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dividend payout ratios are increasing in profitability prospects. This yields novel insights

into the relationship between profitability prospects, precautionary cash savings, dividend
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1 Introduction

Liquidity and profitability are two key dimensions of a firm’s payout policy. For instance,

firms with high and stable profitability are expected to pay high dividends because they

have limited reinvestment needs. Growing and cash-constrained firms are expected to pay low

dividends because their cash inflows may not significantly exceed efficient reinvestment needs.

This intuition is confirmed through an extensive series of empirical studies that develop the

idea that the trade-off between the advantages and the costs of cash retention (e.g., flotation

costs savings versus the agency costs of free cash flow) evolves as profit accumulates. This

idea, referred to as “the life-cycle hypothesis for dividends” proves relevant to explaining a

firm’s payout practices.1

The growing theoretical literature on the dynamics of corporate cash remains different

from these considerations because existing models neglect to include profitability issues and

focus mainly on liquidity issues.2 This paper develops a dynamic model of corporate cash

management in which shareholders weigh the costs and benefits of holding cash while learn-

ing about firm’s profitability. We explore how the evolution of the strength of shareholders’

beliefs about the firm’s profitability and changes in corporate cash management are inter-

twined. The model provides a unified explanation of a series of facts about payout practices

and a theoretical underpinning for recently documented regularities, as well as novel implica-

tions regarding the relationship between profitability prospects, precautionary cash savings,

dividend policy and the dynamics of firm value.

To start, consider a new, closely held business. Shareholders are cash constrained and

decide corporate policy. They must cope with both a profitability concern (the risk of running

a project that is not profitable) and a liquidity concern (the risk of being forced to liquidate

a profitable project because it cannot meet its short-term operating costs). The issue is how

to characterize an optimal corporate policy that specifies at all times whether to continue

the project, the cash target inventory and the dividend payout ratio. More generally, our

model focuses on cash-constrained corporations that do not precisely know their long-term

profitability and learn about it from their realized earnings. Such corporations account for

a significant portion of the economy. In addition to start-up firms, other examples of such

corporations are knowledge-based companies, firms newly restructured as a consequence of

1See, for instance, Fama and French (2001), Grullon, Michaely and Swaminathan (2002), DeAngelo,

DeAngelo (2006), DeAngelo, DeAngelo and Stulz (2006), Leary and Michaely (2011).
2We review the literature below.
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major investments and firms newly listed on stock exchanges.3 Faced with uncertainty about

profitability, firms key challenge is to define a corporate policy ensuring that at any date,

the optimal amount of cash is available to avoid a liquidity shortage and to compensate for

the costs of holding cash.

Merging corporate liquidity and profitability knowledge in a single model is challenging

because it involves a difficult bi-dimensional optimization problem. Our paper overcomes

this difficulty by expressing the firm’s value as a value function of a bi-dimensional Bayesian

adaptative control problem that we solve in a quasi-explicit form. The cash reserves with

unknown profitability parameter and the belief about the firm’s profitability (i.e., the firm’s

profitability prospects) are the two state variables of the model. We prove the existence and

uniqueness of an optimal control policy. It consists of paying out cash when cash reserves

reach a dividend boundary function. We show that this boundary function continuously

increases with profitability prospects and is characterized by an ordinary differential equa-

tion. This mathematical contribution leads to a unique feature of our model: the dividend

payout ratio of the firm is an increasing function of the beliefs about the firm’s profitability.

A rich set of implications follows, which cannot be obtained focusing solely on liquidity or

profitability issues. We highlight our primary findings here.

The model predicts a positive relationship between cash target levels and profitability

prospects. Precisely, dividends are distributed each time the flow of cash inside a firm reaches

a new maximum value, which depends on the beliefs about the firm’s profitability. When

cash is paid out, shareholders become more confident about the relevance of their project,

have more to lose from negative shocks on earnings, and, accordingly, increase the future

cash target level. The model predicts that a firm whose project has unclear profitability

becomes well-established by reaching its cash target levels several times.4 Shareholders of a

well-established firm have strong beliefs about the firm’s profitability regardless of the level

of cash reserves. The model predicts that firms with unclear profitability and firms with well-

3Moyen and Platinakov (2013) document that from 1995-1999, on average, 29.7 percent of U.S. businesses

each year were either three years old at most or newly restructured as a consequence of major investments.

Pastor and Veronesi (2003) stress the increasing number of firms newly listed on the major U.S. stock

exchanges between the years 1980 and 2000. Financing constraints are common for young firms, and external

finance can be extremely expensive for knowledge-based companies whose profitability is typically difficult

to ascertain. A classic example is the funding crisis Intel faced in the early 1980s; see, for instance, Passov

(2003).
4Formally, in the model, well-established profitability means that the conditional variance of the prof-

itability parameter is low, while unclear profitability refers to a large conditional variance of the profitability

parameter.
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established profitability can have high and similar optimal cash reserves. Nevertheless, their

payout policies are very different. Well-established firms pay higher dividends and have

a more stable dividend policy than do firms facing more uncertainty about profitability.

Intuitively, once the firm is well established, shareholders do not expect changes in the firm’s

growth rate. Cash target levels remain high, the firm has fewer reinvestment needs (the free

cash flow problem is more severe), and payouts, as a proportion of available earnings, are

large and stable. Thereby, our model contributes to our understanding of dividend smoothing

and provides a possible rationale for empirical studies that document that firms that smooth

the most tend to pay more dividends and are more subject to agency costs of free cash flow

(see, in particular, Leary and Michaely (2011)). The implications regarding the link between

optimal cash reserves and profitability prospects are novel and in line with Fama and French

(2002), who emphasize that past profitability impacts a firm’s cash position.

Other interesting implications follow. The model predicts that the amount of dividends

and the value of the firm will exhibit a positive relationship and that firms will not decrease

dividends. The model also implies that dividend increases yield a decline in the risk of

profitability in the sense that beliefs about profitability are higher after dividend payments.

The first two implications are well documented and are usually explained using asymmetry

of information and signaling theory.5 The third implication is novel and in line with the ma-

turity hypothesis formulated by Grullon, Michaely and Swaminathan (2002), who document

that dividend changes are related to risk changes. In our model, these results follow from

the positive relationship between cash holdings and profitability prospects together with the

property that for a fixed level of cash reserves, profitability prospects are higher for a firm

that has previously reached its cash target levels several times. Thus, our model provides a

rationale for recently documented regularities, as well as a unified explanation of a series of

stylized facts that are usually explained with different theories.

Finally, we emphasize that liquidity and profitability issues generate different non-linearities

between shareholders’ value and the firm’s fundamentals. The model predicts that the value

of well-established firms is increasing and concave in cash reserves, whereas the value of

firms facing more uncertainty about their profitability may exhibit convexity in cash re-

serves. It follows a non-monotone relationship between firm’s volatility and cash reserves.

Intuitively, an increase in earnings affects the beliefs about a firm’s profitability. If prior

beliefs are initially positive, an increase in earnings confirms these prior beliefs. Liquidity

5See the pioneering papers by Bhattacharya (1979), Miller and Rock (1985), John and Williams (1985).

See Allen and Michaely (2003), DeAngelo, DeAngelo and Skinner (2008) for comprehensive surveys of payout

policy.
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issues dominate profitability issues, and a firm’s volatility decreases with cash reserves. To

the contrary, if beliefs about the firms’ profitability are initially negative, an increase in earn-

ings challenges these prior beliefs. Profitability issues may prevail, in which case the firm’s

volatility increases with cash reserves. These results are novel and derive from the sharehold-

ers’ problem that integrates both liquidity and profitability issues in a bi-dimensional setting.

Relationship to the literature Most dynamic models in corporate finance treat prof-

itability and liquidity separately. Our model is linked to these two strands of the literature.

Dynamic corporate models with only liquidity issues study how financial frictions impact the

value of cash holdings inside a firm.6 The prototype of this approach is a model in which the

cumulative net cash flow generated by the firm follows an arithmetic Brownian motion. The

constant drift represents the firm’s profitability per unit of time, and the Brownian shock is

interpreted as a liquidity shock. Shareholders have no access to external financing, which cre-

ates a precautionary demand for cash. Agency costs of free cash flow create a cost of carrying

cash. This results in a unique optimal dividend policy that requires paying shareholders 100

% of earnings beyond an endogenous constant cash target level. Other key insights are that

the firm value is increasing and concave in the current level of cash inside the firm; the firm’s

value is decreasing in the volatility of cash flow; the volatility of stock prices is decreasing in

the level of stock prices. Pioneering models include Jeanblanc and Shiryaev (1995), Radner

and Shepp (1996) and Kim, Mauer and Sherman (1998). These studies have been extended

in a number of directions.7 A common feature of these contributions is that shareholders

do not face uncertainty about the firm’s profitability. Only liquidity issues matter. The

dividend policy is insensitive to cash flow in the sense that either 0% or 100% of earnings

are paid to shareholders.

In their simplest versions, dynamic corporate models with only profitability issues con-

sider that the profitability per unit of time of the firm’s project follows a geometric Brownian

motion minus a constant that is interpreted either as an exogenous cost (in real option mod-

els, see Dixit and Pindyck (1994)) or as the interest on a debt after tax deduction (in

6This growing literature is motivated by the dramatic increase in the cash holdings of companies. Ac-

cording to Bates, Kahle and Stulz (2009), listed U.S. industrial firms increased their average cash-to-assets

ratios from 10.5% in 1980 to 23.2% in 2006.
7For instance, Décamps, Mariotti, Rochet and Villeneuve (DMRV) (2011) study the interaction between

cash management, agency costs, issuance costs and stock price; Bolton, Cheng and Wang (2011) extend the

model to the case of flexible firm size in order to study the dynamic patterns of corporate investment; Bolton,

Chen and Wang (2013), Hugonnier, Malamud and Morellec (2014) introduce capital supply uncertainty and

the necessary time needed to secure outside funds into the analysis.
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corporate contingent-claim models pioneered by Leland (1994)). In these models, sharehold-

ers can issue equity at no cost; their only concern is to decide when to liquidate. They do so

when the profitability reaches a sufficiently low threshold. Cash reserves are useless, and it

is optimal to immediately pay out any gain to shareholders and to fund any loss by issuing

more equity at the market price. Other insights are that the firm value is increasing and con-

vex in the profitability; the firm’s value is increasing in the volatility of the profitability; and

the volatility of stock prices is increasing in the level of stock prices. 8 Other studies develop

corporate models with learning on profitability. For instance, in Pastor and Veronesi (2003),

the profitability process is assumed to revert to an unknown mean whose value shareholders

learn over time. The model is designed in such a way that the net cash flow reinvested in

the firm always remains positive, which avoids both liquidity and liquidation issues. They

find that the stock price increases with uncertainty about average profitability and decreases

over time as the firm learns about its average profitability. More recently, Moyen and Plati-

nakov (2013) develop a model in which shareholders update their beliefs about firms’ quality

(high or low) in a dynamic Tobin’s q framework. They find evidence that firms with unclear

quality are more sensitive to earnings in their investment decisions than are well-established

firms. In these models, cash-constrained firms become well established as time passes by

learning about their profitability. Unlike in our model, cash management plays no role

and firms do not default in these models. Our learning technology is also different. We

borrow it from Décamps, Mariotti and Villeneuve (DMV) (2005, 2009); Klein (2009), who

study the optimal decision to invest in a project whose profitability is not perfectly known.

As in DMV (2005), the decision maker (in our setting, shareholders) observes the values

taken by an arithmetic Brownian motion whose drift is unknown and updates her belief

about the profitability of the project from these observations. We study the optimization

of a dividend flow of a financially constrained firm when there is an uncertainty about the

firm’s profitability, while DMV (2005) studies the value of waiting to invest when there is

an uncertainty about the profitability of the investment project and no financing constraints.

Thus, treated separately, profitability and liquidity issues lead to different nonlinear-

ities between shareholder’s value and the firm’s fundamentals, different properties of the

dynamics of the value of the firm, and different dividend policies, and none of these policies

8Leland (1994) extends a number of insightful contributions. An important example is the study by

Leland and Toft (1996), in which unconstrained shareholders continuously roll over maturing bonds. Some

recent studies build on Leland and Toft (1996) and address the issue of the liquidity of the secondary market

for corporate bonds. See, for instance, He and Xiong (2012) and He and Milbradt (2014).
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reports main stylized facts about payout practices. Integrating liquidity and profitability

issues in a single model is challenging because it requires solving a dynamic bi-dimensional

optimization problem. Very few papers address this issue. Murto and Terviö (2014) intro-

duce costly external financing in a real option setting. The profitability per unit of time

of the firm’s project follows a geometric Brownian motion minus an exogenous cost. This

leads to a bi-dimensional control problem that is numerically investigated. Décamps, Gry-

glewicz, Morellec and Villeneuve (DGMV) (2015) assume that the firm’s operating cash flow

is proportional to profitability, dynamics governed by a Geometric Brownian Motion. The

ratio of cash holdings to profitability is the state variable of the firm’s problem. DGMV

(2015) find a constant dividend payout ratio that depends on the long-term prospects of the

firm. Unlike in our model, in Murto and Terviö (2014) and DGMV (2015), the uncertainty

regarding profitability does not result from shareholders’ belief about the relevance of the

firm’s project.

Our study is more closely related to Gryglewicz (2011), who considers that cash-constrained

shareholders learn about the firm’s profitability. In his model, the profitability per unit of

time is a random variable whose value shareholders learn over time. There are no frictions in-

side the firm, so holding cash is not costly. It follows that any dividend policy that maintains

the reserves above a critical level is optimal. Gryglewicz (2011) studies how this framework

impacts the optimal capital structure that results from the trade-off between tax shields and

bankruptcy costs.

A final related paper is DeMarzo and Sannikov (2014), who study a dynamic contracting

model with learning about the firm’s profitability. Still, the approach is very different.

Asymmetric information arises endogenously because by shirking, an entrepreneur can distort

the beliefs of investors about the project’s profitability. The paper studies the relationship

between incentives and learning.9 In the implementation of the optimal contract, cash inside

the firm is accumulated at no cost. It is shown that above a critical level of cash, liquidation

is first-best, despite moral hazard.

We do not model hidden actions. In our model, information is incomplete but symmetric

between stakeholders, and holding cash is costly for the firm. The novelty of our analysis

is studying the evolution of the trade-off between costs and benefits of holding cash due to

learning on the firm’s profitability. The optimal policy is unique, the dividend payout ratio

changes with the beliefs about the profitability, and liquidation cannot be first-best. These

9Other recent papers on dynamic contracting with learning are Prat and Jovanovic (2013) and He, Wei

and Yu (2014).
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features yield new and different financial implications.

The paper is organized as follows. We lay out the model in Section 2. Section 3 studies

benchmarks in which shareholders face profitability and liquidity concerns separately. Sec-

tion 4 solves the model in a closed form and presents the optimal corporate policies. Section

5 develops the model implications. Section 6 concludes. All the proofs are in the Appendix.

2 The model

2.1 Learning

A firm has a single investment project that generates random cash flows over time. The cu-

mulative cash flow process {Rt; t ≥ 0} follows an arithmetic Brownian motion with unknown

drift Y and known variance σ

dRt = Y dt+ σ dBt, t ≥ 0,

where {Bt; t ≥ 0} is a standard Brownian motion independent of Y . The process {Bt; t ≥ 0}
and the random variable Y are defined on a filtered probability space (Ω,F , {Ft},P) with

filtration {Ft; t ≥ 0} satisfying the usual condition of right continuity and completion by

P-negligible sets.

The firm is held by risk-neutral shareholders who do not fully know the project’s long-

run profitability Y but observe the cumulative cash flow process {Rt; t ≥ 0}. The filtration

{FRt ; t ≥ 0}, generated by {Rt; t ≥ 0}, corresponds to the information available to the

shareholders. Their belief Yt about the project’s profitability Y at any time t is summarized

by the conditional expectation of Y given the available information FRt ; that is,

Yt = E[Y | FRt ].

We also say that Yt represents the firm’s profitability prospects at time t. We assume that

the project’s profitability Y can take two possible values and that a probability of 1
2

on a

realization of Y yields an expected project’s profitability equal to zero. This assumption

implies that Y takes either of the two values −µ < 0 < µ and that the belief process

{Yt,FRt ; t ≥ 0} satisfies the filtering equation10

dYt =
1

σ
(µ2 − Y 2

t )dWt, (1)

10See, for instance, Liptser and Shiryaev (1977).

8



where the so-called innovation process {Wt,FRt ; t ≥ 0} is a Brownian motion given by

dWt =
1

σ
(dRt − Ytdt). (2)

It follows from (1)-(2) that the present value of future cash flows is finite:

E
[∫ ∞

0

e−rs dRs

]
= E

[∫ ∞
0

e−rsYs ds

]
≤ µ

r
.

Finally, we note that the cumulative cash flow process is a sufficient statistic for the Bayesian

updating. Precisely, a direct application of the Itô’s formula yields the relation

dRt = dφ(Yt), (3)

where φ is the increasing function defined on (−µ, µ) by φ(y) =
σ2

2µ
ln

(
µ+ y

µ− y

)
.

2.2 The shareholders’ problem

Risk-neutral shareholders discount future payments at the risk-free interest rate r > 0. The

model builds on the standard trade-off costs versus benefits of holding cash. The firm accu-

mulates cash because of precautionary motives in a costly external financing environment.

External financing involves high costs, and issuing new shares is never a profitable option for

the firm, which is then liquidated as soon as it runs out of cash. Nevertheless, accumulating

cash is costly. Because of internal frictions, the rate of return of cash inside the firm is

lower than the cost of capital. Specifically, we consider that investment proceeds in liquid

assets are entirely wasted, such that the cost of holding cash per unit of time is r dt. This

allows us to pragmatically account for the agency cost of free cash flow, first emphasized by

Easterbrook (1984) and Jensen (1986).11 Shareholders can reduce these costs by deciding

to distribute cash.12 This, in turn, defines the optimal dividend policy in our setting. On

top of this trade-off, shareholders are not aware of the profitability, positive or negative, of

11Other studies (see, for instance, Bolton, Chen and Wang (2011), DMRV (2011)) assume a cost of carrying

cash (r− λ) dt with λ ∈ (0, r]. Considering λ = r yields a fully explicit solution in the complete information

benchmark and eases the analysis of our model.
12This assumption is standard in models with cash (see, for instance, Bolton, Chen and Wang (2011) or

DMRV (2011), among many other articles). This assumption relates to a series of studies that show how

investor protection laws and firm-specific governance rules provide investors with the opportunity to reduce

the agency costs of free cash flow by deciding/forcing managers to pay out cash (see, for instance, La Porta

et al. (2000), Dittmar, Mahrt-Smith and Servaes (2003), Kalcheva and Lins (2007). See also Allen and

Michaely (2003), and DeAngelo, DeAngelo and Skinner (2008)).
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the firm’s project. Thus, shareholders face both a profitability concern (the risk of running

a project that is not profitable) and a liquidity concern (the risk of being forced to liquidate

a profitable project).

Formally, at each date, shareholders decide when and how to distribute dividends and

whether to continue the project. For simplicity, we assume that the liquidation value of the

project is equal to 0. The cash reserves Xt at time t correspond to the cumulative net cash

flow that is reinvested in the firm and evolve according to

dXt = dRt − dLt, (4)

where L = {Lt; t ≥ 0} corresponds to the cumulative dividend process chosen by sharehold-

ers. Formally, the process L belongs to the set L of admissible policies.13 Using (3), we

re-write Equation (4) under the form

Xt = φ(Yt)− φ(y) + x− Lt (5)

where X0 = x and Y0 = y. Note that as long as the control L is not activated, there is a

one-to-one relationship between cash reserves and profitability prospects.

The firm ceases its activity for two possible reasons: (i) it cannot meet its short-term

operating costs by drawing cash from its reserves; and/or (ii) shareholders strategically

decide to liquidate for profitability reasons because their belief that the drift parameter Y is

strongly negative. In that case, shareholders take the remaining cash reserves as dividends.

Thus, equation (4) represents the dynamics of the cash reserves up to the liquidation time

τ0 defined as

τ0 = inf{t ≥ 0 |Xt = 0}. (6)

Given a dividend policy L ∈ L, current cash reserves x ∈ [0,∞) and a current belief

y ∈ (−µ, µ), the value of the firm is the expected present value of all future dividends, that

is,

V (x, y;L) = E(x,y)

[∫ τ0

0

e−rtdLt

]
, (7)

with ∆Lτ0 = max(Xτ−0
, 0). The case ∆Lτ0 = Xτ−0

> 0 corresponds to a strategic liquidation.

Accordingly, we write τ0 = inf{t ≥ 0 | (∆L)t = Xt−}. The shareholders’ problem is to

find the optimal value function defined as the supremum of (7) over all admissible dividend

13We say that L belongs to the set L of admissible policies if and only if L is FR-adapted, right-

continuous, and nondecreasing with L0− = 0 and if the associated cash reserves {Xt,FRt ; t ≥ 0} satisfy

Xt ≥ 0, e−rtXt integrable and, limt→∞ e−rtXt = 0 a.s.
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policies

V ∗(x, y) = sup
L∈L

V (x, y;L), (8)

The next lemma shows that the shareholders’ problem (8) is well defined and derives a useful

equivalent formulation.

Lemma 1 The value function V ∗ is finite and can be written under the form

V ∗(x, y) = x+ sup
L∈L

E(x,y)

[∫ τ0

0

e−rs (Ys − rXs) ds

]
< x+

µ

r
. (9)

Equation (9) explicates the linkage between the firm’s value, the belief process and the cost

of holding cash. For a given payout policy L, the firm’s value is equal to the current amount

of cash reserves, plus the present value of cash flows up to the liquidation time, minus the

present value of the cost of accumulating cash up to the liquidation time.

3 Benchmarks

Two polar cases are worth mentioning: (i) the case where shareholders face only a prof-

itability concern, and (ii) the case where shareholders face only a liquidity concern. These

benchmarks provide natural bounds to the value function V ∗.

3.1 First-best benchmark

Let us assume that shareholders can issue and repurchase shares at no cost whenever they

want. Under this assumption, shareholders face only a profitability concern. We shall say

that shareholders have deep pockets. Accumulating cash does not bring any benefit, while

agency costs reduce the rate of return on internally held cash. Intuitively, an optimal policy

is to distribute all of the firm’s initial cash reserves x as a special payment at date 0, to hold

no cash beyond that time, and to liquidate when the belief about the firm’s profitability is

too low. In this first-best environment, the firm’s value is equal to the sum of current cash

reserves plus the option value to liquidate the firm. Accordingly, we get:

Proposition 1 Suppose that shareholders have deep pockets. Then the firm’s value corre-

sponds to the value function V̂ of the stopping problem

∀(x, y) ∈ [0,∞)× (−µ, µ), V̂ (x, y) ≡ x+ sup
τ∈T R

Ey
[∫ τ

0

e−rsYsds

]
where T R is the set of FR-stopping times. We have that V ∗ ≤ V̂ , computations are explicit

and lead to

11



(i) (Firm value) {
V̂ (x, y) = x, −µ < y ≤ y∗,

V̂ (x, y) = x+ y
r
− h1(y)

h1(y∗)
y∗

r
y∗ ≤ y < µ,

(10)

where

h1(y) = (µ+ y)γ(µ− y)1−γ, y∗ =
−µ

1− 2γ
< 0, (11)

and where γ is the negative root of the equation x2 − x− rσ2

2µ2
= 0. (12)

(ii) (Optimal policy) Distributing all initial cash reserves x at time 0, holding no cash

beyond that time, and liquidating at the stopping time τ ∗ = inf{t ≥ 0 : Yt = y∗} is an

optimal policy.

The inequality V ∗ ≤ V̂ implies that V ∗(x, y) = V̂ (x, y) = x for all x ≥ 0 and y ≤ y∗.

That is, if the belief about the firm’s profitability is lower than the first-best liquidation

threshold y∗, then the firm is liquidated whatever the amount of cash within the firm. We

will observe how liquidity concerns impact the required profitability prospects below which

shareholders liquidate the firm. Observe also that the mapping y −→ sup
τ∈T R

Ey
[∫ τ

0

e−rsYsds

]
is convex over (−µ, µ) and represents the option value to liquidate the firm for profitability

reasons. Finally, let us emphasize that because shareholders can issue and repurchase shares

at no cost, the logic of Miller and Modigliani (1961) applies and there is a large degree of

freedom in designing the payout process.

3.2 Complete information benchmark

Another useful benchmark is the complete information setting in which shareholders face

only a liquidity concern. This corresponds to the case where y = −µ or y = µ in the main

problem (8).14 We shall denote with V − and V + the associated value functions.

When y = −µ, the firm’s profitability is negative, and it is optimal for shareholders to

take the initial cash reserves and to liquidate the firm at time t = 0. Accordingly, we deduce

from (9) that V −(x) = x, ∀x ∈ R+. When y = µ, we revert to the classical case studied by

many authors. Informally, any excess of cash over a constant dividend boundary x∗µ is paid

out to shareholders such that the cash reserves process is reflected back each time it reaches

x∗µ. The Hamilton-Jacobi-Bellman (HJB) equation

∀x ≥ 0 max

(
−rV (x) + µV ′(x) +

σ2

2
V
′′
(x), 1− V ′(x)

)
= 0 (13)

14Technically, −µ and µ are absorbing barriers for the belief process.
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characterizes the pair (V +, x∗µ). The function V + is C2 on (0,∞), increasing and concave.

The marginal value of cash, V +′(x), is strictly greater than 1 for x ∈ (0, x∗µ), and equal

to 1 for x ∈ [x∗µ,∞). Thus, when cash holdings exceed x∗µ, the firm places no premium

on internal funds, and it is optimal to make a lump sum payment x − x∗µ to shareholders.

Previous articles15 have studied the HJB Equation (13), whose solution is explicit. In our

setting, this leads to

Proposition 2 Suppose that there is no uncertainty about the firm’s profitability. For any

(x, y) ∈ [0,∞)× (−µ, µ) , V −(x) ≤ V ∗(x, y) ≤ V +(x), computations are explicit and lead to

(i) (Firm value)

– The value function V + is given by V +(x) =
k(x)

k′(x∗µ)
0 ≤ x ≤ x∗µ,

V +(x) = x− x∗µ + V +(x∗µ), x ≥ x∗µ,

where

k(x) = eα+x − eα−x, x∗µ =
1

α+ − α−
ln

(
α−
α+

)2

, (14)

and where α− < 0 < α+ are the roots of the equation
1

2
σ2x2 + µx− r = 0.

– The value function V − is given by V −(x) = x, ∀x ∈ R+.

(ii) (Optimal policy)

– The process L∗ = {L∗t ; t ≥ 0} defined by

L∗t = (x− x∗µ)+ 11t=0 + L
x∗µ
t 11t>0 (15)

is an optimal policy for problem (8) with y = µ. In Equation (15), Lx
∗
µ denotes the

solution to the Skohorod problem at x∗µ for the drifted Brownian motion µ t + Bt.

– The process L∗ = {L∗t ; t ≥ 0} defined by L∗t = x 11t=0 is an optimal policy for

problem (8) with y = −µ.

Drawing on these two benchmarks, Proposition 3 below establishes the first properties of

the value function V ∗. Our model encompasses convexity and concavity properties, which

15See, for instance, Jeanblanc and Shiryaev (1995)
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hold separately in the standard corporate contingent-claim models and corporate cash mod-

els. Keeping constant the belief y (resp. the cash reserves x), we find that firm value is

increasing and concave in cash reserves (resp. increasing and convex in beliefs). Proposition

3 also confirms the intuition that when shareholders are increasingly confident that the drift

parameter is µ, then V ∗ behaves as V +.

Proposition 3 The following holds.

(i) For any y ∈ [y∗, µ), the mapping x −→ V ∗(x, y) is increasing and concave on [0,∞).

(ii) For any x ∈ [0,∞), the mapping y −→ V ∗(x, y) is increasing and convex on (−µ, µ).

(iii) For any x ∈ [0,∞), the mapping y −→ V ∗(x, y) can be continuously extended at y = µ

by posing V ∗(x, y) = V +(x).

4 Model solution

In stochastic control theory, the route to obtaining value functions and optimal control

policies involves three steps: (i) apply the dynamic programming principle to derive a free

boundary problem whose solution gives a candidate value function; (ii) identify a candidate

control strategy; and (iii) prove a verification theorem asserting that the candidates in (i)

and (ii) are actually the optimal control and the value function. Assertion (i) requires

regularity properties of the value function that are difficult to establish. In particular,

in a bi-dimensional setting, a major difficulty is to prove the existence, uniqueness and

regularity of the value function through the free boundary that divides the plan R2 into

action and inaction regions. A related crucial issue is to prove the smoothness of the free

boundary in R2. This latter property is instrumental in the construction of optimal policies.

Most of the time, these technical difficulties prevent obtaining a characterization of optimal

control policies. We overcome these technical difficulties and obtain a complete description

of the optimal shareholders’ policy. Thereby, we add to the mathematical literature a new

solvable bi-dimensional Bayesian adaptative control problem that combines singular control

and stopping with a value function that satisfies C2 smooth fit across a free boundary that

is neither linear nor quadratic but characterized by an ordinary differential equation.16 The

16The literature on bi-dimensional control problems relies mainly on the study of leading examples. An-

other (scarce) solvable control problem in which the free boundary is neither linear nor quadratic is the so-

called finite fuel problem introduced by Benes, Shepp and Witsenhausen (1980) and developed by Karatzas,

Ocone, Wang and Zervos (2000).
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characterization of the dividend boundary function allows us to explain in Section 5 how

liquidity and profitability concerns are intertwined and to develop a rich set of implications.

The next section is heuristic and leads to a free boundary problem that should satisfy

the value function V ∗.

4.1 Heuristic discussion

We know that the value function V ∗ satisfies the boundary condition V ∗(0, y) = 0 and the

inequality V ∗(x, y) ≥ x for all (x, y) ∈ (0,∞)× (−µ, µ). We also know that V ∗(x, y) = x for

all y ≤ y∗ where y∗ is the belief below which deep-pocketed shareholders liquidate the firm

for profitability reasons. In order to proceed further, we assume in this section that V ∗ is as

smooth as necessary, and we derive some properties that V ∗ should satisfy.

Dynamic programming. Let us fix some pair (x, y) ∈ (0,∞) × (−µ, µ). Let us consider

the policy that consists of abstaining from paying dividends for t ∧ τ0 units of time and,

then, in applying the optimal policy associated with the resulting couple (x+

∫ t∧τ0

0

Ys ds+

σdWs, y +

∫ t∧τ0

0

1

σ
(µ2 − Y 2

s )dWs). This policy must yield no more than the optimal policy:

0 ≥ E(x,y)

[
e−r(t∧τ0)V ∗

(
x+

∫ t∧τ0

0

Ys ds+ σdWs, y +

∫ t∧τ0

0

1

σ
(µ2 − Y 2

s )dWs

)]
−V ∗(x, y)

= E(x,y)

[∫ t∧τ0

0

e−rs (AV ∗(Xs, Ys)− rV ∗(Xs, Ys)) ds

]
. (16)

The last equality follows from the Itô’s formula where A denotes the partial differential

operator defined by

AV (x, y) =
1

2σ2
(µ2 − y2)2Vyy +

1

2
σ2Vxx + (µ2 − y2)Vxy + yVx. (17)

Letting t go to zero in (16) yields

AV ∗(x, y)− rV ∗(x, y) ≤ 0

for all (x, y) ∈ (0,∞)× (−µ, µ).

Dividend boundary. Fix some (x, y) ∈ (0,∞) × (−µ, µ). The policy that consists of

making a payment ε ∈ (0, x) and then immediately executing the optimal policy associated

with cash reserves x− ε must yield no more than the optimal policy:

V ∗(x, y) ≥ V ∗(x− ε, y) + ε.
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Subtracting V ∗(x− ε, y) from both sides of this inequality, dividing through by ε and letting

ε approach 0 yields

V ∗x (x, y) ≥ 1 (18)

for all (x, y) ∈ (0,∞) × (−µ, µ). Thus, from assertion (i) of Proposition 3, the inequality

V ∗x (x, y) > 1 holds for any x ∈ (0, x∗(y)), where x∗(y) = inf{x, V ∗x (x, y) = 1}. It follows

that for any fixed profitability prospect y, any excess of cash above x∗(y) should be paid out

to shareholders. Therefore, the optimal cash policy should not be characterized by a constant

threshold, as in the previous literature, but by the dividend boundary function y −→ x∗(y).

Finally, from Proposition 3, we expect to retrieve as a limit result the optimal level of cash

reserves derived in the complete information benchmark: the dividend boundary function

should satisfy lim
y−→µ

x∗(y) = x∗µ.

Therefore, our heuristic discussion leads us to consider the moving boundary problem: find

a smooth function V and a positive function b defined on [−µ, µ] that solve the variational

system

b(µ) = x∗µ (19)

V (0, y) = 0 ∀y ∈ (−µ, µ), (20)

AV (x, y)− rV (x, y) = 0 on the domain {(x, y), 0 < x < b(y), −µ < y < µ}, (21)

Vx(x, y) = 1, for x > b(y), (22)

Vx(b(y), y) = 1, Vxy(b(y), y) = 0. (23)

We expect that the pair (V ∗, x∗) coincides with the solution (V, b) (if any) to the system

(19)-(23) on the domain {(x, y), 0 ≤ x ≤ b(y), −µ < y < µ}. Note that Equation (23)

reflects the requirement that V (., y) is twice continuously differentiable at the boundary

function b. In particular, differentiating equation Vx(b(y), y) = 1 with respect to y and using

Vxy(b(y), y) = 0 leads to Vxx(b(y), y) = 0. Clearly, this does not imply that the solution to

(19)-(23), if any, is of class C2 jointly in both variables across the boundary b.

4.2 Solution to the free boundary problem (19)-(23)

We prove the existence and uniqueness of a twice continuously differentiable solution to the

free moving boundary problem (19)-(23). From Equation (5), as long as the control L is not

activated, the process

Zt = φ(Yt)−Xt (24)

16



is constant, which yields a one-to-one mapping between cash reserves and belief. Then,

considering the change of variable (24) allows us to re-state problem (19)-(23) in the (z, y)-

space and to solve it quasi-explicitly. We obtain the following result.

Proposition 4 The free boundary problem (19)-(23) has a unique solution (V, b).

(i) The boundary function b is defined by b = max(0, g), where g is the unique solution to

the ordinary differential equation

g′(y) = f(g(y), y) (25)

with the boundary condition

g(µ) = x∗µ, (26)

where,

f(x, y) =
σ2

µ2 − y2

yy∗ +

(
µ− rσ2

(
y∗

µ

)2
1
µ

)
φ−1

(
− µ
y∗
x
)

yy∗ + µφ−1
(
− µ
y∗
x
) (27)

on the domain {(x, y) ∈ [0,∞) × (−µ, µ) |x > y∗

µ
φ(y y

∗

µ
)}, and where x∗µ is defined in

(14). Moreover, the function g is increasing, the threshold y∗∗ ≡ g−1(0) is well defined

and strictly larger than y∗.

(ii) The function V is positive, twice continuously differentiable on the domain (0,∞) ×
(−µ, µ) and defined by the relation.

V (0, y) = 0, ∀ − µ < y < µ,

V (x, y) = A (φ(y)− x)

(
h1(y)− e

2
σ2

µ2

y∗ (φ(y)−x)h2(y)

)
, ∀ 0 ≤ x ≤ b(y),

V (x, y) = x− b(y) + V (b(y), y), ∀x ≥ b(y),

(28)

where

A(z) =
σ2

4

(
y∗

µ

)2(
1

µ

)2(
h′1(k(z))e−

2
σ2

µ2

y∗ z − h′2(k(z))

)
with k(z) ≡ (φ− b)−1(z),

(29)

h2(y) = (y + µ)1−γ(µ − y)γ for any y ∈ (−µ, µ), and where h1 and y∗ are defined in

(11).

In the next section, we show that the function V defined in (25)-(29) coincides with the

optimal value function V ∗ for problem (8). We can see Equation (25)-(29) as a generalization

of assertion (i) of Proposition 2 to an incomplete information setting. It is important to stress

the inequality y∗∗ ≡ g−1(0) > y∗ in assertion (i) of Proposition 4. As we will see, this implies

that liquidation never occurs at the first-best level y∗.
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4.3 Solution to the shareholders’ problem

We prove that the function V solution to (19)-(23) coincides with the optimal value function

V ∗ for problem (8). First, we show that V is an upper bound for V ∗ (this result is stated

and proven in the appendix). Then, we construct an admissible policy, the value of which

coincides with V . This, in turn, establishes that V ∗ = V , and thereby provides the optimal

dividend policy.

Our estimation is that the optimal cash reserves process is reflected along the free bound-

ary function b in a horizontal direction in the (x, y)-plan. We formalize this using a 2-

dimensional version to Skorohod’s lemma established by Burdzy and Toby (1995). Specifi-

cally, there exists a unique continuous process {Lb(.); t ≥ 0} defined on (Ω,FR,P) such that

for P-a.e. ω ∈ Ω,

• (φ(Yt(ω))− φ(y) + x− Lb(.)t (ω), Yt(ω)) ∈ [0, b(y)]× [y∗∗, µ), ∀t ∈ [0, τ0], (30)

where τ0 = inf{t ≥ 0 |φ(Yt)− φ(y) + x− Lb(.)t = 0},

• L
b(.)
0 (ω) = 0, and t −→ L

b(.)
t (ω) is nondecreasing on

{t ≥ 0 : φ(Yt)− φ(y) + x− Lb(.)t = b(Yt)}, (31)

• t −→ L
b(.)
t (ω) is constant on

{t ≥ 0 : (φ(Yt(ω))− φ(y) + x− Lb(.)t (ω), Yt(ω)) ∈ (0, b(y))× (y∗∗, µ)}. (32)

Conditions (30)-(32) ensure that the policy Lb(.) is admissible such that the process

X
b(.)
t ≡ φ(Yt)− φ(y) + x− Lb(.)t (33)

is reflected in a horizontal direction whenever X
b(.)
t = b(Yt). Bringing together our results,

we obtain the following Theorem.

Theorem 1 The following holds:

(i) (Firm value) The value function V ∗ for (8) coincides with the unique solution V to

the free moving boundary problem (19)-(23) and is given by equations (25)–(29).

(ii) (Optimal policy) Let Lb(.) be the solution to the Skorohod’s problem (30)-(32). The

process L∗ = {L∗t ; t ≥ 0} is defined by

L∗t =
(
(x− b(y))+11y≥y∗∗ + x11y≤y∗∗

)
11t=0 + L

b(.)
t 11t>0, (34)

is an optimal policy for problem (8).
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Equation (34) defines the optimal cash management policy of shareholders who face

profitability and liquidity concerns and thus generalizes the policy (15) to an incomplete in-

formation setting. A striking difference from the complete information case is that the firm’s

cash target level is not a constant but a function of the belief about the firm’s profitability.

Below a critical level of belief, the project is not undertaken. We describe the optimal cash

management of the firm as follows:

• If cash reserves/belief (x, y) satisfies y < y∗∗, then whatever the amount of cash x,

shareholders do not run the project and we have V (x, y) = x for all y ≤ y∗∗ and for all

x ≥ 0.

• If cash reserves/belief (x, y) satisfies x > b(y), then the amount x− b(y) is paid out to

shareholders.

• If cash reserves/belief (x, y) satisfies 0 < x < b(y), then no cash is paid out.

5 Model implications

Theorem 1 explains how the trade-off between the costs and benefits of cash retention evolves

when shareholders learn about profitability prospects. It provides novel predictions as well

as a theoretical underpinning for a series of documented regularities. Furthermore, the

quasi-explicit nature of the model solution allows simple numerical illustrations that yield

additional results.

5.1 Cash target levels and profitability prospects

Theorem 1 directly yields two novel implications for the link between corporate cash policy

and profitability prospects.

• There is a positive relationship between cash target levels and profitability prospects.

• Once we condition on the level of cash reserves, profitability prospects are higher if the

firm previously reached its cash target levels several times.

In corporate cash models with known profitability, the optimal amount of cash reserves is

a constant boundary. In our study, the uncertainty about the firm’s profitability impacts

the corporate cash policy, which, in terms of cash target levels, changes as the firm learns
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about its profitability. Proposition 4 shows that the dividend boundary function b is increas-

ing. Therefore, the model predicts a positive relationship between cash target levels and

profitability prospects. Intuitively, a firm has more to lose from liquidity constraints when

profitability prospects are high than it does when they are low. This leads shareholders to

accumulate more cash when their belief about the firm’s profitability becomes more positive.

A numerical implementation of the model yields more insights on this property below.

Our model exhibits a path-dependence property of the shareholders’ belief about the

firm’s profitability and predicts that beliefs are higher as the firm reaches its cash target

levels several times. To see this point, consider (33) and define Zt ≡ φ(Yt)−Xb(.)
t = L

b(.)
t + z

with z ∈ (φ(y∗∗),∞)]. The process {Zt; t ≥ 0} is increasing and takes a new value each time

the firm reaches its cash target level, that is, whenever X
b(.)
t = b(Yt). For a given realization

z of {Zt; t ≥ 0}, any cash reserves/belief (x, y) satisfies the relation φ(y) − x = z. Thus,

keeping x constant, the higher the value of z is, the higher the shareholders’ beliefs y will

be. Hence, dividends are distributed each time the total flow of cash into the firm reaches

a new maximum value that depends on the current belief. At that time, cash is paid out,

the firm increases its cash target level, and each amount of cash reserves is associated with

a more positive belief after paying out cash.

We interpret a realization z of {Zt; t ≥ 0} as a measure of the strength of shareholders’

beliefs about the quality of the firm’s project. Indeed, for a given z ∈ (φ(y∗∗),∞)], the share-

holders’ estimates about the firm’s profitability evolve in the interval [φ−1(z), k(z)], where

k(z) = (φ − b)−1(z) as defined in (29). The lower bound φ−1(z) corresponds to the belief

about the firm’s profitability when cash reserves are depleted. It is the lowest belief that

shareholders may have about the profitability of the firm. The upper bound k(z) corresponds

to the belief about the firm’s profitability Y at the cash target level xz ≡ b(k(z)). The func-

tions φ−1 and k are increasing and tend to µ when z tends to ∞. When the firm reaches its

cash target levels several times, shareholders’ beliefs become more positive, and the range

over which beliefs evolve shrinks, as illustrated in Table 1 below. It follows that the condi-

tional variance Var[Y |FRt ] = µ2−Y 2
t , is low for a high realization of the process {Zt; t ≥ 0}.

We shall refer to Var[Y |FRt ] as the risk of profitability. Thus, after a series of successes,

the process {Zt; t ≥ 0} increases, and the firm becomes well-established in the sense that

shareholders’ beliefs are strongly positive and remain high for all levels of cash flows. In

particular, shareholders of a well-established firm do not infer from high cash flows that

growth will be much higher in the future; similarly, they do not infer from low cash flows a

sharp decline in profitability prospects. These observations motivate the following definition.
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Definition The process {Zt; t ≥ 0} with Zt = L
b(.)
t + z defines the strength of shareholders’

beliefs about the quality of the firm’s project. We define the firm quality index as a real-

ization of the process {Zt; t ≥ 0}, and the risk of profitability as the conditional variance

Var[Y |FRt ]. Accordingly, for a given level of cash reserves, the higher the quality index is,

the lower the risk of profitability is. A well-established firm is a firm with a high quality index.

A numerical implementation of the model illustrates the above definition and gives addi-

tional insights on the positive relationship between cash holdings and profitability prospects.

Figure 1 plots in the (x, y)-plan the dividend boundary function b and the curves z = φ(y)−x
for z = −0.075 and z = −0.05. We consider the baseline parameter values r = 0.06, σ = 0.09

and µ = 0.18.17 If shareholders know that µ = 0.18, they will target cash level x∗µ = 0.2176.

In our bi-dimensional setting, information about profitability is incomplete, and each quality

index z defines a cash target level xz ≡ b(k(z)), the set of which forms the dividend bound-

ary function. Shareholders agree to run the project if the expected losses do not exceed

y∗∗ = −0.1771. Table 1 complements Figure 1 and gives for a given index z the values of

lower and upper bounds of shareholders’ belief (φ−1(z) and k(z)) and the associated cash

target level xz.

17To ease comparisons, we use the baseline parameters considered in studies in which shareholders face

only a liquidity concern; see, for instance, Bolton, Chen and Wang (2011). The parameters r, µ and σ are

annualized, σ and µ are expressed in millions of dollars.

21



Figure 1. The dividend boundary function is in red. The curves z = φ(y) − x are for the quality

indexes z = −0.075 and z = −0.05. The parameters are r = 0.06, σ = 0.09, µ = 0.18. For

those parameters, x∗µ = 0.2176 and y∗∗ = −0.1771.

z φ−1(z) k(z) xz

-0.105 -0.1766 0.1591 0.1677

-0.05 -0.144 0.1797 0.2157

0 0 0.1799 0.2172

0.05 0.1448 0.1799 0.2173

0.105 0.1766 0.1799 0.2175

Table 1. For a given quality index z, φ−1(z) is the lower bound of the shareholders’ belief, k(z)

is the upper bound of the shareholders’ belief, and xz is the cash target level. The parameters

are µ = 0.18, r = 0.06, σ = 0.09. The dividend boundary in the complete information case is

x∗µ = 0.2176.

We obtain the following implications.

• Well-established firms have been successful and have paid dividends several times in

the past.

• Well-established firms as well as firms with a high risk of profitability can have high

and similar cash target levels.

The path dependence property of beliefs implies that a firm becomes well-established after

having established sufficiently high performance records. Thus, well-established firms have

paid out dividends several times in the past and have a high level of cash reserves. Our nu-

merical implementation shows that well-established firms and firms that are more uncertain

about the relevance of their projects can have similarly high cash target levels. Specifically,

in Table 1, the quality indexes z = −0.05 z = 0, z = 0.05, z = 0.105 yield almost the same

cash target levels, which are close to x∗µ, the dividend boundary of the complete information

case. Nevertheless, the support of the distribution of beliefs remains large for z = −0.05 and

z = 0, whereas it shrinks for z = 0.105. The model suggests that firms learning about the

relevance of their projects build cash reserves. Cash target levels become high but do not

allow one to assess the strength of shareholders’ beliefs about the firm’s profitability.
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5.2 Cash flow sensitivity of dividends

We push the analysis further and provide new insight on how much cash firms pay out

(relative to their earnings). We show that well-established firms pay large dividends (relative

to their earnings), and have a stable dividend policy, whereas firms with a high risk of

profitability pay low dividends and have a dividend policy that is more sensitive to their

performance records.

In previous corporate cash models, the amount of dividends per unit of cash available for

distribution is constant. In particular, all models with only liquidity issues predicted that

at the cash target level, 100% of cash available for distribution is paid to shareholders. Our

bi-dimensional model generates more realistic behaviors because the amount of dividends

per unit of cash available for distribution depends on the belief about the firm’s profitability

through an explicit measure, which we refer to as the cash flow sensitivity of dividends.18

Specifically, suppose that the firm is at its target level of cash x = b(y) and consider

what happens after a realization of a shock on the cash flow. To account for the sign of the

change in cash flow over a small period of time h, we consider a
√
h Euler approximation of

the model,

Xh = x+ σ
√
hW1,

and

Yh = y +
µ2 − y2

σ

√
hW1,

where W1 is a standard Gaussian variable. Therefore, the cash available for distribution at

time h is

Xh − b(Yh) = Xh − (b(y) + b
′
(y)(Yh − y))

= Xh − x− b
′
(y)

µ2 − y2

σ

√
hW1

= ε(y)(Xh − x),

with

ε(y) =

(
1− b′(y)

µ2 − y2

σ2

)
=
rσ2

(
y∗

µ

)2
1
µ
φ−1

(
− µ
y∗
b(y)

)
yy∗ + µφ−1

(
− µ
y∗
b(y)

) ,

18We borrow the terminology of Almeida, Campello and Weisbach (2004), who define the cash flow sensi-

tivity of cash as the firm’s propensity to save cash out from cash flows. In Almeida, Campello and Weisbach

(2004), the cash flow sensitivity of cash provides a measure of the effect of financial constraints on corporate

policies.
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where the last equality follows from (27). Thus, if at the cash target level, the variation of

earnings Xh−x is positive, then the amount of dividends paid to shareholders is Xh− b(Yh)
such that the function ε represents the (target) dividend payout ratio of the firm. The

definition is below.

Definition The cash flow sensitivity of dividends is defined by the function ε, where, for all

y ∈ [y∗∗, µ],

ε(y) =
rσ2

(
y∗

µ

)2
1
µ
φ−1

(
− µ
y∗
b(y)

)
yy∗ + µφ−1

(
− µ
y∗
b(y)

) . (35)

The function ε models the dividend payout ratio of the firm. It measures how much cash

firms pay out relative to their earnings. The function ε is continuously increasing and maps

[y∗∗, µ] into [0, 1].

In the complete information benchmark, when y = µ, Equation (35) yields ε(µ) = 1. That

is, in the absence of uncertainty about the project’s profitability, 100% of cash available for

distribution is paid to shareholders. Figure 2 and Table 2 provide numerical implementations

of (35).

Figure 2. The cash flow sensitivity of dividends ε(.). The parameters are r = 0.06, σ = 0.09,

y∗∗ = −0.1771, µ = 0.18.
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z xz k(z) ε(k(z))

-0.105 0.1677 0.1591 0.1137

-0.102 0.1832 0.1705 0.2204

-0.1 0.1891 0.1732 0.2853

-0.05 0.2157 0.1797 0.9218

0 0.2172 0.1799 0.9915

0.05 0.2172 0.1799 0.9991

0.105 0.217 0.1799 0.9999

Table 2. For a given quality index z, ε(k(z)) is the percentage of cash available for distribution when

target cash level is xz and associated shareholders’ belief is k(z). The parameters are µ = 0.18,

r = 0.06, σ = 0.09.

Numerical implementations suggest that firms with a low quality index z have a low

target cash level and pay virtually no dividends. Intuitively, profitability prospects are bad,

but not bad enough to liquidate the project. It is optimal to target a low level of cash

reserves and to reinvest available cash in the firm in the hope that the project is actually

a good project. When the quality index improves, target cash levels and target dividend

payout ratios increase. Cash target levels can be high, and payout ratios can be dramatically

different. This point is illustrated in Table 2. At target cash level xz = 0.1891, shareholders

receive 28.53% of cash available for distribution. Instead, at target cash level xz = 0.2157,

shareholders receive 92.18% of cash available for distribution. Table 2 also illustrates that

the same increase in the quality index has less of an impact on the dividend policy of

well-established firms than on the dividend policy of firms with a high risk of profitability.

Specifically, when the quality index increases from z = −0.105 to z = −0.05, dividend

payments, as a percentage of earnings, increase from 11.37% to 92.18%. However, an increase

in the quality index from z = 0.05 to z = 0.105 does not impact the dividend policy, which

remains stable at a high percentage of available earnings. Below, we relate this finding to

the so-called smoothing of dividends first documented by Lintner (1956), who stresses that

firms are primary concerned with the stability of dividends. Finally, the increase of ε in the

beliefs together with the path-dependence property of beliefs imply that firms should rarely

reduce the amount of their dividends. In summary, we obtain the following implications:

• There is a positive relationship between profitability prospects and dividend payout ra-

tios.

25



• Well-established firms pay high dividends and have a stable dividend policy.

• Firms with a high risk of profitability pay low dividends and have a less stable dividend

policy than well-established firms do.

• Firms should rarely reduce their dividends.

Thus, integrating learning on profitability with the free cash flow retention problem

allows the explanation of several patterns in the payout policies of corporations. The trade-

off between the cost and benefit of cash retention evolves as time passes, implying changes in

dividend policies. The driver of this evolution is knowledge about the firm’s profitability. As

shareholders become confident about the relevance of the firm’s project, they increase cash

target levels because they have more to lose from liquidity constraints. Cash targets can be

high, while the risk of profitability remains large and dividends correspond to a small fraction

of available cash. After having established a sufficiently high performance record, the firm

becomes well established and the risk of profitability declines. Shareholders do not expect

changes in the firm’s growth rate. Cash target levels remain high, the free cash flow problem

is more severe, and payouts, as a proportion of available earnings, are large and stable. A

measure of the strength of beliefs about a given firm can result from the number of analysts

following the firm and/or the dispersion of the analysts’ opinions; the greater the number of

analysts there are and the less dispersed their opinions are, the stronger the strength of the

beliefs is. Accordingly, we expect that analysts’ should agree and have positive opinions of

firms having a high level of cash reserves and paying a large amount of dividends. Analysts’

opinions should be more dispersed for firms having high levels of cash reserves but paying

low dividends.

These findings are consistent with Leary and Michaely (2011), who document that divi-

dend smoothing is more prevalent for mature firms that hold high level of cash and pay high

dividend levels, whereas firms facing the most uncertainty and that have a more disperse

analyst forecasts smooth less.19 Grullon, Michaely and Swaminathan (2002) document that

a firm that becomes mature experiences a decline in risk and increases dividends. In these

empirical studies, the underlying idea is that the free cash flow problem evolves as time

goes by and causes changes in dividend policies.20 Our learning model formalizes this idea

and shows that corporate cash policy is an integral part of the process that leads a firm to

19There is a large volume of literature on dividend smoothing, but no consensus about why firms smooth

dividends. Leary and Michaely (2011) discuss the theoretical attempts for explaining stability of dividend

policy and explain that their findings challenge existing theories.
20This relates to the life-cycle hypothesis for dividends developed by DeAngelo, DeAngelo and Stulz (2006).
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becoming well-established with low uncertainty about its growth rate and demonstrating a

stable dividend policy. Finally, the fact that dividends do not decrease is consistent with

the managers’ reluctance to reduce dividends and their preference to raise them conserva-

tively in response to earnings, as documented, for instance, by Brav, Graham, Harvey and

Michaely (2005). A classical explanation for this phenomenon is that maintaining dividends

signals to shareholders the firm’s financial health. In our setting, the mechanism that leads

to this result is different and relies on the interaction between knowledge about profitability

and the trade-off cost versus benefit of holding cash. Thus, our model provides a theoretical

underpinning for recently documented regularities, as well as a unified explanation of a series

of stylized facts that are usually explained using different theories. The next section studies

the consequences of our findings on the dynamics of the firm value.

5.3 Firm dynamics

We saw in the previous section that for a given index z ∈ [φ(y∗∗),∞), payment occurs at time

τz ≡ {t ≥ 0 |Xb(.)
t = xz} with xz = b(k(z)), and liquidation at time τ0 = {t ≥ 0 |Xb(.)

t = 0}.
We deduce that the firm value process {V ∗t , t ≥ 0} with V ∗t ≡ V ∗(X

b(.)
t , Yt) can be written

on time interval [0, τ0 ∧ τz] as a function of the cash reserves process {Xb(.)
t , t ≥ 0}. The

following holds:

Proposition 5 For a given index z ∈ [φ(y∗∗),∞), the firm value process {V ∗t , t ≥ 0}
satisfies, for any t ∈ [0, τ0 ∧ τz], the relation

V ∗t = V ∗[z](X
b(.)
t )

where

V ∗[z](x) ≡ V ∗(x, φ−1(x+ z)) = A(z)(h1(φ
−1(x+ z))− e

2
σ2

µ2

y∗ zh2(φ
−1(x+ z))). (36)

For each z ∈ [φ(y∗∗),∞) and t ∈ [0, τ0 ∧ τz], the firm value dynamics are given by

dV ∗[z](X
b(.)
t ) = rV ∗[z](X

b(.)
t ) dt + σ V ∗

′

[z](X
b(.)
t ) dWt. (37)

Moreover,

(i) For any z ∈ [φ(y∗∗),∞), the mapping x −→ V ∗[z](x) is increasing on x ∈ [0, xz].

– For any z ∈ [φ(y∗∗), 0), the mapping x −→ V ∗[z](x) is convex on x ∈ [0, z],

– For large quality index z, the mapping x −→ V ∗[z](x) is concave on x ∈ [0, xz].
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(ii) For any x ∈ [0,∞), the mapping z −→ V ∗[z](x) is increasing on [φ(y∗∗),∞).

Proposition 5 relates firm value21 and strength of shareholders’ beliefs about the quality

of the firm’s project. For a given quality index z, the model is unidimensional, and the firm

value is an increasing function of the level of its cash reserves. Assertion (i) emphasizes

that this function is neither concave nor convex. This is a unique feature of our analysis.

In models with only a liquidity concern (such as Bolton, Chen and Wang (2011) or DMRV

(2011)), firm value is concave in its cash reserves. The concavity property holds in our setting

for sufficiently well-established firms. Intuitively, the risk of profitability is less pronounced

for these firms, so their value reacts less to changes in cash flows when past performance has

been good. However, when the quality index is too low, profitability issues dominate, and

we find that firm value can be convex in its cash reserves. Intuitively, when cash reserves

and beliefs are low, the value of the firm does not react very much to increases in cash

flows. Still, increases in cash flows increase the beliefs about profitability and the firm’s

value becomes more sensitive to subsequent increases in cash flows. Figure 2 plots the firm

value as a function of its cash reserves for the indexes z = −0.1 and z = 0. It shows a change

in the concavity of firm value for the index z = −0.1. Figure 2 also illustrates that the firm

value is increasing in the quality index as stated in Proposition 5. Proposition 5 leads to the

following testable implications.

• Keeping the level of liquid assets constant, the more often the firm has paid dividends,

the higher the firm’s equity value.

• Firms with lower equity values pay less in dividends.

• Dividend increases yield an increase in the firm’s equity value.

The first implication is new and follows from assertion (ii) of Proposition 5 together

with the path dependence property of beliefs. It interprets the level of cash reserves as the

amount of the firm’s liquid assets. The second and third implications are well documented

in the literature. In our setting, they follow from Proposition 5 together with the analysis

of the cash flow sensitivity of dividends. The fact that firms with lower equity values pay

less in dividends is consistent with Leary and Michaely (2011). The positive relationship

between dividend increases and the firm’s equity value is often associated with the signaling

theory. As we already emphasized, the mechanism that leads to these results is different in

our model.

21Equivalently, in our simple model, the firm’s equity value.
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Figure 2. The firm value as a function of the cash reserves for indexes z = −0.1 and z = 0.

The parameters are r = 0.06, σ = 0.09, µ = 0.18.

We deduce from (37) that the features of the volatility of firm value as a function of

the level of cash reserves relies on the concavity properties of V ∗[z]. In the corporate cash

literature with known profitability, the firm value is increasing and concave in the cash

flow, which implies a negative relationship between firm volatility and the level of cash

reserves. In addition, on dividend payment dates, the volatility of the firm coincides with the

volatility of cash flows. Considering profitability issues modifies these results. Together with

assertion (i) of Proposition 5, Equation (37) implies a non-monotone relationship between

firm’s volatility and cash reserves. Furthermore, an easy computation shows that σV ′[z](xz) =

σ + V ∗y (xz, k(z))
µ2 − k(z)2

σ
, which implies that the volatility of the firm is larger than the

volatility σ of cash flows at dividend payment dates. Proposition 5, together with a numerical

implementation of the model (see Figures 4 and 5), yield the predictions.

• The firm’s volatility is an inverse U-shaped function of the cash reserves when the risk

of profitability is large, and it becomes a decreasing function of the cash reserves as the

risk of profitability declines.

• On dividend payment dates, the strength of shareholders’ beliefs about the firm’s prof-

itability explains the difference between the volatility of the firm and the volatility of
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cash flows.

Thus, Figures 4 and 5 illustrate that features of the volatilities of firms depend on the

linkage between profitability and liquidity issues. Intuitively, when a firm with a low quality

index is in a situation of cash crisis, an increase in earnings challenges the belief that the

project is bad. This leads to an increase in the volatility of the firm. If the firm overcomes the

cash crisis, cash reserves increase, liquidity concerns progressively prevail over profitability

concerns, and the volatility of the firm becomes decreasing in the cash reserves. For well-

established firms, liquidity issues always dominate over profitability issues and the volatility

of the firm is always decreasing in the level of cash reserves.

Firms with a low quality index are more likely to default. Our numerical implementa-

tion suggests that the volatility of bankrupt firms can be extraordinarily high (110% for

z = −0.02), which is consistent with the literature on corporate bankruptcy. For instance,

Campbell Hilscher and Szilagyi (2008) document a mean annualized volatility of bankrupt

firms of 106%, a mean profitability (measured as the net income over the market value of

total assets) that is slightly negative, and an average liquid position of 0.044, which is too

weak to postpone bankruptcy.22

The next section discusses the impact of an increase of volatility parameter σ on the

firm’s value and on corporate cash policy.

22The firm’s liquid position is measured as the stock of cash and short-term investments over the market

value of total assets. In our model, it corresponds (at default) to lim
x−→0

x

V[z](x)
, which is equal to 0.028 when

z = −0.02.
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Figure 4. The volatility of firm as a function as a function of the cash reserves for indexes

z = 0 and z = 0.01. The parameters are r = 0.06, σ = 0.09, µ = 0.18.

Figure 5. The volatility of firm as a function as a function of the cash reserves for indexes

z = −0.02 and z = −0.05. The parameters are r = 0.06, σ = 0.09, µ = 0.18.
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5.4 Risk of liquidity

The volatility of the cash flow σ provides a measure of the risk of liquidity. In models in

which the firm’s profitability is known, the firm value is decreasing in the volatility of the

cash flow σ, whereas the dividend boundary increases in σ.23 We show that uncertainty

about the firm’s profitability impacts this latter result.

Proposition 6 The following holds:

(i) The firm value V ∗ is decreasing in the volatility σ.

(ii) The dividend boundary function b is non-monotone in the volatility σ.

Intuitively, a positive shock on σ has two consequences: it increases the risk of a neg-

ative liquidity shock, and it impedes learning. This latter point is consistent with Moyen

and Platinakov (2012), who stress that firms in volatile economic environments have more

difficulty in learning about their long-run prospects. Each of these two effects suggests that

the firm’s value is decreasing in the volatility σ. Two opposite effects explain the impact of

a positive shock on σ on the dividend boundary b. On the one hand, the increase in the risk

of a negative liquidity shock leads shareholders to increase corporate cash savings; on the

other hand, because learning is more difficult and because holding cash is costly, shareholders

may be less prone to incur the cost of accumulating cash following a positive shock on σ.

This latter effect dominates when the strength of shareholders’ beliefs about the relevance

of the project is weak. Formally, an increase in σ increases both the first-best liquidation

threshold y∗ and the constant dividend boundary x∗µ. Because the function b is continuous

in the beliefs, it is clearly possible to find σ1 < σ2 such that the curves bσ1 and bσ2 cross, as

shown in Figure 6.24 Proposition 6 yields the prediction

• Firms with weak profitability prospects and a high volatility of cash flow accumulate

less cash than do firms with a lower volatility of cash flow and otherwise similar char-

acteristics. We should observe the opposite for well-established firms.

Our analysis provides new insights into the impact of the volatility of cash flow on risk man-

agement policies. A risk management policy that decreases the volatility of cash flow is value

enhancing. This result holds regardless of the profitability prospects. However, our model

suggests that such a policy can have opposite effects in terms of cash management. If beliefs

23See, for instance, DMRV (2011).
24For clarity, we index the function b by the volatility parameter σ.
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about the firm’s profitability are low, reducing the volatility of the cash flow improves learn-

ing, which leads the firm to increase its cash target level. If beliefs about profitability are

not too low, reducing the volatility of cash flows leads the firm to reduce its cash target level.

Figure 6. The dividend boundary functions for volatilities of cash flow σ1 = 0.09 and

σ2 = 0.2. The parameters are r = 0.06, µ = 0.18. With these parameters, we have

y∗σ1 = −0.1773, y∗σ2 = −0.1679, x∗µ,σ1 = 0.2176 and x∗µ,σ2 = 0.6980.

We conclude this section by further discussing the impact of the cost of keeping cash

inside the firm on liquidation and dividend policies.

5.5 Cost of carrying cash, liquidation and dividend policies

In our framework, liquidation occurs when the firm’s cash reserves fall to 0. The intuition is

that in absence of exogenous shocks, shareholders anticipate everything, and, optimally, the

firm holds no more cash at the liquidation date. Two remarks are worth emphasizing. First,

a cash crisis can trigger liquidation, whereas the risk of profitability is very low. Second,

because y∗∗ = b−1(0) > y∗, liquidation is never first-best. The threshold y∗∗ corresponds

to the minimum profitability prospects required by shareholders to run the project. In

particular, a negative exogenous shock that leads the belief about the firm’s profitability
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below y∗∗ triggers liquidation even if cash reserves are abundant. Intuitively, the threshold

y∗∗ is strictly larger than the first-best liquidation threshold y∗ because shareholders require

higher profitability to incur the cost of holding cash. Because we aimed at obtaining a

quasi-explicit formula, we considered in our study that cash is not remunerated at all inside

the firm. Thus, we considered the largest possible cost of carrying cash. Still, a numerical

implementation of the model25 highlights a small gap between the thresholds y∗ = −0.1773

and y∗∗ = −0.1771, suggesting that the cost of holding cash does not greatly impact the

first-best liquidation threshold. The picture is dramatically different for dividend policies,

as shown in the next Proposition.

Proposition 7 Assume that there is no cost of keeping cash inside the firm such that the

cash reserves process evolves according to

dXt = rXtdt + dRt − dLt.

(i) (Firm value) The value function V ∗ for problem (8) satisfies

V ∗(x, y) = E(x,y)[e
−r(τ0(0)∧τ∗)Xτ0(0)∧τ∗(0)] = x+ Ex,y

[∫ τ0(0)∧τ∗

0

e−rsYs ds

]

, where X(0) denotes the cash reserves process associated with policy L = 0, τ0(0) =

inf{t ≥ 0 |Xt(0) = 0} and τ ∗ = inf{t ≥ 0 |Yt = y∗}.

(ii) (Optimal policy)

(1) Paying no dividends and liquidating at τ0(0)∧ τ ∗ is an optimal policy for problem

(8).

(2) If the initial cash reserves/ belief couple (x, y) satisfies x ≥ φ(y) − φ(y∗), then

any payout policy L such that Xt(L) ≥ φ(Yt) − φ(y∗) is optimal and yields the

first-best benchmark V ∗(x, y) = V̂ (x, y).

In other words, if shareholders face no cost of holding cash, they accumulate cash up to

a critical curve defined by the relation x = c(y) ≡ φ(y) − φ(y∗), beyond which inefficient

liquidation can be avoided. The cash policy is indeterminate in the sense that any payout

policy that maintains the level of cash beyond the critical curve c allows liquidation to be

triggered at the first-best level y∗.26 In particular, if at date t = 0, the cash reserves/belief

25We use the baseline parameter values r = 0.06, σ = 0.09 and µ = 0.18.
26In different models, Gryglewicz (2011), DeMarzo and Sannikov (2014) and Murto and Tervio (2014) also

derive the existence of such a critical curve when holding cash is not costly.
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pair (x, y) satisfies x ≥ c(y), then there is an uncountable number of payout policies that

deliver the first-best firm value V̂ . This relates to Miller and Modigliani’s dividend irrelevance

Theorem, which holds for an all-equity firm in a frictionless world in which retained cash is

invested in zero-NPV assets.27 We show that the irrelevance of the dividend policy holds for a

cash-constrained firm that learns about its profitability provided that the level of cash inside

the firm remains at all times above a critical amount that allows it to sustain any liquidity

shock. The absence of the cash retention problem allows shareholders to optimally maintain

the level of cash beyond the critical level. On the contrary, when accumulating cash is costly,

cash must be disgorged before the critical level is reached. There is uniqueness of the optimal

payout policy, and the first-best value of the firm is never attained. Last, it is worth noting

that limy−→µ c(y) = limy−→µ φ(y) − φ(y∗) = ∞, which suggests that withdrawing the cost

of carrying cash from the analysis yields important qualitative and quantitative differences

regarding the cash target levels of well-established firms. In particular, the analysis of

the cash flow sensitivity of dividends cannot be continued, and the differences in dividend

policies between established firms and firms subject to significant risk of profitability cannot

be explained.

6 Conclusion

We develop a dynamic model of corporate cash management in which shareholders weigh

the costs and benefits of holding cash and learn about the firm’s profitability by observing

earnings. The model links the evolution of the strength of shareholders’ beliefs to changes

in corporate cash policy. It provides a unified explanation for a series of stylized facts, a

theoretical underpinning for recently documented regularities and novel implications.

In particular, the model predicts that well-established firms have high target levels, pay

high dividends, and have more stable dividend policies than do firms facing more uncertainty

about their profitability and having otherwise similar characteristics. These latter firms pay

low dividends but can still have high cash target levels. The model predicts a positive re-

lationship between dividend increases and the firm’s equity value, a negative relationship

between risk of profitability and dividend payments, and a non-monotone relationship be-

tween firm’s volatility and cash reserves.

The richness of the analysis relies on a technical contribution. We succeed in solving

a bi-dimensional optimization problem in a quasi-explicit form; this solution allows us to

27See, for instance, DeAngelo, DeAngelo and Skinner (2008).
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account for knowledge about profitability in a setting in which the firm faces both external

and internal frictions. Specifically, the trade-off between the benefits and costs of holding

cash evolves as time passes, and the driver of this evolution is learning about the firm’s

profitability. This is a unique feature of our model from which all our findings result.

We conduct modeling choices to maintain the tractability of the model. We model the

agency cost of free cash flow in a pragmatic way and focus on a particular learning tech-

nology. More importantly, we assume infinite issuance costs such that security issuance is

not possible. It is interesting to note that even in a setting in which the cost of external

financing is very high and fixed once for all, the interaction between liquidity and profitabil-

ity issues generates different dividend policies and different behaviors of a firm’s volatility.

Another challenging extension is allowing for the possibility of debt and distinguishing div-

idends from stock repurchases, which have become an important form of payment. These

extensions would necessitate introducing additional elements into the model, such as tax

shields offered for interest expense, tax-advantaged repurchases or adverse selection prob-

lems. Building a tractable model that explains the dynamics of the interdependence between

capital structure and equity payout policies remains an important objective for future work.
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7 Appendix

Proof of Lemma 1. For all t > 0 and all admissible control L, we have

e−r(t∧τ0)Xt∧τ0 = x+

∫ t∧τ0

0

e−rsdXs − r
∫ t∧τ0

0

e−rsXs ds.

Because Xt is nonnegative before τ0 and Y is bounded, we obtain

e−r(t∧τ0)Xt∧τ0 +

∫ t∧τ0

0

e−rsdLs = x+

∫ t∧τ0

0

e−rsdRs − r
∫ t∧τ0

0

e−rsXs ds (38)

≤ x+
µ

r
+ σ

∫ t∧τ0

0

e−rsdBs.

Applying the optional sampling theorem to the FB- martingale Mt =
∫ t
0
e−rsdBs, we have

E[Mt∧τ0 ] = 0. Taking expectations, we get for all (x, y) ∈ [0,∞)× (−µ, µ)

V (x, y;L) ≤ x+
µ

r
<∞.

Thus, the value function V ∗ is finite. Then, we get (9) from Equations (2) and (38).

Proof of Proposition 1. Let us define

Γ(y) = sup
τ∈T R

Ey
[∫ τ

0

e−rsYsds

]
.

It follows from Dayanik and Karatzas (2003) (Corollary 7.1) that the optimal value function

Γ is C1 on [0,∞). Furthermore, from Villeneuve (2007) (Theorem 4.2. and Proposition 4.6)

a threshold strategy τ ∗ = inf{t ≥ 0 |Yt = y∗} is optimal. This allows us to use a standard

verification procedure and write the value function Γ in terms of the free boundary problem:{
1

2σ2 (y + µ)2(µ− y)2Γ
′′
(y)− rΓ(y) + y = 0, y ≥ y∗,

Γ(y∗) = 0, Γ
′
(y∗) = 0.

Standard computations yield (10). We now show that the value function V ∗ of problem (8)

is bounded above by V̂ . Because the cash reserves are positive for admissible controls, it

follows from (9) that,

x+ sup
L

E(x,y)

[∫ τ0

0

e−rsYs ds

]
is an upper bound for V ∗. From Equation (2), any admissible control L acts on E(x,y)

[∫ τ0

0

e−rsYs ds

]
by modifying only the FR-stopping time τ0. Thus,

sup
L

E(x,y)

[∫ τ0

0

e−rsYs ds

]
≤ sup

τ∈T R
Ey
[∫ τ

0

e−rsYsds

]
,
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which implies that the function V ∗ is bounded above by V̂ . To conclude the proof, it

remains to pin down a policy that yields the value function V̂ when the shareholders have

deep pockets. For instance, consider the policy L̂t = x11t=0 + lt. According to this policy,

the firm distributes all its cash reserves at time 0 and pays a constant dividend flow l > 0

afterwards. In order to maintain cash reserves constant and equal to zero after time 0, deep-

pocketed shareholders issue or repurchase new shares to offset earnings (Yt − l)dt + σdWt

and decide strategically when to liquidate. Such a strategy yields them the value

x+ sup
L

E(x,y)

[∫ τ0

0

e−rsYs ds

]
,

the result follows.

Proof of Proposition 2. The computation of the value functions V + and V − are standard

(see, for instance, Jeanblanc and Shiryaev (1995)) and thus the proof is omitted. To show

the inequality V ∗(x, y) ≤ V +(x), we use Equation (9) and the fact that the process Yt is

bounded by µ to get

V ∗(x, y) ≤ x+ sup
L

Ex
[∫ τ0

0

e−rs(µ− rXs) ds

]
.

Proceeding analogously as in the proof of Lemma 1, we can show that

V +(x) = x+ sup
L

Ex
[∫ τ0

0

e−rs(µ− rXs) ds

]
which ends the proof.

Proof of Proposition 3.

Proof of assertion (i). Fix y ∈ (−µ, µ) and 0 ≤ x1 ≤ x2. For any admissible policy L, the

policy

L̂t = (x2 − x1)11t=0 + Lt

is also admissible. The dynamics of the cash reserves starting from x2 associated with policy

L̂, coincides with the dynamics of the cash reserves starting from x1 associated with policy

L. Therefore,

V ∗(x2, y) ≥ V (x2, y, L̂)

= V (x1, y, L) + x2 − x1.
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Taking the supremum over L gives

V ∗(x2, y) ≥ V ∗(x1, y) + x2 − x1,

which yields that x → V ∗(x, y) is increasing. The proof of concavity uses a standard argu-

ment of ε-optimality (see, for instance, Hoojgard and Taksar (2004)). Precisely, let Li be an

admissible policy and Xxi,y(Li) the resulting cash reserves process starting from xi. Without

loss of generality, we can assume that Lit = 0 for all t ≥ τ0(L
i) where τ0(L

i) denotes the

liquidation time associated with policy Li. Thus, for any λ ∈ (0, 1), for any 0 < x1 < x2

and y ∈ (−µ, µ), the cash reserves process starting from x3 = λx1 + (1 − λ)x2 associated

with policy L3 ≡ λL1 + (1− λ)L2 has the liquidation time τ0(L
3) = τ0(L

1) ∨ τ0(L2). Then,

it follows from (4) and (7) that

V (x3, y;L3) = λV (x1, y;L1) + (1− λ)V (x2, y;L2).

For any ε > 0, we can choose Li, such that V (xi, y;Li) ≥ V ∗(xi, y)− ε. Since the policy L3

is suboptimal, we have

V ∗(x3, y) ≥ λV (x1, y;L1) + (1− λ)V (x2, y;L2),

leading to

V ∗(x3, y) ≥ λV ∗(x1, y) + (1− λ)V ∗(x2, y)− ε.

Concavity follows from the arbitrariness of ε.

Proof of assertion (ii). Stochastic Differential Equation (1) implies a non-crossing property of

the beliefs’ paths. That is, if−µ < y1 ≤ y2 < µ then, Y y1
t ≤ Y y2

t a.s for every t. Therefore, for

any admissible policy L, policy L̂t ≡ Lt+
∫ t
0
(Y y2

s −Y y1
s ) ds is also admissible. Moreover, cash

reserves process Xx,y2(L̂) coincides with cash reserves process Xx,y1(L). However policy L̂

pays more, thus V (x, y2, L̂) ≥ V (x, y1, L). Proceeding analogously as in the proof of assertion

(i), we then deduce that V (x, y2) ≥ V (x, y1), and thus that the mapping y −→ V ∗(x, y) is

increasing over (−µ, µ).

The proof of convexity of the value function with respect to the belief process is more

involved. Let us define a probability Q on (Ω,F) by its projection on Ft for every t,

dQ
dP
|Ft = exp

(
−Y
σ
Bt −

1

2

(
Y

σ

)2
)
.
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Girsanov’s Theorem implies that the process Kt = Bt+
Y
σ
t is a Ft Brownian motion indepen-

dent of Y under Q and that the natural filtration of Kt coincides with the natural filtration

of Rt.
28 Moreover, the process

Ht(Y ) = exp

{
Y

σ
Kt −

1

2
(
Y

σ
)2t

}
.

is a Ft martingale under Q. For any admissible policy L, we have by monotone convergence

E
[∫ τ0

0

e−rs dLs

]
= lim

n→+∞
E
[∫ τ0∧n

0

e−rs dLs

]
= lim

n→+∞
EQ
[
Hτ0∧n(Y )

∫ τ0∧n

0

e−rs dLs

]
=

y + µ

2µ
lim

n→+∞
EQ
[
Hτ0∧n(µ)

∫ τ0∧n

0

e−rs dLs

]
+

µ− y
2µ

lim
n→+∞

EQ
[
Hτ0∧n(−µ)

∫ τ0∧n

0

e−rs dLs

]
=

y + µ

2µ
lim

n→+∞
E
[∫ τ0∧n

0

e−rs dLs|Y = µ

]
+

µ− y
2µ

lim
n→+∞

E
[∫ τ0∧n

0

e−rs dLs|Y = −µ
]

=
y + µ

2µ
E
[∫ τ0

0

e−rs dLs|Y = µ

]
+

µ− y
2µ

E
[∫ τ0

0

e−rs dLs|Y = −µ
]
.

Therefore, the value function associated with policy L is a linear function of y. Because V ∗

is a supremum over L of linear functions of y, it is convex in y.

Proof of assertion (iii). From the proof of assertion ii), we get for all admissible policy L,

E
[∫ τ0

0

e−rs dLs

]
≥ y + µ

2µ
E
[∫ τ0

0

e−rs dLs|Y = µ

]
.

Taking the supremum with respect to L, we obtain

V ∗(x, y) ≥ y + µ

2µ
V +(x).

Therefore, we have

lim inf
y→µ

V ∗(x, y) ≥ V +(x).

28See, for instance, DMV (2005).
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However, Proposition 2 implies

lim sup
y→µ

V ∗(x, y) ≤ V +(x),

thus the result.

Proof of Proposition 4.

We consider the change of variable (24) and we define

U(z, y) ≡ V (φ(y)− z, y). (39)

Then we re-state problem (19)-(23) in the (z, y)-space. This leads to:

Vx(x, y) = −Uz(z, y),

AV (x, y)− rV (x, y) =
1

2σ2
(µ2 − y2)2Uyy(z, y)− rU(z, y).

The condition V (0, y) = 0 becomes

U(φ(y), y) = U(z, ψ(z)) = 0,

where

ψ(z) ≡ φ−1(z) = µ
e

2µ

σ2
z − 1

e
2µ

σ2
z + 1

. (40)

Thus, we reformulate problem (19)-(23) as follows: find a smooth function U and a positive

function b defined on [−µ, µ] that solve the variational system:

b(µ) = x∗µ, (41)

U(z, ψ(z)) = 0 ∀z ∈ R, (42)
1

2σ2
(µ2 − y2)2Uyy(z, y)− rU(z, y) = 0

on the domain {(z, y), φ(y)− b(y) < z < φ(y), −µ < y < µ}, (43)

Uz(φ(y)− b(y), y) = −1, (44)

Uzy(φ(y)− b(y), y) = 0. (45)

We observe that Equation (43) implies that, for any y with b(y) > 0,

U(z, y) = A(z)h1(y) +B(z)h2(y), (46)

where γ and h1 are defined in (11)-(12) and h2(y) = (y + µ)1−γ(µ− y)γ for any y ∈ (−µ, µ).

There are three unknown functions A, B and b. Using (40), we re-write Equation (42) under

the form

A(z)e
2µ

σ2
γz + B(z)e

2µ

σ2
(1−γ)z = 0. (47)
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Taking the derivative of (47) with respect to z yields

A(z)
2µ

σ2
γe

2µ

σ2
γz + B(z)

2µ

σ2
(1− γ)e

2µ

σ2
(1−γ)z = −A′(z)e

2µ

σ2
γz − B′(z)e

2µ

σ2
(1−γ)z. (48)

Equations (47) and (48) lead to

A(z) =
σ2

2µ(1− 2γ)
{A′(z) +B′(z)e

2µ

σ2
(1−2γ)z}, (49)

B(z) = − σ2

2µ(1− 2γ)
{A′(z)e−

2µ

σ2
(1−2γ)z +B′(z)}. (50)

Equations (44) and (45) lead to

A′(φ(y)− b(y)) = − 1

2µ(1− 2γ)
h′2(y), (51)

B′(φ(y)− b(y)) =
1

2µ(1− 2γ)
h′1(y). (52)

Plugging (51)-(52) into (49)-(50) yields

A(φ(y)− b(y)) =
σ2

4µ2(1− 2γ)2
{h′1(y)e

2µ

σ2
(1−2γ)(φ(y)−b(y)) − h′2(y)}, (53)

B(φ(y)− b(y)) = − σ2

4µ2(1− 2γ)2
{h′1(y)− h′2(y)e−

2µ

σ2
(1−2γ)(φ(y)−b(y))}. (54)

Taking the derivative of (53) and using the relation y∗ = 1
2γ−1µ together with (40), we

obtain29 from (51),

b′(y) =
σ2

µ2 − y2

yy∗ +

(
µ− rσ2

(
y∗

µ

)2
1
µ

)
ψ
(
µ
y∗
b(y)

)
yy∗ + µψ

(
µ
y∗
b(y)

) ,

for any y such that b(y) > 0. The proof of Proposition 4 relies on the next lemma.

Lemma 2 There exists a unique function g satisfying

g′(y) = f(g(y), y) (55)

with the boundary condition

g(µ) = x∗µ, (56)

where,

f(x, y) =
σ2

µ2 − y2

yy∗ +

(
µ− rσ2

(
y∗

µ

)2
1
µ

)
φ−1

(
− µ
y∗
x
)

yy∗ + µφ−1
(
− µ
y∗
x
) (57)

29Of course, considering Equations (54) and (52) yields the same result.
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on the domain {(x, y) ∈ [0,∞) × (−µ, µ) |x > y∗

µ
φ(y y

∗

µ
)}, and where x∗µ is defined in (14).

Moreover, the function g is increasing, y∗∗ ≡ g−1(0) is well defined and strictly larger than

y∗.

Proof of Lemma 2. First, the denominator of (57) is strictly positive if and only if x > l1(y)

where

l1(y) =
y∗

µ
φ(y

y∗

µ
).

Thus, f satisfies a local Lipschitz condition with respect to x in D, where D = {(x, y) ∈
R × (−µ, µ) |x > l1(y)}. Thus, for any (x, y), there exists a unique solution gx,y to (55)

defined on a maximal interval I ⊂ (−µ, µ) passing through (x, y). Remark that f does not

satisfy the Lipschitz condition on an open domain containing −µ or µ.

Second, the numerator of (57) is strictly positive if and only if30 x > l2(y) where,

l2(y) =
y∗

µ
φ

(
yy∗

µ− rσ2(y
∗

µ
)2 1
µ

)
.

The function l2 is continuously increasing on [−µ, µ] and satisfies the inequality l2(y) > l1(y)

for any y ∈ (0, µ]. Furthermore, l1(0) = l2(0) = 0 and l1(µ) < l2(µ) = x∗µ. To see the last

equality, note that the threshold x∗µ can be written under the form x∗µ = 2 y∗

µ
φ(y∗). Then, a

computation shows that 2φ(y∗) = φ( y∗

1−rσ2( y
∗
µ
)2 1
µ2

) which implies l2(µ) = x∗µ.

We deduce from the above observations, that any solution g to (55) entering in the do-

main {(x, y) ∈ D | l1(y) < x < l2(y)} remains in this domain. Since l2 is bounded above

by x∗µ on [−µ, µ], it follows also that any solution g to (55) defined on a maximal interval

I and passing through (x0, y0) ∈ {(x, y) ∈ D |x ≥ x∗µ} is strictly increasing and satisfies

g(y) > l2(y) for all y ∈ I.

Now, let (yn)n≥0 an increasing sequence converging to µ. For each n ∈ N there exists

a unique solution gx∗µ,yn to (55) satisfying gn(x∗µ) = yn. Let us consider the sequence of

functions (gn)n≥0 defined by the relations{
gn(y) = gx∗µ,yn(y) ∀y ∈ (0, yn],

gn(y) = x∗µ ∀y ∈ [yn, µ].

Our previous remarks on the solutions to (55) together with a standard non crossing prop-

erty yield that, (gn)n≥0 is a decreasing sequence of increasing functions defined on (0, µ] and

30Note that, using (11), we have µ− rσ2(y
∗

µ )2 1
µ = µ(1− rσ2 1

µ2+2rσ2 ) > 0.
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bounded above by x∗µ. Thus, it admits a pointwise limit g defined on (0, µ]. The function g

is bounded above by x∗µ and satisfies g(µ) = x∗µ. We show below that g satisfies (55).

By construction, for each n ∈ N, for any y ∈ (0, µ) one has

gn(y) = x∗µ −
∫ µ

y

f(gn(s), s) 11s≤yn ds.

A direct computation shows that, for any fixed y > 0, the mapping x −→ f(x, y) is contin-

uously increasing over {x |x ≥ l2(y)}. We deduce that, for any y ∈ (0, µ),∫ µ

y

lim
n−→∞

f(gn(s), s) 11s≤yn ds =

∫ µ

y

f(g(s), s) ds ≤
∫ µ

y

f(x∗µ, s) ds <∞,

where the last inequality comes from the fact that the mapping s −→ f(x∗µ, s) is continu-

ous over (0, µ) with lims−→µ f(x∗µ, s) = 1
2

1−rσ2( y
∗
µ
)2 1
µ2

r( y
∗
µ
)2

< ∞. It results from the dominated

convergence Theorem that,

g(y) = x∗µ −
∫ µ

y

f(g(s), s) ds. (58)

Thus, g is defined and increasing on (0, µ], satisfies the ode (55) and the condition g(µ) = x∗µ.

A standard extension argument ensures that g is defined on a maximal interval I ⊂ (−µ, µ)

as well.

We show that y∗∗ ≡ g−1(0) is well defined and satisfies y∗∗ > y∗. Take the solution g0,y∗

to (55) defined on a maximal interval I ⊂ (−µ, µ) passing through (0, y∗). A computation

shows that the function v1(y) = y∗

µ
(φ(y∗) − φ(y)) defined on (−µ, µ) satisfies v1(y

∗) =

g0,y∗(y
∗) = 0 together with the inequality v′1(y) < f(v1(y), y) for any y ∈ (−µ, 0]. We deduce

that g0,y∗(y) > v1(y) for all y ∈ (y∗, 0]. From the Cauchy-Lipschitz Theorem it follows that

g0,y∗ > gv1(0),0 on a maximal interval, where gv1(0),0 is the solution to (55) passing through

(v1(0), 0).

Now, let us consider the function v2(y) = y∗

µ
(φ(y y

∗

µ
) + φ(y∗)) ≥ l2(y) on [0, µ]. Compu-

tations shows that v2(0) = v1(0), v2(µ) = x∗µ and v′2(y) ≤ f(v2(y), y) for any y ∈ [0, µ]. We

deduce that g0,y∗(y) ≥ v2(y) for any y ∈ [0, µ]. It follows that g0,y∗ > gv1(0),0 ≥ g which

implies that y∗∗ ≡ g−1(0) > y∗.

Finally, we show that g is the unique solution to g′(y) = f(g(y), y) satisfying the boundary

condition g(µ) = x∗µ. Suppose the contrary, let g and g̃ be two solutions to (55) with
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g(µ) = g̃(µ) = x∗µ and g̃(y) > g̃(y) over (0, µ). The functions g and g̃ satisfy (58). It follows

that,

g̃(y)− g(y) =

∫ µ

y

f(g(s), s)− f(g̃(s), s) ds. (59)

The right hand side of (59) is strictly positive whereas its left hand side is negative because

the mapping x −→ f(x, y) is increasing for any fixed y > 0, thus, a contradiction.

We now conclude the proof of Proposition 4.

Let us consider the function g solution to (55)-(57) and let us define b ≡ max(0, g). The

function b is continuously increasing and coincides with g on [y∗∗, µ]. Using (55), (56), it is

easy to see that φ
′
(y) ≥ b

′
(y) for any y such that b(y) > 0 with equality only at y∗∗. Because

φ is strictly increasing, φ− b is strictly increasing and continuous on (−µ, µ) thus invertible.

As a consequence, the function A defined by Equation (29) is well defined everywhere.

The change of variables (24) together with (39), (43), (46), (53) and (54) implies that,

for any (x, y) ∈ {(x, y), 0 < x < b(y), −µ < y < µ}, we have

V (x, y) = U(φ(y)− x, y) = A(φ(y)− x)h1(y) +B(φ(y)− x)h2(y)

= A (φ(y)− x)

(
h1(y)− e

2
σ2

µ2

y∗ (φ(y)−x)h2(y)

)
, (60)

where

A(z) =
σ2

4

(
y∗

µ

)2(
1

µ

)2(
h′1(k(z))e−

2
σ2

µ2

y∗ z − h′2(k(z))

)
. (61)

It is easy to check that V (x, y) is positive on the domain {(x, y), 0 < x < b(y), −µ < y < µ}.
Finally, Equation (22) implies that

V (x, y) = x− b(y) + V (b(y), y), ∀x ≥ b(y).

From the above expression it is clear that V is twice continuously differentiable on any open

set in (0,∞)×(−µ, µ) away from the set {(x, y), x = b(y)}. The uniqueness of V follows from

the uniqueness of g established in Lemma 2. We show that V is of class C2 jointly in both

variables across the boundary b. Using (60), we observe that the function ν(y) = V (b(y), y)

is differentiable. Because Vx is continuous across the boundary b by construction, we deduce

from the differentiability of the boundary b that Vy is continuous across b. Now, let us define

η(y) = Vy(b(y), y). By continuity of Vy, we use (60) to compute η and we observe that η is

differentiable. Then, because Vxy is continuous across the boundary b by construction, we

deduce from the differentiability of the boundary b that Vyy is continuous across b as well.
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Finally, using again (60), it is easy to show that the mapping x −→ V (x, y) is increasing

and concave on [0,∞) for any fixed y ∈ (−µ, µ).

Proof of Theorem 1. We will prove that the solution V to (19)-(23) is an upper bound

for V ∗. This relies on the following verification lemma.

Lemma 3 Assume there exists a C2 function V defined on [0,∞) × (−µ, µ) that satisfies

V (0, .) = 0 , x→ V (x, y) concave on [0,∞) for any fixed y ∈ (−µ, µ) and

max(AV − rV, 1− Vx) ≤ 0,

then V ≥ V ∗.

Proof of Lemma 3. Let us consider an admissible policy L and let us write Lt = Lct +Ldt ,

where Lct is the continuous part of Lt and Ldt is the pure discontinuous part of Lt . We recall

the dynamics of cash reserves process and belief process:

dXt = Yt dt+ σdWt − dLt,

dYt =
µ2 − Y 2

t

σ
dWt.

Using the generalized Itô’s formula for a function V that satisfies the assumptions of Lemma

3, we can write:

e−r(t∧τ0)V (Xt∧τ0 , Yt∧τ0) = V (x, y) +

∫ t∧τ0

0

e−rs (AV (Xs−, Ys)− rV (Xs−, Ys)) ds

+

∫ t∧τ0

0

e−rsVx(Xs−, Ys)σdWs

+

∫ t∧τ0

0

e−rsVy(Xs−, Ys)
µ2 − Y 2

t

σ
dWs

−
∫ (t∧τ0)

0

e−rsVx(Xs, Ys) dL
c
s

+
∑
s≤t∧τ0

e−rs(V (Xs, Ys)− V (Xs−, Ys)),

By assumption, the second term of the right-hand side is negative and, because V has

bounded first derivatives, the two stochastic integrals are centered square integrable martin-

gales. Taking expectations and using that Lt − Lt− = Xt− −Xt, we get

E
[
e−r(t∧τ0)V (Xt∧τ0 , Yt∧τ0)

]
≤ V (x, y)− E

[∫ t∧τ0

0

e−rsVx(Xs, Ys) dLs

]
+ E

[ ∑
s≤t∧τ0

e−rs(V (Xs, Ys)− V (Xs−, Ys)− Vx(Xs−, Ys)(Xs −Xs−))

]
.
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By concavity, V (Xs, Ys)−V (Xs−, Ys)−Vx(Xs−, Ys)(Xs−Xs−) < 0. Therefore, using Vx ≥ 1,

we get

V (x, y) ≥ E
[
e−r(t∧τ0)V (X(t∧τ0), Y(t∧τ0))

]
+ E

[∫ t∧τ0

0

e−rs dLs

]
.

In order to get rid of the first term of the right-hand side, we use again the concavity of V

with respect to x and the condition V (0, .) = 0 to obtain

E
[
e−r(t∧τ0)V (X(t∧τ0), Y(t∧τ0))

]
≤ CE[e−rtXt11τ0>t].

Because L is admissible, we let t tend to infinity to obtain

V (x, y) ≥ E
[∫ τ0

0

e−rs dLs

]
,

which ends the proof of Lemma 3.

Let us show that the solution V to (19)-(23) satisfies the assumptions of Lemma 3.

Lemma 4 The solution V to (19)-(23) satisfies Vx(x, y) ≥ 1 for any (x, y) ∈ [0,∞) ×
(−µ, µ). The mapping x −→ V (x, y) is concave on [0,∞) for any fixed y ∈ (−µ, µ).

Proof of Lemma 4. First, we show by differentiating equation (28) that Vxx(0, y) < 0 for

any y ∈ (−µ, µ). Using equality h1(y) = e
2µ2

σ2y∗
φ(y)

h2(y), we obtain that Vxx(0, y) has the

same sign as 2A
′
(φ(y))+A(φ(y)) 2µ2

σ2y∗
which has the same sign as A

′
(φ(y))−B′(φ(y)e

−2µ2

σ2y∗
φ(y)

by (49). From equations (61) and (49), we observe that A
′
(z) − B′(z)e

−2µ2

σ2y∗
z

has the same

sign as

2k′(z)

(
h
′′

1(k(z))e−
2
σ2

µ2

y∗ z − h′′2(k(z))

)
− 2

σ2

µ2

y∗

(
h′1(k(z)e−

2
σ2

µ2

y∗ z − h′2(k(z))

)
. (62)

Thus, Vxx(0, y) is negative if h
′′
1(k(z))e−

2
σ2

µ2

y∗ z−h′′2(k(z)) < 0. Indeed, y∗ < 0, h1 is decreasing

and h2 and k are increasing. The functions hi, i = 1, 2, satisfy (µ2−y2)2
2σ2 h

′′
i − rhi = 0 thus, the

sign of h
′′
1(k(z))e−

2
σ2

µ2

y∗ z − h′′2(k(z)) is the sign of h1(k(z))e−
2
σ2

µ2

y∗ z − h2(k(z)). Evaluated at

z = φ(y), we obtain

h1(k(φ(y)))e−
2
σ2

µ2

y∗ φ(y) − h2(k(φ(y))) < h1(y)e−
2
σ2

µ2

y∗ φ(y) − h2(y) = 0,

where the last inequality comes from the inequality k(φ(y)) > y.

Second, we show that Vxx(x, y) < 0 for any x ∈ [0,∞) and y ∈ (−µ, µ). Differentiating

twice (21) with respect to x, we find that

AVxx − rVxx = 0 on the set {x < b(y)}.

47



Therefore the process e−rtVxx(Xt, Yt) is a martingale up to the exit time of the set {x < b(y)}.
Applying the Itô’s formula and using the properties Vxx(0, y) < 0 and Vxx(b(y), y) = 0, we

obtain by denoting τ0 = inf{t ≥ 0, Xt = 0} and τ1 = inf{t ≥ 0, Xt = b(Yt)},

Vxx(x, y) = E
[
e−rτ0∧τ1Vxx(Xτ0∧τ1 , Yτ0∧τ1)

]
< 0

which proves that the mapping x −→ V (x, y) is concave on the set {x < b(y)}. Because V

is linear in x outside {x < b(y)}, we conclude that x −→ V (x, y) is concave and satisfies

Vx ≥ 1 on [0,∞) because Vx(x, y) = 1 for all x ≥ b(y). Thus, Lemma 4 is proven.

Let us show that AV − rV < 0 on the set {x > b(y)}. We have V (x, y) = x− b(y) + ν(y)

on the set {x > b(y)}. Because Vxy(b(y), y) = 0 on the set {x > b(y)}, we deduce the

equalities Vy(x, y) = Vy(b(y), y) and Vyy(x, y) = Vyy(b(y), y). Therefore, using the fact that

V is twice differentiable across b, we obtain that, on the set {x > b(y)},

(AV − rV )(x, y) =
1

2σ2
(µ2 − y2)2Vyy(b(y), y) + y − rV (x, y))

= −r(x− b(y))

< 0.

Thus, the solution V to (19)-(23) satisfies the assumptions of Lemma 3 and is therefore an

upper bound for V ∗. To prove Theorem 1, it remains to show that the upper-bound V is

attainable. It is easy to check that, the process L∗ = {L∗t ; t ≥ 0} with

L∗t =
(
(x− b(y))+11y≥y∗∗ + x11y≤y∗∗

)
11t=0 + L

b(.)
t 11t>0,

where Lb(.) is defined by (30)-(32), satisfies the relation V (x, y) = V (x, y;L∗) for all (x, y) ∈
[0,∞)× (−µ, µ). The proof of Theorem 1 is complete.

Proof of Proposition 5. A direct application of the Itô’s formula yields (37). We deduce

from assertion (ii) of Proposition 3 that the mapping z −→ V ∗(x, ψ(x + z)) is increasing

in z, where ψ is defined in (40). This proves assertion (ii) of Proposition 5. Let us prove

assertion (i). Taking the derivative with respect to x in the explicit formula (36), we get

(V ∗[z])
′
(x) = A(z)ψ′(x+ z){h′1(ψ(x+ z))− e

2
σ2

µ2

y∗ zh′2(ψ(x+ z))} (63)

where ψ is defined in (40). Observing that A(z) is non positive, h1 is decreasing and h2 is

increasing, we conclude that V ∗[z] is strictly increasing in x.
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We deduce from (63) that

(V ∗[z])
′′
(x) = ψ

′′
(x+ z)A(z){h′1(ψ(x+ z))− e

2
σ2

µ2

y∗ zh′2(ψ(x+ z)}

+ (ψ
′
(x+ z))2A(z){h′′1(ψ(x+ z))− e

2
σ2

µ2

y∗ zh
′′

2(ψ(x+ z)}

= ψ
′′
(x+ z)A(z){h′1(ψ(x+ z))− e

2
σ2

µ2

y∗ zh′2(ψ(x+ z)}

+
2σ2r(ψ′(x+ z))2

(µ2 − ψ(x+ z)2)2
A(z){h1(ψ(x+ z))− e

2
σ2

µ2

y∗ zh2(ψ(x+ z)} (64)

Because A(z) ≤ 0 and h1(ψ(x+z))−e
2
σ2

µ2

y∗ zh2(ψ(x+z) ≤ 0, it follows from the last equality

that V ∗[z] is convex on the domain where ψ
′′
(x+ z) is positive. But, ψ is a convex function on

(−∞, 0), thus V ∗[z] is convex when both z < 0 and x ≤ −z. Thus, for any fixed z ∈ (φ(y∗∗), 0],

the value function V ∗[z] is convex for low cash reserves (at least on the domain {0 ≤ x ≤ −z})
and, in turn, the volatility of stock prices increases in the level of cash reserves.

Using the relations h′1(y) = h1(y)(µ
2

y∗
− y) 1

µ2−y2 , h′2(y) = h2(y)(−µ2

y∗
− y) 1

µ2−y2 and

µ2 − ψ2(z) = σ2ψ′(z), we deduce from (64) that (V ∗[z])
′′
(x) < 0 if and only if

h1(ψ(x+ z))

h2(ψ(x+ z))
e−

2
σ2

µ2

y∗ z(− 2

σ4
ψ(x+ z)(

µ2

y∗
− ψ(x+ z)) +

2r

σ2
)

> − 2

σ4
ψ(x+ z)(−µ

2

y∗
− ψ(x+ z)) +

2r

σ2
,

or, equivalently, using the definitions of the functions h1, h2 and ψ

e
2
σ2

µ2

y∗ x >
− 1
σ2

ψ(x+z)
y∗

(−µ2 − y∗ψ(x+ z)) + r

− 1
σ2

ψ(x+z)
y∗

(µ2 − y∗ψ(x+ z)) + r
.

Taking the limit when z tends to ∞, we get the condition

e
2
σ2

µ2

y∗ x >
− 1
σ2

µ
y∗

(−µ2 − y∗µ) + r

− 1
σ2

µ
y∗

(µ2 − y∗µ) + r
. (65)

Using the relation y∗ = −µ
1−2γ , we check that the right-hand-side of (65) is positive and lower

than 1. To conclude the proof of assertion (i), it is sufficient to show that (65) is satisfied

for x = x∗µ, which is easy to establish using the relation x∗µ = 2y
∗

µ
φ(y∗).

Proof of Proposition 6. The proof of assertion (ii) is in the main text. The proof of

assertion (i) follows standard arguments developed, for instance, in DMRV (2011). We

sketch the proof for sake of completeness. Along the optimal policy, the dynamics of cash

reserves is continuous. Therefore, applying Itô formula and taking expectations, we obtain
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for x ≤ b(y),

∂V ∗

∂σ
(x, y) = E

[
e−rτ0

∂V ∗

∂σ
(Xτ0 , Yτ0)

]
+ E

[∫ τ0

0

e−rs
∂2V ∗

∂x∂σ
(Xs, Ys) dLs

]
− E

[∫ τ0

0

e−rsA(
∂V ∗

∂σ
)(Xs, Ys) ds

]
.

Let us consider each term of the right-hand side of this equality. Because V ∗(0, y) = 0 for

all σ > 0, we have ∂V ∗

∂σ
(0, y) = 0. Therefore, the first term disappears. Because the optimal

dividend policy is singular and is activated only when x = b(y), the second term is

E
[∫ τ0

0

e−rs
∂2V ∗

∂x∂σ
(b(Ys), Ys) dLs

]
.

Now, using the smooth-fit principle and the fact that ∂2V ∗

∂x2
(b(y), y) = 0 for all y, we obtain

that
∂2V ∗

∂x∂σ
(b(y), y) = 0.

Finally, differentiating Equation (17) yields

A(
∂V ∗

∂σ
)(x, y) = −σ∂

2V ∗

∂x2
+

(µ2 − y2)2

σ3

∂2V ∗

∂y2
.

We then deduce from Proposition 3 that A(∂V
∗

∂σ
)(x, y) ≥ 0, and, in turn, that ∂V ∗

∂σ
(x, y) ≤ 0.

Proof of Proposition 7. We assume here that the cash reserves are remunerated within

the firm at the risk-free rate r. Under this assumption, the cash reserves associated with

admissible policy L evolve according to

dXt = rXt dt+ dRt − dLt.

For any policy L, we define the policy L∗ as follows:

L∗t = Lt for t < τ ∗ = inf{t ≥ 0, Yt = y∗} and (∆L∗)τ∗ = Xτ∗−
.

Applying Dynamic programming principle and using V ∗(0, y) = 0 for any y, we have

V ∗(x, y) = sup
L∈L

Ex,y

[∫ (τ0(L)∧τ∗)−

0

e−rs dLs + e−rτ
∗
V ∗(Xτ∗−

, y∗)11τ0(L)>τ∗

]

= sup
L∈L

Ex,y

[∫ (τ0(L)∧τ∗)−

0

e−rs dLs + e−rτ
∗
Xτ∗−

11τ0(L)>τ∗

]

= sup
L∈L

Ex,y

[∫ τ0(L)∧τ∗

0

e−rs dL∗s

]
.
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Now, proceeding analogously as in the proof of Lemma 1, we get

V ∗(x, y) = x+ sup
L∈L

Ex,y

[∫ τ0(L)∧τ∗

0

e−rsYs ds

]
.

We deduce from Proposition 1 and from the almost sure inequality τ0(L) ∧ τ ∗ ≤ τ0(0) ∧ τ ∗

valid for all policy L, that

Ex,y

[∫ τ0(L)∧τ∗

0

e−rsYs ds

]
≤ Ex,y

[∫ τ0(0)∧τ∗

0

e−rsYs ds

]
.

Therefore,

V ∗(x, y) = x+ Ex,y

[∫ τ0(0)∧τ∗

0

e−rsYs ds

]
.

Finally, assume that x > φ(y)− φ(y∗), then we have

Xt(L) = x+ φ(Yt)− φ(y) +

∫ t

0

rXs(L)ds−
∫ t

0

dLs

≥ φ(Yt)− φ(y∗) +

∫ t

0

rXs(L)ds−
∫ t

0

dLs.

Thus, any policy L with Lt ≤ (x− φ(y) + φ(y∗))11t=0 +
∫ t
0
rXsds satisfies τ ∗ < τ0(L) a.s. It

follows that V ∗(x, y) = V̂ (x, y). The proof of Proposition 7 is complete.
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