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April 24, 2015

Abstract

We consider a real option model in which a cash-constrained entrepreneur learns

prior to investing, but at a speed which is private information. The entrepreneur

seeks outside funding, and uses the timing of his investment to signal his confidence

in the venture, and accordingly obtain cheaper credit. In the benchmark case with

no informational friction, we show that the optimal investment date may be non-

monotonic or decreasing in the learning speed, depending on the prior NPV of

the project: better learning increases the value of the option to wait, but also

increases the speed of updating. In the presence of asymmetric information, the

cash constraint may result in distortions in investment timing, and the inefficiency

is higher the more stringent the cash shortage. Inefficient investment policy may

take both the form of hurried investment (as compared to the benchmark), when

both entrepreneur types learn sufficiently fast, and of delayed investment, when the

slow-learning type does not learn fast enough. Therefore, the severity of the cash

constraint affects the magnitude of the timing distortion, but not its direction.
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1 Introduction

Innovation is a major driver of economic growth, and has accordingly been of central

interest for scholars, policy-makers, and practitioners. In particular, much attention has

been devoted to the question of the financing of innovation. An important concern is

notably that financial frictions might lead to underinvestment in R&D: the literature has

indeed documented a wedge between the rate of return required by an entrepreneur to

launch a R&D project and the rate of return of capital required by external investors to

finance this project (Hall and Lerner, 2010; Kerr and Nanda, 2014). One of the main

reasons explaining such a wedge has to do with asymmetric information: the innovator

often has superior information than potential financiers about, e.g., his talent, the quality

of his project, or the effort he puts in to run his business. Information and financial

frictions are indeed particularly relevant to innovative firms: first, they are often run

by young entrepreneurs with no established reputation, so that information problems are

more severe; second, a significant chunk of the innovation potential comes from small firms

with little or no cash. In this paper, we underline how information and financial frictions

impact entrepreneurs by shaping their incentives to learn. Actually, experimentation is

a critical dimension of the innovation process: in the face of uncertainty, entrepreneurs

first need to run tests so as to learn whether further investments are worthwhile. In a

recent paper, Ewens et al. (2014) show that the recent fall in experimentation costs (cloud

computing, accelerators...) has reduced financing constraints for projects with the greatest

option value, and has mostly benefitted to young and inexperienced entrepreneurs. This

suggests that information and financial frictions most hit small firms for which efficient

learning is critical to the success of the venture. In line with this idea, we show how

asymmetric information may provide incentives to under-experiment or over-experiment

in the presence of a cash constraint, raising the concern that innovation could occur too

early or too late as compared to the efficient investment policy.

We consider a continuous time model which combines the following ingredients: (a) an

entrepreneur owns an irreversible project over which he learns as long as the project has

not been launched (the entrepreneur holds a real option); (b) his learning ability, hence

the value of the option, is private information;1 (c) the entrepreneur is cash-constrained

1In the paper, we will interchangeably use the terms learning ability and learning speed to refer to
the quality of the entrepreneur’s learning technology. Formally, this will be captured by a single variable
measuring the precision of the signal he observes.
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and needs outside funding to finance the project. Private information on learning ability

implies that the entrepreneur has superior information about the value of the project

compared to the financier, hence a signaling problem: the date at which the entrepreneur

launches the project conveys information on how confident he is, and the entrepreneur

would have the bank believe that he is as confident as possible in order to obtain cheaper

credit.

To better understand the signaling content of the investment timing, we first analyze

the benchmark case with complete information, and examine how the investment timing

varies with the entrepreneur’s learning ability. The learning ability here plays a dual role:

on the one hand, a higher ability increases the value of the option to wait, which raises the

minimal level of confidence on the project the entrepreneur wants to reach before investing;

on the other hand, learning is faster, and any such cutoff level of confidence is reached

earlier. When the prior net present value of the project is negative, the investment date is

always decreasing in the learning ability; however, when it is nonnegative, the investment

date becomes non-monotonic: both fast and slow learners invest early, the former because

they get confident about the project very fast, the latter because the option to wait has

little value, and there is therefore no point waiting. This suggests that the signaling

content of the investment timing is intrinsically ambiguous: if the entrepreneur wants to

signal a high learning ability, it is a priori unclear whether he should invest early or late.

Under private information on learning ability, we first establish that the entrepreneur

can always reach his complete information payoff whenever he holds sufficient cash: when

a high share of the investment is internally financed, a slow-learning entrepreneur is un-

willing to distort his investment timing to pretend he learns fast, as the cost of inefficient

investment policy dwarfs the benefit of cheaper credit. However, the investment timing

has to be distorted whenever the entrepreneur holds insufficient cash, and the distortion is

more severe the higher the cash shortage. This is because the signaling concerns become

more salient when a higher share of the project is financed with outside funds. Interest-

ingly, though, while the magnitude of the distortion depends on the severity of the cash

constraint, the direction of the distortion is orthogonal to the entrepreneur’s net worth,

and only depends on how the option values of each type, hence their learning speeds,

compare. When the slow-learning type learns fast enough, the equilibrium involves hur-

ried investment, while it involves delayed investment in case the slow-learning type learns

sufficiently slowly. The intuition has to do with the difference in the dynamics of beliefs

3



for entrepreneurs learning at different speeds. At the outset, both types share the same

prior belief on the project; as time goes by, the fast-learning type becomes increasingly

more optimistic than the slow-learning type in a first phase; but, because learning ex-

hibits decreasing returns, this phase is followed by a phase in which the slow-learning

type catches up on beliefs. Separation is possible when the difference between each type’s

confidence in the project is high, that is, at a date when the good type has accumulated

enough superior information as compared to the bad type. When the slow-learning type

learns sufficiently fast (resp. slowly), the phase in which the difference in beliefs expands

is relatively short (resp. long), and separation is achieved by investing earlier (resp. later).

This result that the distortion possibly goes in both directions has to do with the impos-

sibility to rank types according to their intrinsic preference over investment timing. Put

differently, the single-crossing property does not hold, which implies that early invest-

ment may be relatively preferred by a fast-learning or by a slow-learning entrepreneur

depending on how their learning speeds compare. Accordingly, there is no systematic

relationship between the ordering of investment dates under complete information and

the direction of the distortion under asymmetric information: whenever the good type

invests later than the bad type under complete information, he must invest even later

under asymmetric information; however, in the opposite case where the good type invests

earlier under complete information, the distortion may involve either hurried or delayed

investment. Relatedly, asymmetric information may give rise to two kinds of reversals:

(a) a reversal of investment timings, in that the good type may invest later than the bad

type, although he would invest earlier under perfect information; (b) the good type may

be less confident than the bad type upon investing, which never happens under complete

information.

In terms of empirical predictions, our results suggest a relationship between the na-

ture of the distortion in the investment policy and the speed of learning in the market:

in industries characterized by fast learning (i.e., where even slow learners learn suffi-

ciently fast), one should observe over-investment and under-experimentation, that is, an

inefficiently high failure rate conditional on investment. Conversely, we should expect

under-investment and over-experimentation in industries where learning is slower. This

is consistent with evidence on the pharmaceutical industry, where learning is typically

considered slow: for instance, Guedj and Scharfstein (2004) focus on drug development

and establish that cash-constrained firms tend to invest less than unconstrained ones, and
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have a lower failure rate. This is also consistent with Henkel and Jell (2010), who establish

that long patent examination deferments are particularly frequent in the pharmaceutical

and chemical industries.

Our paper relates to the literature on real options (Dixit and Pindyck, 1994), and

on exponential/Poisson learning, notably Keller et al. (2005) and Décamps and Mariotti

(2004). It is more particularly related to a strand of the recent literature on experimen-

tation dealing with the impact of asymmetric information. Agency problems may involve

adverse selection (private learning), moral hazard (unobservable learning effort), or both.

Several papers have considered the question of the design of the optimal contract (or the

optimal mechanism) for experimenting agents, for instance Manso (2011), Gerardi and

Maestri (2012), or Halac et al. (2013, 2014). In particular, a series of papers has focused

on the question of the financing of experimentation (Bergemann and Hege, 1998, 2005;

Hörner and Samuelson, 2013; Bouvard, 2014; Drugov and Macchiavello, 2014). A distinct

class of papers have analyzed models with no commitment where the investment timing

can be used as a signaling device (Grenadier and Malenko, 2011; Morellec and Schürhoff,

2011; Bustamante, 2012). Our paper, which also features a “real option signaling game”,

methodologically belongs to this stream of papers.

However, most of the aforementioned papers model private information on a variable

which monotonically affects the optimal timing decision (e.g, the prior belief, or the cost

of investment).2 In turn, this monotonicity implies that the distortion always goes in one

direction. For instance, Morellec and Schürhoff (2011) and Bustamante (2012) derive that

investment is hurried in equilibrium, while it is delayed in Bouvard (2014). Grenadier and

Malenko (2011) consider four different corporate finance applications, and establish that

the direction of the distortion depends on the application one considers (more precisely,

on what the sender wants to signal), but is always the same within one application.3 In-

stead, we model private information on the parameter which directly measures the quality

of learning, which notably implies a non-monotonic relationship between the optimal in-

vestment date and the learning speed. In such a context, we establish that signaling a

2A notable exception is Halac et al. (2013), who consider a setup with private information on the
probability of success of the project, in which learning comes from observing past successes or failures.
Our two models accordingly bear some formal similarities.

3Relatedly, Bebchuk and Stole (1993) show that informational frictions may lead to overinvestment
or underinvestment according to the way the information asymmetry is modeled.
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high learning speed may involve either hurried or delayed investment.4

The paper is organized as follows: Section 2 is devoted to the presentation of the

model. In Section 3, we characterize the optimal investment timing policy under perfect

information. In Section 4, we derive the unique equilibrium of the signaling game, and

discuss how it compares with the solution under complete information. Section 5 reviews

some empirical implications of the model. In Section 6, we discuss the robustness of the

results. Finally, Section 7 concludes. All the proofs are relegated to the Appendix.

2 The model

A risk neutral entrepreneur owns a project with ex ante uncertain value. With probability

p0, the project is of high quality, and yields a revenue R > 0. With probability 1 − p0,

the project is of low quality, and yields zero revenue. Investment involves an irreversible

cost I ∈ (0, R). The entrepreneur is risk neutral and discounts future revenues and costs

at rate r > 0.

The entrepreneur initially holds an amount of cash A < I, which is continuously

capitalized at rate r.5 Therefore, the entrepreneur needs to raise outside funds from

competitive investors if he wants to launch the project before a date t̃ such that Aert̃ = I.

2.1 Learning environment

The entrepreneur decides the date t ≥ 0 at which investment is triggered, if at all. The

rationale behind waiting is that the entrepreneur learns about the quality of the project

as long as investment has not taken place. We assume, following Décamps and Mariotti

(2004), that he observes a signal modeled as a Poisson process with intensity λ > 0 if

the project is of low quality, and with intensity 0 in case the project is of high quality.

Therefore, “no news is good news”: a jump perfectly identifies a low-quality project,

whereas the entrepreneur gets increasingly optimistic about project quality as long as

nothing is observed.6 The signal is observed for free, so that the benefit of learning on

4Notice that Halac et al. (2013) derive a non-monotonicity result similar to ours under complete
information, but find that asymmetric information always results in under-experimentation (hurried
investment.

5This is without loss of generality. We later argue that we could allow the risk-free interest rate faced
by the entrepreneur to differ from the discount rate. See Section 6.1 for more details.

6One may think of the pre-investment or learning period as a phase during which the entrepreneur
runs tests on his project, for instance the phase I of the FDA’s drug review process. The assumption that
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the project is only traded against the cost of delaying investment.7 Let s(λ, t) denote the

probability of receiving no signal before date t :

s (λ, t) = p0 + (1− p0)e−λt. (1)

Using Bayes’ rule, the entrepreneur’s beliefs on the project conditional on no signal being

observed before date t, read

p∗ (λ, t) =
p0

s (λ, t)
=

p0
p0 + (1− p0)e−λt

. (2)

From (2), one sees that the speed of updating increases with λ : a higher λ implies that

no news is better news. In the analysis, we will propose a dual interpretation of λ : on

the one hand, it captures the specific efficacy/precision of the testing technology, which

is privately known to the entrepreneur; on the other hand, λ also captures the speed of

learning in a given industry/market. The difference in learning speeds across industries

could stem for instance from technological reasons (some industries, e.g. biotechnologies,

pharmaceuticals, are intrinsically more difficult, in that a wider variety of tests has to

be run, as compared to “easier” industries, like software). To avoid notation inflation,

we stick to one single notation λ, but implicitly have in mind that λ is composed of

a privately observed component (entrepreneur-specific talent) and a publicly observed

component (industry-specific speed of learning).8 This will allow us to make different

predictions on the impact of the information and financial frictions in different markets.

2.2 The loan contract

The entrepreneur decides to wait and learn up to some date t at which he invests in

the project. If this investment date is such that Aert ≥ I (i.e., t ≥ t̃), the project is

financed with internal funds. However, if t < t̃, the entrepreneur needs outside funds,

which are supplied, say, by a bank. We assume that the loan contract is proposed by the

only bad news can be learnt may be interpreted in the following way: the value created by the project R
is well-known, but there may be essential impairments which “kill” the value of the project. For instance,
the entrepreneur is perfectly aware of the performance of a drug, car, or software, but needs to run
clinical tests, crash tests, or design an alpha/beta version in order to confidently reject the presence of
side-effects, safety risks, or bugs.

7As discussed in Section 6, one could equivalently assume costly experimentation.
8For instance, one could write λ = kλ̃, where λ̃ is private information to the entrepreneur, and k is

an observable parameter which varies across industries.
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entrepreneur to the bank at the date at which he wants to invest.9 The contact specifies

that the entrepreneur invests all his available wealth Aert, and that investment takes place

immediately.10 In case of failure, both the entrepreneur and the bank get 0, as we assume

players to be protected by limited liability. In case of success, the bank recoups R − Re

as reimbursement. Finally, we assume perfect competition among banks. A consequence

is that the bank demands an instantaneous rate of return of rdt, which goes to 0, as the

loan is immediately reimbursed in case of success.

Importantly, we assume that the bank knows how long the entrepreneur has been

learning at any point in time.11 However, whether a jump revealing a bad project is

observed by all parties or privately observed by the entrepreneur is irrelevant here, as the

entrepreneur never solicits funding if he knows the project to be bad. Indeed, the cash he

must invest out of pocket would then be lost for sure, no matter the terms of the loan.

3 Complete information benchmark

Before we turn to the signaling problem raised by private information on λ, let us first

examine how λ affects the entrepreneur’s behavior in the benchmark case of perfect in-

formation. In this case, even if the bank does not observe the entrepreneur’s beliefs on

the project, it can perfectly back out these beliefs using (2). Since the bank makes zero

expected profit, the entrepreneur obtains the full NPV of the project regardless of the

date at which he solicits funding. Let W ∗(λ, t) denote the expected discounted payoff at

date 0 of a entrepreneur with learning ability λ when he invests at date t (conditional on

no bad news). We have:

W ∗ (λ, t) = e−rts (λ, t) (p∗ (λ, t)R− I)

= e−rt (p0R− I + (1− s(λ, t)) I)

This expression evidences the trade-off faced by the entrepreneur between discounting

and learning: while waiting delays the realization of the payoff, it also allows to keep the

option not to invest alive. The value of this option depends on 1 − s(λ, t), that is, the

9We therefore deliberately ignore the possibility of contracts signed at earlier dates, which would
allow potential transfers to take place before investment. Halac et al. (2013) focus more specifically on
the optimal way to implement such contracts. See also Section 6.5, in which we discuss the role of this
assumption.

10We will later show that it is always optimal for the entrepreneur to invest all his wealth in the project.
11See Section 6.3 to see how one could relax this assumption.
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probability of not investing, a probability which increases in t and λ : waiting allows to

avoid sinking the outlay I in case bad news accrues, and better learning increases the

value of this option.

The optimal investment date t∗ reflects this tradeoff. It is such that:12

t∗ = argmax
t≥0

W ∗ (λ, t) = max

(
−1

λ
ln

p0r (R− I)

(1− p0) (λ+ r) I
, 0

)
. (3)

It is immediate to see that t∗ is nonincreasing in R, p0 and r, and nondecreasing in I.

However, t∗ may be non-monotonic in λ :

Proposition 1 The impact of λ on the optimal investment date t∗ depends on the prior

NPV of the project:

• If p0R− I < 0, t∗(λ) is a decreasing function of λ;

• If p0R − I ≥ 0, there exist λ∗ and λ∗∗, with 0 ≤ λ∗ < λ∗∗, such that t∗(λ) = 0 for

λ ≤ λ∗, t∗(λ) is increasing on [λ∗, λ∗∗] and decreasing on [λ∗∗,+∞).

T���t*()t ()

�

Figure 1: t∗(λ) in the case p0R− I < 0.

l

THlL

λ*

t*(λ)

λ
λ**

Figure 2: t∗(λ) in the case p0R− I ≥ 0.

λ impacts the optimal investment date in two ways. An entrepreneur with a higher

λ triggers investment when his beliefs reach a higher threshold, because the value of the

option is higher.13 Meanwhile, he also reaches a given threshold faster. When p0R− I <

0, the latter effect always dominates, whereas both effects alternatively dominate when

12Notice that it is fine to solve this stopping problem by maximizing the date-0 expected payoff, since
the entrepreneur perfectly forecasts at date 0 his conditional beliefs at all future dates.

13Notice that, with the same model, Décamps and Mariotti (2004) express the optimal strategy as a
stopping rule: the entrepreneur triggers investment when the beliefs p∗(λ, t) first hit a threshold p̂(λ) =
(λ+r)I
rR+λI . It is immediate to see that p̂(λ) increases in λ.
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p0R − I ≥ 0. Notice that Halac et al. (2013, 2014) derive the same non-monotonicity

result in models with costly information acquisition.14 This non-monotonicity makes the

signaling content of early investment intrinsically ambiguous, as it could stem from an

entrepreneur with a high learning ability who has learnt fast, or from a slow-learning

entrepreneur whose option has little value. In the next section, we explore in detail how

the entrepreneur can signal his learning speed through the timing of his investment.

4 Incomplete information

We now assume λ to be private information: λ ∈
{
λ, λ
}
, with 0 ≤ λ < λ, and Pr(λ =

λ) = q0. To simplify notation, let us denote t
∗

= t∗(λ) and t∗ = t∗(λ).

4.1 Payoffs

The interest rate paid by the entrepreneur reflects the bank’s beliefs over the quality

of the project. When asked for credit, the bank knows how long the entrepreneur has

been waiting, but does not know the true beliefs of the entrepreneur because of private

information on λ. Let q denote the probability that the bank assigns to the entrepreneur

being of type λ. Conditional on no signal between 0 and t, the bank’s perceived probability

of success reads

p (q, t) =
p0

qs
(
λ, t
)

+ (1− q)s (λ, t)
. (4)

The bank lends I − Aert and demands a rate of return of 0, so the amount which

the entrepreneur retains in case of success, Re(q, t), is given by the following zero profit

condition:

p (q, t) (R−Re (q, t)) = I − Aert. (5)

The interest rate on the loan then equals R−Re(q,t)−(I−Aert)
I−Aert = 1−p(q,t)

p(q,t)
.

Let W (λ, q, t) denote the expected discounted payoff at date 0 of type λ ∈ {λ, λ}

when he invests at date t, and is perceived as type λ with probability q. If t ≥ t̃, the

entrepreneur does not need outside funds, so asymmetric information has no bite, and

W (λ, q, t) = W ∗ (λ, t) for all q.

14In their case, though, the case where t∗ is decreasing in λ never obtains. Indeed, they focus on the
case where costly experimentation is valuable, which is the “counterpart” of our positive NPV case. In
the opposite case where experimentation is too costly, there is no learning, so the investment date does
not reflect learning ability.
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If t < t̃, we have

W (λ, q, t) = e−rts (λ, t)
(
p∗ (λ, t)Re (q, t)− Aert

)
(6)

Using (4) and (5), this reads

W (λ, q, t) = W ∗ (λ, t) + p0e
−rt(I − Aert)

[
1

p∗(λ, t)
− 1

p(q, t)

]
(7)

It is easy to see that p∗(λ, t) = p(0, t) ≤ p(q, t) ≤ p(1, t) = p∗(λ, t). This implies that

W (λ, 1, t) = W ∗(λ, t) and W (λ, 0, t) = W ∗(λ, t), i.e., the entrepreneur’s expected payoff

under asymmetric information is the same as under perfect information as long as the

bank holds true beliefs on λ, a consequence of competition among financiers. Otherwise,

the bad type benefits from being perceived as a good type with positive probability, as

part of the investment (I − Aert) is then financed at a cheaper cost than under perfect

information (the interest rate is 1−p(q,t)
p(q,t)

< 1−p∗(λ,t)
p∗(λ,t)

). Conversely, the good type suffers

from being perceived as a bad type with positive probability. Overall, the bad (resp.

good) entrepreneur gets an expected payoff equal to his full-information payoff plus (resp.

minus) an information rent reflecting the bank’s (mis)perception that he is a high type

with probability q.15

Notice also that (6) can be rewritten

W (λ, q, t) = e−rtp0Re (q, t)− A+ (1− s(λ, t))A

For a fixed investment date t and a fixed repayment R − Re(q, t), both entrepreneur

types get a payoff (viewed from date 0) of e−rtRe(q, t) in case the project is of high quality.

Therefore, the only difference between entrepreneurs with different learning abilities lies

in the value of their options to wait: the good type (rightly) abstains from investing with

probability 1 − s(λ, t), in which case he saves the outlay (A in present value), while the

bad type does so only with probability 1− s(λ, t). Let us define f(t) ≡ s(λ, t)− s(λ, t) =

(1− p0)(e−λt − e−λt). We derive:

∀t < t̃, W
(
λ, q, t

)
−W (λ, q, t) = Af(t) (8)

15This can also be seen by remarking that p0(I − Aert)
[

1
p∗(λ,t) −

1
p(q,t)

]
can be rewritten

p0 (Re(q, t)−Re(1, t)) < 0 for λ, and p0 (Re(q, t)−Re(0, t)) > 0 for λ.
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One sees that f is nonnegative, as the good type invests in the project less often than

the bad type. In addition, f(0) = 0, as both types differ only to the extent that some

learning has taken place. Finally, it is easy to show that f is single-peaked and reaches a

maximum at

t0 ≡
lnλ− lnλ

λ− λ
> 0.

The single-peakedness of f has to do with the fact that learning exhibits decreasing

returns: the probability of learning bad news before t increases with t, but the marginal

increase (the density) is decreasing with time. This implies that the comparative learning

dynamics is characterized by two phases: a first phase in which the good type learns

more (as time goes by, the good type becomes increasingly more optimistic than the bad

type), and a second phase in which the bad type catches up: in the limit, there is perfect

learning for any positive λ, so the difference between types becomes negligible.

Before we turn to the equilibrium analysis, let us notice that asymmetric information

has no bite when t
∗

= 0 and when t
∗
> t̃ : if t

∗
= 0, then a fortiori t∗ = 0, using

(3), so both types can reach their complete information payoff by investing at date 0, in

which case the bank’s beliefs are irrelevant (p(q, 0) = p0 for all q); if t
∗ ≥ t̃, the good

entrepreneur can self-finance the project, while securing his complete information payoff.

In the following, we therefore restrict attention to 0 < t
∗
< t̃.

4.2 Equilibrium definition and concept

We look for perfect Bayesian equilibria satisfying D1. Whenever D1 is not enough to guar-

antee uniqueness, we select the Pareto-dominant equilibrium, or least-cost equilibrium.16

A pure-strategy equilibrium features investment dates t and t (conditional on no news)

for types λ and λ, and a belief function q(t), which assigns a probability that investment

at date t comes from type λ.17

16D1 imposes to attribute a deviation to some date t to the type with the stronger incentive to deviate
to t. We will see that, whenever there is equilibrium multiplicity, the only equilibria are separating,
meaning that they can be Pareto-ranked.

17Mixed strategies in such a continuous time game are not obvious to define, but we will later show that
a mixed strategy equilibrium must involve one type randomizing between exactly two pure strategies,
and the other type playing a pure strategy. See Lemma 4 in the Appendix.
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4.3 Separating equilibria

We first look for separating equilibria where t 6= t. First of all, it is standard that, in any

separating equilibrium, we must have t = t∗.18

A separating equilibrium (t∗, t) exists if and only if the following constraints hold:

W (λ, 1, t) ≥ W (λ, 0, t∗) (9a)

W (λ, 0, t∗) ≥ W (λ, 1, t) (9b)

W (λ, 1, t) ≥ W (λ, q(t), t) for all t /∈
{
t∗, t
}

(9c)

W (λ, 0, t∗) ≥ W (λ, q(t), t) for all t /∈
{
t∗, t
}

(9d)

These incentive constraints specify that each type must prefer his equilibrium action to

that of the other type, and has no profitable off path deviation.

The first thing to notice is that we must have t ≤ t̃. Otherwise, the good type could

deviate to t̃ : he could still self-finance the project, but would get a strictly higher payoff,

since t
∗
< t̃. This implies, taking (8) at q = 1 :

W
(
λ, 1, t

)
= W ∗ (λ, t)− Af(t). (10)

Af(t) measures the difference in option values, hence captures the cost for the slow-

learning type to mimic the fast-learning type. Since the least cost separating equilibrium

is the one which maximizes the expected payoff of the good type, the first avenue is to

check whether the complete information dates (t∗, t
∗
) can be equilibrium strategies. We

establish the following result:

Proposition 2 (t∗, t
∗
) is an equilibrium if and only if A ≥ A0 ≡

W ∗(λ,t∗)−W ∗(λ,t∗)

f(t
∗
)

The entrepreneur can therefore reach his complete information payoff whenever the

cash constraint is sufficiently soft. When a high share of the investment is internally

financed (A increases), the benefit of cheap credit does not compensate the loss due to

the inefficiency of the investment policy, and mimicking is not a concern. Notice that

A0 ∈ (0, I), so the complete information payoffs are always attainable for A large enough,

and never attainable when A is too small.

18If t 6= t∗, type λ could always increase his payoff by playing t∗ : even it is does not improve the bank’s
beliefs, it yields a higher expected payoff.
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Before we turn to the analysis of other separating equilibria, let us remark that D1

allows us to further restrict the set of possible equilibrium dates t, as Lemma 1 shows.

Lemma 1 In any separating equilibrium, the good type invests at a date comprised be-

tween t
∗

and t0 : t ∈ [min
(
t0, t

∗)
,max

(
t0, t

∗)
].

Given that f measures how much the good type prefers investment at a given date

as compared to the bad type, and because f is single-peaked in t0, a deviation to an off-

equilibrium date between t0 and t (“in the direction of t0”) is relatively more beneficial

to the good type (for any out-of-equilibrium associated to this deviation). Therefore, D1

imposes to attribute such a deviation to the good type. Given this restriction, it is easy

to find profitable deviations if t /∈ [min
(
t0, t

∗)
,max

(
t0, t

∗)
] : by moving in the direction

of t0, the good type could secure a higher expected payoff, while still being perceived as

good.

Let us define

ΛH =
{(
λ, λ
)
∈ R2

+|λ > λ and t
∗
> t0

}
ΛD =

{(
λ, λ
)
∈ R2

+|λ > λ and t
∗ ≤ t0

}
.

Notice that, since neither t0 nor t
∗

depend on A, the regions ΛH and ΛD are indepen-

dent of A. Therefore, a direct implication of Lemma 1 is:

Corollary 1 Suppose A < A0. If (λ, λ) ∈ ΛH (resp. ΛD), any separating equilibrium

must involve hurried (resp. delayed) investment: t ∈ [t0, t
∗
) (resp. t ∈ (t

∗
, t0]).

The investment date must reflect the compromise between the preferred investment

strategy of the good type (invest at t
∗
) and the call for incentives (which requires dis-

torting investment in the direction of t0 to increase the difference in option values). As a

consequence, separation may involve investing earlier or later than t
∗

according to where

t
∗

lies as compared to t0. Let us now characterize how the ordering of t0 and t
∗

relates to

the primitives of the model.

Lemma 2 ΛH and ΛD are characterized as follows:

• If λ ≤ ep0r(R−I)
(1−p0)I − r, (λ, λ) ∈ ΛD for all (λ, λ);

• If λ > ep0r(R−I)
(1−p0)I − r, there exists a unique λ0 such that (λ, λ) ∈ ΛD if and only if

λ ≤ λ0, where λ0 is a decreasing function of λ.

14



Figure 3 depicts how the set of types is partitioned into the two regions ΛH and ΛD.

Λ

Λ

Figure 3: The regions ΛH and ΛD.

To understand the intuition behind Lemma 2, recall that f reflects the comparative

learning dynamics: in a first phase, beliefs of both types diverge apart, with the good type

learning faster than the bad type; in a second phase, the bad type catches up on beliefs.19

In region ΛH , both types learn sufficiently fast. This means that the phase during which

the good type learns faster stops early. In this case, signaling learning ability imposes to

invest early to make sure that the bad type is sufficiently less confident than the good type

about the project. Conversely, in Region ΛD, the slow-learning type learns little enough,

so the first phase stops later, and the good type should exploit as much as possible his

comparative learning advantage by waiting longer.

While the necessary conditions given by Lemmas 1 and 2 are helpful to better un-

derstand how the incentive-compatibility constraints shape equilibrium behavior, we still

need to derive necessary and sufficient conditions for a separating equilibrium, which we

do now:

Proposition 3 There exists a separating equilibrium if and only if A ≥ A1 ≡ max

(
0,

W ∗(λ,t0)−W ∗(λ,t∗)

f(t0)

)
In a separating equilibrium, the sorting of types is achieved by making sure that the

difference between each type’s beliefs on the project is large enough that it is worthwhile

for the good type to invest his cash A out of pocket, but too costly for the bad type. This

is why a separating equilibrium is only possible when the entrepreneur has enough cash.20

19Formally, p∗(λ, t)− p∗(λ, t) is increasing and then decreasing.
20Notice though that one may have A1 = 0, in which case there exists a separating equilibrium even if

the entrepreneur has no cash. See Section 4.6 for a discussion on this.
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It is easy to see that A1 ≤ A0. We immediately derive from Corollary 1 and Proposition

3:

Corollary 2 If A1 ≤ A < A0, a separating equilibrium exists, and involves hurried (resp.

delayed) investment if (λ, λ) ∈ ΛH (resp. ΛD).

While the existence of a separating equilibrium depends on the severity of the infor-

mation problem measured by A, the direction of the distortion depends on the learning

environment, i.e., on whether (λ, λ) belongs to ΛH or ΛD, but is independent of A.

4.4 Pooling and semi-pooling equilibria

We now characterize pooling and semi-pooling equilibria:

Proposition 4 If A ≥ A1, there cannot be pooling in equilibrium (any equilibrium is

separating).

In addition, ∃A2 ≤ A1 such that:

• If A2 ≤ A < A1, the unique equilibrium is such that t = t0, and λ randomizes

between t0 and t∗,

• If A < A2, the unique equilibrium is pooling: t = t = t0.

In the Appendix, we derive the cutoff value A2 :

A2 = max

(
0, Ie−rt0 − W ∗(λ, t∗)−W ∗(λ, t0)

q0f(t0)

)
.

Notice that the pooling equilibrium never exists ifA2 = 0, i.e., when q0 ≤ W ∗(λ,t∗)−W ∗(λ,t0)
Ie−rt0f(t0)

.

This corresponds to instances where the prior probability q0 is small enough, in which

case the bad type is unwilling to distort his investment strategy, as the gain of being

perceived as the average type is too small.

Two findings emerge from Proposition 4. First, the equilibrium cannot involve any

pooling when a separating equilibrium exists. Second, when there is pooling in equilib-

rium, it must be at date t0. This springs from Lemma 1, which imposes the distortion to

be “capped” at t0. We derive the following Corollary:

Corollary 3 The equilibrium is unique
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The only possible range of multiplicity is A ≥ A1. In this case, there may be a con-

tinuum of separating equilibria, but Proposition 4 shows that pooling is then impossible.

Therefore, all these equilibria can be Pareto-ranked, and there is consequently a unique

least-cost separating equilibrium.

First Best

Delayed Eq.

Hurried Eq.

Semi Pooling Eq.

Pooling Eq.

Figure 4: Equilibrium characterization

In Figure 4, we represent the different equilibrium regions in the space (λ,A). The fig-

ure displays that higher values of A make it more likely that the first best is an equilibrium,

and, if not, that there exists a separating equilibrium. It also shows that separation is

obtained by delaying investment when λ is sufficiently small, and by hurrying investment

otherwise, regardless of the value of A.

4.5 The role of the cash constraint

The equilibrium strategies reflect the severity of the incentive problem, which is measured

by A. When the cash constraint is soft, the complete information payoffs are attained.

Otherwise, the good type needs to distort his investment date in the direction of t0 in

order to prevent mimicking by the bad type. When the information problem becomes too

severe (A is too small), the only solution for the good type is to invest at t0 to maximize

the difference in option values. When this is not sufficient to achieve separation, the good

type must be (fully or partially) pooled with the bad type. Proposition 5 establishes

formally that the distortion incurred by the good type increases with the cash shortage.
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Proposition 5 If t0 < t
∗

(resp. t
∗
< t0), t is nondecreasing (resp. nonincreasing) in A :

• For A < A1, t = t0

• For A ∈ [A1, A0], t is increasing (resp. decreasing) in A

• For A > A0, t = t
∗

A

t

t
*

t0

t

A

t

Figure 5: The impact of the cash constraint

One sees from W (λ, 1, t) = W ∗(λ, t) − Af(t) that, whenever A increases, changes in

t have a larger impact on the incentive constraint of the bad type, which reduces the

distortion. A captures the stake of the entrepreneur in his project, i.e., the share of the

investment which is financed internally. As the cash shortage problem improves (that

is, as A increases), the benefit from fooling the financier decreases, and the cost from

distorting the timing away from the preferred timing policy increases. By improving the

sorting of types, a higher A therefore attenuates the information problem, and decreases

the welfare loss. Since Proposition 5 only concerns the good type, let us now derive how

A affects total expected welfare:

Corollary 4 The good entrepreneur’s expected payoff W (λ, q(t), t) and the expected total

welfare q0W (λ, q(t), t) + (1− q0)W (λ, q(t), t) are nondecreasing in A

Figure 6 illustrates this result. Pooling hurts the good type, but benefits the bad type:

although the bad type must then also suffer some distortion, by investing at date t0 with

positive probability, he benefits from being pooled with the good type.

Notice from this result that it is clear that the entrepreneur should invest all his wealth

in the project. Indeed, there is no point for the good type to borrow more than needed

(i.e., to borrow I − Ãert at date t, with Ã < A), as this would just make mimicking more

tempting, and result in a higher distortion. Since it is a (weakly) dominant strategy for
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A

Eq. Payoff for λ

Eq. Payoff for λ

Average Eq. Payoff

Figure 6: Equilibrium payoffs

the good type to invest all his cash, the bad type could never reveal positive information

by borrowing more than needed.21 Therefore, we would derive the same results if the

entrepreneur could choose both his investment date and how much to borrow.22

4.6 Relationship with the complete information benchmark

4.6.1 Distortions

Proposition 1 establishes that there may be a non-monotonicity in the investment dates

under complete information: a fast-learning entrepreneur possibly invests earlier or later

than a slow-learning one. Intuitively, the ranking of the first best investment dates should

affect the way separation is achieved under asymmetric information. When t
∗
< t∗,

investing earlier than t
∗

should be a way for the good type to increase the cost of mimicking

for the bad type. And conversely if t∗ < t
∗
. However, the difference between each type’s

preferences under perfect information is not fully captured by the ranking of the first-best

investment dates, but instead by the (non-monotone) function e−rtf(t). Indeed, we have:

W ∗(λ, t)−W ∗(λ, t) = Ie−rtf(t) for all t. (11)

Remarking that the incentive for the bad type to mimic the good type is measured

by Af(t), there is only a partial relationship between the complete information ordering

21However, the fact that the bad entrepreneur’s expected payoff is decreasing in A raises the concern
that he could squander his cash to increase his equilibrium payoff in the signaling game. This would be a
concern only if A were not observable; but, in this case, entrepreneurs with little cash should rationally
be suspected of being bad types.

22The fact that both types invest all their cash (that is, pool on this dimension) contrasts with what
would happen in a screening model, where the principal could precisely prescribe to invest all his cash
only to the good type, so as to elicit information on the agent’s confidence in the project. See also Section
6.5 on this issue.
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and the direction of the distortion under asymmetric information: whenever t∗ < t
∗
, a

separating equilibrium must involve delayed investment by the good type.23 This is in

line with the intuition given by the ranking of the first best investment dates. However,

in the other case where t
∗ ≤ t∗, the equilibrium could possibly involve either hurried or

delayed investment. The preference of each type over timing decisions is then a sorting

force per se, as it is intrinsically costly for an entrepreneur of a given type to invest at the

preferred date of the other type. Accordingly, the preferences may be sufficiently different

for a separating equilibrium to exist even when the entrepreneur has no cash (this is the

case when A1 = 0).24 The fact that the entrepreneur invests his own money into the

project is therefore a complementary sorting force, which helps achieve separation, but is

not always necessary.

4.6.2 Reversals

The distortions created by asymmetric information may result in two possible types of

reversal as compared to the complete information case:25

• A reversal of the ranking of investment dates: this happens when the good type

invests later than the bad type under asymmetric information, while he would invest

earlier under perfect information: t
∗
< t∗ < t.26

• A reversal of the ranking of beliefs: this happens when the good type is less op-

timistic on the project upon investing than the bad type: p∗(λ, t) < p∗(λ, t∗), as

shown in Figure 7.27

4.6.3 The impact of λ on investment

In order to compare the shape of the investment dates under complete information (given

by Figures 1 and 2) and under incomplete information, let us derive how t varies when λ

changes, holding λ fixed. In case the first best is an equilibrium, t = t
∗

may be decreasing

23One easily sees that t∗ < t
∗ ⇒ t

∗
< t0, using (11) and the fact that e−rtf(t) reaches a maximum at

a point below t0.
24This does not mean that the cash invested by the entrepreneur does not play a sorting role when

A1 = 0. Indeed, the distortion is lower when A increases, as we have seen in the previous section.
25See the proofs in Section 8.10 of the Appendix for more details on the conditions for such reversals.
26Notice that this result hints that the monotonicity condition typical of a screening problem would be

violated. See notably Halac et al. (2013) on this issue.
27Under complete information, p∗(λ, t∗(λ)) is increasing in λ, so an entrepreneur with a higher option

value is always more confident upon investing.
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Figure 7: Reversal of belief monotonocity

or single-peaked in λ (see Proposition 1); in case the equilibrium is pooling or semi-

pooling, the investment date t = t0 is decreasing in λ. In the last case where a separating

equilibrium with distortion exists, we derive the following result:

Proposition 6 In a separating equilibrium involving delayed (resp. hurried) investment,

the investment date t is increasing (resp. decreasing) in λ.

 

 

t

,

 

t

,

 

t

t
*

t0

t

!

Figure 8: The equilibrium investment date t as a function of λ

Figure 8 illustrates the results of this Section. In the left figure, we depict situations

where t∗ ≤ t
∗
, in which case a separating equilibrium must involve delayed investment,

and t is then increasing in λ over the zone where such a separating equilibrium exists.

This implies in particular that the investment date may change monotonicities twice as

λ increases. In the other two figures, we depict situations where t
∗
< t∗ in which case a

separating equilibrium may involve either hurried or delayed investment. An important

implication of Proposition 6 is that, whenever t
∗

is decreasing in λ and t is increasing

in λ, the welfare loss, q0
(
W ∗(λ, t

∗
)−W ∗(λ, t)

)
, must be increasing in λ, meaning that

improvements in the learning technology of the (good) entrepreneur result in more severe

inefficiencies.
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4.7 The role of the prior NPV

In this section, we examine the impact of the variables governing the NPV of the project,

i.e., p0, R and I. In order to underline the role played by the date-0 NPV, and to simplify

the exposition, we focus attention on the case λ = 0. With this specification, f(t) =

(1−p0)(1−e−λt) is increasing in t, so we have t0 =∞. This implies A1 = 0, meaning that

the equilibrium is always separating. In addition, the equilibrium never involves hurried

investment.

Proposition 7 Consider λ = 0.

• If A ≥ I( r
λ+r

)r/λ, (t∗, t
∗
) is an equilibrium for any p0;

• If A < I( r
λ+r

)r/λ, there exist (p, p) ∈ (0, 1)2 with p < I
R
< p such that the (t∗, t

∗
) is

an equilibrium if and only if p0 /∈ [p, p] :

– If p ≤ p0 <
I
R
, the (delayed) equilibrium investment date t is increasing in p0

and R, and decreasing in I;

– If I
R
< p0 < p, the (delayed) equilibrium investment date t is decreasing in p0

and R, and increasing in I.

p0

t

t
*

t

Figure 9: The equilibrium investment date t as a function of p0

The equilibrium investment date is increasing in the NPV in the negative NPV range,

and decreasing in the positive NPV range, as illustrated in Figure 9.28 An increase in

28Notice though that this non-monotonicity is not an artifact of choosing λ = 0. Indeed, we also derive
it under some conditions in the general case, but the presentation of the results is simpler in this specific
configuration. The results on the comparative statics with respect to p0 in the general case are available
upon request.
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the value of the project may therefore result in a decrease in investment. This is because

the equilibrium payoff of the bad type does not change with the NPV as long as it is

negative, but the expected payoff of the good type increases with the NPV, which increases

incentives to mimic, hence the higher distortion. Another implication of Proposition 7 is

that the welfare loss due to the financial friction, q0
(
W ∗(λ, t

∗
)−W ∗(λ, t)

)
, is increasing

in the NPV over the range where t is increasing. This raises the concern that markets

where potential innovations have higher value are plagued by larger inefficiencies.

5 Empirical predictions

The first prediction of the model is that the cash constraint does affect investment. Firms

with similar projects but different levels of cash do not necessarily invest the same. This

is consistent with the finding that cash-rich firms have an investment policy which is less

sensitive to their net worth than cash-constrained firms (see Hubbard (1998) for a survey).

In addition, our model predicts more specifically that inefficient investment may take both

the form of over-investment or under-investment according to the shape of the learning

curves in the market. In industries with slow learning, cash-constrained firms should invest

later (or less) than unconstrained firms, and succeed with a higher probability. This is

consistent with Guedj and Scharfstein (2004), who show that small drug companies with

less initial cash are less likely to move to subsequent phases of clinical tests, and are more

likely to succeed in these phases, that is, cash-constrained firms experiment longer. This is

also consistent with the fact that long deferments of patent examination are particularly

frequent in the pharmaceutical and chemical industries (Henkel and Jell, 2010).29 In

industries characterized by fast learning (i.e., where even slow learners learn fast enough),

cash-constrained firms should invest earlier than unconstrained firms, and have a lower

probability of success. In terms of the timing of patenting decisions, this implies that

firms in industries where learning is relatively fast (e.g. software) should be more prone

to soliciting accelerated patent examination procedures. Unfortunately, there has been

little evidence on the characteristics of firms which file for accelerated procedures so far.30

29Some patent offices allow patent applicants to solicit accelerated and/or deferred examination of their
application, lowering or expanding de facto the duration of the experimentation period. Patents are often
perceived as a way for cash-poor firms to secure financing by signaling their quality (Hall and Harhoff,
2012).

30Harhoff and Stoll (2014) exploit as a natural experiment the fact that the European Patent Office
has switched from a regime where accelerated examination procedures were publicly disclosed to a regime
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Overall, our model suggests that an empirical analysis on the impact of cash constraints

on investment should group firms according both to how financially constrained they are,

and to the learning speed in the industry. Indeed, our results hint that an analysis where

firms are grouped according to their net worth only would possibly underestimate the

impact of the cash constraint, by pooling together firms which underinvest and firms

which overinvest.

Finally, our model also predicts that the value of the project may have a counterin-

tuitive impact on investment: a higher expected value may indeed sometimes decrease

investment. Relatedly, we evidence two distinct “ranges of inaction” in which investment

does not respond to a change in the expected profitability of the project: one range cor-

responds to the situation in which the option to wait is not exerted (if investment takes

place at date 0, an increment in the NPV does not change the entrepreneur’s behavior,

both under complete or incomplete information); the other range corresponds to the zone

where there is (full or partial) pooling (the entrepreneur is fully constrained by incentives,

and keeps investing at date t0, even when the NPV marginally increases). Therefore, the

non-responsiveness of investment to changes in the value of the investment may have two

very different causes: the option-like feature of investment and the cash constraint. In

firms suffering from cash constraints, the non-responsiveness is more likely to originate

from an incentive problem, while in firms holding projects which are easier to revert (for

instance, when there is a liquid second-hand market for assets), the option has a smaller

value, and the non-responsiveness should rather reflect the desire of the entrepreneur to

reap the benefits from investment as soon as possible. It would be interesting to test these

predictions empirically.

6 Discussion

6.1 Rate of capitalization of the entrepreneur’s cash

One may wonder whether our results would hold if we instead assumed that the cash of

the entrepreneur A is capitalized at some different rate r0 ≤ r. In this case, the function f

would become (1− p0) e−(r−r0)t
(
e−λt − e−λt

)
, which is still a single peaked function of t,

with a maximum reached at a t̃0 ≤ t0, where t̃0 increases in r0. Therefore, our results would

go through: the region where hurried investment obtains would simply expand, and the

where they are kept secret. But they do not focus on differences in the pool of applicants across industries.
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region characterized by delayed investment shrink. This highlights how the capitalization

of the entrepreneur’s cash affects the incentive problem. Indeed, waiting longer is more

of an effective signaling strategy when r0 is higher, since the amount that is internally

financed increases every thing else equal, hence the cost incurred by the bad type when

mimicking the good type.31

6.2 Costly experimentation

It is also easy to show that our results would hold with costly experimentation. For in-

stance, we derive an essentially similar result when there is no discounting and learning

involves a flow cost c.32 In this case, since an entrepreneur who invests later has to pay

higher experimentation costs, the cash he has left to finance the project shrinks with

time.33 This effect mirrors the effect of cash capitalization described in the previous para-

graph: here, the cash of the entrepreneur depreciates, which makes the hurried investment

equilibrium more likely everything else equal.

6.3 Non-observability of date 0

Since the investment date is the signal which the entrepreneur uses to display his con-

fidence, it is critical that the bank is able to observe how long exactly the entrepreneur

has been waiting, i.e., “knows date 0”. Suppose instead that the bank does not know the

exact waiting time, but that an entrepreneur who has been waiting for a length T could

provide hard evidence that he has been waiting at least for any length T̃ ≤ T.34 In other

words, the entrepreneur could possibly understate, but not overstate his waiting time. In

this case, our equilibrium with hurried investment would collapse: if the bank believes

an entrepreneur who pretends that he has been waiting for t to be a high type, then the

entrepreneur should wait until t
∗
, but pretend he has only been learning for t. However,

an equilibrium with delayed investment would be robust to this altered information struc-

ture, since such gaming is unprofitable in this direction. Therefore, the non-observability

of date 0 would create some asymmetry between the (robust) delayed equilibrium and the

31Notice also that a separating equilibrium becomes more likely when r0 increases, as the entrepreneur
has more cash to invest everything else equal.

32The proof is omitted for concision, but is available upon request.
33This holds of course only as long as one assumes that the experimentation costs are monetary.
34For instance, the entrepreneur could exhibit past trial outcomes, which do not provide information

on the quality of the project, but evidence that the entrepreneur was already learning on the project at
the time of the trial.
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(non robust) hurried equilibrium.

6.4 Good news model

Our assumption that “no news is good news” makes the analysis simpler, as there is a one-

to-one relationship between dates and beliefs as long as the entrepreneur has not received

bad news. Let us try to conjecture what would happen in a “good news” model, i.e., in

a learning environment where the Poisson process has intensity λ in case the project is of

high quality, and 0 otherwise. Under complete information, it is easy to see that the first

best rule consists of investing either at date 0 or only upon learning good news. We then

obtain an equivalent of our non-monotonicity result: if the NPV is negative, investment

occurs at the first date at which good news arises. This date is a random variable, but

it comes earlier in expectation when λ increases. If the NPV is nonnegative, there is

immediate investment if λ is small enough, while the expected investment date decreases

in the range where the option is exerted (λ is large enough). In the presence of a cash

constraint, asymmetric information is irrelevant as long as jumps in the Poisson process

are observable to the bank. Indeed, the entrepreneur solicits funding only in instances

where types with different learning speeds have the same beliefs on the project, that is,

either at date 0, or upon observing a signal perfectly revealing a good project. However,

if jumps in the Poisson process are unobservable to the bank, it is impossible to back out

beliefs from the investment date, since the first date at which there is a jump is stochastic.

This is true even with no uncertainty on the entrepreneur’s type, so that private learning

gives rise to an interesting signaling problem even under perfect information on λ. We

conjecture that the bank should not grant funding before some critical date, in order to

make sure that the entrepreneur is sufficiently pessimistic that he does not invest his own

cash if he has not learnt good news yet. In case there is additional private information on

λ, this also guarantees that the bad type still prefers to invest at date 0 (when this is his

preferred strategy under complete information) than waiting to secure cheaper credit. In

any case, we conjecture that asymmetric information would generate inefficient delaying

of investment.
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6.5 Commitment

By focussing on loan contracts signed at the date t at which the investment is made,

we make important restrictions on commitment, communication, and instruments: first,

we implicitly rule out commitment power, which would allow the entrepreneur and the

financier to agree ex ante on some contractual terms; second, we ignore the possibility for

the entrepreneur to reveal information on his type using other messages than the timing

decision; third, we rule out possible transfers prior to the investment date. In order to

assess how sensitive our results are to these various restrictions, we might alternatively

consider a screening problem, in which a monopolistic bank proposes a contract at date

0 to the entrepreneur. First of all, in order to make things comparable with our model

(that is, to “test” the role of our assumption on commitment), one could impose that the

entrepreneur always invests all his cash A, and that the only contractible variables are the

payoff of the entrepreneur in case of success, and the investment date. This framework

is the natural screening counterpart to our signaling model. In such a context, the func-

tion f, which measures the difference in option values, captures the rent that the good

type should be given not to mimic the bad type. In order to lower this rent, the invest-

ment timing of the bad type should be distorted away from t0.
35 In addition, notice that

the result of no distortion at the top does not always hold, as the incentive constraints

imply a “monotonicity condition” f(t) ≥ f(t), which sometimes imposes that the good

type’s investment date also be distorted in the direction of t0, as in our signaling model.

The distortion therefore reflects the incentive problem captured by the same function f,

suggesting that our results are no artifact of the no-commitment assumption. Notice,

however, that allowing for a wider message space or set of instruments would relax the

incentive problem.36 For instance, the bank could use how much the entrepreneur inter-

nally finances to screen the entrepreneur’s information, relying on the higher willingness

to invest his cash out of pocket of a more confident entrepreneur.

35A standard difference between screening and signaling two-type models, is that the type who suffers
a distortion is the bad type in a screening model (no distortion at the top), and the good type in a
signaling game. By the same logic, the distortions go in opposite directions in each model.

36For instance, Halac et al. (2013) allow for transfers at all dates prior to investment, and show that
there are timing distortions only under the conjunction of moral hazard and adverse selection. In our
model with adverse selection only, we would obtain the first best with such a richer set of instruments.
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6.6 Other corporate finance applications

In our specification, the entrepreneur’s objective is to minimize his cost of capital, which

is a weighted average of the cost of internal funds given by the inverse of his true beliefs,

and the cost of outside capital given by the inverse of the bank’s beliefs over the project.

It is easy to show that a slightly different version of the model, where the entrepreneur

maximizes some average of the true expected value of the project (given his own private

information) and the expected value of the project, such as perceived by the uninformed

financier, would give analogous results. In other words, the problem we study is qualita-

tively similar to a problem of managerial myopia, in which the manager cares about both

the true value of the firm and the stock price, or to a problem of optimal IPO timing,

where the firm’s owner (or the venture capitalist) chooses the date at which the firm goes

public, so as to maximize some average of the value of current equity and the future IPO

price. Our model is therefore suited to study the impact of information frictions on timing

decisions in a more general class of corporate governance problems. This being said, our

results contrast with related results established in this literature. Grenadier and Malenko

(2011) and Bustamante (2012) both analyze models of signaling through investment tim-

ing, the former with an application to managerial myopia, the latter to IPO timing. They

both find that asymmetric information generates hurried investment as compared to the

first best, while we stress that both hurried or delayed investment may arise, depending

on the shape of the learning curves in the market.

7 Conclusion

We consider a model in which a cash-constrained entrepreneur learns about a project,

but at a speed which is his private information. The signaling problem arising from

the conjunction of the information friction (private learning ability) and the financial

friction (limited cash) results in the entrepreneur distorting his investment policy when

the cash shortage is too severe. This distortion takes the form of hurried investment

(under-experimentation) in markets with fast learning, and of delayed investment (over-

experimentation) in markets where learning is slower.

The fact that both delayed and hurried investment may arise has to do with two note-

worthy properties of our signaling game. First, the entrepreneur’s decision endogenously

affects the amount of relevant asymmetric information: the relevant asymmetric infor-
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mation is not the entrepreneur’s type λ per se, but his beliefs about the project, which

depend on both his (privately observed) type λ and the (observable) timing decision t.

This relevant asymmetric information, measured by the difference in each type’s beliefs,

increases and then decreases with time.37 This non-monotonicity explains why signaling

may possibly involve hurried or delayed investment. Second, a distinctive feature of our

modeling of private information on learning ability is that it is impossible to rank types

according to their preference over investment dates: depending on their relative learning

skills, a fast-learning type may be more willing or less willing than a slow-learning type

to invest later, that is, the single-crossing property does not hold. While the analysis is

made somewhat more complex, it also highlights in an intuitive way how signaling could

be achieved by late or early investment, by relating the direction of the timing distortion

to the speed of learning in the market. Both from the methodological point of view and in

terms of predictions, our paper therefore offers a substantial contribution to the literature

on learning/experimentation under asymmetric information.
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8 Appendix

8.1 Proof of Proposition 1

Let us consider the derivative of − 1
λ

ln p0r(R−I)
(1−p0)(λ+r)I with respect to λ :

1

λ2
ln

p0r (R− I)

(1− p0) (λ+ r) I
+

1

λ (λ+ r)
.

Its sign is given by the sign of a(λ) = ln p0r(R−I)
(1−p0)(λ+r)I + λ

λ+r
. Note that a′(λ) = − λ

(λ+r)2
≤ 0,

and that lim
λ→+∞

a(λ) = −∞. We distinguish three cases:

i) p0R − I < 0 : − 1
λ

ln p0r(R−I)
(1−p0)(λ+r)I > 0 for all λ, and a(0) = ln p0(R−I)

(1−p0)I < 0. Therefore,

t∗(λ) is positive and decreasing for all λ.

ii) p0R − I > 0 : there exists λ∗ = r(p0R−I)
(1−p0)I > 0 such that λ ≤ λ∗ ⇔ t∗(λ) = 0.

Furthermore, a(λ∗) = λ∗

λ∗+r
> 0, so there also exists λ∗∗ > λ∗ such that a(λ∗∗) = 0,

so t∗(λ) is increasing for λ ∈ [λ∗, λ∗∗], and t∗(λ) is decreasing for λ ≥ λ∗∗.

iii) p0R− I = 0 : this implies t∗(0) = 0 and t∗(λ) > 0 for all λ > 0. One can show that

lim
λ→0

1
λ2

ln p0r(R−I)
(1−p0)(λ+r)I + 1

λ(λ+r)
= +∞. Therefore, this case is qualitatively similar to

the case p0R− I > 0 (t∗ is increasing and then decreasing). 2

8.2 D1 beliefs

In this section, we examine how D1 restricts beliefs q(t). Suppose that the equilibrium

prescribes that λ invests at t and λ invests at t. Equilibrium beliefs q(t) and q(t) are pinned

down by Bayes’ rule, but beliefs following a deviation to t /∈
{
t, t
}

are not restricted

and can be arbitrary. D1 imposes to attribute a deviation to date t to the type with

the stronger incentive to deviate from his equilibrium action to t. Formally, let S(t) =

{q,W (λ, q, t) > W (λ, q(t), t)} and S(t) =
{
q,W (λ, q, t) > W (λ, q(t), t)

}
the sets of out-

of-equilibrium beliefs q following a deviation to t such that types λ and λ are willing to

deviate from their equilibrium action to t. D1 imposes to consider q(t) = 0 if S(t) ⊂ S(t),

and q(t) = 1 if S(t) ⊂ S(t).

Let ∆(t) ≡ W (λ, q, t)−W (λ, q(t), t)− [W (λ, q, t)−W (λ, q(t), t)] denote the difference

between the marginal incentive to deviate to date t for both types, when such a devia-

tion generates beliefs q. When t < t̃, we remark, using (8), that ∆(t) = W (λ, q(t), t) −
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W (λ, q(t), t)− Af(t) is independent of q.38

As a consequence, ∆(t) > 0⇒ S(t) ⊂ S(t), and ∆(t) < 0⇒ S(t) ⊂ S(t). ∆(t) = 0⇒

S(t) = S(t), in which case we assume that q(t) = 1 for simplicity, but this will play no

role. Overall, D1 imposes:

∀t /∈
{
t, t
}

such that t < t̃,

q(t) ∈ {0, 1} and q(t) = 1⇔ ∆(t) = W (λ, q(t), t)−W (λ, q(t), t)− Af(t) ≤ 0

8.3 Proof of Proposition 2

It is clear that (9a) and (9c) are satisfied for t = t
∗
, as type λ gets his first best payoff.

One can also show that (9d) holds for t = t
∗
. Suppose it does not, i.e., there is some

ta 6= t
∗

such that W (λ, q(ta), ta) > W (λ, 0, t∗). This implies ta < t̃. Since D1 imposes to

have q(t) ∈ {0, 1} , we must have q(ta) = 1, which implies:

∆(ta) = W (λ, 1, t
∗
)−W (λ, 0, t∗)− Af(ta) ≤ 0.

Therefore, we have

W (λ, 1, ta) = W (λ, 1, ta)− Af(ta) < W (λ, 1, t
∗
)− Af(ta) ≤ W (λ, 0, t∗).

A contradiction.

Consequently, (9b) is a necessary and sufficient condition for (t∗, t
∗
) to be an equilib-

rium. Let us now derive under which condition (9b) holds at t = t
∗
.

Notice first that it holds if A ≥ Ie−rt
∗
⇔ t

∗ ≥ t̃. Indeed, we then have W (λ, 1, t
∗
) =

W (λ, 0, t
∗
) < W (λ, 0, t∗), so the bad type does not mimic the good type. If A < Ie−rt

∗
⇔

t
∗
< t̃, the condition becomes

W (λ, 1, t
∗
) = W (λ, 1, t

∗
)− Af(t

∗
) ≤ W (λ, 0, t∗). (12)

It is clear that if (12) holds for some Ã, then it must hold for all A > Ã. Note also that

(12) does not hold for A = 0. When A→ Ie−rt
∗
, W (λ, 1, t

∗
)→ W (λ, 0, t

∗
) < W (λ, 0, t∗),

so (12) holds. We conclude that, for any pair (λ, λ), there exists A0 ∈ (0, Ie−rt
∗
) such

38We do not have to care about out-of-equilibrium beliefs following a deviation to t ≥ t̃, as the bank’s
beliefs are irrelevant in that case.
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that (t∗, t
∗
) is an equilibrium iff A ≥ A0. In addition:

A0 =
W
(
λ, 1, t

∗)−W (λ, 0, t∗)

f(t
∗
)

.

2

8.4 Proof of Lemma 1

Consider the case t
∗ ≥ t0.

Suppose that there is a separating equilibrium (t∗, t) such that t
∗
< t ≤ t̃. Since t must

satisfy (9b), we have

W (λ, 0, t∗) ≥ W (λ, 1, t) = W (λ, 1, t)− Af(t).

Let us denote α(t) ≡ W (λ, 0, t∗) −W (λ, 1, t) + Af(t) ≥ 0 the “slack” in the incentive

constraint of the bad type.

One can write

∆(t) = W (λ, 1, t)−W (λ, 0, t∗)− Af(t) = A[f(t)− f(t)]− α(t).

Since t > t
∗ ≥ t0, there exists ε > 0 such that t − ε ≥ t

∗ ≥ t0. One has ∆(t − ε) < 0,

which implies q(t− ε) = 1. In addition, we must have W (λ, 1, t− ε) > W (λ, 1, t) because

t−ε ≥ t
∗
. Therefore, t−ε is a profitable deviation for λ, so (t∗, t) cannot be an equilibrium.

Suppose now that t < t0 ≤ t
∗
. By the same mechanic, one shows that type λ can

strictly increase his payoff by deviating to t+ ε such that t+ ε ≤ t0 ≤ t
∗
.

The proof is exactly similar in the case t0 ≥ t
∗
. 2

8.5 Proof of Lemma 2

Let h(λ, λ) ≡ t∗(λ)− t0(λ, λ). It is easy to show that h is increasing in λ.

In addition, lim
λ→0

h(λ, λ) = −∞ and lim
λ→λ

h(λ, λ) = t
∗ − 1

λ
.

Therefore, we distinguish two cases:

• If t∗(λ) ≤ 1
λ
⇔ λ ≤ ep0r(R−I)

(1−p0)I − r, then t∗(λ) ≤ t0 for all λ.

• If t∗(λ) > 1
λ
⇔ λ > ep0r(R−I)

(1−p0)I − r, there exists a unique λ0 such that h
(
λ0, λ

)
= 0⇔

t0(λ0, λ) = t∗(λ).
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Let us show that λ0 is a decreasing function of λ. By the implicit function theorem,

∂λ0
∂λ

= −h2(λ0, λ)

h1(λ0, λ)
,

so
∂λ0
∂λ

has the sign of h2(λ0, λ).

It is easy to see that

h2(λ, λ) = −1

λ

(
t∗(λ)− 1

λ+ r

)
+

λt0 − 1

λ(λ− λ)

Since t∗(λ) = t0 at λ0, we derive

h2(λ0, λ) =
1

λ(λ− λ)(λ+ r)

(
(λ+ r)λt0 − r − λ

)
Using t∗(λ) = t0 <

1
λ

at λ0, we derive h2(λ0, λ) < 0, hence the result.

Overall, we have shown

(λ, λ) ∈ ΛH ⇔ λ >
ep0r(R− I)

(1− p0)I
− r and λ > λ0

8.6 Proof of Proposition 3

Suppose that

A < A0 ⇔ W (λ, 1, t
∗
) > W (λ, 0, t∗).

Before going further, let us remark that the function t 7→ W (λ, 1, t)−Af(t) is increas-

ing on [t0, t
∗
] if t0 < t

∗
, and decreasing on [t

∗
, t0] if t

∗
< t0. This implies that

∀t ∈ [min
(
t0, t

∗)
,max

(
t0, t

∗)
], W (λ, 1, t0)− Af(t0) ≤ W (λ, 1, t)− Af(t) (13)

We now establish the following lemma:

Lemma 3 A separating equilibrium exists if and only if W (λ, 1, t0) ≤ W (λ, 0, t∗).

Proof Let us first prove that W (λ, 1, t0) ≤ W (λ, 0, t∗) is a necessary condition for a

separating equilibrium.

Suppose we have W (λ, 1, t0) > W (λ, 0, t∗). This implies that t0 < t̃, so one can write

W (λ, 1, t0) = W (λ, 1, t0)− Af(t0).
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Using (13), we derive that

∀t ∈ [min
(
t0, t

∗)
,max

(
t0, t

∗)
], W (λ, 1, t)− Af(t) > W (λ, 0, t∗).

From Lemma 1, we derive that there is no separating equilibrium.

Let us now show that W (λ, 1, t0) ≤ W (λ, 0, t∗) is a sufficient condition for a separating

equilibrium. Suppose W (λ, 1, t0) ≤ W (λ, 0, t∗) < W (λ, 1, t
∗
). This implies:

- If t0 < t
∗

: ∃!th ∈ [t0, t
∗
],W (λ, 1, t

h
) = W (λ, 0, t∗),

- If t
∗
< t0 ≤ t̃ : ∃!td ∈ [t

∗
, t0],W (λ, 1, t

d
) = W (λ, 0, t∗),

- If t
∗
< t̃ < t0 : ∃!td ∈ [t

∗
, t̃],W (λ, 1, t

d
) = W (λ, 0, t∗). This is because W (λ, 1, t̃) =

W (λ, 0, t̃) ≤ W (λ, 0, t∗).

Therefore, for i ∈ {h, d} , we always have t
i ≤ t̃. This implies that one can write

W (λ, 1, t
i
) = W (λ, 1, t

i
)− Af(t

i
) for i ∈ {h, d}.

Let us now show that the good type has no profitable deviation starting from a candidate

equilibrium t = t
h

(resp. t
d
), i.e. (9a) and (9c) are satisfied for t = t

h
(resp. t

d
).

Consider first the case t0 < t
∗
. Suppose the good type deviates from t = t

h
to some

date t :

- If t < t
h
, we have W (λ, q(t), t) ≤ W (λ, 1, t) < W (λ, 1, t

h
). So such a deviation

cannot be profitable for any out-of-equilibrium beliefs q(t).

- If t
h
< t ≤ t̃ : one can write ∆(t) = W (λ, 1, t

h
) −W (λ, 0, t∗) − Af(t) = A[f(t

h
) −

f(t)] > 0 for t0 ≤ t
h
< t. Therefore, we must have q(t) = 0. The benefit from

deviating to t becomes W (λ, 0, t)−W (λ, 1, t
h
) = W (λ, 0, t) +Af(t)− [W (λ, 1, t

h
) +

Af(t
h
)] = A[f(t) − f(t

h
)] + W (λ, 0, t) −W (λ, 0, t∗) < 0, so the benefit from this

deviation is negative.

- If t̃ < t : from t
∗
< t̃, it is clear that such a deviation is dominated by t = t̃, which

is not profitable thanks to the previous argument.

In the case t
∗
< t0, the proof is similar.

36



We have shown that the good type never has an incentive to deviate to an off-path

investment date. To establish that he does not want to invest at t∗, let us remark that,

if t
∗
< t∗ (resp. t

∗
> t∗), there exists a positive (resp. negative) ε such that W (λ, 0, t∗) <

W (λ, q(t∗− ε), t∗− ε) for any q(t∗− ε). So deviating to t∗ is always strictly dominated by

some off-path deviation which has been ruled out in the previous proof.

Therefore, the good type has no profitable deviation. The last thing we need to show

is that the low type cannot benefit from a deviation off path either. Suppose there exists

ta such that W (λ, q(ta), ta) > W (λ, 0, t∗). This implies that ta < t̃. Since D1 imposes to

have q(t) ∈ {0, 1} for all t in a separating equilibrium, we must have q(ta) = 1, which

implies

∆(ta) = W (λ, 1, t
i
)−W (λ, 0, t∗)− Af(ta) ≤ 0⇔ f(t

i
) ≤ f(ta).

For i = h, f(t
h
) ≤ f(ta)⇒ W (λ, 1, ta) ≤ W (λ, 1, t

h
). Indeed, given t

h ≥ t0, a necessary

condition for f(t
h
) ≤ f(ta) is ta ≤ t

h
.

Similarly, f(t
d
) ≤ f(ta)⇒ W (λ, 1, ta) ≤ W (λ, 1, t

d
) in the case t

∗
< t0.

Therefore, one has

W (λ, 1, ta) = W (λ, 1, ta)− Af(ta)

≤ W (λ, 1, t
i
)− Af(t

i
)

= W (λ, 1, t
i
)

= W (λ, 0, t∗).

This contradicts W (λ, 1, ta) > W (λ, 0, t∗), so the bad type has no profitable deviation. 2

Let us finally check under which conditions we have W (λ, 1, t0) ≤ W (λ, 0, t∗). First,

if t0 ≥ t̃ ⇔ A ≥ Ie−rt0 , we have W (λ, 1, t0) = W (λ, 0, t0) ≤ W (λ, 0, t∗), so this is always

the case.

If t0 < t̃, one can rewrite the condition as

W (λ, 1, t0)− Af(t0) ≤ W (λ, 0, t∗). (14)

It is clear that, if Ã satisfies (14), then so does A > Ã. Furthermore, (14) holds for A =

Ie−rt0 , since W (λ, 1, t0)−Ie−rt0f(t0) = W (λ, 0, t0) ≤ W (λ, 0, t∗). Therefore, ∃A1 ≤ Ie−rt0
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such that there exists a separating equilibrium if and only if A ≥ A1. We have:

A1 = max

(
0,
W (λ, 1, t0)−W (λ, 0, t∗)

f(t0)

)
.

Finally, notice that there may be other separating equilibria involving t ∈ [t0, t
h
) (resp.

t ∈ (t
d
, t0]), but they would give a strictly lower profit to the good type than th (resp.

td). 2

8.7 Proof of Proposition 4

Let us first establish the following lemma:

Lemma 4 In any non-separating equilibrium, t = t0. In addition, λ either invests at t0

(pooling equilibrium) or randomizes between investing at t0 and t∗ (semi-pooling equilib-

rium)

Proof Let T be the set of dates at which both types invest with positive probability.

Given that D1 imposes to consider q(t) ∈ {0, 1} for each t off path, we have that q(t) ∈

(0, 1)⇔ t ∈ T. In addition, t ∈ T⇒ t ≤ t̃, otherwise the good type would strictly benefit

from a deviation to t̃.

We first establish that T has at most two elements. Indeed, suppose T has at least

three distinct elements (ta, tb, tc). By definition of T, one has

W (λ, q(ta), ta) = W (λ, q(tb), tb) = W (λ, q(tc), tc) for λ ∈ {λ, λ} (15)

Using (8), one derives that f(ta) = f(tb) = f(tc), which is impossible, since f is continuous

and single-peaked.

Suppose now that T has two distinct elements (ta, tb). One at least is different from t0,

say ta. We then have ∆(t) = W (λ, q(ta), ta) −W (λ, q(ta), ta) − Af(t) = A[f(ta) − f(t)],

using (8). If ta < t0, we have ∆(ta + ε) < 0, so q(ta + ε) = 1. Since q(ta) < 1, one can

always find ε small enough to obtain W (λ, 1, ta + ε) > W (λ, q(ta), ta) for all λ. So there is

a profitable deviation. The same reasoning holds for ta > t0.

We conclude that T is a singleton. If the unique element of T is not t0, there is a

always a profitable deviation, by the same reasoning as above. Therefore, T = {t0} .
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Suppose now that λ invests with positive probability at some ta 6= t0, with ta ≤ t̃.

Since T = {t0} , λ must then invest with probability zero at date ta.

We therefore have

W (λ, 1, ta) = W (λ, q(t0), t0) = W (λ, q(t0), t0) + Af(t0).

This implies that

W (λ, 1, ta) = W (λ, 1, ta)− Af(ta) = W (λ, q(t0), t0) + A[f(t0)− f(ta)] > W (λ, q(t0), t0).

So type λ then strictly prefers to invest at date ta than at t0, which is impossible. 2

Let us now turn to the proof of the Proposition. Suppose first that a separating

equilibrium exists, i.e., A ≥ A1. Using Lemma 3, this is equivalent to W (λ, 1, t0) ≤

W (λ, 0, t∗). We then have:

W (λ, q(t0), t0) < W (λ, 1, t0) ≤ W (λ, 0, t∗)

Therefore, the bad type cannot invest at t0 with positive probability, as this is strictly

dominated by investing at t∗. Therefore, there is neither semi-pooling nor pooling equi-

libria.

Before we derive equilibrium conditions for a pooling and a semi-pooling equilibrium,

notice that, since the equilibrium payoffs are W (λ, q(t0), t0) for each type λ, we have

∆(t) = A[f(t0)− f(t)] > 0, so any off-path deviation generates beliefs q(t) = 0.

Conditions for a pooling equilibrium The following conditions must be satisfied for

a pooling equilibrium t = t = t0 to exist:

W (λ, q0, t0) ≥ W (λ, 0, t∗) (16)

W (λ, q0, t0) ≥ W (λ, 0, t) for all t ≤ t̃. (17)

A necessary condition for a pooling equilibrium is that a separating equilibrium does

not exist, i.e., W (λ, 1, t0) > W (λ, 0, t∗). Since W (λ, q, t0) is increasing in q, and since

W (λ, 0, t0) ≤ W (λ, 0, t∗), there exists a critical value of q such that (16) holds if and only

if q0 ≥ q. q satisfies

W (λ, q, t0) = W (λ, 0, t∗).
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Let t̂ ∈ arg
t

max W (λ, 0, t). First, note that we must have t̂ ≤ t̃. Otherwise, the good type

could increase his payoff by slightly reducing t below t̂ : the bank’s beliefs are irrelevant

in this range, and this increases his profit, since t
∗
< t̃. Therefore, one may write:

W (λ, q, t0)−W (λ, 0, t̂) = W (λ, q, t0) + Af(t0)−W (λ, 0, t̂)− Af(t̂)

= W (λ, 0, t∗)−W (λ, 0, t̂) + A
[
f(t0)− f(t̂)

]
This term is positive, as f is maximized at t0, and by definition of t∗. This implies that

(16) ⇒ (17). Consequently, there is a pooling equilibrium in which all types invest at

t = t0 if and only if q0 ≥ q. To derive this equilibrium condition as a function of A, let

us first notice that, at A = A1, we have q = 1 > q0, by definition of A1. So, the pooling

equilibrium does not exist when A is sufficiently close to A1. Furthermore, one can rewrite

(7) as

W (λ, q, t) = W (λ, 0, t) + qf(t)[Ie−rt − A]

to see that

q =
W (λ, 0, t∗)−W (λ, 0, t0)

f(t0)[Ie−rt0 − A]

Therefore, q is increasing in A. When A = 0, we have q = W (λ,0,t∗)−W (λ,0,t0)
f(t0)Ie−rt0

. We derive

that:

- if q0 ≤ W (λ,0,t∗)−W (λ,0,t0)
Ie−rt0f(t0)

, no pooling equilibrium ever exists,

- if q0 >
W (λ,0,t∗)−W (λ,0,t0)

Ie−rt0f(t0)
, a pooling equilibrium exists if and only if A is small enough.

Overall, a pooling equilibrium exists if and only if A ≤ A2, with

A2 = max

(
0, Ie−rt0 − W (λ, 0, t∗)−W (λ, 0, t0)

q0f(t0)

)
.

Conditions for a semi-pooling equilibrium The following conditions must be sat-

isfied for a semi-pooling equilibrium to exist:

W (λ, q(t0), t0) = W (λ, 0, t∗) (18)

W (λ, q(t0), t0) > W (λ, 0, t) for all t. (19)

Using the same argument as above, it is easy to see that (18)⇒ (19).
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Finally, it is obvious that q(t0) > q0, because λ does not invest at t0 with probability

1, whereas λ does. So, if q0 ≥ q ⇔ A ≤ A2, (18) cannot hold. Conversely, if q0 < q, type λ

can always invest at date t0 with a probability x ∈ (0, 1) such that q(t0) = q0
q0+(1−q0)x = q,

in which case (18) is satisfied. Hence the result. 2

8.8 Proof of Proposition 5

If A ∈ [A1, A0), in the least cost separating equilibrium, the good type invests at date t
i

given by

W (λ, 1, t
i
) = W (λ, 1, t

i
)− Af(t

i
) = W (λ, 0, t∗). (20)

Differentiating with respect to A yields

∂t
i

∂A
=

f(t
i
)

W3

(
λ, 1, t

i
)
− A∂f

∂t
(t
i
)
.

The numerator is positive. The denominator is negative for i = d, as t
d ∈

[
t
∗
, t0
]
, and

positive for i = h, since t
h ∈

[
t0, t

∗]
. This implies ∂t

h

∂A
> 0, and ∂t

d

∂A
< 0. 2

8.9 Proof of Corollary 4

Using (7), one rewrites

W (λ, q, t) = W (λ, 0, t) + qf(t)[Ie−rt − A],

W (λ, q, t) = W (λ, 1, t)− (1− q)f(t)[Ie−rt − A].

i) If A < A2, the equilibrium involves pooling at t0. Using the above relationships, we

derive that W (λ, q0, t0) is increasing in A, while W (λ, q0, t0) is decreasing in A. The

expected welfare in this equilibrium reads

q0W (λ, q0, t0) + (1− q0)W (λ, q0, t0) = q0W (λ, 1, t0) + (1− q0)W (λ, 0, t0),

hence is independent of A.

ii) If A ≥ A2, the equilibrium payoff of the bad type is constant and equal to W (λ, 0, t∗),

so we only need to focus on the payoff of the good type.
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- If A2 ≤ A ≤ A1, this payoff equals

W (λ, q, t0) = W (λ, q, t0) + Af(t0)

= W (λ, 0, t∗) + Af(t0),

so the equilibrium payoff of the good type linearly increases in A.

- If A1 < A < A0, the good type gets W (λ, 1, t
i
), with i ∈ {h, d}.

∂W
∂A

(λ, 1, t) = W3

(
λ, 1, t

i
)
∂t
i

∂A
> 0 for i = {h, d}, using Proposition 5.

- If A ≥ A0, the good types reaches his first best profit, which is independent of

A.

Finally, the equilibrium payments are both continuous in A. To see this, it is enough

to notice that, if A2 > 0, one has lim
A→A+

2

q = q0. In addition, one has lim
A→A+

1

q = 1, and

lim
A→A−

0

t
i

= t
∗
, so continuity obtains everywhere. 2

8.10 Proof of the existence of reversals

8.10.1 Timing reversal

Suppose that t
∗
< t∗ < t0 < t̃, and that the first best is not an equilibrium, that

is, W (λ, 1, t
∗
) > W (λ, 0, t∗). Since W (λ, 1, t) is decreasing in t on [t

∗
, t0], and since

W (λ, 1, t∗) > W (λ, 0, t∗), a separating equilibrium, if it exists (that is, A ≥ A1) must

be such that t > t∗, hence the reversal.

It is easy to show that t
∗

= t∗ ⇒ t
∗

= t∗ < t0. Therefore, there are generically

parameters values such that t
∗
< t∗ < t0, independently of A. In addition, A1 < Ie−rt0 ,

so for A in [A1, Ie
−rt0 ], we have both t0 < t̃ and the existence of a separating equilibrium.

8.10.2 Belief reversal

It is obvious to see that p∗(λ, t)− p∗(λ, t∗) has the same sign as e−λt
∗ − eλt.

If A ≥ A0, this difference reads e−λt
∗ − e−λt

∗
= rp0(R−I)

(1−p0)I

(
1

λ+r
− 1

λ+r

)
> 0.

So the good type is always more optimistic in this case.

Suppose now that A ∈ [A1, A0]. If (λ, λ) ∈ ΛD, t > t
∗
, so the good type is more

optimistic than in the first best upon investing, so he is a fortiori more confident than the

bad type.
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To show that belief reversal is possible, let us consider λ > ep0r(R−I)
(1−p0)I − r. This implies

that, for any λ, (λ, λ) ∈ ΛH .
39

In this case, t is increasing in A, meaning that e−λt
∗ − e−λt is increasing in A as well.

Furthermore, when A→ A0, the difference must be positive, as t→ t
∗
.

When A→ A1, t tends to t0. Let us show that e−λt
∗ − e−λt0 may take negative values.

To see this, let us observe that the derivative of λt0 with respect to λ has the sign

of λ − λ − λ
(
lnλ− lnλ

)
, which is nonnegative. So e−λt

∗ − e−λt0 is nondecreasing in λ.

Using lim
λ→λ

t0 = 1
λ
, we derive that

lim
λ→λ

e−λt
∗ − eλt0 =

rp0(R− I)

(1− p0)(λ+ r)I
− 1

e
.

This limit is negative, as we have assumed λ > ep0r(R−I)
(1−p0)I − r.

We conclude that, for A and λ sufficiently small, e−λt
∗ − eλt < 0, meaning that the

bad type is more confident upon investing than the good type.

8.11 Proof of Proposition 6

Let us now establish how t
h

and t
d

vary with λ.

Differentiating (20) with respect to λ gives

∂t
i

∂λ
=

(1− p0)t
i
e−λt

i
(
A− e−rt

i

I
)

W3

(
λ, 1, t

i
)
− A∂f

∂t
(t
i
)

.

The denominator is negative for i = d, and positive for i = h; the numerator is negative

since t
i
< t̃, hence the result.

8.12 Proof of Proposition 7

Recall that

t
∗

= max

(
−1

λ
ln

p0r (R− I)

(1− p0)
(
λ+ r

)
I
, 0

)
.

Let p∗ = (λ+r)I

rR+λI
be smallest value such that t

∗
= 0. Notice that p∗ > I

R
.

We have
∂t
∗

∂p0
= − 1

λp0(1− p0)
for p0 < p∗ (21)

39This is because λ0( ep0r(R−I)(1−p0)I − r) = ep0r(R−I)
(1−p0)I − r and λ0(λ) is decreasing in λ.
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Let p∗∗ be such that t
∗|p0=p∗∗ = t̃. We have p∗∗ < p∗.

Let us also define t1 ≡ t
∗|p0R=I = − 1

λ
ln r

λ+r
the optimal investment date when p0R−

I = 0.

Finally, let us define the following function:

g(p0) ≡ W (0, 1, t
∗
)−W (0, 0, t∗)

Since W (0, 0, t∗) = 0 if p0R < I and W (0, 0, t∗) = p0R − I if p0R ≥ I, g is continuous in

p0. In addition, we know that the first best exists whenever p0 is such that g(p0) ≤ 0.

- If p0 ≤ p∗∗, t
∗ ≥ t̃⇒ g(p0) = W (0, 0, t

∗
)−W (0, 0, t∗) ≤ 0, so the first best exists.

- If p0 ≥ p∗, g(p0) = 0, so the first best also exists.

Therefore, we only need to study g on [p∗∗, p∗]. Whenever p0 > p∗∗, one may rewrite

g(p0) = W (λ, 1, t
∗
)− A(1− p0)(1− e−λt

∗
)−W (0, 0, t∗).

We distinguish two cases:

• If p∗∗ ≥ I
R
⇔ t1 ≥ t̃ ⇔ A ≥ I( r

λ+r
)r/λ : For all p0 ∈ [p∗∗, p∗], we derive, using the

envelope theorem:

g′(p0) = e−rt
∗
(R− I + Ie−λt

∗
) + A(1− e−λt

∗
)− A(1− p0)λ

∂t
∗

∂p0
e−λt

∗
−R

Using (21), we rewrite g′(p0) = e−rt
∗
(R− I + Ie−λt

∗
) + Ap0+(1−p0)e−λt

∗

1−p0 −R

Replacing e−λt
∗
, we conclude g′(p0) = e−rt

∗
(R− I + Ie−λt

∗
) + A rR+λI

(λ+r)I
−R.

It is easy to see that g′ is increasing in p0, so g is convex. Since g(p∗∗) ≤ 0 and

g(p∗) = 0, we derive that g(p0) ≤ 0 for all p0. Therefore, the first best is always an

equilibrium.

• If p∗∗ < I
R
⇔ t1 < t̃⇔ A < I( r

λ+r
)r/λ, we need to distinguish two regions:

– p0 ∈ [p∗∗, I
R

] : On this interval, one has

g′(p0) = e−rt
∗
(R− I + Ie−λt

∗
) + A

rR + λI

(λ+ r)I
> 0

In addition, g(p∗∗) ≤ 0 and g( I
R

) = (R−I)
R

(1− e−λt1)(Ie−rt1 − A) > 0.

Therefore, there exists p ∈ [p∗∗, I
R

) such that g(p0) ≤ 0⇔ p0 ≤ p.
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– p0 ∈ [ I
R
, p∗] : We then have g′(p∗) = A rR+λI

(λ+r)I
> 0. Recalling that g is convex on

[ I
R
, p∗], and given that g( I

R
) > 0 by continuity at p0 = I

R
, and that g(p∗) = 0,

we conclude that there exists p ∈ ( I
R
, p∗] such that g(p0) ≤ 0⇔ p0 ≥ p.

We conclude that the first best is an equilibrium if and only if p0 /∈ [p, p].

Let us now suppose that the first best is not an equilibrium. Then, the equilibrium

involves separation at t
d

such that

W (λ, 1, t
d
)− A(1− p0)(1− e−λt

d

) = max {p0R− I, 0} .

⇔ e−rt
d

(p0(R− I)− (1− p0)e−λt
d

I)− A(1− p0)(1− e−λt
d

) = max {p0R− I, 0} . (22)

Let d ≡ ∂
∂t
W (λ, 1, t)− ∂

∂t
A(1−p0)(1− e−λt) < 0 denote the derivative of the left handside

with respect to t. It is negative since the equilibrium is delayed.

Let us start with the case p0R− I < 0. One has:

• ∂td

∂p0
= −1

d
[A(1− e−λt

d

) + e−rt
d

(R− I + Ie−λt
d

)] > 0

• ∂td

∂R
= −1

d
p0e
−rtd > 0

• ∂td

∂I
= 1

d
e−rt

d

(p0 + (1− p0)e−λt
d

) < 0.

Let us now consider the case p0R− I ≥ 0. One has:

• ∂td

∂p0
= −1

d
[A(1− e−λt

d

) + e−rt
d

(R− I + Ie−λt
d

)−R]

This has the sign of

A(1− p0)(1− e−λt
d

) + (1− p0)e−rt
d

(R− I + Ie−λt
d

)− (1− p0)R

= e−rt
d
(
p0(R− I)− (1− p0)e−λt

d

I
)
−(p0R−I)+(1−p0)e−rt

d

(R−I+Ie−λt
d

)−(1−p0)R

= −(1− e−rt
d

)(R− I) < 0,

where the second inequality makes use of (22).

• ∂td

∂R
= −1

d
p0(e

−rtd − 1) < 0

• ∂td

∂I
= −1

d

(
1− e−rt

d

(p0 + (1− p0)e−λt
d

)
)
> 0.
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