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Abstract

We show that every (random) assignment/allocation without transfers can be con-

sidered as a market outcome with personalized prices and an equal income. One can

thus evaluate an assignment by investigating the prices and the induced opportunity sets.

When prices are proportional across agents, the assignment is e¢ cient; when prices are

common, the assignment is both e¢ cient and envy-free. Moreover, this market perspective

reveals a weakness of envy-freeness.
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1 Introduction

In many settings, resources are allocated to agents without the use of monetary transfers,

e.g., the allocation of o¢ ce spaces or seats in college courses. Many of such problems are a

assignment problem where multiple types of objects with n copies in total are to be allocated

among n agents, and each agent is to receive exactly one object (Bogomolnaia and Moulin
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(2001)). Given an assignment/allocation, we are interested in evaluating it to see if it satis�es

desirable properties such as e¢ ciency and fairness. In the following, we focus on feasible

assignments that can be either deterministic (i.e., individuals obtain either 0 or 1 unit of any

object) or random (i.e., a lottery over deterministic assignments, or individuals are assigned

with probability shares of objects).

In contrast to the Pareto e¢ ciency being the leading concept of e¢ ciency, there exist a

variety of fairness criteria in the literature, such as symmetry (or equal treatment of equals)

used in e.g., Zhou (1990) and Bogomolnaia and Moulin (2001) and envy-freeness in e.g., Varian

(1974). Thomson (2011) discusses several other criteria.

Our analysis focuses on the case where objects do not rank agents while agents are endowed

with cardinal preferences over objects. In such a setting of assignment without transfers, fairness

is a natural requirement to impose. Given that every agent is viewed homogenous by objects, a

"fair" assignment should ensure that every agent obtains her entitlement, which is no less than

anyone else�s. In other words, everyone should have equal claim to the objects.

One of the most commonly used fairness criteria is envy-freeness, which requires that there

is no one preferring any other agent�s assignment. Certainly, this implies symmetry. We begin

our analysis by providing an example to show that envy-freeness is rather fragile and does not

guarantee equal claim (Section 2). Speci�cally, given a non-envy-free assignment, a subset of

agents may form a coalition, exchange (probability shares of) objects among themselves, and

transform the assignment into an envy-free one without harming any of them. In other words,

envy-freeness does not prevent some agents from obtaining preferential treatment.

Based this observation, we propose an alternative for evaluating assignments �a market

perspective (Section 3). Supposing that every agent is endowed with an equal income, we

are interested in the personalized prices that can rationalize her assignment as her optimal

consumption bundle. We show that it is always feasible to �nd such personalized prices for any

given assignment.

The bene�ts of such a market perspective is obvious: When objects are assigned to agent

by price, it is straightforward to de�ne fairness. Equal claim to the objects implies that the

prices must be common across agents; when prices are common and incomes are equal, it is

guaranteed that all agents face the same budget set or opportunity set (Varian (1976) and

Thomson (2011)). We further illustrate the relationship among the properties in Section 4.

Such pseudo-market approaches have been considered in assignment problems since Hylland

and Zeckhauser (1979) where a pseudo-market mechanism is introduced to assign objects to
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agents, and it has then been generalized in several ways, e.g., Budish (2011), Budish, Che, Ko-

jima, and Milgrom (2013), and He, Miralles, and Yan (2012). This strand of existing literature

focuses on what properties an assignment prescribed by such a pseudo-market mechanism can

achieve, while being silent on evaluating other assignments in such a framework. In a simi-

lar sense, our paper also extends Miralles and Pycia (2014) who characterize the relationship

between the pseudo-market mechanism and e¢ cient assignments.

2 A Motivating Example

Let us consider an example with 3 objects, (A;B;C), and 4 agents, (1; 2; 3; 4). There are one

copy of each of objects A and B and 2 copies of object C. Each agent has a unit demand, i.e.,

she can be assigned exactly one unit of probability shares in all objects. Given the cardinal

preferences as the following, we are interested in the properties of an assignment, �.

Preferences

Object

Agent A B C

1 1 1/2 0

2 1 1/2 0

3 1 1/2 0

4 1 0 1/2

;

Assignment: �

Object

Agent A B C

1 1/3 1/3 1/3

2 1/3 1/3 1/3

3 1/3 1/3 1/3

4 0 0 1

.

� is both envy-free and Pareto e¢ cient (a formal proof is available upon request), and thus

this assignment desirable based on traditional criteria.

Alternatively, let us consider a market perspective: Hypothetically, agents endowed with

some incomes choose an optimal consumption bundle to maximize expected utility when facing

a common vector of prices. � is an outcome given a price vector (pA; pB; pC) = (3=2; 1; 1=2)

and a budget vector (b1; b2; b3; b4) = (1; 1; 1; 1=2).1 More importantly, the assignment cannot

be supported as an equilibrium where everyone has the same income, which will be revisited in

the next section.

From this market perspective, is the assignment still desirable? It is clear that agents 1-3,

who are endowed with higher incomes, are somehow treated more favorably and are allowed

to choose from a larger opportunity set. As one would expect, this may cause certain kind of

1Equivalently, one may �nd personalized prices and an equal budget to support this assignment as a result
of agents�expected utility maximization.
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envy, although the assignment is envy-free. To see this potential lack of fairness, let us consider

an exchange between agents 2 and 3, which leads to a new assignment �̂ as follows:

New Assignment: �̂

Object

Agent A B C

1 1/3 1/3 1/3

2 1/2 0 1/2

3 1/6 1/3 1/6

4 0 0 1

.

Note that every agent is indi¤erent between her own assignment in � and that in �̂, but agent 4

now envies agent 2 in �̂. This envy is consistent with what we have suspected when discovering

that agent 4 is endowed with a lower income. Although �̂ is certainly undesirable due to

its lack of envy-freeness, agents 1-3 could form a coalition and change the assign-

ment into � while maintaining the same level of welfare; judging � by the commonly

used envy-freeness, � is desirable.

The above example thus illustrates the weakness of envy-freeness, and, more importantly, the

usefulness of the market perspective in evaluating an assignment. We formalize this evaluation

approach in the next section.

3 A Market Perspective to Evaluating Assignments

We consider the economy � = fI;S; Q; V g, where:
(i) I = figIi=1 is a set of agents;
(ii) S = fsgSs=1, S � 3, is a set of objects;
(iii) Q = [qs]

S
s=1 is a capacity vector indicating the number of available copies of each object,

and qs 2 N, 8s;
PS

s=1 qs = I, i.e., there are just enough objects to be allocated to all agents;
2

(iv) V = [vi]i2I , where vi = [vi;s]s2S and vi;s 2 [0; 1] is agent i�s von Neumann-Morgenstern
utility associated with object s. We assume that vi;s 6= vi;s0 for all i and s 6= s0.
A feasible random assignment is a matrix � = [�i]i2I 2 A, where �i = [�i;s]s2S and

�i;s 2 [0; 1] is agent i0s probability share at object s, or the probability that agent i is assigned
s; A is the space of all feasible random assignments such that

P
s2S �i;s = 1 for all i and

2One may extend the analysis to the case
PS

s=1 qs 6= I.
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P
i2I �i;s = qs for all s. By the Birkho¤-von Neumann theorem, a feasible random assignment

can be expressed as a lottery over deterministic assignments. A few more notations are needed:

De�nition 1 Given the economy �, a personalized price set P� and the associated assignment
��, are de�ned as follows:

i). Every agent is given an equal arti�cial income that is normalized to be 1.

ii). For a given pi = [pi;s]s2S 2 [0;+1]
S where pi;s is the price of object s for agent i, the

demand correspondence of agent i, �i (vi;pi), 8i, is constructed as:3

��i (vi;pi) = arg max
[�i;s]s2S

X
s2S

�i;svi;s,

s:t:
X
s2S

�i;s = 1; �i;s � 0;8s 2 S;
X
s2S

pi;s�i;s � 1:

iii). P� �
(
P � = [p�i ]i2I 2 [0;+1]

I�S j9�i 2 ��i (vi;p�i ) ,
X
i2I
��i;s = qs, 8i 2 I, 8s 2 S.

)
;

iv) �� (P �) �
�
[�i]i2I 2 Aj�i 2 ��i (vi;p�i ) , 8i 2 I

	
for P � 2 P�, and �� � [8P �2P��� (P �).

In other words, P� is the set of all possible personalized prices that can rationalize some
assignment as a result of agents�utility maximization given equal incomes; �� (P �) is the set

of assignments corresponding to P �; and �� is the set of all possible assignments that can be

supported as a result of agents�utility maximization given equal incomes. To make this market

approach useful, we show that every feasible assignment can be represented in this way.

Lemma 1 For any �, P� 6= ? and �� = A.

The validity of Lemma 1 is obvious, since for any �i there exists at least one price vector

pi 2 [0;+1]S such that �i 2 ��i (vi;pi), and there is no restriction on pi across agents.

3.1 E¢ ciency

We are now ready to evaluate whether an assignment is Pareto e¢ cient by investigating the

properties of the prices.

Theorem 1 An assignment � 2 A is e¢ cient if and only if 9P � = [p�i ]i2I 2 P�, � = [�i]i2I 2
(0;+1)I , and p� 2 [0;+1)S such that p�i = �ip�, 8i 2 I and � 2 �� (P �).

3If pi;s = +1, we de�ne +1 � 0 = 0 and +1 � �i;s = +1 if �i;s > 0.
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Given that p�i = �ip
�, 8i 2 I, and everyone has the same budget, it is equivalent to say

that every agent faces a common price vector but are endowed with a personalized budget.

Therefore, the "if" part is a result of the �rst welfare theorem, and the "only if" part follows

Theorem 1 of Miralles and Pycia (2014).

3.2 Fairness

We now formalize our discussion of fairness.

De�nition 2 A random assignment � is envy-free if every agent prefers her own random

assignment to the assignment of any other agent with respect to her expected utility, i.e.,

X
s2S

�i;svi;s �
X
s2S

�j;svi;s;8i; j.

Envy-freeness requires that no one prefers the assignment of someone else to her own. An

agent�s assignment is thus compared with all other observed individual assignments according

to her preference, but there is no restriction on whether one desires other unobserved "fair"

assignments. For example, the assignment in Section 2 satis�es envy-freeness; however, as

shown earlier, a payo¤-equivalent exchange between two agents creates envy. This is because

envy-freeness does not guarantee that every agent has the equal access to the objects, which

leads us to introduce a new concept.

De�nition 3 An assignment � is coalitional-envy-free if any re-assignment from weakly

Pareto-improving exchanges among any coalition of agents is still envy-free.

Note that weakly Pareto-improving exchanges can lead to the same payo¤s for the agents

involved in the exchange. If an assignment is coalitional-envy-free, it is also envy-free; the

reverse is not true. The example in Section 2 has shown that unequal incomes or proportional

prices across agents may create coalitional-envy. We thus consider the idea of competitive

equilibrium from equal incomes (Varian (1976) and Hylland and Zeckhauser (1979)).

Theorem 2 For any economy �, there exists an assignment �� 2 A that is the outcome of

a competitive equilibrium from equal incomes (CEEI). That is, 9P � = [p�i ]i2I 2 P�, p�i = p�j ,
8i; j 2 I and �� 2 �� (P �).
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The proof is available in the working paper version of Hylland and Zeckhauser (1979) and

He, Miralles, and Yan (2012) (Proposition 5). By the �rst welfare theorem, a CEEI outcome

must be e¢ cient. Besides, its outcome is envy-free as well.

The CEEI assignment of the �motivating example�in Section 2 is:

�Equal-claim�Assignment ��

Object

Agent A B C

1 5/24 1/3 11/24

2 5/24 1/3 11/24

3 5/24 1/3 11/24

4 3/8 0 5/8

In fact this is an outcome of CEEI with the price vector (pA; pB; pC) = (8=3; 4=3; 0). We can

verify that �� is coalitional-envy-free, i.e., there is no weakly Pareto-improving exchange among

any subset of agents that leads to any envy. More generally, we have the following result (proof

in Appendix):

Proposition 1 A CEEI assignment is coalitional-envy-free.

4 Relationship among the Criteria

In this last section, we summarize the relationship among Pareto e¢ ciency, envy-freeness,

coalitional-envy-freeness, and the CEEI assignments (Figure 1).

While many of the results are intuitive or have been proven in the previous section, we

show additionally that there are assignments being both e¢ cient and coalitional-envy-free but

cannot be supported as an outcome of the CEEI.

Proposition 2 Not every e¢ cient and coalitional-envy-free assignment is a CEEI outcome.

While leaving the proof in Appendix, we provide the following example where the assignment
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Coalitional-envy-free  

Assignments 

All Feasible Random Assignments 

Envy-free assignments  

Pareto Efficient  

Assignments  

(equal prices;  

unequal incomes) 

CEEI 

Assignments 

Figure 1: Properties of Random Assignments

Notes: CEEI stands for competitive equilibrium from equal incomes.

is both e¢ cient and coalitional-envy-free but cannot be a CEEI outcome:

Preferences

Object

Agent A B C

1 1 1/2 0

2 0 1 1/2

3 1 0 1/2

;

Assignment: �

Object

Agent A B C

1 1/2 1/2 0

2 0 1/2 1/2

3 1/2 0 1/2

.

Appendix: Proofs

Proof of Proposition 1. We �rst show that if the optimal bundle of an agent is not obtaining

one unit of her most preferred object, the agent must exhaust her total budget.

Denote � as a CEEI assignment and (�1; � � � ; �S) as the agent�s optimal bundle facing
price (p1; � � � ; pS). Without loss of generality, let the �rst object be her most preferred object.
Suppose �1 < 1 and the budget spent by the agent is b =

P
8s ps�s < 1.

There must exist s0 2 f2; � � � ; Sg such that �s0 > 0. Besides, (�1 + "; � � � ; �s � "; � � � ; �S) is
more preferred to (�1; � � � ; �S) and is a¤ordable as long as 0 < " < min

n
�s;

1�b
p1

o
, which is a

contradiction with (�1; � � � ; �S) being the agent�s optimal choice facing price (p1; � � � ; pS).
Second, any coalition of weakly Pareto-improving exchanges cannot involve a member who

obtains one unit of her most preferred object. Any change to the assignments of such agents
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would make them worse o¤, given everyone�s most-preferred object is unique by assumption.

Therefore, all the members in any potential coalition of weakly Pareto-improving exchanges

must exhaust their total budget in � when facing a common price vector (p1; � � � ; pS).
Suppose there exists a coalition of weakly Pareto-improving exchanges, eI � I. Then

X
s2S

ps
X
i2eI
�i;s =

X
s2S

ps
X
i2eI
e�i;s =X

i2eI
X
s2S

pse�i;s = ���eI��� ;
where e�i;s is the probability share after the exchange for i 2 eI and s 2 S. Furthermore, this
implies that 8i 2 eI,X

s2S
pse�i;s = 1. Otherwise, there must exist ei 2 eI such thatX

s2S
pse�ei;s < 1,

which implies
X
s2S

e�ei;svei;s <X
s2S

�ei;svei;s because �ei is optimal given ps while e�ei is also a¤ordable.
This contradicts the exchange being weakly Pareto-improving.

The above results implies that there is no agent who will envy any ei 2 eI or any i 2 I�eI,
because 8i 2 I, [�i;s]s2S in � is already the optimal consumption bundle among all possible
[b�i;s]s2S that satis�esX

s2S
psb�i;s � 1.

Proof of Proposition 2. We �rst show the above assignment is e¢ cient. If a Pareto

improvement �0 involves assignment change to i 2 f1; 3g, then it requires that �0i;A > 1
2
. If

�0i;A =
1
2
, then any other assignment with the constraint �0i;B + �

0
i;C =

1
2
and

�
�0i;B; �

0
i;C

�
6=

(�i;B; �i;C) leads to a payo¤ strictly less than 3
4
, which is i�s payo¤ in �. If instead �01;A <

1
2
,

then agent 1�s payo¤ is:

�01;A +
1

2
�01;B = �

0
1;A +

1

2

�
1� �01;A � �01;C

�
=
1

2

�
1 + �01;A � �01;C

�
<
1

2

�
3

2
� �01;C

�
� 3

4
:

If �03;A <
1
2
, then agent 3�s payo¤ is:

�03;A +
1

2
�03;C = �

0
3;A +

1

2

�
1� �03;A � �03;B

�
=
1

2

�
1 + �03;A � �03;B

�
<
1

2

�
3

2
� �03;B

�
� 3

4
:

Hence, any Pareto improvement �0 cannot involve assignment change to i 2 f1; 3g. Otherwise
�01;A + �

0
3;A > 1, which is not feasible. This further implies that � is e¢ cient since agent 2�s

assignment cannot be changed without changing the assignment of f1; 3g in �.
We then show that � is coalitional-envy-free. Note that � is envy-free and thus the potential

coalition to be considered are f1; 3g, f1; 2g, or f2; 3g. The argument of e¢ ciency directly rules
out coalition f1; 3g since any weakly improved changes to f1; 3g require that �0i;A > 1

2
= �i;A,

i 2 f1; 3g. This also rules out f1; 2g and f2; 3g since �2;A = 0.
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Finally, we show this e¢ cient and coalitional-envy-free assignment cannot be a CEEI out-

come. Suppose instead that P � = (p�A; p
�
B; p

�
C) is a vector of prices that leads to a CEEI outcome.

We must have p�A > 1 and p
�
B > 1, otherwise � is not optimal. But [�1;s]s2fA;B;Cg cannot be

a¤ordable when p�A > 1 and p
�
B > 1. A contradiction.

In fact, a CEEI outcome of this example is a price vector (pA; pB; pC) = (2; 1; 0) and:

Assignment: ��

Object

Agent A B C

1 1/2 0 1/2

2 0 1 0

3 1/2 0 1/2

.
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