and actual taste contin-

gencies. This section describes the representations chosen to model ≽ and λ.

2.2 Random Strotz

Preferences over menus are represented by a Random Strotz model (Dekel and

Lipman, 2012).

Definition 2.1. The preference relation ≽ admits a Random Strotz representation

if there exists a pair (u, µ) where u ∈ W is a nontrivial expected utility and µ is

a nontrivial probability distribution on W such that ≽ is represented by

V (x) =

∫
W
µ(dw) max

p∈Mw(x)
u(p) (2.1)

where Mw(x) = {p ∈ x|∀q ∈ x,w(p) ≥ w(q)} is the set of maximizers of w in x.

Dekel and Lipman (2012) show that the pair (u, µ) that represents ≽ is unique.

To understand this representation, suppose first that the support of µ is a singleton

w. The valuation of a menu x is equal to u(p), where p is the lottery that maximizes

w in x (with ties broken in favor of u). This suggests that the agent has long-

term preferences given by u at the ex ante stage but anticipates that her choice

inside menus will maximize w instead. The decision-maker displays a preference

for commitment as soon as w differs from u, and does not value flexibility since the

normative preference u is certain. The representation 2.1 adds some uncertainty

about the future decision utility, keeping the normative preferences certain. The

utility u is referred to as the commitment utility since it represents the preference

over singleton menus.

2.3 Random Expected Utility

The stochastic choice made by the agent inside menus is modeled by a Random

Expected Utility representation, as axiomatized by Gul and Pesendorfer (2006).

This model represents λ as the result of the maximization of a stochastic utility

v drawn from W according to a measure ν that represents the distribution of ex

post preferences.
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A well-known issue that arises in random utility models is that a particular w

selected among the possible decision utilities might admit multiple maximizers in

the choice set. In that case, the choice prescribed by w is ambiguous. To overcome

this issue, I follow Gul and Pesendorfer (2006) and Ahn and Sarver (2013) and

assume that indifference is resolved according to a tie-breaking procedure.

Let BW be the Borel σ-algebra on W and ∆f (W) denote the set of all finitely

additive probability measures over (W ,BW). A tie-breaking rule specifies, for each

w ∈ W , how the choice is made in the case where w has multiple maximizers in

the choice set.

Definition 2.2. A tie-breaking rule is a function τ : W → ∆f (W) such that, for

all x ∈ A and p ∈ x :

τw({v ∈ W|∀q ∈ x \ {p}, v(p) > v(q)}) = τw({v ∈ W|v(p) = max
q∈x

v(q)})

Among the set of maximizers of w in a menu x, a lottery p is chosen if the

tie-breaker τw chooses an expected utility v ∈ W such that p maximizes v among

the maximizers of w. Hence, to be selected an element must survive a two-stage

procedure: first being a maximizer of w, second being a maximizer of v among the

remaining lotteries, v being chosen according to the distribution τw. Definition 2.2

ensures that this second comparison resolves the indifference.

Definition 2.3. λ has a Random Expected Utility representation if there exists a

measure ν on W and a tie-breaking rule τ on W such that, for y ⊆ x,

λx(y) =

∫
w∈W

τw({v ∈ W|Mv(Mw(x)) ∈ y})dν(w)

The measure ν is defined over the set of expected utilities W , and λx(y) equals

the probability with which the outcome of the two-stages process described above

belongs to y. This representation suggests that an expected utility w is drawn

according to the measure ν, and that the agent’s choice maximizes this realized

preference.

Since the Random Strotz representation implicitly assumes that ties are broken

in favor of u, we restrict attention to Random Expected Utility that also satisfy

this property: if p ∈ Mw(x) but p /∈ Mu(Mw(x)), p is chosen with probability

zero by the tie-breaking rule.

Assumption 1. ∀x ∈ A, w ∈ W , τw({v ∈ W|Mv(Mw(x)) ̸⊂ Mu(Mw(x))}) = 0.
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An alternative possibility would be to include this property in the definition of

sophistication. This would introduce some cumbersome notation but the axioms

and the results would be unchanged. Assumption 1 is therefore maintained for the

sake of simplicity, which allows to restrict attention to the comparison between µ

and ν and to avoid discussing the presence of multiple maximizers.

2.4 Sophistication and naivete

2.4.1 Partial order on W

Given those primitives, we are interested in comparing the metacognitive pro-

cess of the agent, reflected in µ, with the actual realization of tastes, reflected in ν.

Defining sophistication is straightforward: a sophisticated agent has exactly the

right model in mind ex ante when she contemplates her future choices, which is

equivalent to the equality µ = ν. Defining naivete, in contrast, requires to capture

the fact that the decision-maker systematically underestimates the strength of her

future deviations. To give content to this notion, I build on Dekel and Lipman

(2012) to define a notion of intensity of future temptations.

Definition 2.4. Define the order ≽u on W by

w1 ≽u w2 if u(p) > u(q), w2(p) ≥ w2(q) ⇒ w1(p) ≥ w1(q)

The relation w1 ≽u w2 (to be read as ”w1 is closer to u than w2”) means that

w1 prescribes the same choice as u among pairs of lotteries at least as often as w2.

Definition 2.5. Consider a Random Strotz representation (u, µ) and a Random

Expected Utility representation (ν, τ). (i) (u, µ, ν, τ) is sophisticated if µ = ν; (ii)

(u, µ, ν, τ) is naive if for any w ∈ W , µ({w̃ ∈ W|w̃ ≽u w}) ≥ ν({w̃ ∈ W|w̃ ≽u w})
with strict inequality for some w.

The definition of naivete applies a notion of first-order stochastic dominance

along the order ≥u: it says that ex ante beliefs systematically overestimate the

probability with which ex post choices agree with the long-term preference u.

2.4.2 Continuous-intensity Random Strotz model

This subsection provides conditions under which the measure µ admits an

intuitive decomposition. Let V = {v ∈ W , u.v = 0}. Basic linear algebra results

show that any element ofW\{u,−u} can be written under the form au+
√
1− a2v,

where v ∈ V and a ∈ (−1, 1), a and v being unique.
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The following result, due to Dekel and Lipman (2012), characterizes the sets

of utility functions that are closed under ≥u.

Lemma 1. w1 ≥u w2 if and only if there exists v ∈ V and coefficients a1 ≥ a2

such that w1 = a1u+
√

1− a21v and w2 = a2u+
√

1− a22v.

Hence, fixing v ∈ V , the set {au +
√
1− a2v, a ∈ [−1, 1])} can be completely

ordered according to ≥u, the ranking being given by the coefficients a. Conversely,

two elements of W can be ranked if and only if they belong to such a set. If

w = au+
√
1− a2v, v denotes the direction of the temptation w, while a measures

its intensity (higher values of a correspond to a lower intensity).

Given u, for any v ∈ V we write Cv = {au +
√
1− a2v, a ∈ (−1, 1)}, and

Cv = Cv ∪ {u,−u} the closure of Cv.
The set W can be written W =

∪
v∈V Cv. Each set Cv identifies the direction

of temptation v, and can be considered as a line parameterized by the intensity of

temptation in that direction. I impose two additional conditions on ≽: continuity

of the representation and finiteness of the set of relevant directions. Dekel and

Lipman (2012) show that these properties characterize the subclass of Random

Strotz models that satisfy Stovall (2010)’s axioms.

Definition 2.6. (u, µ) is a finite continuous-intensity Random Strotz represen-

tation if: (i) there exists a collection of lower semi-continuous densities {µv}v∈V
defined over [−1, 1] such that for any measurable E, we have

µ(E) =

∫
v∈V

µv({a ∈ [−1, 1]|au+
√
1− a2v ∈ E})µV(dv)

(ii) There exists a finite collection F ⊆ V such that µ(
∪

v∈F Cv) = 1.

2.5 Unidimensional setting

A unidimensional setting is a particular case of a Random Strotz model in

which {v ∈ V|µ(Cv) > 0} is a singleton. This refers to a situation where the agent

knows the (unique) nature of her temptation but might be uncertain about its

strength. This case plays a particular role in the subsequent analysis, since the

behavioral axioms will take an appealing and intuitive form in a unidimensional

model. This section provides a characterization of this property.

Definition 2.7. A Random Strotz representation (u, µ) is unidimensional if there

exists v ∈ V such that µ(Cv) = 1.
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Axiom 2.1 (Ordered Temptations).

If {p} ≻ {q1} ∼ {q2} for any p ∈ x∪y, then x∪{q1} ≻ x∪{q2} ⇒ y∪{q1} ≽ y∪{q2}

Axiom 2.1 means that any pair of normatively equivalent temptations {q1, q2}
can be ranked in terms of their desirability ex post independently of the menu on

which they exert a temptation. Intuitively, this corresponds to a situation where

all temptations are appealing ex post for the same reason, which is likely to be the

case in most experimental settings. Appendix B contains a proof of the following

representation theorem.

Theorem 2.1. Suppose that ≽ has a Random Strotz representation (u, µ). (u, µ)

is unidimensional if and only if ≽ satisfies axiom 2.1.

Example To highlight the behavioral content of axiom 2.1, I provide here an

example where it is violated. Suppose that a decision-maker has the option to

commit to a schedule for her next working day, splitting her time into three activi-

ties: working, exercising and leisure. She anticipates two subjective states: one in

which she is lazy to work (but enjoys exercising), and one in which she is lazy to

exercise (but enjoys working). Denoting (a, b) an option that consists in working

a hours and exercising during b hours, she might display the following preferences:

� According to the long-term preference, (9, 1) ∼ (5, 2) ≻ (5, 0) ∼ (5, 1).

� In state 1, (5, 2) ≻ (0, 1) ≻ (9, 1) ≻ (5, 0): the agent enjoys exercising but

dislikes working. She maximizes the number of hours spent exercising, and

then minimizes the number of hours spent working among the remaining

options.

� In state 2, (9, 1) ≻ (5, 0) ≻ (5, 2) ≻ (0, 1): the agent enjoys working but

dislikes exercising, and has lexicographic preferences that mirror state 1.

Her preferences satisfy {(9, 1)} ≻ {(9, 1), (0, 1)} but {(9, 1)} ∼ {(9, 1), (5, 0)}
since (5, 0) is never chosen against (9, 1). Similarly, {(5, 2)} ≻ {(5, 2), (5, 0)} but

{(5, 2)} ∼ {(5, 2), (0, 1)}. These conditions together violate axiom 2.1. Intuitively,

(5, 0) is tempting with respect to (5, 2) because of the laziness to exercise in state

2, while (0, 1) is tempting with respect to (9, 1) because of the laziness to work in

state 1.
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3 Naivete in the Random Strotz model

3.1 Representation result

Consider a lottery p and a menu y such that {p} ≻ {q1} ∼ {q2} for all q1, q2 ∈ y.

All the options in y have the same ex ante valuation and p is strictly preferred

to any of them. The decision-maker’s ex ante valuation associated with the menu

y ∪ {p} depends on her subjective probability of choosing {p} or an element of y.

The subjective probability of choosing p equals µ({w ∈ W|w(p) ≥ maxq∈y w(q)}).
Let us write it αy∪{p}(p). Considering any q ∈ y, we have

V (y ∪ {p}) = αy∪{p}(p)u(p) + αy∪{p}(y)u(q) (3.1)

Consider now the singleton {κp+(1−κ)q}, where κ ∈ [0, 1]. Since the decision-

maker has no choice to make inside the menu, her corresponding valuation equals

V ({κp+ (1− κ)q}) = κu(p) + (1− κ)u(q) (3.2)

Suppose now that the decision-maker faces the choice between the whole menu,

y∪{p}, and the singleton {κp+(1−κ)q}. Comparing equations 3.1 and 3.2 shows

that her choice depends on the relative position of αy∪{p}(p) and κ: she prefers the

singleton menu as soon as κ > αy∪{p}(p), i.e. as soon as the exogenous probability

of delivering p exceeds her anticipated probability of choosing p from the whole

menu. Varying the exogenous probability κ hence identifies how the decision-

maker forecasts her future choices, and this information can be compared with

her observed ex post choice λy∪{p}(p). Our first axiom exploits this idea to detect

pessimistic forecasts.

Definition 3.1. The menu y is homogeneous if {p} ∼ {q} for any p, q ∈ y.

Axiom 3.1 (No Commitment to Inferior Lotteries).

If {p} ≻ {q}, q ∈ y and y is homogeneous, κ < λy∪{p}(p) ⇒ {κp + (1 − κ)q} ≺
y ∪ {p}

κp + (1 − κ)q is an inferior lottery as soon as κ < λy∪{p}(p). A rational

decision-maker anticipates that {κp + (1 − κ)q} is inferior to the expected value

that she derives from the whole menu, since κ is lower than her own probability

of choosing p. The fact that the decision-maker discards all inferior lotteries rules

out pessimistic expectations. This axiom is satisfied by sophisticated agents but

also by naive individuals who hold optimistic beliefs.
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Our second axiom complements axiom 3.1 and detects optimistic anticipations.

Axiom 3.2 (Commitment to Superior Lotteries).

If {p} ≻ {q}, p ∈ x and x is homogeneous, κ > λx∪{q}(x) ⇒ {κp + (1 − κ)q} ≻
x ∪ {q}

κp+(1−κ)q is a superior lottery as soon as κ > λx∪{q}(x). This allows to dis-

criminate between sophisticated and naive agents. A naive agent underestimates

her propensity to self-indulge ex post and fails to accept superior commitments,

misguided by the wrong belief that her ex post choice will outperform the proposed

option.

Theorem 3.1 shows that axiom 3.1 and 3.2 characterize naivete and sophisti-

cation.

Theorem 3.1. Suppose that ≽ has a finite continuous-intensity Random Strotz

representation (u, µ), and that λ has a Random Expected Utility representation

(ν, τ). Then (i) (u, µ, ν, τ) is sophisticated if and only if (≽, λ) satisfies axiom

3.1 and 3.2; (ii) (u, µ, ν, τ) is naive if and only if (≽, λ) satisfies axiom 3.1 and

violates axiom 3.2.

Remark. The conditions in axioms 3.1 and 3.2 only need to be checked for menus

x and y of size K, where K is the number of relevant directions in the support of

µ. This property is exploited in subsection 3.4 in the unidimensional setting, i.e.

in the case where K = 1.

3.2 Discussion

3.2.1 Ex ante realism vs optimism

This subsection shows how axioms 3.1 and 3.2 relate to more immediate but

less easily testable behavioral definitions of naivete and sophistication.

Definition 3.2. Consider a menu x. {≽, λ} is: (i) realistic at x if x ∼ {
∑

p∈x λ
x(p)p};

(ii) optimistic at x if x ≻ {
∑

p∈x λ
x(p)p}.

The lottery {
∑

p∈x λ
x(p)p} can be interpreted as a certain equivalent of the

menu x revealed by the actual choices made by the decision-maker from x. A

realistic agent is indifferent between a menu x and its certain equivalent: she

correctly anticipates that both menus deliver the same distribution over lotteries

at the consumption stage. In contrast, an optimistic agent weakly prefers any
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menu to its certain equivalent since she believes that her choices from x will be

better aligned with her ex ante preference than they actually are.

Proposition 3.1 states that realism and optimism characterize, respectively,

sophistication and naivete. Together with theorem 3.1, this result shows that an

experimenter can restrict attention to tests of the form given by axioms 3.1 and 3.2

to investigate the extent to which the decision-maker’s expectations are optimistic.

Proposition 3.1. (u, µ, ν, τ) is sophisticated if and only if (≽, λ) is realistic at

any menu. (u, µ, ν, τ) is naive if and only if (≽, λ) is realistic or optimistic at any

menu (and optimistic for at least one menu).

3.2.2 Links with Ahn and Sarver (2013)

Ahn and Sarver (2013) provide a characterization of sophisticated behavior for

a decision-maker who values flexibility and not commitment. They also compare

preferences over menus, and stochastic choices inside menus, and they assume that

the ex ante preference admits a Dekel et al. (2001) representation: the decision-

maker anticipates a stochastic taste contingency, described by a set of subjective

states, but in contrast to the present model there is no conflict of preference be-

tween ex ante and ex post choices, which implies that larger menus are always

preferred. Ahn and Sarver (2013) prove that two conditions characterize the cor-

respondence between anticipated and actual taste contingencies. The first one, a

variant of Consequentialism, requires that options that are never chosen ex post

are irrelevant ex ante: adding an option p to a menu x should not change the val-

uation of x if p is never chosen from x∪{p} ex post. Their second axiom, Foreseen

Contingencies is the converse condition and ensures that options that are chosen

ex post are relevant in the ex ante valuation.

Variants of these axioms are also necessary to obtain sophistication in the

present model. For instance, sophistication implies

Axiom 3.3 (Consequentialism). λx∪{p}(p) = 0 ⇒ x ∪ {p} ∼ x.

Ahn and Sarver (2013) show that Consequentialism and Foreseen Contingen-

cies are necessary and sufficient conditions to find a sophisticated representation

since subjective probabilities are not unique in Dekel et al. (2001)’s framework.

In contrast, in the Random Strotz model more stringent conditions are needed to

identify the probability associated with each subjective state, which allows us to

test how the decision-maker ex ante expectations compare with her actual ex post

choices.
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3.2.3 Non-instrumental concerns

The Random Strotz model assumes that the decision-maker’s preferences over

menus only reflect her preferences over final consumption goods. It therefore rules

out other phenomena that might influence her willingness to commit. First, in-

dividuals might have intrinsic preferences over the decision process itself. People

might value the ability to make a decision themselves, irrespective of the outcomes

obtained, as shown in the experiment by Bartling et al. (2014). In contrast, other

authors postulate that making decisions is undesirable, because thinking is costly

(Ortoleva, 2013; Ergin and Sarver, 2010) or because controlling one’s impulses is

unpleasant (see Baumeister et al., 2007; Gul and Pesendorfer, 2001, and section

4). Similarly, common sense suggests that self-esteem and reputation management

(Bénabou and Tirole, 2004) might prevent people from choosing commitment op-

tions, since this decision reveals the existence of their self-control issues. However,

one may also argue that failures to exert self-control at the ex post stage entails

a large reputation cost, which might increase the willingness to commit. For in-

stance, Exley and Naecker (2015) report the results of a field experiment in which

the demand for commitment is higher when the choice is made in public rather

than in private, which suggests that individuals signal something positive about

themselves by restricting their options. All in all, it is therefore unclear whether

non-instrumental concerns increase or decrease the desire to commit, and I leave

these interesting questions for future research.

3.3 Absolute and relative measures of naivete

This subsection explores some properties of naive representations, defines a

cardinal index of naivete that measures the gap between expected and realized

choices as well as two comparative notions of naivete.

3.3.1 A local index of naivete

Definition 3.3. Consider a menu x, and suppose that (≽, λ) is realistic or opti-

mistic at x. Consider ∆(x) the set of lotteries defined over x, and the subset of

∆(x) defined by

N≽,λ(x) = {κ ∈ ∆(x)|{
∑
p∈x

λx(p)p} ≺ {
∑
p∈x

κpp} ≺ x}
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The index of naivete of (≽, λ) at x is the (normalized) volume of N≽,λ(x):

N≽,λ(x) =
V– (N≽,λ(x))

V– (∆(x))

A lottery κ belongs to N≽,λ(x) if the agent should objectively commit to κ

instead of x but naively refuses to do so. N≽,λ(x) ∈ [0, 1] measures the disagree-

ment between ex ante and ex post probabilities of choice in x. N≽,λ(x) = 0 if

(≽, λ) is realistic at x, N≽,λ(x) > 0 if (≽, λ) is optimistic at x, and N≽,λ(x) = 1

if the decision-maker does not anticipate preference reversals but always chooses

the worst element of the set according to the ex ante preferences.

Remark. If {≽, λ} is pessimistic at x, an index of pessimism can be defined in a

similar way by reversing the inequalities in the definition.

Example Suppose that K = 2, and denote p = (1, 0) and q = (0, 1) the two

degenerate lotteries over prizes. Suppose that {p} ≻ {p, q}. For any lotteries

z1, z2 such that z1(1) > z2(1), we write α{z1,z2}(z1) the probability with which

the decision-maker anticipates choosing z1. We obtain α{z1,z2}(z1) = α{p,q}(p) and

λ{z1,z2}(z1) = λ{p,q}(p). Hence, N≽,λ({z1, z2}) is constant over all pairs {z1, z2} such
that z1 ̸= z2, and it equals N≽,λ({p, q}) = α{p,q}(p) − λ{p,q}(p). It measures the

gap between the ex ante and ex post probabilities of choosing p, the normatively

superior prize, over q. N≽,λ({p, q}) = 0 for a sophisticated agent, and N({p, q}) =
1 at the limit when α{p,q}(p) = 1 and λ{p,q}(p) = 0.

3.3.2 Comparative measures of naivete

This paragraph compares the accuracy of the anticipations held by two agents.

To focus on how differences in metacognitions are related to differences in behavior,

let us first restrict attention to pairs of agents who have the same ex post behavior

λ but whose commitment preferences ≽1 and ≽2 are different. We will say that

agent 1 is more naive than agent 2 if agent 1 is less willing to commit to singleton

menus than agent 2, reflecting the fact that individual 2 has a greater awareness

of her tendency to being tempted.

Definition 3.4. Suppose that (≽1, λ) and (≽2, λ) have naive representations.

(≽1, λ) is more naive than (≽2, λ) if

{p} ≻1 x ⇒ {p} ≻2 x
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This definition is equivalent to Dekel and Lipman (2012)’s definition of agent 2

being more temptation-averse than agent 1. With the additional assumption that

both joint representations are naive, a higher aversion to temptation is naturally

interpreted as a greater degree of sophistication in the present case. Our next

proposition characterizes how this notion is reflected in terms of representation.

A first immediate observation is that ≽1 and ≽2 have the same preference over

singletons, which implies that u1 = u2. Moreover, as Dekel and Lipman (2012)

show, agent 2’s greater demand for commitment is equivalent to the fact that the

beliefs held by agent 2 over the intensity of temptation first-order stochastically

dominate the beliefs held by agent 1, in each direction.

These two equivalent properties can also be related to the absolute measure

of naivete defined in 3.3. If agent 1 is more naive than agent 2, then the index

of naivete of agent 1 exceeds the index of naivete of agent 2 at any menu x,

reflecting the fact that individual 1 is uniformly more optimistic than individual

2. The reverse implication also holds under the assumption u1 = u2 (which is not

guaranteed by the inequality N≽1,λ(x) ≥ N≽2,λ(x) for all x).

Proposition 3.2. Suppose that ≽1 has a Random Strotz representation (u1, µ1),

and ≽2 has a Random Strotz representation (u2, µ2).

The following statements are equivalent: (i) (≽1, λ) is more naive than (≽2, λ);

(ii) u1 = u2, and µ1({w̃ ∈ W|w̃ ≻u w}) ≥ µ2({w̃ ∈ W|w̃ ≻u w} for any w ∈ W.

In addition, assuming that u1 = u2, (i) and (ii) are equivalent to: (iii) for any

menu x, N≽1,λ(x) ≥ N≽2,λ(x).

Another possibility is to compare pairs of agents who have the same ex ante

preference ≽, but whose ex post choices might differ. We will say that agent

1 is more naive than agent 2 if agent 1 chooses the tempting options as least

as often as agent 2 does, the definition of a tempting object being given by the

common preference≽. Since agent 1 and agent 2 have the same beliefs ex ante, this

comparative property suggests that agent 1’s beliefs over future taste contingencies

are less accurate than agent 2’s perception.

Definition 3.5. Suppose that (≽, λ1) and (≽, λ2) have naive representations.

(≽, λ1) is more naive than (≽, λ2) if

{p} ≻ {q} for all p ∈ x, q ∈ y ⇒ λx∪y
1 (x) ≤ λx∪y

2 (y)

Agent 1’s greater tendency to self-indulge ex post is equivalent to the first-

order stochastic dominance of the distribution of realized tastes ν1 over ν2 on the
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intensity scale, in each direction. These two properties are also equivalent to the

uniform ranking of N1 and N2 over all menus.

Proposition 3.3. Suppose that λ1 and λ2 have respective Random Expected Utility

representations (ν1, τ1) and (ν2, τ2) and satisfy assumption 1.

The following statements are equivalent: (i) (≽, λ1) is more naive than (≽, λ2);

(ii) For any w ∈ W , ν1({w̃ ∈ W|w̃ ≽u w}) ≤ ν2({w̃ ∈ W|w̃ ≽u w}; (iii) for any

menu x, N≽,λ1(x) ≥ N≽,λ2(x).

3.4 Example: a unidimensional setting

3.4.1 Measuring naivete

The previous results take a simple and intuitive form in a unidimensional frame-

work. This property is useful since, as discussed above, most experimental settings

are likely to belong to this class. Axioms 3.1 and 3.2 can be summarized by:

Axiom 3.4 (Sophistication for pairs).

If {p} ≻ {q}, κ < λ{p,q}(p) ⇔ {κp+ (1− κ)q} ≺ {p, q}

If ≽ is unidimensional, axiom 3.4 is a necessary and sufficient condition for the

sophistication of the pair (≽, λ). Hence, the experimenter can restrict attention to

pairs of lotteries instead of considering larger menus. Suppose that p and q are such

that {p} ≻ {p, q}. Since V ({p, q}) = α{p,q}(p)u(p)+α{p,q}(q)u(q), the value κ such

that the decision-maker is indifferent between {κp+(1−κ)q} and {p, q} identifies

α{p,q}(p). This value can be elicited by an adapted Becker-DeGroot-Marschak

mechanism. Comparing this threshold with λ{p,q}(p) reveals the nature of ex ante

beliefs at {p, q}: naive if α{p,q}(p) > λp,q(p), pessimistic if α{p,q}(p) < λp,q(p), and

sophisticated if α{p,q}(p) = λp,q(p).

3.4.2 Quasi-hyperbolic discounting

A particular example of a unidimensional setting is given by the (β, δ) frame-

work (Laibson, 1997). Consider the case where the prizes are consumption streams

over an infinite horizon {0, 1, · · · , t, · · · }. A prize c is characterized by an infinite

sequence {c0, · · · , ct, · · · } of consumption levels. Suppose that the preference over

singletons u can be represented by the standard discounted-utility model, and

each ex post taste contingency belongs to the quasi-hyperbolic discounting class,

as axiomatized by Olea and Strzalecki (2014):
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� There exists δ ∈ [0, 1] and a function w : R → R such that u(c) =
+∞∑
t=1

δt−1w(ct).

� There exists a measure µ : [0, 1] → R such that

V (x) =

∫ 1

β=0

µ(β) max
c∈Mvβ

(x)
u(c)dβ

where vβ(c) = w(c1) + β
+∞∑
t=1

δt−1w(ct).

� There exists a measure ν : [0, 1] → R and a tie-breaker τ such that

∀y ⊆ x, λx(y) =

∫ 1

β=0

τβ({β̃ ∈ [0, 1]|Mvβ̃
(Mvβ(x)) ∈ y})dν(β)

This framework is a particular case of a unidimensional setting in which β

parameterizes the intensity of temptation. The definitions and results provided

above admit the following forms:

(i) Sophistication is equivalent to the identity µ = ν. A naive joint represen-

tation is such that µ strictly dominates ν at the first-order. For instance,

if µ and ν are Dirac distributions respectively on β̂ and β, sophistication is

equivalent to β̂ = β, while naivete is equivalent to β̂ > β.

(ii) If ≽1 is represented by µ1 and ≽2 by µ2, (≽1, λ) is more naive than (≽2, λ)

if µ1 dominates µ2. If λ1 is represented by ν1 and λ2 by ν2, (≽, λ1) is more

naive than (≽, λ2) if ν2 dominates ν1.

(iii) If {c} ≻ {c, c′}, the index of naivete at the set {c, c′} equals µ([β∗, 1]) −
ν([β∗, 1]), where β∗ is defined by vβ∗(c) = vβ∗(c′). Thus, the index of naivete

at a pair measures the distance between the cumulative distribution functions

over β measured at the switching point between the two elements of the pair.

4 Naivete in the Random Gul-Pesendorfer model

The Random Strotz model provides a possible interpretation of the behavior of

a decision-maker who values smaller menus. Nevertheless, other representations of
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the desire for commitment are conceivable. This section studies how the results of

section 3 are modified if ≽ is rationalized by a Random Gul-Pesendorfer model2.

4.1 Random Gul-Pesendorfer model

Definition 4.1. The preference relation ≽ admits a Random Gul-Pesendorfer

representation (Stovall, 2010) if there exists a nontrivial expected utility u, and a

nontrivial measure η on U such that ≽ is represented by the functional

V (x) =

∫
w∈U

[max
p∈x

(u(p) + w(p))− max
q∈x

w(q)]η(dw) (4.1)

If η is a degenerate lottery, this definition comes down to the Gul-Pesendorfer

model of temptation-driven preferences (Gul and Pesendorfer, 2001). In the sub-

jective state w, the decision-maker trades off her long-term preference u against

her short-term temptation w, choosing the element that maximizes u+w in x, and

incurring a self-control cost equal to maxq∈xw(q). In contrast with the Random

Strotz model, a tempting option can lower the ex ante valuation of a menu even if

it is never chosen, provided that its presence in the menu inflicts a self-control cost

to the decision-maker. Equation 4.1 adds some uncertainty by considering that

temptations are drawn according to a measure η (Stovall, 2010). In contrast to

the Random Strotz representation, the Random Gul-Pesendorfer functional does

not identify η: several functions of the form of equation 4.1 can rationalize the

same preference (see Dekel and Lipman, 2012).

A notion of unidimensionality can be defined analogously to the Random Strotz

model. The representation (u, η) is unidimensional if there exists v ∈ U such that

u.v = 0 and the support of ν is included in {αu+βv, β ≥ 0}. Notice that definition
4.1 does not impose any normalization condition on u nor on the temptations v.

This explains why η is defined over U and not W and why the equivalence classes

of ≽u now take the form {αu+ βv, β ≥ 0}.

4.2 Naivete

Defining naivete associated with a preference ≽ requires a more robust defini-

tion than in section 3 to deal with the non-uniqueness of the representation. A set

of equivalent Random Gul-Pesendorfer representations is classified as naive with

2Dekel and Lipman (2012) show that any preference with a Random Gul-Pesendorfer repre-
sentation also admits a continuous-intensity Random Strotz representation, and vice versa.
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respect to some ex post preference if all the representations belonging to this set

are naive.

Definition 4.2. Consider a Random Gul-Pesendorfer representation (u, η) and

a Random Expected Utility representation (ν, τ). (u, η, ν, τ) is naive if for any

w̃ ∈ U , η({w ∈ U|(u + w) ≽u w̃}) ≥ ν({w ∈ U|w ≽u w̃}). Consider a set E
of equivalent Random Gul-Pesendorfer models. (E , ν, τ) is naive if for any (u, η)

belonging to E , (u, η, ν, τ) is naive.

Theorem 4.1 is adapted from Dekel and Lipman (2012) and states that the

Random Strotz representation of a preference ≽ is less pessimistic about the in-

tensity of future temptations than any of its equivalent Random Gul-Pesendorfer

representations.

Theorem 4.1. Suppose that the preference ≽ admits a Random Strotz represen-

tation (u, µ) and a Random Gul-Pesendorfer (u, η). For any w̃ ∈ W

µ({w ∈ W|w ≽u w̃}) ≤ η({w ∈ U|(u+ w) ≽u w̃})

As a consequence, if (u, µ, ν, τ) is naive then the set of Random-Gul Pesendorfer

models E associated with ≽ is such that (E , ν, τ) is naive. The same conclusion

holds if (u, µ, ν, τ) is sophisticated and ≽ is temptation-averse.

An immediate implication is that the degree of naivete of a naive Random

Strotz model is a lower bound of the degree of naivete of all corresponding Ran-

dom Gul-Pesendorfer models. Intuitively, anticipating self-control costs ex ante

reinforces the desire to commit; therefore commitment choices that appear too

optimistic in light of ex post choices cannot be rationalized by assuming that the

decison-maker was expecting decision costs. If the behavior of a decision-maker

satisfies axiom 3.1 and violates axiom 3.2, theorem 4.1 shows that this finding

is sufficient to conclude that all Random Gul-Pesendorfer representations of her

behavior are also identified as naive. In that case, the Random Strotz interpre-

tation of behavior is the conservative hypothesis regarding the degree of naivete

attributed to the agent’s behavior. In addition, Dekel and Lipman (2012) show

that, except in the trivial case where temptation is not a concern, the Random

Strotz model prescribes choices that are strictly more aligned with the long-term

preference than any of its equivalent Random Gul-Pesendorfer models. Therefore,

a pattern of choice that is sophisticated under the Random Strotz model cannot

be rationalized by a Random Gul-Pesendorfer representation.
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4.3 Sophistication

Suppose now that the observed choices satisfy axiom 3.2 and violate 3.1, in

which case the Random Strotz representation is classified as pessimistic. This

subsection studies under which conditions it is possible to rationalize the joint

preferences by a Random Gul-Pesendorfer model of commitment preferences con-

sistent with the hypothesis of sophistication. For the sake of simplicity, we restrict

attention to the simplest possible setting with only two goods. I assume that η and

ν have finite support3 written {vs}s∈S and {w′
s}s′∈S′ . Since only two subjective

states are possible, ν is simply characterized by two values ν({u}) and ν({−u})
and two tie-breakers τu and τ−u.

The definition of sophistication must be adapted to take into account the lack of

normalization in equation 4.1: a sophisticated joint representation associates any

ex ante subjective state with a unique ex post taste contingency that represents

the same preference and occurs with the same probability.

Definition 4.3. Consider a finite Random Gul-Pesendorfer representation (u, {ηs, vs}s∈S)
and a finite Random Expected Utility representation {νs′ , ws′ , τs′}s′∈S′ . The pair

((u, {ηs, vs}), {νs′ , ws′ , τs′}) is sophisticated if there exists a bijection ϕ : S → S ′

such that for any s, ηs = νϕ(s) and u+ vs and wϕ(s) represent the same preference.

As discussed above, consequentialism is not implied by sophistication, but an

asymmetric version of this axiom is necessary. Axiom 4.1 states that options that

are normatively preferred and chosen with positive probability are valued at the ex

ante stage. It rules out the extreme pessimism of a decision-maker who incorrectly

believes that she never chooses the normatively superior option ex post.

Axiom 4.1 (Uphill Consequentialism). If {p} ≻ {q} and λ{p,q}(p) > 0, then

{p, q} ≻ {q}.

Provided that (≽, λ) satisfies axiom 3.2, axioms 4.1 is the only revealed pref-

erence implication of sophistication. Proposition 4.1 states that any intermediate

level of ex ante pessimism can be attributed to the presence of self-control costs

that are not observed ex post.

Proposition 4.1. Suppose that |Z| = 2, that ≽ admits a finite Random Gul-

Pesendorfer representation and that λ admits a finite Random Expected Utility.

(≽, λ) admits a sophisticated Random Strotz or Random Gul-Pesendorfer repre-

sentation if and only if (≽, λ) satisfies axioms 3.2 and 4.1.

3These properties are axiomatized in Stovall (2010) and Ahn and Sarver (2013) respectively.
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Consider a simple experiment with two goods p and q. Suppose that the exper-

imenter elicits the indifference threshold α{p,q}(p) and the actual choice probabil-

ity λ{p,q}(p) of a subject. As figure 1 shows, four cases arise: (i) if α{p,q}(p) =

λ{p,q}(p), the joint behavior is rationalizable by a Random Strotz model; (ii)

if α{p,q}(p) > λ{p,q}(p), the choices are naive under any interpretation; (iii) if

0 < α{p,q}(p) < λ{p,q}(p), the joint preferences can be rationalized by a Random

Gul-Pesendorfer interpretation; (iv) if α{p,q}(p) = 0, every interpretation concludes

that the subject has pessimistic beliefs. In general, pessimism is therefore almost

impossible to detect, and a representation that includes unobservable self-control

costs can rationalize virtually any pattern of choice that would be considered as

pessimistic under the consequential interpretation of commitment choices.

t

α{p,q}(p)
b

λ{p,q}(p)

Rationalizable

Random Gul-Pesendorfer

NaivePessimistic Sophisticated

Random Strotz

Figure 1: Classification of behavior in the two-goods case

5 Experiment

This section describes an experimental design that builds on the theoretical

analysis to elicit naivete at the individual level. The experimental procedure in-

volves a task where preference reversals are not due to temptation but to memory

failures.

5.1 Experimental procedure

5.1.1 Task

Participants have the choice between earning a monetary prize p = ”X dollars”

or earning nothing, q = ”0 dollars”. Preference reversals do not arise because

subjects value p and q differently at different points in time, since we can expect

them to always rank p above q. However, the ex post choice between p and q

is made in the future and participants receive the prize p if they make an active

choice at a given date, otherwise they receive the default q. A subject who forgets

to claim the monetary prize p therefore behaves as if she ranked q above p at the

time of the choice.
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At the initial stage of the experiment, subjects are offered the choice between

the whole choice set {p, q} or a commitment device of the form {κp + (1 − κ)q},
where κ takes values from 0 to 1. It is reasonable to expect participants to exhibit

the following preferences:

{p} ≽ {p, q} ≽ {q} (5.2)

The commitment device {p} always delivers the monetary prize, while the sin-

gleton {q} delivers zero dollars with certainty. In between, the decision-maker’s

valuation of the choice set {p, q} depends on her subjective probability of re-

membering to claim p in the future. Equation 5.2 shows that, while self-control

problems and memory issues correspond to different psychological phenomena, the

Random Strotz interpretation of behavior is equally suitable to both situations.

The experimental test consists in eliciting for each participant the value κ∗(p, q)

such that {p, q} and {κ∗(p, q)p + (1 − κ∗(p, q))q} are valued similarly at the ini-

tial stage. κ∗(p, q) is interpreted as the participant’s subjective probability of

remembering to claim the prize p at the ex post stage. Comparing κ∗(p, q) with

λ{p,q}(p), the participant’s actual probability of remembering to choose the mon-

etary reward, identifies whether the subject behaves in a sophisticated, naive or

pessimistic manner.

5.1.2 Recruitment and instructions

Subjects were recruited on Mechanical Turk, an online labor platform where

individuals perform Human Intelligence Tasks on their personal computer in ex-

change of monetary rewards. Requesters can propose tasks with a fixed payment

and award bonuses depending on the quality of the worker’s answers. The identity

of the workers is entirely anonymous, since they are identified with a personal ID

given by the website.

The lack of control over the conditions in which the subjects answer the ques-

tions might be problematic to interpret the data. For this reason, participants

were asked two questions aimed at verifying their understanding of the protocol.

Correctly answering both questions was necessary to receive the baseline partic-

ipation fee and to be allowed to proceed with the experiment. Overall, 95% of

participants correctly answered both questions, suggesting that understanding is-

sues represent a minor problem. Recent research using Mechanical Turk has shown

that the quality of answers gathered on online labor markets is not significantly

different from traditional laboratory experiments (Horton et al., 2011).

The task was described to the workers as an economics experiment on inter-

24



temporal decision-making. Workers who chose to participate received a link to an

external website containing the experimental instructions and the answer forms.

Participants were identified by means of their Mechanical Turk ID and received a

personal code randomly generated to validate their participation on the Mechanical

Turk platform. All payments were made on the platform by the intermediary of

Amazon services.

Initial session After providing informed consent, participants were informed

that they would have the opportunity to earn a monetary reward every day dur-

ing 10 consecutive days. Each session consisted in a 24 hours-slot during which

subjects had the possibility to add the monetary prize p to their earnings by

simply signing in the experimental website with their Mechanical Turk identifier.

Participants were informed that they would not receive any reminder from the

experimenter, and nothing was said about the use of artificial devices. They were

invited to write down the URL of the website. They also had the possibility to

contact the experimenter at any moment through the Mechanical Turk platform

to ask for the URL.

Commitment choices Subjects were offered the possibility to modify the pay-

ment rules for one of the ten sessions, the other nine sessions remaining unchanged.

They were asked to report their preference between: (i) choosing later, that is re-

ceiving the prize only conditional on signing in; (ii) being paid with probability

κ, irrespective of their behavior that day. The parameter κ took 21 values for all

the multiples of 5 from 0% to 100%. For each of these values, the participant had

to choose between options (i) and (ii). One of these rows was randomly selected

and the corresponding choice was implemented, thereby ensuring the incentive-

compatibility of the elicitation method (Azrieli et al., 2015).

The date at which the commitment choice was relevant was selected randomly

among the 10 possible session dates, and participants did not learn which date had

been chosen until the corresponding day. This procedure eliminates the effect of

any private information that subjects might have regarding the evolution of their

probability of remembering over time: for instance, a sophisticated participant

who always remembers to log in to the website on the first day, but who always

forgets to do so after that, would strictly prefer {p, q} to {0.95p + 0.05q} if this

choice were implemented on the first day, even though her actual frequency of visit

across all sessions only equals 10%. Implementing the payment rule at a random

date makes sure that the participants should report their subjective probability of
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remembering to choose p across the 10 sessions, which is the value that is estimated

from their subsequent behavior.

Attention questions and simple checks Before submitting their choices, par-

ticipants were required to answer two basic questions to verify that they read and

understood the instructions. Questions were based on hypothetical scenarios: par-

ticipants were asked how much they would earn depending on the row selected,

their choice between the two menus, and their behavior that day. Subjects were

informed that any wrong or missing answer would prevent them from proceeding

with the experiment. In contrast, subjects who provided correct answers received

the baseline participation fee and were allowed to proceed with the 10 regular

sessions.

A simple test of understanding and rationality can also be performed by

observing the commitment choices: as κ goes down, each participant should

have at most one switching point from {κp + (1 − κ)q} to {p, q}. For each

participant who satisfies this criterion, we record the values (κ, κ) such that

{κp + (1 − κ)q} ≽ {p, q} ≽ {κp + (1 − κ)q}: the subjective belief of the agent is

partially identified in the interval [κ, κ].

Regular sessions The 10 regular sessions took place on the 10 days that fol-

lowed the initial stage. If a participant signed in to the website during a session, a

confirmation message displayed: her earnings for the session, explaining the out-

come of the payment rule if it was implemented that day; her total earnings so far;

the dates of the remaining sessions. For each of the 10 sessions, a dummy variable

records the agent’s behavior, and takes value 1 if she logged in during the session

and 0 otherwise. The sum of these 10 variables λ∗ yields the actual frequency with

which the subject remembered to participate in the session.

Payment The baseline participation fee of $1 was paid in the 12 hours that

followed the initial session. In one condition, the monetary prize was equal to

$0.25; in the other treatment, it was equal to $0.4. These values might appear

very small, but they yield approximate hourly wages of respectively $14 and $20

dollars ($3.5 or $5 for 15 minutes of participation in total) for a subject who

would pass the initial test and log in to the website every day. This amount is

substantially higher than wages usually proposed on the platform ($1.38 per hour

as reported by Mason and Suri (2012)).

The earnings corresponding to the 10 regular sessions were paid the day after
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the last session under the form of a bonus on the Mechanical Turk platform. Daily

payments were not provided regularly because participants who had forgotten

about a session would have receive a payment if their commitment choice had

been successful, which would have played the role of a reminder.

5.2 Results

5.2.1 Sample

A total of 143 subjects participated in the initial stage of the experiment in June

2015. 7 participants failed the attention tests and were not allowed to proceed. In

addition, 3 participants provided multiple switch points and are excluded from the

analysis. The final sample includes 133 participants. Average earnings amount to

$2.73 per person including the participation fee.

5.2.2 Raw data

This subsection provides some preliminary data comparing commitment choices

with frequencies of visit.

Aggregate level The average anticipated probability of remembering to visit

the website lies in the range 0.84-0.88 (std=0.20), compared with an average fre-

quency of visit of 0.47 (std=0.45) averaged across participants and sessions. The

distributions of ex ante and ex post probabilities are displayed in figure 2.

0.2

0.4

0.6

0.8

1.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Anticipated probabilities Actual probabilities

Figure 2: Distributions of anticipated and actual probabilities of visit
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Individual level Each participant is characterized by a set of admissible ex

ante beliefs [κ, κ] and a frequency of visit λ∗. A subject’s choices are classified as:

naive if κ > λ∗; pessimistic if κ < λ∗; sophisticated otherwise. Table 1 reports

the number and the fraction of participants in each category as a function of the

payment. Overall, 66% of the subjects made naive choices, 22% made sophisticated

decisions while 12% only choose inferior commitment devices. Among the subjects

who made sophisticated choices, 79% exhibited extreme values of λ∗ (λ∗ = 0 or

λ∗ = 1) and correctly anticipated this.

Naive choices Sophisticated
choices

Pessimistic
choices

Total

p = $0.25
24 6 5

35
(0.69) (0.17) (0.14)

p = $0.4
64 23 11

98
(0.65) (0.23) (0.11)

Total
88 29 16

133
(0.66) (0.22) (0.12)

Table 1: Number of choices per category
(in parentheses, the fraction per category)

Measure of naivete The individual index of naivete equals κ− λ∗ if the indi-

vidual is naive. The average index among agents who made naive choices equals

0.62 (std=0.35), which means that these subjects on average overestimated by 62

percentage points their probability of visiting the website. This overconfidence

has substantial economic consequences: the probability of receiving the prize for

agents with similar memory issues but who would make the right ex ante decisions

is 25 percentage points higher.

5.2.3 Statistical procedure

Independent events To provide a more elaborate elicitation of naivete, I first

assume that participants view their future choices during the 10 sessions as in-

dependent variables drawn from the same distribution: they believe that their

probability of visiting the website at any given day is independent of the day and

of their behavior so far. In that case, the 10 dummy variables are independent

realizations of a Bernoulli random variable. If the individual made a naive choice,

the null hypothesis is that the parameter of the Bernoulli distribution equals κ. A

one-tailed binomial test consists in computing the probability with which, under

this null hypothesis of sophistication, the decision-maker’s frequency of choosing p
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H0 rejected
(naivete)

H0 not rejected H0 rejected
(pessimism)

Total

p = $0.25
19 13 3

35
(0.54) (0.34) (0.11)

p = $0.4
46 50 2

98
(0.47) (0.51) (0.02)

Total
65 63 5

133
(0.49) (0.47) (0.05)

Table 2: Test at the individual level
(in parentheses, the fraction per category)

is smaller than or equal to λ∗. Similarly, for an individual who made a pessimistic

choice, the test consists in computing the probability with which, under the null

hypothesis of correct beliefs equal to κ, the individual visits the website with a

frequency greater than or equal to λ∗.

The results of the test are reported in table 2. Overall, the data rules out

sophistication for a large fraction of agents: at the 1% significance level, the hy-

pothesis is rejected for 65 optimistic agents (49% of the sample).

Correlated events A possible caveat with the above test is that the 10 sessions

might not appear independent to the participants. For instance, a decision-maker

might believe that she will either participate to all sessions or forget entirely about

the experiment, both events happening with the same probability. In that case,

her ex ante subjective probability of visiting the website at a random date equals

0.5, but she would half of the time exhibit λ∗ = 0 and make a naive choice.

This issue brings the general problem of estimating individual choice probabili-

ties, which requires to observe a subject making repeated decisions, in which case

interdependencies between choices are likely to create confounds.

If the hypothesis of independent events is relaxed, nothing can be said at the

individual level except for extreme values of (κ, κ) and λ∗: for instance, choices

given by {p} ∼ {p, q} and λ∗ = 0 indicate naive anticipations, but this pattern

of choice only represents 13% of the data (17 participants). However, an aggre-

gate test can be performed by observing the proportion of agents who made naive

choices in the population. To obtain a conservative estimate for the proportion

of naive subjects, I assume that all agents who made a sophisticated or a pes-

simistic choice are not naive. For each individual who made a naive choice that

can be rationalized by a correlated beliefs structure, I compute the beliefs that

rationalizes her joint behavior and that maximizes the probability with which she
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makes choices that appear naive ex post. According to this procedure, each sub-

ject is characterized by a probability of making naive, sophisticated or pessimistic

choices: for instance, the individual described above exhibits λ∗ = 0 half of the

time (naive choice) and λ∗ = 1 half of the time (pessimistic choice). More pre-

cisely, for each individual such that λ∗ < κ I assume that her ex ante beliefs are

given by

P(λ = 1) =
κ− λ∗

1− λ∗ and P(λ = λ∗) =
1− κ

1− λ∗

This beliefs structure yields a subjective probability of visit equal to κ and a

positive probability of signing in with frequency λ∗. It also suggests that the

individual makes a naive choice with probability 1−κ
1−λ∗ and a pessimistic choice

with probability κ−λ∗

1−λ∗ .

Under the hypothesis of sophistication, each individual is characterized by a

probability of displaying a naive joint behavior. The number of naive choices in

the population follows a Poisson-Binomial distribution whose vector of parameters

is given by the individual probabilities. Given the number of naive choices in the

data (88 out of 133), all hypotheses of the form ”x% of the population is naive”

are rejected at the 1% significance level for any x lower than 56%. These results

suggest a large prevalence of naive anticipations in the population.
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Appendix A: proofs of section 3 and 4

Notation

In the following, we denote by 1 = (
1

|Z|
, ...,

1

|Z
|) the (scaled) unit vector. For

any subset (a, b) of [−1, 1] and any v ∈ V , we write Cv(a, b) = {cu+
√
1− c2v|a <

c < b} and Cv(a, b) = {cu +
√
1− c2v|a ≤ c ≤ b}. Let us also define C(a, b) =∪

v∈V Cv(a, b) and C(a, b) =
∪

v∈V Cv(a, b).

In all this section, ≽ has a finite continuous Random Strotz representation

(u, µ) and λ has a Random Expected Utility representation (ν, τ). In addition,

assumption 1 is satisfied.

1 Proof of theorem 3.1

1.1 Preliminary results

Lemma A.2. (≽, λ) satisfies axiom 3.1 if and only if for any w ∈ W,

µ({w̃ ∈ W|w̃ ≽u w}) ≥ ν({w̃ ∈ W|w̃ ≽u w}).

Proof. Let us start with the ”if” part. Take p and a homogeneous menu y such

that {p} ≻ {q} for all q ∈ y.

Define, for v ∈ V , a(v) = sup{a ∈ [−1, 1]|au(p)+
√
1− a2v(p) ≥ maxq∈y au(q)+√

1− a2v(q)} and w(v) = a(v)u +
√

1− a(v)2v. If w = au +
√
1− a2v, w(p) ≥

maxq∈y w(q) is equivalent to a ≥ a(v), i.e. to w ≽u w(v). Thus, we have

V (y∪{p}) = u(p)

∫
v∈V

µ({w̃ ∈ W|w̃ ≽u w(v)})dv+u(q)

∫
v∈V

µ({w̃ ∈ W|w(v) ≻u w̃})dv

where q is any element of y, while

λy∪{p}(p) =

∫
v∈V

ν({w̃ ∈ W|w̃ ≽u w(v)})dv ≤
∫
v∈V

µ({w̃ ∈ W|w̃ ≽u w(v)})dv

and hence V ({y ∪ {p}}) ≥ λy∪{p}(p)u(p) + λy∪{p}(y)u(q)

For κ < λy∪{p}(p), we obtain

{κp+ (1− κ)q}) ≺ {λy∪{p}(p)p+ λy∪{p}(y)q} ≼ y ∪ {p}

which proves axiom 3.1.

We prove the ”only if” part by contradiction. Suppose that there exists w ∈ W
such that µ({w̃ ∈ W|w̃ ≽u w}) < ν({w̃ ∈ W|w̃ ≽u w}). Write w = au+

√
1− a2v,
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where a ∈ [−1, 1]. This condition is equivalent to µ(Cv(a, 1)) < ν(Cv(a, 1)). There-

fore, by the continuity of µ and by theorem 10.2 of Billingsley (2012) there exists

a∗ ∈ (a, 1) such that µ(Cv(a, 1)) + µ(C(a∗, 1)) < ν(Cv(a, 1)).

Consider α > 0, β > 0 and ϕ > 0. Take w̃ ∈ V \ {v}. Since v ̸= w̃, by the

Cauchy-Schwarz inequality we have |v.w̃| < 1, thus it is possible to find γw̃ such

that β > γw̃v.w̃, and βv.w̃ < γw̃.

Define now: (i) p = 1 + ϕ(αu + βv); (ii) qv = 1 + ϕγvv where γv is chosen

to satisfy au(p) +
√
1− a2v(p) = au(qv) +

√
1− a2v(qv); (iii) for all w̃ ∈ V such

that µ(Cw̃) > 0 and w̃ ̸= v, qw̃ = 1 + ϕγw̃w̃. Consider finally the menu y =

{qv} ∪
∪

w̃ ̸=v{qw̃}. y is finite since µ has a finite number of directions. Notice that

u(qw̃) = u(qv) = 0 for all w̃, and that u(p) > 0.

We have w(p) = w(qv) by definition of γv. Moreover,{
w(p) = ϕ(αa+

√
1− a2β)

w(qw̃) = ϕ
√
1− a2γw̃v.w̃ for w̃ ̸= v

Since β > γw̃v.w̃, it is possible to pick α low enough to ensure that w(p) ≥
w(qw̃). In that case, on the set Cv, p is chosen in the set y ∪ {p} if and only if the

intensity of temptation lies in [a, 1]4. Therefore λy∪{p}(p) ≥ ν(Cv(a, 1)).

Finally, suppose that ŵ = âu+
√

1− (â)2w̃, where w̃ ̸= v. We have{
ŵ(p) = ϕ(αâ+

√
1− (â)2βv.w̃)

ŵ(qw̃) = ϕ
√
1− (â)2γw̃

Since βv.w̃ < γw̃, it is possible to pick α low enough to obtain ŵ(p) < ŵ(qw̃) as

soon as â < a∗. This proves that p is chosen in y∪{p} at most on Cv(a, 1)∪C(a∗, 1).
Therefore

V (y ∪ {p}) ≤ [µ(Cv(a, 1)) + µ(C(a∗, 1))]u(p) + [1− µ(Cv(a, 1))− µ(C(a∗, 1))]u(q)

< ν(Cv(a, 1))u(p) + (1− ν(Cv(a, 1)))u(q)

≤ λy∪{p}(p)u(p) + λy∪{p}(y)u(q)

It is sufficient to take κ ∈ (µ(Cv(a, 1)) + µ(C(a∗, 1)), ν(Cv(a, 1))) to obtain a

violation of axiom 3.1.

Lemma A.3. (≽, λ) satisfies axiom 3.2 if and only if for any w ∈ W,

4Remember that λ picks a maximizer of u in case of indifference, and p is the unique maximizer
of u in y ∪ {p}.
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µ({w̃ ∈ W|w ≻u w̃}) ≥ ν({w̃ ∈ W|w ≻u w̃}).

Proof. We skip the proof. The arguments are similar to the demonstration of

lemma A.2.

1.2 Proof of necessity

Suppose that (u, µ, ν, τ) is sophisticated, i.e. that µ = ν. The conditions of

lemmas A.3 and A.2 are trivially true. Therefore, axioms 3.1 and 3.2 are satisfied.

Suppose now that (u, µ, ν, τ) is naive. The condition of lemma A.2 is satisfied,

therefore axiom 3.1 is valid. In addition, the continuity of ≽ yields ν({u}) = 0.

Suppose that (u, µ, ν, τ) is strictly naive, i.e. that there exists w ∈ W such

that

µ({w̃ ∈ W|w̃ ≽u w}) > ν({w̃ ∈ W|w̃ ≽u w}) (A.1)

Our next step is to show that this particular w satisfies

µ({w̃ ∈ W|w ≻u w̃}) < ν({w̃ ∈ W|w ≻u w̃})

and to use lemma A.3 to conclude that axiom 3.2 is violated.

Suppose, in contrast, that

µ({w̃ ∈ W|w ≻u w̃}) ≥ ν({w̃ ∈ W|w ≻u w̃}) (A.2)

Summing A.1 and A.2 yields

µ(Cv) > ν({−u}) + ν(Cv) (A.3)

Take w̃ ∈ V \ {v}. Since (u, µ, ν, τ) is naive, µ(Cw̃(b, 1)) ≥ ν(Cw̃(b, 1)) for all

b > −1. Taking the limit when b tends to −1 shows that

µ(Cw̃) ≥ ν(Cw̃) (A.4)

Integrating A.4 and summing with A.3 yields∫
ŵ∈W

dµ(ŵ) = µ(Cv) +
∫
w̃∈V\{v}

µ(Cw̃)dw̃

> ν({−u}) + ν(Cv) +
∫
w̃∈V\{v}

ν(Cw̃)dw̃ =

∫
ŵ∈W

dν(ŵ)

which is impossible since
∫
ŵ∈W dµ(ŵ) =

∫
ŵ∈W dν(ŵ) = 1.
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1.3 Proof of sufficiency

Suppose that (≽, λ) satisfies axioms 3.1 and 3.2.

By lemma A.2 we have µ({w̃ ∈ W|w̃ ≽u w}) ≥ ν({w̃ ∈ W|w̃ ≽u w}) for any
w ∈ W , and by A.3 µ({w̃ ∈ W|w ≻u w̃}) ≥ µ({w̃ ∈ W|w ≻u w̃}). We further

obtain µ({w̃ ∈ W|w̃ ≽u w}) = ν({w̃ ∈ W|w̃ ≽u w}) using the same argument

as in the proof of necessity above. Hence, µ and ν coincide on all sets that are

closed and closed by ≽u. Dekel and Lipman (2012) show that this is a sufficient

condition for the measures µ and ν to coincide on all Borel sets (see their proof of

theorem 1). This proves that µ = ν.

Suppose now that (≽, λ) satisfies axiom 3.1 but violates axiom 3.2. We have

µ({w̃ ∈ W|w̃ ≽u w}) ≥ ν({w̃ ∈ W|w̃ ≽u w}) for every w. If this holds with

equality for every w, this implies µ = ν, which contradicts the fact that (≽, λ)

violates axiom 3.2. Therefore there exists w such that the inequality is strict, and

the representation is naive.

2 Remaining proofs of section 3

2.1 Proof of proposition 3.1

We only prove the equivalence between realism and sophistication, the second

part of the proposition being proved similarly. Suppose first that {≽, λ) is realistic.

Take a homogeneous menu y, q ∈ y, p such that {p} ≻ {q} and κ < λy∪{p}. We

have

V (y ∪ {p}) = V ({λy∪{p}(p)p+
∑
q̃∈y

λy∪{p}(q̃)q̃}) since (≽, λ) is realistic at y ∪ {p}

= λy∪{p}(p)u(p) + λy∪{p}(y)u(q) since y is homogenous

> κu(p) + (1− κ)q = V ({κp+ (1− κ)q})

Hence, {≽, λ} satisfies axiom 3.1. A similar proof shows that {≽, λ} satisfies

axiom 3.2. By theorem 3.1, {≻, λ} is sophisticated.

Suppose now that {≽, λ} is sophisticated, and consider a finite menu x. x can

be decomposed in k disjoint non-empty equivalence classes Ei, i = 1, · · · , k such

that p ∈ Ei, q ∈ Ej imply u(p) > u(q) if and only if i < j, and u(p) = u(q) if i = j.

It is therefore possible to define αx(Ei) = µ({w ∈ W|Mu(Mw(x)) ∈ Ei}) the

anticipated probability attached to the class Ei5. Since µ = ν and both measures

5The representation does not specify how the choice is made inside a class Ei between two
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break ties in favor of u, it is easy to see that αx(Ei) = λx(Ei) for any i. Writing pi

for any element of the class Ei, we obtain

V (x) =
k∑

i=1

αx(Ei)u(pi) =
k∑

i=1

λx(Ei)u(pi) = V ({
∑
x∈p

λx(p)p})

which proves that x ∼ {
∑

p∈x λ
x(p)p}. Hence, {≽, λ} is realistic.

2.2 Proof of proposition 3.2

(i) ⇔ (ii) This result is proved by Dekel and Lipman (2012) in their Theorem

4, p. 1284.

(i) ⇒ (iii) Consider a menu x, and a lottery κ ∈ ∆(x). Since (≽1, λ) is more

naive than (≽2, λ),

{
∑
p∈x

κpp} ≺1 x ⇒ {
∑
p∈x

κpp} ≺2 x

Therefore N≽2,λ(x) ⊆ N≽1,λ(x), which implies N≽2,λ(x) ≤ N≽1,λ(x).

(iii) ⇒ (i) For i = 1, 2, we write Vi the functional associated with ≽i and u the

(common) normative utility function. Consider a menu x. A lottery κ on ∆(x)

belongs to N≽i,λ(x) if and only if∑
p∈x

λx(p)u(p) <
∑
p∈x

κpu(p) < Vi(x)

Hence, from N≽1,λ(x) ≥ N≽2,λ(x) we obtain V1(x) ≥ V2(x). Now, for any

lottery p we have

{p} ≻1 x ⇔ u(p) > V1(x) ⇒ u(p) > V2(x) ⇔ {p} ≻2 x

which proves that (≽1, λ) is more naive than (≽2, λ).

2.2.1 Proof of proposition 3.3

We skip the proof, which relies on the same arguments as proposition 3.2.

options that are equally valued at the ex post stage, but this choice is irrelevant here.
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3 Proofs of section 4

3.1 Proof of theorem 4.1

The proof is given by Dekel and Lipman (2012) (see their theorem 5 p. 1286).

3.2 Proof of proposition 4.1

In the two goods case, only two generic utilities u ∈ W exist: u = (

√
2

2
,−

√
2

2
)

and −u. Therefore each subjective utility can be written vs = αsu where αs ̸= 0.

A Random Gul-Pesendorfer representation is simply written

V (x) =
∑
s∈S

ηs[max
p∈x

(1 + αs)u(p)− max
q∈x

αsu(q)] (A.5)

The decision utility (1+αs)u coincides with u if and only if αs > −1. A Random

Expected Utility model ν simply specifies the weights νu and ν−u attached to the

states u and −u respectively.

Proof of necessity If(≽, λ) admits a sophisticated Random Strotz representa-

tion, necessity of axioms 3.2 and 4.1 are established in section 3. Suppose that

(≽, λ) admits a sophisticated Random Gul-Pesendorfer representation, i.e. that

there exists a representation A.5 of ≽ such that
∑

s∈S,αs>−1 ηs = νu. Equation A.5

yields

V ({p, q}) =
∑

s∈S,αs>0

ηsu(p)+
∑

s∈S,−1<αs<0

ηs[u(p) + αs(u(p)− u(q))]+
∑

s∈S,αs<−1

ηsu(q)

(A.6)

If there exists p, q such that {p} ≻ {q} and λ{p,q}(p) > 0 then νu > 0. Therefore∑
s∈S,αs>−1 ηs > 0, and by equation A.6, V ({p, q}) > V ({q}), which proves that

(≽, λ) satisfies axiom 4.1.

In addition, since u(p) + αs(u(p) − u(q)) < u(p) when αs < 0, equation A.6

yields

V ({p, q}) ≤
∑

s∈S,αs>−1

ηsu(p) +
∑

s∈S,αs<−1

ηsu(q)

≤ νuu(p) + ν−uu(q) = V ({λ{p,q}(p)p+ λ{p,q}(q)q})

which proves that axiom 3.2 holds.
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Proof of sufficiency Suppose first that νu = 0. In that case, for any p, q such

that {p} ≻ {q} we have λ{p,q}(p) = 0, which by axiom 3.2 implies {p, q} ∼ {q}.
This identifies the Random Strotz representation associated with ≽, given by

V = minu. This function attaches a weight equal to 1 to the state −u, therefore

the joint representation is sophisticated.

If νu > 0, let us define ηu =
∑

s∈S,αs>0 ηs +
∑

s∈S,0<αs<1 ηsαs and rewrite

equation A.6 under the form

V (x) = ηu max
p∈x

u(p) + (1− ηu)min
q∈x

u(q)

Axiom 4.1 yields ηu > 0. If axiom 3.1 is satisfied, a direct adaptation of

theorem 3.1 proves the existence of a sophisticated joint representation under the

Random Strotz interpretation. If axiom 3.1 is violated, we obtain ηu < νu. It is

therefore possible to rewrite

V (x) = νu[max
p∈x

ηu
νu

u(p)− max
q∈x

(
ηu
νu

− 1)u(q)] + ν−u min
q∈x

u(q) (A.7)

Equation A.7 defines a sophisticated representation of ≽, since the function V

attaches weights equal to (νu, ν−u) to the states (u,−u) respectively.
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Appendix B: Unidimensional Random Strotz models

This appendix proves theorem 2.1, and provides another characterization of

unidimensional Random Strotz representations. Unlike the rest of the paper, this

part does not assume any conditions on µ except non-triviality: continuity and

finiteness are not required. The preference ≽ is here defined over compact menus,

as in Dekel and Lipman (2012).

1 Proof of Theorem 2.1

1.1 Necessity of axiom 2.1

Lemma B.4. Suppose that ≽ has a unidimensional Random Strotz representation

(u, µ) with direction v ∈ V such that µ(Cv) > 0. Consider two lotteries q1 and q2

verifying {q1} ∼ {q2}, and suppose that there exists a lottery z such that {z} ≻
{q1} ∼ {q2}. The two following statements are equivalent: (i) There exists a

menu x such that {p} ≻ {q1} ∼ {q2} for any p ∈ x and x ∪ {q1} ≻ x ∪ {q2}; (ii)
v(q1) < v(q2).

Proof. We prove (i) ⇒ (ii) by contrapositive. {q1} ∼ {q2} implies u(q1) = u(q2).

Suppose that v(q1) ≥ v(q2), and take any x such that u(p) > u(q1). If w ∈ Cv,

we can write w = au +
√
1− a2v, where |a| ≤ 1, and obtain w(q1) = au(q1) +√

1− a2v(q1) ≥ au(q2)+
√
1− a2v(q2) = w(q2). Since the support of µ is included

in Cv, q1 dominates q2 on all the possible subjective states. For i = 1, 2, we write

Ωx∪{qi}(qi) = {w ∈ Cv|w(qi) > maxp∈x w(p)} the list of subjective states on which

qi is chosen. The observation above yields Ωx∪{q2}(q2) ⊆ Ωx∪{q1}(q1), and hence

V (x ∪ {q1}) = µ(Ωx∪{q1}(q1))u(q1) +

∫
w/∈Ωx∪{q1}(q1)

max
p∈Mw(x)

u(p)µ(dw)

≤ µ(Ωx∪{q2}(q2))u(q2) +

∫
w/∈Ωx∪{q2}(q2)

max
p∈Mw(x)

u(p)µ(dw)

≤ V (x ∪ {q2})

This proves that x ∪ {q2} ≽ x ∪ {q1}.

(ii) ⇒ (i). Suppose that u(q1) = u(q2) and v(q1) < v(q2). Consider an

increasing sequence 0 < an < 1 of limit 1, and the increasing sequence of sets

Cv(−an, an). This sequence has limit Cv which has positive measure, therefore by

theorem 10.2 of Billingsley (2012) we have µ(Cv(−an, an)) > 0 for n large enough.

Define a = an.
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Consider now a number γ such that: 0 < γ <
√
1−a2

2a
[v(q2) − v(q1)]. Such a

number exists since a ∈ (0, 1) and v(q2) > v(q1). Suppose first that we can find

γ small enough to ensure that p = 1
2
q1 +

1
2
q2 + γu is a legitimate lottery. Notice

that u(p) > u(q1), u(q2) and that

au(p) +
√
1− a2v(p) = aγ + au(q2) +

√
1− a2[

1

2
v(q1) +

1

2
v(q2)]

< au(q2) +
√
1− a2v(q2)

Therefore q2 dominates p over the set Cv(−1, a). Similarly,

−au(p) +
√
1− a2v(p) = −aγ − au(q1) +

√
1− a2[

1

2
v(q1) +

1

2
v(q2)]

> −au(q1) +
√
1− a2v(q1)

And hence p dominates q1 over the set Cv(−a, 1).

Thus we obtain Ω{p,q1}(q1) ⊂ Ω{p,q2}(q2), and Cv(−a, a) ⊆ Ω{p,q2}(q2)\Ω{p,q1}(q1).

Since µ(Cv(−a, a)) > 0, this yields µ(Ω{p,q1}(q1)) < µ(Ω{p,q2}(q2)).

Hence

V ({p, q1}) = µ(Ω{p,q1}(q1))u(q1) + (1− µ(Ω{p,q1}(q1)))u(p)

> µ(Ω{p,q2}(q2))u(q2) + (1− µ(Ω{p,q2}(q2)))u(p) = V ({p, q2})

Therefore the triple (x = {p}, q1, q2) satisfies x ∪ {q1} ≻ x ∪ {q2}.
If
1

2
q1+

1

2
q2+γu is not a lottery for any γ > 0, since

1

2
q1+

1

2
q2 is not a maximizer

of u among ∆(Z), a standard separation argument shows that it is possible to find

ũ ∈ W that satisfies u.ũ > 0 and such that
1

2
q1 +

1

2
q2 + γũ is a lottery. The same

construction holds with a large enough to satisfy au.ũ >
√
1− a2 and γ such that

0 < γ[au.ũ +−
√
1− a2] <

√
1− a2

2
[v(q2)− v(q1)].

To prove the necessity of axiom 2.1, consider a unidimensional Random Strotz

(u, µ) with direction v. If µ(Cv) = 0, then µ({u,−u}) = 1, thus for any (x, q1, q2)

such that {p} ≻ {q1} ∼ {q2} for all p ∈ x, we have x ∪ {q1} ∼ x ∪ {q2}, and the

condition of axiom 2.1 is trivially satisfied.

Suppose now that µ(Cv) > 0 and take (x, y, q1, q2) such that {p} ≻ {q1} ∼ {q2}
for all p ∈ x and x∪{q1} ≻ x∪{q2}. Since q1 and q2 do not maximize u on ∆(Z),

the implication (i) ⇒ (ii) of lemma B.4 yields v(q1) < v(q2), which in turn implies

y ∪ {q1} ≽ y ∪ {q2}. This completes the proof of necessity.
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1.2 Sufficiency of axiom 2.1

Suppose that the representation (u, µ) of ≽ is not unidimensional. It is clear

that µ(C(−1, 1)) > 0, otherwise we would have µ({u,−u}) = 1 and therefore

µ(Cv) = 1 for any v ∈ V .

Claim B.1. There exists ξ < 1 such that µ(Cv) < µ(C(−ξ, ξ)) for all v ∈ V .

Proof. If this is not the case, there exists an increasing sequence 0 < an < 1 of

limit 1, and a sequence vn ∈ V such that

µ(Cvn) ≥ µ(C(−an, an)) (B.1)

Take m sufficiently large to guarantee µ(C(−am, am)) >
1

2
µ(C(−1, 1)). This

is possible since C(−am, am) is an increasing sequence of limit C(−1, 1), which

has positive measure. Suppose that vn is not constant for n ≥ m. We can find

v1 ̸= v2 such that µ(Cv1) >
1

2
µ(C(−1, 1) and µ(Cv2) >

1

2
µ(C(−1, 1), which implies

µ(Cv1 ∪ Cv2) > µ(C(−1, 1)). This is a contradiction, since Cv1 ∪ Cv2 ⊆ C(−1, 1).

Hence, vn is constant for n large enough. Denote v∗ its limit, and take the limit

in B.1. We obtain µ(Cv) ≥ µ(C(−1, 1)), which further implies

µ(Cv) = µ({u,−u}) + µ(Cv)

≥ µ({u,−u}) + µ(C(−1, 1)) = 1

And hence, µ(Cv) = 1. This is a contradiction, since (u, µ) is not unidimensional.

For each v ∈ V , we define B(v, ϵ) = {w ∈ V|∥w − v∥ < ϵ} the open ball of

radius ϵ and center v, restricted to utilities which are orthogonal to u. We also

define

A(v, ϵ) =
∪

w∈B(v,ϵ)

Cw = {au+
√
1− a2w| − 1 < a < 1, w ∈ V , ∥w − v∥ < ϵ}

A(v, ϵ) contains the utilities whose direction lies in the open ball of center v and

radius ϵ.

Claim B.2. For any ϵ > 0 low enough, there exists two expected utilities vϵ1 and

vϵ2 such that µ(A(vϵ1, ϵ)) > 0, µ(A(vϵ2, ϵ)) > 0 and ∥vϵ1 − vϵ2∥ > 7ϵ.

Proof. Consider ξ defined by claim B.1. ξ can be chosen high enough to guarantee

that µ(C(−ξ, ξ)) > 0. The set C(−ξ, ξ) = {au +
√
1− a2w,w ∈ V , |a| ≤ ξ} is
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compact since it is closed and bounded. Moreover, it is covered by the union of

the open sets A(v, ϵ) for all v ∈ V . By the Borel-Lebesgue theorem, there exists

a finite family F ⊂ V such that {A(v, ϵ)}v∈F covers C(−ξ, ξ). An immediate

implication is that
∑

v∈F µ(A(v, ϵ)) > 0.

Let us show that, if ϵ is low enough, this subcovering contains at least two

sets of positive measure that can be separated as stated in the claim. We proceed

by contradiction. Suppose that for any η > 0, there exists ϵ < η, a finite subset

Fϵ such that {A(v, ϵ)}v∈F covers C(−ξ, ξ), and vϵ ∈ Fϵ such that for any v ∈ Fϵ,

µ(A(v, ϵ)) > 0 ⇒ ∥v − vϵ∥ < 7ϵ. Notice that
∪

v∈B(vϵ,7ϵ)A(v, ϵ) ⊆ A(vϵ, 8ϵ).

Hence, since
∑

v∈Fϵ∩B(vϵ,7ϵ) µ(A(v, ϵ)) ≥ µ(C(−ξ, ξ)), we obtain µ(A(vϵ, 8ϵ)) ≥
µ(C(−ξ, ξ)).

Consider a decreasing sequence ϵn → 0. By the Bolzano-Weierstrass theorem,

the sequence vn = vϵn defined over the compact V admits a convergent subse-

quence. To simplify the notation, let us assume that vn is itself convergent to a

value v∗. For any n, we have µ(A(vn, 8ϵn)) ≥ µ(C(−ξ, ξ)). Our next step is to

show that we can take the limit in this inequality and obtain µ(Cv∗) ≥ µ(C(−ξ, ξ)).

Notice that

µ(A(v∗, 8ϵn))−µ(A(vn, 8ϵn)) = µ(
∪

w∈B(v∗,8ϵn)\B(vn,8ϵn)

Cw)−µ(
∪

w∈B(vn,8ϵn)\B(v∗,8ϵn)

Cw)

(B.2)

Consider the sets

Gn =
+∞∪
m=n

∪
w∈B(v∗,8ϵm)\B(vm,8ϵm)

Cw

Gm is decreasing and has for limit limn→+∞ Gn = ∅. Thus, limn→+∞ µ(Gn) = 0,

and since
∪

w∈B(v∗,8ϵn)\B(vn,8ϵn) Cw ⊆ Gn, we obtain

lim
n→+∞

µ(
∪

w∈B(v∗,8ϵn)\B(vn,8ϵn)

Cw) = 0

A similar argument proves that

lim
n→+∞

µ(
∪

w∈B(vn,8ϵn)\B(v∗,8ϵn)

Cw) = 0

Moreover, the sequence of sets {A(v∗, 8ϵn)} is decreasing and converges to Cv∗
when n → +∞. Thus, taking the limit in equation B.2 shows that µ(A(vn, 8ϵn)) →
µ(Cv∗), which implies µ(Cv∗) ≥ µ(C(−ξ, ξ)). This latter inequality contradicts the
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statement in claim B.1. This completes the proof of claim B.2.

If v ∈ V , we write Aϵ
v(−1, a∗) = {au+

√
1− a2w|−1 < a < a∗, w ∈ V∩B(v, ϵ)}:

it contains the utilities whose direction lies in the open ball of center v and radius

ϵ, and whose intensity lies strictly between −1 and by a∗.

Claim B.3. For any ϵ > 0 small enough, there exists v1, v2 ∈ V and a∗ < 1 such

that

∥v1 − v2∥ > 7ϵ and

min(µ(Aϵ
v1
(−1, a∗)), µ(Aϵ

v2
(−1, a∗))) > µ(C(−1,−a∗))

Proof. Take v1 and v2 given by claim B.2. The proof stems immediately from

the fact that µ(Aϵ
v1
(−1, a∗)) and µ(Aϵ

v2
(−1, a∗)) converge to positive values when

a∗ → 1, while µ(C(−1,−a∗)) tends to zero.

Claim B.4. For any ϵ small enough, there exists three numbers α, β, γ such that

α > 0, 
α > β

α supw∈B(v2,3ϵ) w.v1 < β infw∈B(v2,3ϵ)w.v2

α supw∈B(v1,3ϵ) w.v2 < β infw∈B(v1,3ϵ)w.v1

and 
α < γ

α infw∈B(v1,ϵ)w.v1 > γ supw∈B(v1,ϵ)w.v2

α infw∈B(v2,ϵ)w.v2 > γ supw∈B(v2,ϵ)w.v1

Proof. Suppose that w ∈ B(v1, ϵ). We have

w.v1 =
1

2
(∥w∥2 + ∥v1∥2 − ∥w − v1∥2)

= 1− 1

2
∥w − v1∥2

> 1− 1

2
ϵ2

And since ∥w−v2∥ ≥ ∥v1−v2∥−∥w−v1∥ ≥ 6ϵ, we also obtain w.v2 < 1− 1

2
(6ϵ)2.

Similarly, infw∈B(v2,ϵ)w.v2 > 1− 1

2
ϵ2, and supw∈B(v2,ϵ)w.v1 < 1− 1

2
(6ϵ)2. Hence, if
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ϵ is small enough for the denominators to be positive, the ratios
supw∈B(v2,ϵ) w.v1

infw∈B(v2,ϵ) v.w2

and
supw∈B(v1,ϵ)w.v2

infw∈B(v1,ϵ)w.v1
are bounded above away from 1. It is thus easy to find α and

γ that satisfy the conditions. A similar reasoning can be applied to find β.

To complete the proof, take ϕ > 0, ϵ low enough to ensure that w.v1 > 0

as soon as w1 ∈ B(v1, 3ϵ), and w.v2 > 0 as soon as w2 ∈ B(v2, 3ϵ), and take

a∗, v1, v2, α, β, γ defined by claims B.3 and B.4. Define p1 = 1 + ϵ(ϕu + γv1),

p2 = 1+ ϵ(ϕu+ βv2), r1 = 1+ ϵ(ϕu+ βv1) and r2 = 1+ ϵ(ϕu+ γv2), and for any

w ∈ V such that w /∈ B(v1, 3ϵ) ∪ B(v2, 3ϵ) , zw = 1 + ϵ(ϕu + αw). u is indifferent

between all these elements, with valuation ϵϕ. Consider the menu x containing

p1, p2 and all the zw, and the menu y containing r1, r2 and all the zw.

Define now q1 = 1+ ϵαv1 and q2 = 1+ ϵαv2. We have u(q1) = u(q2) = 0 < ϵϕ,

hence q1 and q2 are normatively inferior to all elements of x and y. Our next step

is to show that q1 is more tempting than q2 with respect to the menu y, while q2

is more tempting than q1 with respect to the menu y.

Consider the ex post choice in x∪{q1}. It is clear that q1 is chosen by −u and

not chosen by u. Consider w /∈ {u,−u}, and write w = au +
√
1− a2w, where

−a∗ ≤ a ≤ 1. We have

w(q1) = ϵ
√
1− a2αw.v1 (B.3)

Suppose first, that w ∈ B(v1, 3ϵ). We have

w(p1) = aϵϕ+ ϵ
√
1− a2γw.v1 (B.4)

Compare B.3 with B.4. Since γ > α and a∗ < 1 one can pick ϕ low enough to

impose the inequality w(p1) > w(q1) for all values of a ≥ a∗. Given this choice, p1

dominates q1 if w ∈ B(v1, 3ϵ) and a ≥ −a∗.

Suppose now that w ∈ B(v2, 3ϵ). We have

w(p2) = aϵϕ+ ϵ
√
1− a2βw.v2 (B.5)

Compare B.3 with B.5, and notice that β infw.v2 > α supw.v1 by claim B.4.

Hence, again, if ϕ is low enough, p2 dominates q1 if w ∈ B(v2, 3ϵ) and a ≥ −a∗.

Finally, suppose that w /∈ B(v1, 3ϵ) ∪ B(v2, 3ϵ). Notice that

w(zw) = aϵϕ+ ϵ
√
1− a2α (B.6)

Compare B.3 and B.6. v1.w is uniformly bounded away from 1 since ∥w−v1∥ ≥ 3ϵ.
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Hence, by the same argument as above, if ϕ is small enough, q1 is dominated by

zw if w /∈ B(v1, 3ϵ) ∪ B(v2, 3ϵ) and a ≥ −a∗.

To sum up, if ϕ is low enough, q1 is never chosen in x ∪ {q1} by a state

whose intensity of temptation is stronger than −a∗. Therefore, denoting αx∪{q1} =

µ({w ∈ W|w(q1) > maxp∈x w(p)}) the ex ante probability of choosing q1 we have

αx∪{q1}(q1) ≤ µ({−u}) + µ(C(−1, a∗)) (B.7)

Consider now the anticipated choice in the set y ∪ {q1} in a state of the form

w = au+
√
1− a2w where a < a∗ and w ∈ B(v1, ϵ). Notice that

w(r1) = aϵϕ+ ϵ
√
1− a2βw.v1 (B.8)

Since α > β, v1.w > 0 and a < a∗ < 1, by equations B.3and B.8 it is possible to

take ϕ low enough to ensure that w(r1) < w(q1). Observe now that

w(r2) = aϵϕ+ ϵ
√
1− a2γw.v2 (B.9)

But by claim B.4, we have α infw.v1 > γ supw.v2. Hence we can choose ϕ low

enough to ensure that w(r2) < w(q1).

Finally, for any ŵ /∈ B(v1, 3ϵ) ∪ B(v2, 3ϵ) it is easy to show that ŵ.w < w.v1.

Thus, since w(zŵ) = aϵϕ+ ϵα
√
1− a2ŵ.w, we obtain w(zŵ) < w(q1) for any ŵ as

soon as a < a∗, if ϕ is chosen small enough.

To sum up, q1 is the single maximizer y ∪ {q1} at least on the utilities of

the form au +
√
1− a2w, where w ∈ B(v1, ϵ) and a < a∗, which means that the

probability of choosing it verifies

αy∪{q1}(q1) ≥ µ({−u}) + µ(Aϵ
v1
(−1, a∗)) (B.10)

The same arguments prove that the choice of q2 in x or y satisfies

αx∪{q2}(q2) ≥ µ({−u}) + µ(Aϵ
v2
(−1, a∗)) (B.11)

and

αy∪{q2}(q2) ≤ µ({−u}) + µ(C(−1,−a∗)) (B.12)

Compare equations B.7 and B.11. By claim B.3, we obtain αx∪{q1}(q1) <

αx∪{q2}(q2), which implies x ∪ {q1} ≻ x ∪ {q2}. In contrast, by equations B.10

and B.12, αy∪{q1}(q1) > αy∪{q2}(q2), which implies y ∪ {q1} ≺ y ∪ {q2}. These two
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properties together violate axiom 2.1.

2 An alternative characterization

2.1 Representation theorem

In this section we show that Unidimensional Random Strotz representations

are characterized by another intuitive behavioral property.

Axiom B.1 (Unique Temptation).

If {p} ≻ {q} for any p ∈ x∪y, then x ≻ x∪{q}, y ≻ y∪{q} ⇒ x∪y ≻ x∪y∪{q}.

Axiom B.1 also characterizes unidimensional models, with one caveat: if the

support of µ cannot be bounded away from −u, the consequent x∪y ≻ x∪y∪{q}
is always true because all inferior options are tempting. Axiom B.1 has no content

in that case. To overcome this issue, we impose another property that guarantees

the existence of a higher bound on the intensity of the temptation.

Axiom B.2 (Limited Temptation).

∃x ∈ A, q ∈ ∆(Z) such that {p} ≻ {q} for any p ∈ x ∪ y and x ∼ x ∪ {q}.

Axiom B.2 is a richness condition: it simply states that some options in the

choice set are not tempting. This condition is innocuous, since it is satisfied if an

option that appears extremely undesirable both ex ante and ex post is added to

the set of prizes. We will first show that axiom B.2 is equivalent to the existence

of a a neighborhood of {−u} of measure zero; and then proceed to show that,

among the Random Strotz models that satisfy axiom B.2, unidimensional models

are characterized by axiom B.1.

Lemma B.5. Suppose that ≽ has a Random Strotz representation (u, µ). The

following statements are equivalent: (i) ≽ satisfies axiom B.2; (ii) there exists

a > −1 such that µ(C(−1, a)) = 0.

Proof. (ii) ⇒ (i). Suppose that µ satisfies (ii) for some a > −1. Consider a pair

(ϵ, γ) such that ϵ > 0 and aϵ+
√
1− a2γ > 0. Define q = 1 and pv = 1+ϕ(ϵu+γv)

for v ∈ V , where ϕ > 0 is taken sufficiently small for pv to be an interior lottery

for all v. We have u(pv) = ϕϵ > u(q) = 0 for all v, and

au(pv) +
√
1− a2v(pv) = ϕ(aϵ+

√
1− a2γ) > 0 = au(q) +

√
1− a2v(q)

This shows that αx∪{q}(q) ≤ µ(C(−1, a)) = 0, and and hence x ∼ x ∪ {q}.
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(i) ⇒ (ii). Suppose that (ii) does not hold, i.e. that for any a > −1, we have

µ(C(−1, a)) > 0.

Consider now x and q such that u(p) > u(q) for any p ∈ x. Consider the

function a : V × x ⇒ (−1, 1) defined by the equation

a(v, p)√
1− a(v, p)2

=
v(q)− v(p)

u(p)− u(q)
(B.13)

equation B.13 uniquely defines a value a(v, p) such that a(v, p) > −1. More-

over, a is continuous in the product topology. By Tychonoff’s theorem, V × x is

compact since V and x are compact. Thus, inf(v,p)∈V×x a(v, p) > −1. Take any

a such that −1 < a < inf(v,p)∈V×x a(v, p), any (v, p) ∈ X × a. By equation B.13

we have au(p) +
√
1− a2v(p) < au(q) +

√
1− a2v(q). Hence, Ωx∪{q} ⊇ C(−1, a),

which yields µ(Ωx∪{q}) > 0, and finally x ∪ {q} ≺ x. Since this result is obtained

for any pair (x, q), the preference ≽ does not satisfy axiom B.2.

Theorem B.1. Suppose that ≽ has a Random Strotz representation (u, µ), and

that ≽ satisfies axiom B.2. (u, µ) is Unidimensional if and only if ≻ satisfies

axiom B.1.

2.2 Necessity of axiom B.1

Suppose that ≻ has a Unidimensional Random Strotz representation (u, µ) of

direction v. Take a triple (x, y, q) such that {p} ≻ {q} for any p ∈ x∪y, x ≻ x∪{q}
and y ≻ y ∪ {q}. The same arguments used to find a in the proof of lemma B.5

can be used to obtain

ax = sup {a ∈ [−1, 1]|au(q) +
√
1− a2v(q) ≥ sup

p∈x
au(p) +

√
1− a2v(p)}

and ay similarly by substituting y for x. x ≻ x ∪ {q} and y ≻ y ∪ {q} imply

µ({−u})+µ(Cv(−1, ax)) > 0 and µ({−u})+µ({−u})+µ(Cv(−1, ay)) > 0. Define

a = min(ax, ay). It is easy to see that q is chosen in the menu x ∪ y ∪ {q} by −u

and by all the utilities of the form ãu +
√
1− ã2v where −1 < ã < a, and that

this set has positive measure. As a consequence, x ∪ y ≻ x ∪ y ∪ {q}.

2.3 Sufficiency of axiom B.1

We prove the sufficiency of the axiom by contrapositive. Suppose that the Ran-

dom Strotz representation (u, µ) of ≻ is not unidimensional, and that ≻ satisfies

48



axiom B.2.

Claim B.5. For any ϵ > 0 low enough, there exists v1, v2 ∈ V and a∗ ∈ (0, 1) such

that: (i) µ(Aϵ
v1
(−1, a∗)) > 0, (ii) µ(Aϵ

v2
(−1, a∗)) > 0, (iii) ∥v1 − v2∥ > 7ϵ, and (iv)

µ(C(−1,−a∗))) = 0.

Proof. The first three parts come from claims B.2 and B.3 in the proof of theorem

2.1. Part (iv) comes from lemma B.5.

Take α, ϕ > 0 and define now q = 1, and: (i) for any ŵ /∈ B(v1, 3ϵ), pŵ =

1 + ϕu + α(ŵ − v1); (ii) for any ŵ /∈ B(v2, 3ϵ), rŵ = 1 + ϕu + α(ŵ − v2). α and

ϕ can be taken small enough to make sure that these elements are well-defined

lotteries. Define also x = {pŵ}ŵ/∈B(v1,3ϵ) and y = {rŵ}ŵ/∈B(v2,3ϵ). We observe that u

equals ϕ > u(q) = 0 on any element of x ∪ y.

Consider the choice made in x∪{q}. Take w ∈ W , written w = au+
√
1− a2w.

Suppose that w ∈ B(v1, ϵ). We have w(q) = 0, and for any ŵ /∈ B(v1, 3ϵ),

w(pŵ) = aϕ+
√
1− a2α(ŵ.w − v1.w)

In addition, we have

ŵ.w =
1

2
(∥ŵ∥2 + ∥w∥2 − ∥w − ŵ∥2)

= 1− 1

2
∥w − ŵ∥2

≤ 1− 2ϵ2

since ∥w − ŵ∥ ≥ ∥ŵ − v1∥ − ∥w − v1∥ ≥ 2ϵ.

A similar argument shows that v1.w ≥ 1 − ϵ2

2
, which implies ŵ.w − v1.w <

−3ϵ2

2
< 0. Therefore we can choose ϕ small enough such that the inequality

w(pŵ) < 0 is satisfied provided that a < a∗. We obtain Ωx∪{q}(q) ⊇ Aϵ
v1
(−1, a∗),

which implies αx∪{q}(q) > 0, and hence x ∪ {q} ≺ x. Similarly, we choose ϕ small

enough to obtain y ∪ {q} ≺ y.

Suppose now that w /∈ B(v1, 3ϵ). We have

w(pw) = aϕ+
√
1− a2α(1− v1.w)

And since ∥v1 − w∥ ≥ 3ϵ, v1.w < 1− 9ϵ2

2
. Therefore we can choose ϕ low enough

to ensure that w(pw) > 0 is satisfied as soon as a ≥ −a∗. Similarly, if ϕ is small

enough and w /∈ B(v2, 3ϵ), the inequality w(rw) > 0 is satisfied if a ≥ −a∗. Since
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∥v1 − v2∥ > 7ϵ, (W \ B(v1, 3ϵ)) ∪ (W \ B(v2, 3ϵ)) = W . This proves that, if

a ≥ −a∗, in every direction w, q is dominated by an element of x ∪ y. Therefore

αx∪y∪{q}(q) ≤ µ(C(−1,−a∗)) = 0, and thus x∪ y∪{q} ∼ x∪ y. The triple (x, y, q)

violates axiom B.1.
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