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Abstract

This paper characterizes the optimal labor income taxes in an environment where individual
labor supply choices are subject to adjustment frictions. Agents incur a fixed cost of adjusting
their hours of work in response to changes in their idiosyncratic wages or their tax rates. This
fixed cost can be thought of as the cost of searching for a new job in an economy where hours
are constrained within the firm. I derive a formula that characterizes the optimal long-run
progressive tax schedule in this economy. Adjustment frictions generate endogenously an exten-
sive margin of labor supply conditional on participation. In addition to the standard intensive
margin disincentive effects of taxes, the optimal schedule takes into account their effects on the
option value of adjusting hours of work, and therefore depends on several new elasticities and
marginal social welfare weights. I then evaluate the quantitative magnitude of these novel the-
oretical effects and show that for a given intensive margin labor supply elasticity, the optimal
long-run tax schedule is less progressive than a frictionless model would predict, because an
increase in progressivity raises the dispersion of individual incomes around their desired values.
The welfare miscalculations by wrongly assuming a frictionless economy can be large, and are
decreasing in the size of the intensive margin labor income elasticity. The insights of this paper
apply more broadly to models where fixed costs interact with non-linear policy instruments to
yield long-run aggregate effects.
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1 Introduction

This paper characterizes optimal policy in models with fixed adjustment costs. Specifically, I analyze
the long-run real effects generated by the interaction between fixed costs and non-linear policy. I
study this question in an income taxation framework, where both non-linear (tax) policies and fixed
(labor supply) adjustment costs arise naturally.

The theoretical models of optimal labor income taxation typically assume that labor supply
can be adjusted costlessly and optimally in response to changes in wages or in the tax rates. The
individual labor income elasticity, which measures the effects of a percentage change in the net-of-
tax rate on the worker’s taxable labor income, is the crucial parameter governing the behavioral
impacts of taxes on government revenue. The optimal tax rate is determined by the trade-off
between this revenue effect and the welfare effect (expressed in terms of public funds) of an increase
in taxes, measured by the marginal utility of consumption, or marginal social welfare weights.
Even models of taxation that incorporate explicitly an extensive margin of labor supply typically
consider the binary decision of whether to participate in the labor force, keeping the assumption
that conditional on participation hours are either exogenously fixed or fully flexible on the intensive
margin. Unsurprisingly then, much theoretical and empirical research has been devoted to the
analysis of the labor supply elasticity, or taxable income elasticity, with respect to the marginal tax
rates.

A large and growing body of empirical evidence, however, shows that the adjustment of labor
supply in response to productivity, wage or tax changes, is subject to substantial frictions. Specif-
ically, workers in a given job face hour constraints set by firms and pay search costs to find new
jobs. In other words, they must change jobs in order to adjust their hours of work, and this entails
large fixed costs. The presence of such fixed adjustment costs generates endogenously an extensive
margin of labor supply, conditional on participation, where the thresholds of adjustment are chosen
optimally by the worker. There is little theoretical work that explicitly incorporates such adjust-
ment frictions into models of labor income taxation and describes the revenue and welfare effects
of taxes in this more realistic context. Several questions arise, some of which have been examined:
the sluggish response of individuals to tax changes may generate small short-run (observed) labor
income elasticities for large long-run elasticities, and non-trivial short-run welfare effects if taxes in-
crease while individual hours are not maximizing their instantaneous utility. The question I address
in this paper is whether, in the presence of labor supply frictions in a dynamic economy, long-run
optimal taxes differ from those implied by the frictionless, intensive margin, models, and if so, what
are their theoretical determinants in the frictional economy.

I set up an analytically tractable dynamic continuous-time model in which individuals choose
their labor supply as a function of their stochastic idiosyncratic wage shocks and the non-linear tax
schedule. The individual wage is exogenous and follows a random growth process with jumps, con-
sistent with both micro and macro evidence, and the basis of a leading theory of income inequality.
The tax schedule is restricted to have a constant rate of progressivity, a specific functional form
that closely approximates the actual U.S. tax and transfer schedule. To keep the model tractable
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I assume that individuals are born (or enter the labor force) and die (or retire) at an exogenous
Poisson rate, and that they cannot save or borrow. In order to adjust their hours in response to
wage or tax changes, individuals must pay a fixed cost. This fixed cost can be thought of as the
cost of searching for a new job in an economy where hours are constrained within the firm, and is
assumed proportional to the worker’s foregone utility of consumption from the search activity. Once
they decide to pay the fixed cost, i.e., to start searching for a new job, they receive a job offer, or
a costless adjustment opportunity, at an exogenous Poisson rate, which captures in a reduced-form
way the frictions on the demand side of the labor market. As a result, hours of work evolve in a
lumpy manner at the individual level: workers remain inactive, that is keep the same job, until their
wage is such that their optimal (frictionless) labor supply is far enough from their current, actual
labor supply; at this point they pay the fixed cost and start searching for a new job. I show that
the optimal range of inaction is an interval that I characterize analytically, and that the aggregate
stationary income distributions have Pareto tails that can be written transparently in closed form
as a function of the progressivity of the tax schedule.

I then derive formulas characterizing the optimal long-run progressive tax schedule in this econ-
omy, that is, the tax rates that maximize utilitarian social welfare subject to a government budget
constraint. In the frictionless model, I show that the optimum is characterized by sufficient-statistic-
type expressions extending the standard static formulas to the steady-state of a dynamic model.
These formulas are written in terms of the individual intensive margin labor income elasticities and
marginal social welfare weights that I define, capturing respectively the revenue and welfare effects
of perturbing the tax rates. In the frictional model, I first show that the effect of a uniform increase
in the marginal tax rates is given by the same formula as in the frictionless setting. In particular,
the relevant labor income elasticity entering this formula is the individual elasticity of frictionless
income, even though in the presence of frictions the individual’s actual hours are generally different
from her frictionless optimum. Intuitively, in the long run all individuals have had time to adjust
their behavior to the new tax system and frictions wash out in the aggregate. I then turn to the
effects of an increase in the progressivity of the tax schedule. There are several new effects that
appear in the frictional economy that are not captured by the frictionless optimal taxation formula.
First, in the frictional economy the individual’s option value of adjusting labor supply is endogenous
to taxes. This is because an increase in progressivity reduces the volatility of the income process,
as higher incomes are taxed at a higher rate, which in turn reduces the option value and narrows
the inaction region. I show that this induces non-zero effects on revenue and welfare unless these
two effects exactly cancel out, i.e., unless the frequency of adjustment is exogenous to taxes. I de-
fine and characterize novel, “extensive margin” elasticities and marginal social welfare weights that
summarize these effects in the optimal tax formula. Moreover, the presence of adjustment frictions
implies that individuals who earn the same income differ in their utility, as the least productive
of them (i.e., those with a lower wage) are working more hours to earn the same income, and this
non-degenerate distribution is itself endogenous to the tax schedule. By treating the population
earning a given income as a representative agent, the frictionless model thus miscalculates the wel-
fare effects of perturbing taxes. This effect is captured by another novel marginal social welfare
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weight in the optimal tax formula. Therefore, theoretically, the extensive margin of labor supply
endogenously generated by hour requirements within jobs has non-trivial long-run effects on tax
revenue and social welfare beyond the standard intensive margin effects.

Finally I calibrate the model and estimate numerically the magnitude of these novel theoretical
effects. [Note: Preliminary calculations for now.] The first finding is that the extensive margin elas-
ticities with respect to the rate of progressivity are non-negligible - of the same order of magnitude
as the participation elasticities found in the literature. In the baseline calibration, these elasticities
induce only a small behavioral effect on tax revenue: the revenue losses from raising progressivity
calculated by wrongly assuming a frictionless economy are about 2% away from their true values.
The reason is that the extensive margin elasticities are bounded, while an increase in progressivity
induces unboundedly large changes in the marginal tax rates as income grows, and hence much
larger intensive margin income responses to taxes. However, the welfare effects generated by the
endogenous option value of adjusting labor supply and by the endogenous distribution of utilities
within incomes are larger, and imply benefits of raising the progressivity of the tax schedule relative
to the frictionless model: the frictionless values are more than 7% away from their true value. This
translates in an optimal rate of progressivity equal to xx rather than xx [Note: Computations
are coming soon.]. In contrast, assuming a larger intensive margin labor income elasticity (ε = 1

rather than ε = 0.33) dwarves these effects, as the standard intensive margin terms then dominate
the new extensive margin terms; in this case, the frictionless model closely approximates the true
long-run optimal tax rates. The reason why the extensive margin effects on welfare tend to reduce
the gains of raising progressivity is the following. We saw that the sandard marginal social welfare
weights capture the true welfare effects of taxes if the decrease in the volatility of incomes due to
an increase in progressivity is exactly compensated by the narrowing of the inaction region (option
value effect). In general, however, the latter effect is dominated by the former, so that an increase in
progressivity is equivalent to a higher dispersion of individual incomes around their desired values,
which adversely affects welfare, relative to the frictionless benchmark. On the other hand, when the
intensive margin labor income elasticity is large, the extensive margin welfare losses are dominated
by the intensive margin losses.

Finally, the results I derive in this paper apply much more broadly than to this taxation theory
framework. The key finding of this paper is that non-linear policies interact with fixed adjustment
costs to yield real aggregate long-run effects. This is in contrast with most of the literature with
fixed costs at the micro level, where typically the aggregate economy behaves in the long-run as a
frictionless (representative agent) model. I show in this paper that this insight is correct only if we
consider linear policies, which do not affect the option value of adjusting labor supply. On the other
hand, the curvature of policy matters in the aggregate (for both efficiency and welfare) even in the
long-run when adjustment at the individual level is frictional. This insight should apply generally
to models with fixed costs and non-linear policy tools, e.g. to the investment literature.

Related literature. The empirical literature estimating the (Hicksian) labor income elasticities
is vast: see, e.g., Saez, Slemrod, and Giertz (2012) and Keane and Rogerson (2012) for recent
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surveys. Rogerson and Wallenius (2009, 2013) and Ljungqvist and Sargent (2011) argue that the
(small) micro and (large) macro elasticities typically found in the literature can be reconciled if
the primary margin of adjustment of labor supply is the choice of career length rather than hours
conditional on participation. Chetty, Guren, Manoli, and Weber (2012) and Chetty (2012) argue
instead that adjustment frictions can fully explain the difference of steady-state elasticities, and
that the extensive margin (participation) elasticities are smaller than the intensive margin (hours)
elasticities. Holmlund and Söderström (2008) argue that the short-run and the long-run elasticities
may differ. More generally there is a large empirical literature that points to the presence of frictions
in the adjustment of labor supply. Altonji and Paxson (1992) show that changes in labor supply
preferences have a much larger effect on hours of work when individual change jobs, suggesting that
adjusting behavior entails substantial fixed costs. Other papers have similarly argued that labor
supply is constrained by adjustment costs and hours requirements set by firms, e.g., Cogan (1981),
Altonji and Paxson (1988), Dickens and Lundberg (1993), Chetty, Friedman, Olsen, and Pistaferri
(2011), Gelber, Jones, and Sacks (2013). My contribution is to incorporate explicitly these fixed
costs into a dynamic taxation framework and derive the consequences for long-run optimal income
taxes. These fixed costs generate endogenous extensive margin responses for employed individuals
and long-run elasticities that differ from the short-run elasticities due to the sluggish adjustment of
hours.

This paper relates to several strands in the theoretical optimal taxation literature. My friction-
less model is related to that of Heathcote, Storesletten, and Violante (2014), who also restrict the
set of available tax instruments to two-parameter schedules, and analyze the effects of progressivity
on social welfare with imperfect private insurance and investment in skills. My frictionless model is
simpler than theirs, which allows me to introduce frictional labor supply and keep the tractability
of the model. The literature on the sufficient statistic approach to taxation, see e.g. Saez (2001)
in the static setting, Golosov, Tsyvinski, and Werquin (2014) in the dynamic setting, and Chetty
(2009) for a general exposition, derives optimal tax formulas for a very large class of models, irre-
spective of the underlying functional forms for the utility functions, the sources of heterogeneity,
etc. However, these models generally assume that labor supply can always be set optimally at no
cost. In this paper I show that these sufficient statistic formulas do not generally hold, even in the
long run, in the presence of simple adjustment frictions. There is a theoretical taxation literature
with labor supply responses on the extensive margin. Saez (2002), Choné and Laroque (2011),
Jacquet, Lehmann, and Van der Linden (2013), Shourideh and Troshkin (2014), Lehmann, Kroft,
Kucko and Schmieder (2015) study optimal taxation problems where individuals face a fixed cost
of working, leading to binary participation decisions. I extend these papers’ insights by generating
and studying more general sources of extensive margin responses of labor supply to taxes, namely,
conditional on participation. It would be straightforward to include an explicit participation margin
in my setting (similar to Alvarez, Borovickova and Shimer (2015)), although empirically much of
the difference in labor supply across countries with different tax regimes is driven by hours worked
conditional on employment (see Davis and Henrekson (2005), and Chetty, Guren, Manoli and Weber
(2011)). Chetty, Looney, and Kroft (2009) propose a model of bounded rationality (i.e., where the

5



fixed adjustment cost is interpreted as a cognitive cost) where individuals’ responses to taxes are
affected by tax salience, and show that this feature affects the calculation of the impact of taxes
on social welfare. Chetty, Friedman, Olsen, and Pistaferri (2011) study a model in which labor
supply is subject to search costs and jobs are characterized by hours requirements. These models
are primarily static, and do not capture the dynamic decisions of individuals based on their option
value of waiting, nor the long-run effects of taxes on social welfare. A paper related to mine is that
of Alvarez, Borovickova and Shimer (2015) who also model labor supply adjustment decisions as a
stopping time problem. They only consider the transitions between employment and unemployment,
however, and do not focus on the implications of this class of models for optimal taxation.

Finally, the technical tools I use to analyze my model of individual behavior are those developed
in the impulse control literature originally developed for operations research questions. Dixit and
Pindyck (1994) and Stokey (2008) summarize many references and applications of these models to
economics, primarily on monetary and investment topics. Scarf (1959), Harrison, Sellke and Taylor
(1985), Bertola and Caballero (1994), Grossman and Laroque (1990), Caballero and Engel (1999),
and more recently Alvarez and Lippi (2013) and Alvarez, Le Bihan, and Lippi (2014), to cite only
a few, have made important theoretical contributions to this literature, on which this paper builds.
In public finance, there is a rich literature on investment in the presence of adjustment costs: Hall
and Jorgensen (1967), Summers (1981), Abel (1983), Auerbach and Hines (1987), Auerbach (1989),
Auerbach Hassett (1992). I bring this literature to the study of labor supply, now that we know
that labor adjustment costs and not just capital adjustment costs can be important, and moreover
I study optimal policy in this class of models.

The structure of the paper is as follows. I set up the environment and describe the individual and
government problems in Section 2. I then analyze the optimal individual behavior in Section 3, and
characterize the aggregate steady-state of the economy in Section 4. I define the new elasticities and
marginal social welfare weights, and derive formulas for optimal taxes in Section 5. The numerical
exercises are in Section 6, and Section 7 concludes. The proofs of all the results are gathered in the
Appendix.

2 Environment

There is a continuum of mass one of individuals in the economy. Time is continuous.

Preferences. Individuals have the following Greenwood, Hercowitz and Huffman (1988) utility
function of consumption c and hours of work h with isoelastic disutility of labor supply:

U (c, h) =
1

1− γ

(
c− 1

1 + 1/ε
h1+1/ε

)1−γ
, (1)

with γ ∈ [0, 1). They discount the future at rate ρ1. They are born (or enter the labor force)
and die (or retire) at an exogenous and constant Poisson rate ρ2. I denote the function g (x) =
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(1− γ)−1 x1−γ .

Technology. Individual productivity θ is exogenous. The production function is linear in the labor
input, so that in equilibrium workers’ wages wt are always equal to their marginal productivity θt,
and they can freely choose to be employed at any labor supply h (θt). Therefore, in the sequel, I
substitute a worker’s exogenous productivity θ with her wage w.

An individual’s wage (i.e., productivity) at birth, w0, is drawn from a log-normal distribution
with mean mw and variance s2

w, i.e., fw0 (·) ∼ logN
(
mw, s

2
w

)
. The idiosyncratic wage wt then

evolves stochastically over time t ≥ 0 according to a geometric Brownian motion with jumps, that
is,

d lnwt = µwdt+ σwdWt + νw,tdJt, (2)

where Wt is a Wiener process and dJt is a jump process with intensity ι. Thus, in the absence of
jumps, the wage follows a random growth process with expected growth rate µw+ 1

2σ
2
w and volatility

σw. There is a jump in [t, t+ dt) (i.e., dJt = 1) with probability ιdt and no jump (i.e., dJt = 0)
with probability 1− ιdt. The innovations νw,t are drawn from a distribution fν . Individuals know
their wage process and observe its realization at every instant t.

The reduced-form equation (2) for the exogenous wage process can be microfounded, see e.g.
Gabaix, Lasry, Lions and Moll (2015), and the references therein. This random growth formulation is
a leading theory of income inequality as it naturally generates Pareto tails for the wage distributions
(see, e.g., Gabaix (2009) and Section 4 below), a stylized fact that plays an important role in
the optimal taxation literature (Saez (2001)). The empirical literature (see Meghir and Pistaferri
(2011) for a survey) estimates wage specifications of this form (without the jumps) and its findings
are consistent with the presence of a unit root in the wage process wt, that is, permanent wage
shocks. Assuming a double-Pareto distribution fν , the jump process furthermore implies that the
distribution of income growth rates d lnwt itself also has Pareto tails, consistent with the evidence
found in Guvenen, Karahan, Ozkan and Song (2014).

Budget constraint and taxes. An individual with wage w who works h hours earns taxable
labor income y = wh and pays taxes T (y) to the government. I assume that she cannot save or
borrow, so that she consumes her net income at every instant:

c = y − T (y) .

The tax-and-transfer system is restricted within a class of two-parameter schedules (see, e.g.,
Benabou (2002), Heathcote, Storesletten, and Violante (2014)), defined as

T (y) = y − 1− τ
1− p

y1−p, (3)

with τ ∈ R and p < 1. I denote the tax schedule interchangeably by T (·) or {τ, p}. The parameter
p is the coefficient of marginal rate progression (see Musgrave and Thin (1948)), or progressivity of
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the tax schedule. It is equal to the elasticity of the net-of-tax rate with respect to taxable income,

p = −d ln (1− T ′ (y))

d ln y
. (4)

If p = 0, the income tax schedule is linear with constant marginal tax rate τ . If p ∈ (0, 1), the ratio
of the marginal tax rate to the average tax rate is T ′ (y) / {T (y) /y} > 1, so that the tax schedule
is progressive. If p < 0, the tax schedule is regressive. Note that the marginal and average tax rates

are monotone in earnings, and that average tax rates are negative for incomes y below
(

1−τ
1−p

)1/p
.

This functional form for the tax schedule provides a close approximation of the actual tax system
in the U.S. (see Heathcote, Storesletten, and Violante (2014)). The first panel of Figure 1 shows
the marginal and average tax rates for two values of the progressivity parameter: p = 0.151, which
is calibrated to the rate of progressivity of the US tax code (see Section 6) and p = 0.156. The
second panel graphs these tax schedules at the bottom of the income distribution.

Figure 1: Tax schedule
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Individual problem. Individuals choose their labor supply ht endogenously as a function of their
information at time t. Consider a frictionless environment first, that is, where they can adjust their
labor supply optimally at every instant. A worker with current wage w0 then solves the following
problem:

max
{ht}t≥0

E
[ˆ ∞

0
e−(ρ1+ρ2)tU (ct, ht) dt |w0

]
,

s.t. ∀t ≥ 0, ct = wtht − T (wtht) ,

d lnwt = µwdt+ σwdWt + νw,tdJt.

(5)

The solution to this problem gives the agent’s frictionless, or desired, labor supply {h∗t }t≥0 and
consumption {c∗t }t≥0. I denote by V∗ (w) (or, equivalently, V∗ (y)) the value function of an individual
with current wage w (or current income y) in this frictionless environment.
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I now suppose that in order to adjust her labor supply (which I also refer to as a “job”) from
h to h′, the individual must pay a fixed utility cost κ ≥ 0. I interpret this fixed cost as the search
cost of finding a new job (see the empirical evidence provided in Altonji and Paxson (1992), Chetty,
Friedman, Olsen and Pistaferri (2011), Gelber, Jones and Sacks (2013)). Formally, I assume that
κ is proportional to the utility g (c∗) from the foregone (frictionless) disposable income due to the
search activity.1 Thus we have

κ = κ× g (c∗) , (6)

with κ ≥ 0.
After paying the fixed cost, the individual waits until she receives a job offer. Offers arrive at

an exogenous Poisson rate q. Whenever she receives one, she can adjust her hours h optimally and
costlessly given her current productivity (i.e., wage) w. As long as she does not receive the offer,
she keeps the same labor supply.2 Intuitively, q captures in a reduced-form way the frictions on
the demand side of the labor market: the larger the q, the faster an individual searching for a job
finds one.3 As q →∞ with κ > 0, the model converges to a two-sided (S, s) model similar to those
studied in the operations research, monetary or investment literatures (see, e.g., Harrison, Sellke and
Taylor (1985), Dixit and Pindyck (1994), Stokey (2004), and the references therein). In this case
the adjustments in hours are entirely driven by labor supply considerations, i.e., productivity, taxes,
search costs. As κ → 0 with q < ∞, on the other hand, the model converges to an environment
similar to the Calvo (1983) model; in this case adjustments are driven purely by labor demand.

Individuals decide when and by how much to adjust their labor supply as their wage evolves.
They can choose their hours optimally and costlessly at birth. Let {Ft}t≥0 denote the filtration
generated by Wt. An impulse control policy is defined as a sequence of stopping times 0 = t0 <

t1 < . . . < ti < . . . adapted to {Ft}, and a sequence of random variables ht0 , ht1 , . . . , hti , . . . that are
measurable with respect to the minimum σ-algebra {Fti} of events up to time ti. These represent
respectively the timing of adjustments and the optimal choice of labor supply upon adjustment.

I say that an individual is inactive if she is not currently searching for a job, that is, if she
has not yet paid the fixed adjustment cost since she started working at her current job. I say that
the individual is searching if she has paid the fixed cost but has not yet received an adjustment
opportunity. Consider an individual who has just received an adjustment opportunity at time 0

when her current wage is w0, and call V̂ (w0) her value function at that instant. Her new labor
supply h0 and her next adjustment stopping time t1 > 0 are the solution to the following recursive

1Assuming γ < 1 in (1) implies that this fixed cost is strictly positive and increasing in income.
2In a previous version of this paper (Chapter 1 in Werquin (2015)), I assumed instead that income y, rather than

hours h, is subject to the adjustment cost. In this case, w and h are interpreted respectively as productivity and
effort, and their product y is the agent’s effective labor supply, or income. As the individual becomes more productive
and stays in her current job (w gets higher and y remains constant), she needs to provide less effort (h gets lower) to
produce the required amount y. She adjusts her income upwards (resp., downwards) when she becomes so productive
(resp., unproductive) that she spends most of her time idle (resp., when she provides too much effort) to produce y.
The main results of the paper are unaffected by this alternative specification.

3In this paper I focus on the labor supply effects of taxation, and thus assume that the labor demand frictions,
summarized by the parameter q, are exogenous to taxes.
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problem:

V̂ (w0) = max
{h0,t1}

E
[ˆ t1

0
e−(ρ1+ρ2)tU (ct, ht) dt+ e−(ρ1+ρ2)t1

{
V̂ (wt1)− κt1

}
|w0

]
,

s.t. ∀t ∈ [0, t1) , ct = wtht − T (wtht) ,

ht = h0,

d lnwt = µwdt+ σwdWt + νw,tdJt.

(7)

Let Vi (w, h), respectively Vs (w, h), denote the value function, i.e., the expected present dis-
counted value of lifetime utility net of the adjustment costs, of an inactive, respectively searching,
worker with wage w and labor supply h. In Section 3 I set up the recursive formulation of the
individual’s problem (7) and formally define and characterize the value functions Vi (w, h) and
Vs (w, h).

Government’s problem. The government chooses the tax schedule T (·) = {τ, p} and evaluates
social welfare according to a utilitarian objective over all living individuals. Due to the assumption of
exponential deaths, individuals receive equal weights independently of their age. The government
maximizes the long-run (steady-state) social welfare subject to a budget balance constraint that
imposes that the total tax revenue net of transfer payments must be at least as large as an exogenous
revenue requirement R̄. Assuming for now their existence (see Section 4), let f iw,h, f

s
w,h denote the

stationary joint density of wages w and hours h for inactive and searching individuals, respectively.
The government solves:

max
T (·)

ˆ ∞
0

ˆ ∞
0

∑
x∈{i,s}

Vx (w, h) fxw,h (w, h) dwdh (8)

subject to ˆ ∞
0

ˆ ∞
0

T (wh)
∑

x∈{i,s}

fxw,h (w, h) dwdh ≥ R̄. (9)

Let λ denote the marginal value of public funds, i.e., the Lagrange multiplier associated with the
budget constraint of the maximization problem (8,9). Let R (T ) denote the long-run tax revenue
given the tax schedule T (·), i.e., the left-hand side of the constraint (9). Finally let W (T ) denote
social welfare, equal to the sum of individual indirect utilities (the maximand in (8)), normalized
by the shadow value λ so as to obtain a money metric for welfare.

I characterize the optimal tax schedule T (·) = {τ, p} in Section 5 by deriving the first-order
effects on social welfare of perturbations (dτ, dp) of the tax schedule as dτ, dp→ 0.4 The marginal
value of public funds λ, respectively the optimal rate of progressivity p, is such that the perturbation
dτ , respectively dp, has no first-order effects on social welfare. The resulting two equations (along
with the budget constraint) fully characterize the optimum tax system.

4More generally, we can use this method to characterize the first-order welfare effects of revenue-neutral tax
reforms away from the optimum tax schedule; see Golosov, Tsyvinski and Werquin (2014) for a general exposition.
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3 Individual behavior

In this section I characterize the optimal individual behavior in the model. [Note: from here on,
I solve the model without jumps (i.e., dJt = 0). The theoretical results are not affected by the
presence of jumps (only some specific derivations are, e.g. equations (19) and (35)). The text will
be updated to include the jumps.]

Frictionless model. The solution to the frictionless problem (5) is as follows. At each instant t,
the individual’s optimal labor supply h∗t is an increasing function of her current wage wt and her
net-of-tax rate (1− T ′ (wth∗t )). The frictionless taxable income y∗t = wth

∗
t and disposable income

c∗t are given by:

y∗t =
(
1− T ′ (y∗t )

)ε
w1+ε
t = (1− τ)

ε
1+pε w

1+ε
1+pε

t ,

c∗t =y∗t − T (y∗t ) =
1

1− p
(1− τ)

1+ε
1+pε w

(1−p)(1+ε)
1+pε

t .
(10)

Equation (10) shows that the structural elasticity parameter ε and the parameters of the tax schedule
(τ, p) govern the relationship between an individual’s wage and her corresponding choice of labor
supply or taxable income. In particular, the magnitude by which higher wages (or lower marginal
tax rates) translate into higher incomes is increasing in the elasticity ε, which therefore measures
the disincentive effects of taxation (see below).

Using equation (10), we find that the laws of motion of the taxable and disposable incomes are
given by the following random growth processes:

d ln y∗t =µydt+ σydWt, with {µy, σy} =
1 + ε

1 + pε
{µw, σw} ,

d ln c∗t =µcdt+ σcdWt, with {µc, σc} = (1− p) 1 + ε

1 + pε
{µw, σw} .

(11)

Equation (11) shows that the income processes are given endogenously from the wage process as
functions of the labor supply elasticity ε and the progressivity p of the tax schedule. In particular,
a higher elasticity ε and a lower rate of progressivity p lead to a higher volatility σy of the income
process.

I assume that
ρ ≡ ρ1 + ρ2 − (1− γ)µc −

1

2
(1− γ)2 σ2

c > 0,

which will ensure that the individual indirect lifetime utility is finite.

Frictional model. I now analyze the frictional problem (7) with κ > 0. This problem has two
state variables: the current wage w, and the current labor supply h. The crucial variable for the
analysis is the labor supply deviation δ, which is defined as the log-difference between the actual
and the desired (or frictionless) hours of work h and h∗, that is,

δt ≡ ln (ht)− ln (h∗t ) = ln (yt)− ln (y∗t ) , (12)
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where y∗t is given by (10). While the individual does not adjust her labor supply, her deviation δt
evolves according to the following process:

dδt =− d lnh∗t = µδdt+ σδdWt, with {µδ, σδ} = −(1− p) ε
1 + pε

{µw, σw} . (13)

In the sequel I change variables and use either (y∗, δ) or (y, δ) (rather than (w, h)) as the two state
variables of the individual’s problem, that is, the optimal frictionless or actual taxable income,
and the deviation of her labor supply away from the frictionless optimum. There are one-to-
one correspondences between these pairs of variables, given by the relationships (10) and (12).
Accordingly, with a slight abuse of notation, from now on I denote the individual’s utility function
by U (y∗, δ) and her value functions by Vi (y∗, δ) and Vs (y∗, δ).

We can easily show that the flow utility U (y∗, δ) is homogeneous in the utility of frictionless
disposable income c∗,

U (y∗, δ) =
1

1− γ

(
1− τ
1− p

y∗(1−p)
)1−γ [

e(1−p)δ − 1− p
1 + 1/ε

e(1+ 1
ε)δ
]1−γ

≡ g (c∗)× u (δ) . (14)

A second-order Taylor approximation of the function u (δ) around the frictionless optimum δ =

0 shows that the utility loss from failing to optimize is locally quadratic around the frictionless
optimum h∗,

u (δ) ∼
δ→0

(
1 + pε

1 + ε

)1−γ [
1− 1

2
(1− γ) (1− p)

(
1 +

1

ε

)
δ2

]
. (15)

Since the function u (δ) in (14) is not well defined for δ far away from 0, I assume for simplicity
that the utility of deviation is given by its quadratic approximation (15) for any δ ∈ R.5 Equa-
tion (14) together with the homogeneity of the fixed adjustment cost (6) and the random growth
property of the law of motion of frictionless disposable income (11) allow us to crucially reduce the
dimensionality of the state space. Specifically, I show the following proposition:

Proposition 1. The policy functions and the value functions Vi (y∗, δ) and Vs (y∗, δ) of inactive
and searching individuals with frictionless taxable income y∗ and labor supply deviation δ are homo-
geneous of degree one in the utility of desired consumption g (c∗). The value functions can thus be
written as

Vi (y∗, δ) = g

(
1− τ
1− p

y∗(1−p)
)
vi (δ) , and Vs (y∗, δ) = g

(
1− τ
1− p

y∗(1−p)
)
vs (δ) . (16)

Proof. See Appendix.

I now analyze the individual’s optimal adjustment behavior, given by the solution to the impulse
control problem (7). Proposition 2 below shows that for any level of labor supply h (i.e., for any
given job), the optimal impulse control policy can be characterized by an interval of inaction

(
δ, δ̄
)

5Alternatively we can keep the exact expression if γ = 0 (we should then add curvature to the social welfare
function in the government’s problem); none of the qualitative results would be affected.
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and a return point δ∗, with δ < δ∗ < δ̄. No control is exerted as long as the state process δ is in(
δ, δ̄
)
. When the state process strikes or is below δ or above δ̄, the individual pays the fixed cost

and waits (on average a duration q−1) until she receives an adjustment opportunity. At this time
she adjusts the state to δ∗, i.e., hours jump from h to h′ = heδ

∗−δ, where δ is the labor supply
deviation at the time the signal is received.

Consider a searching individual first, i.e., who has paid the fixed cost but not yet received the
adjustment offer. Define, for any x ∈ {w, y, c, δ} and ρ > 0,

rρ1,x ≡
µx
σ2
x

−

√
µ2
x

σ4
x

+
2ρ

σ2
x

, and rρ2,x ≡
µx
σ2
x

+

√
µ2
x

σ4
x

+
2ρ

σ2
x

. (17)

As long as the individual is searching, her value function vs (δ) satisfies the following Hamilton-
Jacobi-Bellman (HJB) equation: for all δ ∈ R,

1

2
σ2
δv
′′
s (δ) + [µδ + (1− γ)σcσδ] v

′
s (δ)−

[
ρ1 + ρ2 + q − (1− γ)µc −

1

2
(1− γ)2 σ2

c

]
vs (δ) = −u (δ) .

(18)
The intuition for this equation is as follows. Interpreting the entitlement to the flow of disposable
incomes and deviations as an asset, and Vs (y∗, δ) as its value, we can write:

(ρ1 + ρ2)Vs (y∗, δ) = U (y∗, δ) +
Et [dVs (y∗, δ)]

dt
+ q [Vi (y∗, δ∗)− Vs (y∗, δ)] .

The left hand side gives the normal return per unit time that an individual, using (ρ1 + ρ2) as the
discount rate, would require for holding this asset. The right hand side is the expected total return
per unit time from holding the asset. The first term is the immediate payout or dividend from the
asset. The second term is its expected rate of capital gain or loss. The third term is the change in
the value of the asset in case a job opportunity is received (so that the agent goes from searching to
inaction), which occurs at rate q per unit time. The equality is a no-arbitrage condition, expressing
the investor’s willingness to hold the asset. Using Itô’s formula, we can express the second term in
the right hand side as a function of the first and second partial derivatives of the value function
Vs and the drifts and volatilities of the income and deviation processes. We then obtain the HJB
equation (18) for vs (δ) using the homogeneity of the value function shown in Proposition 1.

I show in the Appendix that this differential equation can be integrated using the appropriate
boundary conditions at ±∞, yielding the following expression for the value function vs (δ) of a
searching individual: for all δ ∈ R,

vs (δ) =

´∞
−∞

[
er
ρ1+ρ2+q
2,δ xI{x≤0} + er

ρ1+ρ2+q
1,δ xI{x>0}

]
u (x+ δ) dx

σ2
δ
2 e

(1−γ)(1+ 1
ε)
(
rρ1+ρ2+q

2,δ − rρ1+ρ2+q
1,δ

) +
q

ρ+ q
vi (δ∗) . (19)

The first term in the right hand side of (19) is the flow utility from the time at which the cost is
paid until the adjustment occurs, i.e., E

[´ T
0 e−(ρ1+ρ2)tU (y∗t , δt) dt

]
, where the stopping time T is
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exponentially distributed (Poisson shocks). The second term is the expected value of returning to
(y∗, δ∗), i.e., E

[
e−(ρ1+ρ2)TVi (y∗T , δ

∗
T )
]
.

Next consider an inactive individual, i.e., who has not yet paid the fixed cost since she started
her current job. As long as she remains inactive, her value function vi (δ) satisfies the following
Hamilton-Jacobi-Bellman (HJB) equation: for all δ ∈

(
δ, δ̄
)
,

1

2
σ2
δv
′′
i (δ) + [µδ + (1− γ)σcσδ] v

′
i (δ)−

[
ρ1 + ρ2 − (1− γ)µc −

1

2
(1− γ)2 σ2

c

]
vi (δ) = −u (δ) . (20)

The intuition for this equation is similar to that of equation (18).
The boundary conditions at δ, δ∗, δ̄ that complete the characterization of the individual’s optimal

policy are the following. First, at the time the agent decides to pay the cost and search for a new
job, she must be indifferent between doing so and continuing with her current job; thus the following
value-matching conditions hold at the thresholds δ, δ̄:

vi
(
δ̄
)

= vs
(
δ̄
)
− κ, and vi (δ) = vs (δ)− κ. (21)

Second, the marginal value and the marginal cost of starting to search must be equal, i.e., the
two value functions vi (δ) and vs (δ) meet tangentially at δ, δ̄; thus the following smooth-pasting
conditions hold:

v′i
(
δ̄+
)

= v′i
(
δ̄−
)

= v′s
(
δ̄
)
, and v′i

(
δ+
)

= v′i
(
δ−
)

= v′s (δ) . (22)

Third, the optimal return point upon adjustment is the maximum of the value function vi (δ) of the
newly inactive individual, so that the following optimality condition holds at δ∗:

v′i (δ∗) = 0. (23)

Equations (20), (19), (21), (22), (23) fully characterize the optimal individual policy.

Proposition 2. Suppose that there exist
{
δ, δ∗, δ̄

}
such that the functions vi ∈ C1 (R)∩C2

(
R \

{
δ, δ̄
})

and vs ∈ C2 (R) solve the differential equation problem (20), (19), (21), and that the conditions (22)
and (22) hold. Then the control band

{
δ, δ∗, δ̄

}
is the optimal policy and vi (δ), vs (δ) are the value

functions of inactive and searching individuals respectively.

Proof. See Appendix.

Figure 2 shows graphically the optimal individual behavior (left panel) and the corresponding
value functions (right panel). In the left panel, an individual’s labor supply moves along the hori-
zontal red line as long as she remains inactive; that is, her actual labor supply h is constant while
her frictionless labor supply h∗ tracks the evolution of her productivity. When she reaches the
boundaries of the inaction region (the thick blue lines h∗ = e−δ̄h or h∗ = e−δh), she starts searching
and, as soon as she receives an offer, adjusts up or down to a new labor supply level on the central

14



blue line h′ = eδ
∗
h∗. The right panel shows the value functions vi (δ) and vs (δ) of inactives (in blue)

and searchers (in red) as well as the optimal control band. The value of inactives is bell-shaped
and reaches its maximum at δ∗. When reaching the boundaries δ and δ̄ of the inaction region,
the individual becomes a searcher and her value function jumps up along the corresponding dashed
blue line. The size of the jump, i.e. the difference between the two functions at these values, is
exactly equal to the fixed cost κ. Finally, the dashed red curve is the function vs (δ) − κ, which
illustrates that the two value functions meet tangentially at the boundaries of the inaction region
(smooth-pasting).

Figure 2: Optimal control policy and value functions
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Effects of taxes on individual behavior. I first describe how tax policy affects the frictionless
income variables. Equation (10) implies that the effects of perturbing the parameters τ, p of the tax
schedule on the individual frictionless taxable income y∗ are given by

d ln y∗

d ln (1− τ)
=

ε

1 + pε
, and

d ln y∗

dp
= − ε

1 + pε
ln y∗. (24)

The interpretation of equation (24) is as follows. The behavioral change in income following a tax
increase (both in τ and in p) is determined by the structural elasticity parameter ε. If the baseline
tax system is linear, i.e. p = 0, (24) implies immediately that the elasticity of labor income y∗

with respect to the net-of tax rate 1 − τ is equal to ε. Suppose now that the baseline tax system
is progressive or regressive, i.e. p 6= 0. Then a change in the marginal tax rate T ′ (y∗) that an
individual faces induces a direct reduction of his labor income y∗ by the amount ε, by definition
of the labor income elasticity. This direct adjustment generates in turn an indirect change in the
marginal tax rate that the individual faces, due to the non-linearity of the baseline tax schedule.
The amount of this change is equal to d (T ′ (y)) = T ′′ (y) dy, and it induces a further labor income
adjustment given by the elasticity ε and the curvature p of the baseline tax schedule. Thus the total
change in income following a perturbation of the net-of-tax rate (1− T ′ (y∗)) of an individual with
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income y∗ is given by

d ln y∗

d ln (1− T ′ (y∗))
=

ε

1 + T ′′ (y∗) y∗ε
1−T ′(y∗)

=
ε

1 + pε
. (25)

Equations (24) and (25) thus show that, from the point of view of individuals, the effect on income of
a percent perturbation of the parameter (1− τ) is equivalent to a percent perturbation of the net-of
tax rate (1− T ′ (y)) at every income level. Similarly, the effect of a perturbation of the parameter p
is equivalent to perturbing the marginal tax rates faced by all individuals by an amount proportional
to their log-income, so that the magnitude of the tax increase raises with income.

Taxes also affect the laws of motion of the frictionless income variables. Equations (11) imply
that the effects of perturbing the parameters τ, p on the drift and volatility of the frictionless taxable
and disposable income processes are given by:

d ln {|µy| , |σy|}
d ln (1− τ)

= 0, and
d ln {|µy| , |σy|}

dp
= − ε

1 + pε
< 0,

d ln {|µc| , |σc|}
d ln (1− τ)

= 0, and
d ln {|µc| , |σc|}

dp
= − 1

1− p
1 + ε

1 + pε
< 0,

(26)

where the absolute values allow for the possibility that the drift and volatility parameters are
negative. Thus a higher rate of progressivity of the tax schedule lowers the drift and the volatility of
both the taxable and disposable income processes. Intuitively, individual income responses following
an increase in productivity are attenuated by the fact that higher incomes pay higher marginal tax
rates if the tax schedule is progressive. Note that a uniform change in the marginal tax rates (i.e., a
change in τ), on the other hand, does not affect the drift or the volatility of income since all incomes
are shifted by a proportional amount.

Next, I turn to the effects of taxes on the optimal individual adjustment policy in the frictional
model. The parameter τ has no effect on the optimal behavior

{
δ, δ∗, δ̄

}
. Equation (26) shows that

a decrease in p, however, increases the volatilities σy, σδ of the income and the deviation processes,
which raises the option value of waiting to adjust labor supply, and therefore widens the optimal
inaction region:

d ln
{
|δ| , δ̄

}
d ln (1− τ)

= 0, and
d ln

{
|δ| , δ̄

}
dp

< 0. (27)

Intuitively, this is because a less progressive tax schedule magnifies the unexpected shocks to the
wage. This raises the incentives for the individual to keep her current job and “wait and see” the
evolution of her productivity before carrying out the adjustment, in order to save on new search
costs.6

The drift and volatility of the labor supply deviation (or of frictionless hours) is also affected by

6The same option value effect is at play in the Mortensen and Pissarides (1994) search model with endogenous
job destruction.
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taxes. Specifically,

d ln {|µδ| , |σδ|}
d ln (1− τ)

= 0, and
d ln {|µδ| , |σδ|}

dp
= − 1

1− p
1 + ε

1 + pε
< 0, (28)

Importantly, note that a lower rate of progressivity has an ambiguous effect on the frequency of
adjustment: on the one hand, the higher volatility of the deviation process makes individuals reach
the boundaries of their inaction region faster; on the other hand, the inaction region is wider,
which tends to make them adjust less often. In practice, however, the volatility effect typically
dominates the size-of-the-bands effect, so that a less progressive tax schedule increases the frequency
of adjustment. Intuitively, the desired (frictionless) income moves away from the current income
faster, so that it is optimal for the individual to carry out the costly adjustment more often.

Individual welfare. In the frictionless model, the value function V∗ (y) of an individual with
current income y is given by

V∗ (y) =
1

ρ1 + ρ2 − (1− γ)µc − 1
2 (1− γ)2 σ2

c

g

(
1 + pε

1 + ε

1− τ
1− p

y1−p
)
. (29)

Note that in this expression the relevant discount rate ρ used to compute the presend value of utility
(the denominator of (29)) depends on the growth rate of the future utility of consumption, and is
therefore endogenous to taxes.

In the frictional model, consider an inactive or searching individual with actual (as opposed to
frictionless) income y and deviation δ, and let Ṽx (y, δ) ≡ Vx

(
ye−δ, δ

)
for x ∈ {i, s} denote her

value functions. Equation (16) implies that this value function is equal to the value V∗ (y) that
the planner would compute for an individual with income y assuming wrongly that the world is
frictionless, times a correction factor ṽx (δ) which depends on the deviation δ of her income away
from its desired level. That is, we have

Ṽx (y, δ) = V∗ (y)× ṽx (δ) , (30)

where the values of deviation ṽi (δ) , ṽs (δ) conditional on an actual income level are defined, for
x ∈ {i, s}, by

ṽx (δ) =

(
ρ1 + ρ2 − (1− γ)µc −

1

2
(1− γ)2 σ2

c

)(
1 + pε

1 + ε

)γ−1

e−(1−p)(1−γ)δvx (δ) . (31)

These correction terms ṽx (δ) are strictly decreasing in the deviation δ, as individuals who earn a
given income y but work fewer hours (i.e., have a higher wage) get a higher utility than those who
earn the same income but work more hours at a lower wage. I finally denote by Ṽ (y, δ) and ṽ (y, δ)

the weighted averages of the value functions of inactive and searching individuals, that is,

ṽ (y, δ) = ṽi (δ)
f iy,δ (y, δ)

fy,δ (y, δ)
+ ṽs (δ)

fsy,δ (y, δ)

fy,δ (y, δ)
, and Ṽ (y, δ) = V∗ (y) ṽ (y, δ) , (32)

17



where f iy,δ, f
s
y,δ denote the stationary joint densities of inactive and searching individuals at income

and deviation (y, δ) (see Section 4), and fy,δ = f iy,δ+fsy,δ is the total stationary density of individuals
at (y, δ).

Unlike the frictionless environment, in which there is a representative agent at each income
level y, the labor supply adjustment frictions imply that there is a heterogeneous population of
individuals who earn the same income but reach different welfare levels – both because their wage-
hours bundles vary, and because their employment status (inactive or searching) differ. Importantly,
this distribution of utilities within income levels, summarized by the function ṽ, depends on the
progressivity parameter p and is thus endogenous to tax policy. I describe the implications of these
observations for optimal taxation in Section 5.

Figure 3 shows graphically the distributions of utilities within income groups ṽi (δ) , ṽs (δ) (left
panel) and the effects of perturbing the progressivity of the tax schedule on the optimal inaction
region and on this distribution (right panel). The left panel shows that (both inactive and searching)
individuals with higher deviation but the same income are worse off. As in Figure 2, within the
inaction region the value of searching is always strictly higher than, although very close to, the value
of inactivity. The right panel thus shows only the value of inactives ṽi (δ). As the progressivity
decreases (linear versus U.S. tax schedule), the inaction region widens, as discussed above, and the
distribution of utilities adjusts endogenously within the new bands. [Note: more on this: explain
the direction of change.]

Figure 3: Value function conditional on income ṽ (δ) and effects of progressivity p
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4 Aggregation

In this section I analyze the properties of the long-run wage and income distributions obtained by
aggregating the optimal individual policies described in Section 3.
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4.1 Stationary wage distribution

We say that the variable x has a double-Pareto-lognormal distribution (DPLN), or that lnx has a
Normal-Laplace distribution, with parameters

(
r1, r2,m, s

2
)
if its density is given by

fx (x) =
|r1| r2

|r1|+ r2

{
e

1
2
r21s

2−r1mxr1−1Φ

(
lnx−m

s
+ r1s

)
+e

1
2
r22s2−r2mxr2−1Φc

(
lnx−m

s
+ r2s

)}
.

(33)

The double-Pareto-lognormal distribution closely approximates the actual wage and income distri-
butions observed empirically (see, e.g., Reed (2003), Reed and Jorgensen (2004), Toda (2012)). The
following proposition shows that the wage distribution converges to a DPLN stationary distribution:

Proposition 3. The distribution of wages w converges towards a unique stationary distribution
fw (·) which is double-Pareto-lognormal with parameters

(
rρ21,w, r

ρ2
2,w,mw, s

2
w

)
, where rρ21,w, r

ρ2
2,w are

defined in (17) and mw, s
2
w are the mean and variance of the wage distribution at birth fw0 (·).

In particular, the stationary wage distribution fw (·) exhibits power-law behavior in both tails, with
Pareto coefficients on the right and left tail respectively given by

(
rρ21,w, r

ρ2
2,w

)
, that is,

fw (w) ∼
w→0

wr
ρ2
2,w−1, and fw (w) ∼

w→∞
wr

ρ2
1,w−1. (34)

Proof. See Appendix.

The lognormal “bulk” of the wage distribution is inherited from the lognormal density of pro-
ductivities at birth (or entry into the labor force) fw0 (·). The aggregation of the random growth
individual wage processes naturally generates the distribution’s Pareto tails (see, e.g., Nirei and
Souma (2007), Gabaix (2009)), which form one of the most well-known empirical regularities (dis-
covered by Pareto (1896)). The wage process (2) therefore fits both the microeconomic empirical
evidence (see Section 2) and the macroeconomic evidence. The higher the Pareto coefficient (in
absolute value), the thinner the tail, the more equal the distribution. A higher drift µw, a higher
volatility σw of individual income, and a lower death (or retirement) rate ρ2, lead to a more unequal
distribution, i.e., a smaller value of

∣∣∣rρ21,w

∣∣∣.
Note that the frictionless taxable and disposable incomes y∗, c∗ are also log-normally distributed

at birth with respective mean and variance (my, sy) and (mc, sc) (see Appendix) and follow random
growth processes (11) from then on. Hence their corresponding stationary distributions fy∗ , fc∗ are
also double-Pareto lognormal with respective parameters

(
rρ21,y, r

ρ2
2,y,my, s

2
y

)
and

(
rρ21,c, r

ρ2
2,c,mc, s

2
c

)
.

4.2 Stationary income distributions

I now characterize the stationary joint distributions f iln y∗,δ and f
s
ln y∗,δ of frictionless taxable incomes

ln y∗ and labor supply deviations δ for inactive and searching individuals, respectively. Denote by
f1, f2 their partial derivatives with respect to the first and second variables, and f11, f12, f22 their
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second partial derivatives. We have f i = 0 for all δ < δ and δ > δ̄. Moreover, for all ln y∗ ∈ R, all
δ ∈ (δ, δ∗) ∪

(
δ∗, δ̄

)
if f = f i, and all δ ∈ R \

{
δ, δ̄
}
if f = fs, these distributions are the solutions

to the following Kolmogorov-forward (or Fokker-Planck) equations:

0 = − (ρ2 + qIfs) f − µyf1 + µδf2 +
1

2
σ2
yf11 +

1

2
σ2
δf22 − σyσδf12, (35)

where Ifs is equal to one if f = fsln y∗,δ and zero if f = f iln y∗,δ.
The Kolmogorov forward equations (35) have the following interpretation. At a given frictionless

income level ln y∗, the density of individuals with deviation δ /∈
{
δ, δ∗, δ̄

}
is reduced by those who

move away from there, and is increased by those who move to δ from a former deviation δ′ 6= δ,
following either an increase in their wage if δ′ > δ (so that they would now like to work more),
or a decrease in their wage if δ′ < δ. These flows occur both because of the drift µy (second
and third terms of (35)) and the volatility σy (fourth to sixth terms of (35)) of individual incomes
and deviations. Moreover, at any point (ln y∗, δ), the distribution loses mass at rate ρ2 (due to the
movements out of the labor force) plus q for the individuals who are searching (due to the exogenous
adjustment opportunities they receive). In the steady-state, these flows in and out of (ln y∗, δ) must
balance on net and are thus equal to zero. Note that these equations do not hold at δ∗ for f iln y∗,δ,
and at

{
δ, δ̄
}
for fsln y∗,δ, where the inflows from births and from endogenous adjustments produce

kinks in the densities.
The boundary conditions of the partial differential equations (35) are the following. First, the

density functions f iln y∗,δ and f
s
ln y∗,δ are continuous in δ∗ and

{
δ, δ̄
}
respectively: for all u ∈ R,

f i,sln y∗,δ

(
u, δ−

)
= f i,sln y∗,δ

(
u, δ+

)
, for δ ∈

{
δ, δ∗, δ̄

}
. (36)

Second, the boundaries δ and δ̄ are absorbing for f iln y∗,δ, so that there is no mass of inactive
individuals at the edges of the inaction region: for all u ∈ R,

f iln y∗,δ (u, δ) = f iln y∗,δ
(
u, δ̄
)

= 0. (37)

Intuitively, this is because individuals who reach a boundary of their inaction region immediately
start searching and leave the inaction state. Third, the density of searchers in a given job converges
to zero as δ → ±∞: for all u ∈ R,

lim
δ→±∞

fsln y∗,δ

(
u− σy

σδ
δ, δ

)
= 0. (38)

Fourth, total flows in and out of δ, δ∗, δ̄ must balance, which yields three functional equations linking
the density functions f iln y∗,δ and f

s
ln y∗,δ. Letting f̂

x denote the function
(
σy
σδ
fx1 + fx2

)
for x ∈ {i, s},
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these conditions write: for all u ∈ R,

f̂ i
(
u, δ∗+

)
− f̂ i

(
u, δ∗−

)
=

2ρ2

σ2
δ

fln y∗0
(u) +

2q

σ2
δ

fsln y∗ (u) ,

f̂ i
(
u, δ+

)
+ f̂s

(
u, δ+

)
− f̂s

(
u, δ−

)
= 0,

f̂ i
(
u, δ̄−

)
+ f̂s

(
u, δ̄−

)
− f̂s

(
u, δ̄+

)
= 0.

(39)

These equations equate the inflows and outflows of individuals going from one state (inaction,
search, non-participation) into another, following a change in their wage and hence desired hours,
the reception of a new job opportunity, or a “birth”. Finally, a normalizing condition imposing that
the total mass of individuals in the population is equal to one completes the full characterization of
the economy’s steady-state:

ˆ ∞
−∞

ˆ ∞
−∞

[
f iln y∗,δ (u, δ) + fsln y∗,δ (u, δ)

]
dudδ = 1. (40)

In the Appendix I show that the densities of inactive and searching individuals can be expressed
analytically in terms of a single function f̃ (·) which satisfies a simple integral equation, allowing us
to easily compute numerically the steady-state of the economy.

Proposition 4. The unique stationary distributions f iln y∗,δ and fsln y∗,δ of inactive and searching
individuals are fully characterized by equations (36), (37), (38), (39), and (40). The stationary
distributions of taxable and disposable incomes fy, fc have Pareto right and left tails with respective
Pareto coefficients

(
rρ21,y, r

ρ2
2,y

)
and

(
rρ21,c, r

ρ2
2,c

)
.

Proof. See Appendix.

The Pareto coefficients of the tails of the taxable and disposable income distributions are given
in closed form, as a function of the exogenous Pareto coefficients of the wage distribution, by{

rρ21,y, r
ρ2
2,y

}
=

1 + pε

1 + ε

{
rρ21,w, r

ρ2
2,w

}
, and

{
rρ21,c, r

ρ2
2,c

}
=

1

1− p
1 + pε

1 + ε

{
rρ21,w, r

ρ2
2,w

}
. (41)

These expressions show that the elasticity of labor income ε and the parameter p of the tax system
determine the amount by which inequality in exogenous productivity or wage translates into income
inequality. In particular, the distribution of desired taxable income is more unequal (thicker tail)
than the wage distribution, because wage differences are amplified by the positive labor supply
elasticity ε. This is consistent with the findings of Krueger, Perri, Pistaferri and Violante (2009).
Importantly, the Pareto coefficients (41) of the income distributions are endogenous to tax policy
and obtained in closed-form as a function of the progressivity p of the tax schedule.

An increase in the parameter τ of the tax schedule does not affect the Pareto coefficients. This
is because these coefficients depend on the ratio between the average income above a threshold ȳ,
and the threshold ȳ (as ȳ → ∞). Changing the scaling parameter τ has the same multiplicative
effect on the incomes of each individual, so that the ratio is unaffected. Note also that the Pareto
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coefficients satisfy rρ21,y ≤ rρ21,c < rρ21,w if p ≥ 0 and rρ21,c ≤ rρ21,y < rρ21,w if p ≤ 0, where the inequalities
are strict if p 6= 0. The distribution of frictionless disposable income is less unequal (thinner tail)
than the distribution of desired taxable income if and only if the tax schedule is progressive, p > 0.

The Pareto coefficients of the income distributions are increasing in the progressivity p, i.e., both
the before-tax and the after-tax income distributions have a thinner tail (are less unequal) when
the tax schedule is more progressive. Specifically, we find:

d ln
{∣∣∣rρ21,y

∣∣∣ , rρ22,y

}
dp

=
ε

1 + pε
, and

d ln
{∣∣∣rρ21,c

∣∣∣ , rρ22,c

}
dp

=
1

1− p
1 + ε

1 + pε
. (42)

Thus the effect of progressivity on the tails of the after-tax income distribution is stronger than on
those of the pre-tax income distribution. That is, a more progressive tax schedule reduces inequality
in after-tax incomes more than it reduces inequality in pre-tax incomes.

Figure 4 summarizes these results graphically and show the stationary distributions of wages,
incomes and deviations in the economy, as well as the effects of taxes on the income distributions.
The top two graphs of Figure 4 show the distribution of taxable incomes (left panel) and disposable
incomes (right panel), and their change when the tax schedule goes from the U.S. rate of progressivity
to a linear tax rate. The mean and variance of both distributions are lower when p is higher; the
tails are thinner, and to a much larger extent in the case of the disposable income distribution
than the taxable income distribution. The bottom left panel of Figure 4 shows the wage, taxable
income and disposable income distributions in log-log scale. This representation illustrates clearly
the fact that those distributions all have left and right Pareto tails, corresponding to the asymptotic
straight lines whose slopes are equal to the Pareto coefficients. The smaller the slopes in absolute
value, the more unequal the distribution: the wage (or productivity) distribution is the most equal,
the taxable income distribution is the most unequal (due to the positive labor supply elasticity);
the inequality of disposable incomes is smaller than that of taxable incomes and closer to that of
wages due to the positive rate of progressivity. Finally, the bottom right panel of Figure 4 shows
the stationary distributions of deviations δ conditional on several given income levels y for inactive
individuals, along with the boundaries of the optimal inaction region

{
δ, δ∗, δ̄

}
.
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Figure 4: Stationary income distributions
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Optimal policy

5 Optimal taxation

In this section, I analyze the effects of taxes on long-run social welfare (comparative statics across
steady-states) in order to characterize the optimal tax schedule, i.e., the solution to the government’s
problem (8,9). Before deriving these formulas, I formally define and characterize two sets of key
variables for the analysis of tax policy: the labor income elasticities and the marginal social welfare
weights.

5.1 Labor income elasticities

I define the intensive margin labor income elasticity, η (y∗), as the elasticity of an individual’s
frictionless (or desired) taxable income y∗ with respect to the net of tax rate. We saw in Section
3 that this elasticity is constant accross individuals and is given by the (normalized) structural
elasticity parameter ε.
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Definition 1. The (frictionless) intensive margin labor income elasticity is defined as

η (y∗) ≡ d ln y∗

d ln (1− T ′ (y∗))
=

ε

1 + pε
, ∀y∗ ∈ R+, (43)

where the second equality follows from equations (24,25).

In a frictionless world (κ = 0), this variable η (y) would be equal to the response of the in-
dividual’s true income to a change in the marginal tax rates. It could be estimated empirically
by observing the magnitude of the increase in income following an increase in statutory net-of-tax
rates (see, e.g., Gruber and Saez (2002)). However, when the adjustment of labor supply in re-
sponse to changes in the marginal tax rates is frictional (κ > 0), the individual elasticity of actual
income is either equal to zero, if the agent has not yet adjusted her income in response to the tax
change (short-run elasticity), or infinite, since upon adjustment a small tax increase induces a dis-
crete jump in income. In this environment we can nevertheless define and observe empirically the
long-run elasticity of aggregate labor income with respect to a uniform change in net-of-tax rates.
Formally,

Definition 2. The macro labor income elasticity H is defined as

H ≡
d ln

[´∞
0 yfy (y) dy

]
d ln (1− τ)

, (44)

where fy (·) is the stationary income distribution given the tax schedule {τ, p}.

The following proposition provides a neutrality result that characterizes the relationship between
the micro and the macro elasticities in the model:

Proposition 5. The micro (intensive margin) elasticity and the macro elasticity of labor income
with respect to the marginal tax rates are equal, that is,

H = η (y) =
ε

1 + pε
, ∀y ∈ R+. (45)

Proof. See Appendix.

Proposition 5 shows that in the frictionless model, the long-run aggregate labor income elasticity
H is equal to the elasticity of individual frictionless income y∗, even though there is always a non-
degenerate distribution of individuals with actual incomes y for a given level of frictionless income
y∗ in the steady-state of the model. Intuitively, in the long-run, individuals have had time to fully
adjust their behavior to the new tax schedule, and even though in general they do not actually
earn their desired income y∗ at any given moment in time, the errors wash out in the aggregate
and the magnitude of the aggregate response to the tax change is driven by the structural elasticity
parameter ε. In other words, in the case of a uniform increase in the net-of-tax rates (i.e., a change in
the parameter τ), the economy behaves in the long-run as if there were a representative (frictionless)
agent at each income level. Note finally that the result of Proposition 5 allows us to use the effect of
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tax changes on long-run aggregate income to estimate empirically the structural individual elasticity
parameter ε when individual labor supply is lumpy.

Next, I define three extensive margin labor income elasticity concepts as the effects on the income
distribution at a given level y of changes in the individual adjustment triggers and target

{
δ, δ∗, δ̄

}
,

keeping the other parameters of the models (in particular, µδ, σδ) unchanged:

Definition 3. The extensive margin labor income elasticities Ξ (y), Ξ∗ (y), and Ξ̄ (y) are defined
as

Ξ (y) ≡ ∂ ln fy (y)

∂ ln |δ|
, Ξ∗ (y) ≡ ∂ ln fy (y)

∂ ln |δ∗|
, and Ξ̄ (y) ≡ ∂ ln fy (y)

∂ ln δ̄
, (46)

where fy (y) is the stationary density of incomes given the individual adjustment policy
{
δ, δ∗, δ̄

}
.

These elasticities capture the effects on the number of employed workers at income y of per-
centage variations in the inaction thresholds. While the standard intensive margin elasticity of
Definition 1 affects the purely frictionless part of labor income, the extensive margin elasticities
affect the purely frictional part of labor income through the endogenous option value of adjusting
labor supply. The key difference between these extensive margin elasticities and those typically
defined in the literature (e.g., Saez (2002), Jacquet, Lehmann and Van der Linden (2013)) is that
in Definition 3 the income thresholds are not exogenously given as in the case of a 0-1 pure partici-
pation decision, but instead are endogenously and optimally generated by the individual’s frictional
labor supply.

Finally, recall that the behavior of frictionless income y∗ is completely characterized by four
parameters Y = {µy, σy,my, sy}, namely the mean and standard deviation of its distribution at
birth, and the drift and the volatility of its process. These four parameters all have the same
elasticity with respect to p, namely, − ε

1+pε . Suppose that the parameters describing frictionless
incomes y∗ are perturbed in the same proportion, i.e. d lnµy = d lnσy = d lnmy = d ln sy ≡ d lnY,
while the parameters D =

{
µδ, σδ, δ, δ

∗, δ̄
}
describing the deviations δ remain unchanged, that is

dµδ = dσδ = dδ = dδ∗ = dδ̄ ≡ 0. The relative margin labor income elasticity ξ (y) is defined as the
effect on the density of income y of this perturbation:

Definition 4. The relative margin labor income elasticity ξ (y) is defined as

ξ (y) ≡ 1− Fy (y)

yfy (y)

∂ ln (1− Fy (y))

∂ lnY

∣∣∣∣
D

= −
ˆ ∞
−∞

δfδ|y (δ |y ) dδ, (47)

where ∂
∂ lnY

∣∣
D is a shorthand notation to denote the effect of an infinitesimal proportional change

in µy, σy,my, sy, keeping µδ, σδ, δ, δ∗, δ̄ constant, and where the second equality is proved in the
Appendix.

Intuitively, we have ξ (y) = −
(
∂ ln(1−Fy)
∂ ln y

)−1 ∂ ln(1−Fy)
∂ lnY = ∂ ln y

∂ lnY , which shows that ξ (y) can be
interpreted as the elasticity of income with respect to a change in the parameters driving frictionless
income, relative to those driving deviations. The second equality in (47) shows that the elasticity
ξ (y) at income y is simply given by the average deviation E [δ |y ] within the population earning
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income y. Thus, while the intensive and extensive margin elasticities affect the purely frictionless
and frictional parts of labor income, the relative margin elasticity affects income through a relative
change in the processes driving frictionless incomes and deviations (or hours).

5.2 Marginal social welfare weights

The social welfare effects of taxation can be characterized using the notion of marginal social welfare
weights (see, e.g., Saez and Stantcheva (2014) for a recent exposition). Intuitively, in a standard
frictionless static model, the welfare weight at income y is defined as the increase in social welfare,
expressed in terms of public revenue, of distributing uniformly among individuals who earn income
y an additional unit of consumption. With a utilitarian social objective, this welfare weight is then
equal to the individual’s marginal utility of consumption normalized by the shadow value of public
funds, λ−1c−γ0 .7 In this section I define formally and generalize the notions of marginal social welfare
weights to the dynamic and frictional model.

First consider, in the frictionless model, the effect of giving an individual with income y an
additional marginal consumption stream {ĉt}t≥0 which evolves stochastically over time according
to the same process (µc, σc) as her frictionless disposable income c∗t . The marginal social welfare
weight at income y, ϕ∗ (y), is defined as the change in the present discounted value of her utility
(and hence, in utilitarian social welfare) due to this additional consumption stream. It is given by:

ϕ∗ (y) ≡ 1

λ∗
d

dĉ0

(
E0

[ˆ ∞
0

e−(ρ+β)tu

(
c∗t + ĉt −

1

1 + 1/ε
(h∗t )

1+1/ε

)
dt

∣∣∣∣ y0 = y

])
ĉ0=0

=
1

λ∗

(
1+pε
1+ε

)−γ (
1−τ
1−p

)−γ
y−γ(1−p)

ρ1 + ρ2 − (1− γ)µc − 1
2 (1− γ)2 σ2

c

,

(48)

where λ∗ is the marginal value of public funds in the frictionless model. Now, in the frictional model,
consider the effect on the welfare of an individual with current income y and current deviation δ of
giving her an additional marginal consumption stream {ĉt}t≥0 as described above. These additional
units of consumption do not have the same effect on individuals who earn the same income y but
have different deviations δ (i.e., different wages) or employment states x ∈ {i, s}: the change in
the individual (y, δ, x)’s utility is the same as if she earned income y in the frictionless model,
times the correction factor ṽx (δ) defined in (31). Since the income tax system treats all individuals
with the same income identically, we define the static intensive marginal social welfare weight ϕ (y)

as the long-run social value of distributing the additional stream {ĉt}t≥0 uniformly among all the
individuals who earn the same income y, independently of their deviations δ or their employment
state x. That is,

Definition 5. The static intensive marginal social welfare weight ϕ (y) is defined as

ϕ (y) =
λ∗ϕ∗ (y)

λ
×
ˆ ∞
−∞

ṽ (y, δ) fδ|y (δ |y ) dδ, (49)

7In particular, note that these weights are endogenous.
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where ϕ∗ (y) is the corresponding frictionless weight defined in equation (48), ṽ (y, δ) is defined in
equation (32), and fδ|y = f iδ|y + fsδ|y is the total density of deviations conditional on an actual
income y.

Second, in the dynamic model a permanent change in progressivity affects not only the levels
of current and future consumption, but also the growth rate of (the utility from) consumption
(1− γ)µc+ 1

2 (1− γ)2 σ2
c through the drift and volatility of the consumption process, and hence the

discount rate ρ = ρ + β − (1− γ)µc − 1
2 (1− γ)2 σ2

c that individuals use to compute their present
discounted value of utility (equation (29)). I thus define the dynamic intensive marginal social
welfare weight ψ (y) as the effect of a percentage decrease in the discount rate ρ on the individual’s
welfare. In the frictionless model, this is given by

ψ∗ (y) = − 1

λ∗
∂V∗ (y)

∂ lnρ
=

1

λ∗

1
1−γ

(
1+pε
1+ε

1−τ
1−py

1−p
)1−γ

ρ1 + ρ2 − (1− γ)µc − 1
2 (1− γ)2 σ2

c

. (50)

Similarly, in the frictional model I define:

Definition 6. The dynamic intensive marginal social welfare weight ψ (y) is defined as

ψ (y) =
λ∗ψ∗ (y)

λ
×
ˆ ∞
−∞

ṽ (y, δ) fδ|y (δ |y ) dδ, (51)

where ψ∗ (y) is the corresponding frictionless weight given by equation (48).

Third, paralleling our discussion leading to Definition 3, I define the extensive marginal social
welfare weights Ωi (y) as the effects of changes in the labor supply adjustment policy

{
δ, δ∗, δ̄

}
on

the welfare at the income level y:

Definition 7. The extensive marginal social welfare weights {Ωi (y)}1≤i≤3 =
{
Ω (y) ,Ω∗ (y) , Ω̄ (y)

}
and Ωṽ (y) are defined as

Ωi (y) ≡ 1

λ

ˆ ∞
−∞

∂ ln fy,δ (y, δ)

∂ ln |δi|
Ṽ (y, δ) fδ|y (δ |y ) dδ, ∀i ∈ {1, 2, 3} ,

and Ωṽ (y) ≡ 1

λ

ˆ ∞
−∞

(
∂ ln ṽ (y, δ)

∂p
− ∂ ln ṽ (y, δ)

∂ ln y

∂ ln y

∂p

)
Ṽ (y, δ) fδ|y (δ |y ) dδ,

(52)

where {δi}1≤i≤3 ≡
{
δ, δ∗, δ̄

}
, Ṽ (y, δ) is defined in equation (32), and ∂ ln y

∂p is given by (24).

Note that there are four, not three, extensive margin social welfare weights. As in the context of
Definition 3, the first three, {Ωi (y)}1≤i≤3 capture the effects on welfare of individuals with income
y of perturbing the three adjustment thresholds {δi}1≤i≤3. The fourth one, Ωṽ (y), captures the
endogenous change in the equilibrium distribution of utilities ṽ (y, δ) within the income group y in
response to a change in progressivity. In particular, in the limit as q → ∞ with κ > 0, that is, as
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the model converges towards the two-sided (S, s) environment, this welfare weight reduces to

Ωṽ (y) ≡ 1

λ

∂E [ṽ (δ) |y ]

∂p
V∗ (y) ,

and thus computes directly the change in the average welfare within income y due to a change in
progressivity.

Fourth, paralleling our discussion leading to Definition 4, I define the relative marginal social
welfare weights ω (y) as the effect on the individual’s welfare of a proportional change in all the
variables driving frictionless income, Y = {µy, σy,my, sy}, relative to those driving deviations or
hours, D =

{
µδ, σδ, δ, δ

∗, δ̄
}
. That is,

Definition 8. The relative marginal social welfare weight ω (y) is defined as

ω (y) ≡ − 1

λ

ˆ ∞
−∞
Ṽ (y, δ)

∂ ln fy,δ (y, δ)

∂ lnY

∣∣∣∣
D
fδ|y (δ |y ) dδ =

1

λ

ˆ ∞
−∞

δ
∂Ṽ (y, δ)

∂ ln y
fδ|y (δ |y ) dδ,

where Ṽ (y, δ) is defined in equation (32), the notation ∂
∂Y
∣∣
D is as in Definition 4, and the second

equality is proved in the Appendix.

5.3 Optimal tax schedule

I now characterize analytically the optimal tax schedule in terms of the labor income elasticities
and social marginal welfare weights defined in Sections 5.1 and 5.2.

Marginal value of public funds. I start by deriving the first equation characterizing the optimal
tax schedule, which pins down the marginal value of public funds λ, that is, the Lagrange multiplier
associated with the constraint (9). The marginal value of public funds λ is found by imposing that
a perturbation of the parameter τ by dτ has no first-order effect on social welfare. Intuitively, λ is
equal to the social value of redistributing a dollar of tax revenue through an decrease in τ by dτ ,
i.e., through a uniform increase in the net of tax rates.

Proposition 6. The optimal tax schedule {τ, p} satisfies

0 = 1−
ˆ ∞

0
tτ (y)ϕ (y)

fy (y)

Etτ
dy −

ˆ ∞
0

T ′ (y)

[
t′τ (y) y

1− T ′ (y)
η (y)

]
fy (y)

Etτ
dy, (53)

where tτ (y) = 1
1−py

1−p, fy (y) is the stationary density of incomes given the tax schedule {τ, p},
and Etτ =

´∞
0 tτ (y) fy (y) dy. In the frictionless model, the same equation characterizes the opti-

mal tax schedule, where the marginal social welfare weights ϕ (y) are replaced by their frictionless
counterparts ϕ∗ (y).

Proof. See Appendix.

The interpretation of equation (53) is as follows. It imposes that at the optimum tax schedule,
a perturbation dτ of the marginal tax rates should have no first-order effects on social welfare. The
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first and third terms on the right hand side measure the actual change in government tax revenue of
a one-dollar statutory increase in taxes, that is, taking into account the induced change in individual
behavior. The additional tax liability levied at the income level y after the tax reform is implemented
is given, to a first order in dτ → 0, by tτ (y) dτ , and the marginal tax rate changes by t′τ (y) dτ .
The first term in the right hand side of (53) is the mechanical effect of the perturbation, i.e., the
statutory increase in government revenue absent behavioral responses. It is equal to E [tτ (y) dτ ],
and we normalize the magnitude of the perturbation so that this mechanical effect is equal to one
(dollar). The third term in the right hand side of (53) is the behavioral effect of the perturbation.
The increase dT ′ ≡ t′τ (y) dτ in the marginal tax rate of an individual with income y induces her
to decrease her taxable income by y

1−T ′(y)η (y) dT ′. This behavioral income response generates a
loss in government revenue proportional to the marginal tax rate T ′ (y). Summing over individuals
using the density of incomes fy (·) yields the third term in equation (53). Finally, the second term
in (53) is the welfare effect, expressed in monetary units, of the perturbation. An increase in the
tax liability of individual y by dT ≡ tτ (y) dτ directly reduces her utility and hence social welfare
by ϕ (y)× dT , by definition of the marginal social welfare weights (48).

This equation (53) has a structure that is identical to those of the “sufficient statistic formulas”
derived by, e.g., Saez (2001), Jacquet and Lehmann (2015) and Golosov, Tsyvinski and Werquin
(2014), to characterize the optimal tax systems in frictionless models. Note in particular that all the
variables other than the marginal social welfare weights in equation (53) (elasticity, tax schedule,
income distribution) are empirically observable.8

Proposition 6 extends the result of Proposition 5 by showing that the long-run effects on social
welfare (and not only on aggregate income) of a uniform change in marginal tax rates are correctly
computed by assuming that the economy is frictionless and thus has a representative agent at each
income level y: in particular, the relevant elasticity is the individual frictionless income elasticity
η (y) defined in (43), even though individual labor supply is lumpy. There is one difference, however,
between the frictionless and the frictional versions of the optimal tax formula (53): the frictional
marginal social welfare weights ϕ (y) must be computed by taking into account the non-degenerate
distribution of utilities E [ṽ (y, δ) |y ] within income groups. In general this correction term varies
with income y, so that the schedule of frictional welfare weights is not homothetic to the schedule
of frictionless weights and the effective redistributive tastes of the government have to be adjusted
relative to a model with a representative agent for each income.

Optimal rate of progressivity. I now characterize the optimal tax schedule in the frictionless
and the frictional models. The optimum is such that a perturbation of the rate of progressivity p by
dp→ 0 has no first-order effects on social welfare. The next proposition gives the main theoretical
result of the paper:

8Note however that these variables are endogenous to the tax system and should be evaluated at the optimum. The
values estimated given the current tax code (in particular, the current U.S. income distribution) can be nevertheless
used to quantify the welfare effects of local tax reforms given by the right hand sides of equations (53) and (54,55).
See Golosov, Tsyvinski and Werquin (2014).
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Proposition 7. In the frictionless model, the optimal tax schedule {τ, p} is fully characterized by
(9), (53), and

0 = 1−
ˆ ∞

0

[
tp (y)ϕ∗ (y) +

d lnρ

dp
ψ∗ (y)

]
fy (y)

Etp
dy −

ˆ ∞
0

T ′ (y)

[
yt′p (y)

1− T ′ (y)
η (y)

]
fy (y)

Etp
dy,

(54)
where tp (y) =

(
ln y − 1

1−p

)
1−τ
1−py

1−p, fy (y) is the stationary density of incomes given the tax sched-
ule {τ, p}, and Etp ≡

´∞
0 tp (y) fy (y) dy. In the frictional model, the optimal long-run tax schedule

is given by (9), (53), and

0 = 1−
ˆ ∞

0

[
tpϕ+

d lnρ

dp
ψ +

d ln
σy
|σδ|

dp
ω

]
dFy (y)

Etp
+

ˆ ∞
0

 3∑
i=1

d ln |δi||σδ|

dp
Ωi + Ωṽ

 dFy (y)

Etp

−
ˆ ∞

0
T ′ (y)

[
yt′p

1− T ′
η +

d ln
σy
|σδ|

dp
yξ

]
dFy (y)

Etp
+

ˆ ∞
0

T (y)

 3∑
i=1

d ln |δi||σδ|

dp
Ξi

 dFy (y)

Etp
,

(55)

where I denote {δi}1≤i≤3 =
{
δ, δ∗, δ̄

}
, {Ξi}1≤i≤3 =

{
Ξ (y) ,Ξ∗ (y) , Ξ̄ (y)

}
, and {Ωi}1≤i≤3 ={

Ω (y) ,Ω∗ (y) , Ω̄ (y)
}
. In particular, the extensive margin effects due to the option value of adjust-

ing hours can in general not be ignored in the characterization of the optimal tax schedule unless
the frequency of individual labor supply adjustments, or the average duration of a job, is unaffected
by tax policy.

Proof. See Appendix.

The first result of Proposition 7, equation (54), characterizes the optimal tax schedule in the
frictionless model. Its interpretation is similar as that of equation (53), with one important differ-
ence. It equates the first-order welfare effects of a perturbation dp of the optimal tax schedule {τ, p}
to zero. The tax reform induces a change in the tax liability levied at the income level y given, to
a first order in dp→ 0, by tp (y) dp, and the marginal tax rate changes by t′p (y) dp. The first term
in the right hand side of (54) is the mechanical effect of the perturbation, the third term is the
behavioral effect (it measures the actual change in government tax revenue of a one-dollar statutory
increase in taxes through an increase in p), and the second term is the welfare effect (expressed in
monetary units). Importantly, the welfare effect of an increase in progressivity depends on a new
welfare weight, ψ∗ (y), which is absent from expression (53) and of the typical optimal tax formulas
derived in static models (Diamond (1998), Saez (2001)). This is because progressivity affects the
growth rate of consumption and hence the discount rate ρ used to compute the present value of
utility (hence the term d lnρ

dp multiplying ψ∗ (y)). This implies that the standard static Mirrlees
model, often loosely argued to characterize long-run optimal taxes, fails to capture the true welfare
effects of progressivity if the “long-run” is not properly modeled as the steady-state of a dynamic
economy. I discuss the quantitative importance of this effect in Section 6.

The second result of Proposition 7 is the derivation of equation (55) which characterizes the
optimal long-run tax schedule in the frictional model. This expression shows that in theory, the
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frictionless formula does not correctly account for all of the long-run effects of taxes when individual
labor supply is subject to frictions – beyond the use of the frictional rather than frictionless welfare
weights ϕ (y) ,ψ (y). There are new long-run effects of progressivity both on welfare and on revenue.

The first and least important difference is the presence of the relative welfare weights ω (y)

and the relative labor income elasticities ξ (y) in the standard welfare and behavioral effects of the
perturbation. These effects appear because a change in progressivity affects the relative values of the
frictionless income variables Y (elasticity d lnσy

dp ) and the deviation (or hour) variables D (elasticity
d lnσδ
dp ). We saw in Definitions 4 and 8 that this decoupling affects the long-run density of incomes.9

The second, and most important, difference between the frictionless and frictional formulas (54)
and (55) is the presence in the latter of a new welfare effect containing the extensive margin social
welfare weights Ω (y), Ω∗ (y), Ω̄ (y), Ωṽ (y), and a new behavioral (revenue) effect containing the
extensive margin labor income elasticities Ξ (y), Ξ∗ (y), Ξ̄ (y). We saw in Definitions 3 and 7 that
a change in the optimal individual impulse control policy, i.e., in the option value of adjusting labor
supply, affects the density of incomes and the welfare at each income level y.

Specifically, Proposition 7 shows that these extensive margin effects Ξi on revenue cannot be
ignored theoretically unless the frequency of labor supply adjustments is unaffected by tax policy –
that is, unless an increase in the progressivity p of the tax code induces an equal reduction in the
volatility of deviations and on the size of the individual inaction region, i.e.,

d ln
{
|δ| , |δ∗| , δ̄

}
dp

=
d ln |σδ|
dp

= − 1

1− p
1 + ε

1 + pε
dp. (56)

This condition is satisfied in particular in the Calvo limit as κ→ 0 and q > 0 (see Appendix for
details), where all labor supply adjustments are driven by labor demand: in this case the frequency
of adjustment is exogenous to taxes by construction. It is also satisfied in the case of a uniform
change in marginal tax rates, because τ affects neither the volatility nor the optimal inaction region;
this explains why the extensive margin terms do not appear in the formulas of Propositions 5 and
6. In general, however, condition (56) is violated: as we already saw in Section 3, an increase
in progressivity both reduces the volatility of deviation and narrows the inaction region, but the
two effects do not exactly cancel out: the volatility effect typically dominates the size-of-the-bands
effect, so that a higher rate of progressivity strictly reduces the frequency of adjustment. It follows
that as soon as the option value of adjusting labor supply is endogenous, the extensive margin terms
are non-zero and the effects of taxes on government revenue are not fully described by the intensive
margin labor supply elasticity η (y). Note that while the intensive margin elasticities are multiplied
by the marginal tax rate T ′ (y) to obtain the behavioral (revenue) effect of the tax change, because
an infinitesimal change in income dy reduces tax revenue by T ′ (y) dy, the three extensive margin
terms (corresponding to the three variables δ, δ∗, δ̄ of discrete adjustment), on the other hand, are
multiplied by the average tax rate T (y).

9Note that if the fixed adjustment cost were on income y rather than hours h, the volatility of deviations σδ would
always be equal to (minus) that of frictionless incomes σy, and these two terms would disappear from the optimal
tax formula (55). See the earlier version of this paper (Chapter 1 in Werquin (2015)).
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Note moreover that even when condition (56) holds, so that the extensive margin effects do not
matter for efficiency, the fact that labor supply is frictional implies that progressivity has non-zero
extensive margin welfare effects, captured by the marginal social welfare weights Ω4 (y). From
equation (7), we obtain that these weights are in general non-zero, unless in addition to (56) we
have ˆ ∞

−∞

[
∂ṽ (y, δ)

∂p
− ε

1 + pε
ln y

∂ṽ (y, δ)

∂ ln y

]
fδ|y (δ |y ) dδ = 0.

In the limit as q → ∞ with κ > 0, i.e. as the model converges towards the two-sided (S, s)

environment, this condition reduces to ∂E[ṽ(δ)|y ]
∂p = 0, and thus holds if the average utility within

the population of income y is exogenous to taxes. If this condition is not satisfied (as is generally
the case, see e.g. the right panel of Figure 3), then progressivity has an additional effect on social
welfare by affecting the steady-state distribution of heterogeneous utilities within income groups.
I discuss the quantitative magnitude of these novel effects in a calibrated version of the model in
Section 6.

Extensive margin effects in optimal taxation models are also obtained by Saez (2002) and
Jacquet, Lehmann and Van der Linden (2013), who derive optimal tax formulas in static fric-
tionless models with a 0-1 decision whether to participate in the labor force. Here, I generalize their
insights by deriving a formula where the extensive margins of adjustment occur conditional on par-
ticipation and are generated endogenously by the fixed cost of adjusting labor supply. Proposition
7 shows that these extensive margin effects matter theoretically even in the long-run, even though
all individuals have by then had time to take into account the new tax schedule in their optimal
labor supply choices. Thus, the standard Mirrlees taxation framework with labor supply responses
on the intensive margin (which has often been criticized precisely for not modeling convincingly the
individual labor supply behavior) does not adequately capture the full effects of taxation, even in
the long-run. This is because taxes affect the option value of adjusting the actual labor supply, and
not only the optimal desired labor supply. This endogenous extensive margin is important, as the
empirical literature repeatedly found that the labor supply adjustments in response to productivity,
wage or tax changes are frictional as modeled in this paper, whether the fixed cost represents the
search cost of switching jobs (hours constraints within a firm: Altonji and Paxson (1992), Chetty,
Friedman, Olsen and Pistaferri (2011)) or cognitive costs (Gelber, Jones and Sacks (2013)). It
would be straightforward to add explicitly a participation margin into the model (see for example
Alvarez, Borovickova and Shimer (2015)). However, empirically much of the difference in labor
supply across countries with different tax regimes is driven by hours worked conditional on em-
ployment (see Davis and Henrekson (2005), and Chetty, Guren, Manoli and Weber (2011)). Note
moreover that this option value effect would appear in a similar fashion in a labor demand model
à la Mortensen and Pissarides (1994) with endogenous job destruction shocks: the job destruction
cutoff would similarly respond endogenously to the volatility of idiosyncratic shocks, and hence to
the progressivity of taxes. (See Davis, Faberman, Haltiwanger, Jarmin and Miranda (2010) for an
emprical evaluation of this mechanism.) Here, I show that optimal taxes depend on the difference
between these volatility and cutoff effects, i.e. on the frequency of adjustments, and induce further
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welfare effects due to the endogenous adjustment of welfare heterogeneity within income groups, in
a model where there is in addition an intensive margin dimension of labor supply (work intensity
or hours).

Finally, the results I derive in this paper apply much more broadly than to this taxation theory
framework. The key finding of this paper is that non-linear policies interact with fixed adjustment
costs to yield real effects even in the long-run. This is in contrast with most of the literature with
fixed costs at the micro level, where typically the aggregate economy behaves in the long-run as a
frictionless (representative agent) model. For instance, monetary policy generally is neutral in the
long-run, and even in the short-run in specific settings as in Caplin and Spulber (1987). Similarly, in
the public finance context, Rogerson (1988) shows in a model of lotteries that the aggregate economy
can behave as a representative agent with a large labor supply elasticity even though the individual
(micro) elasticity is equal to zero. Chetty, Friedman, Olsen and Pistaferri (2011) reach a similar
conclusion in a model with fixed costs. I show in this paper that this insight is correct only if we
consider linear policies, which do not affect the option value of adjusting labor supply (Propositions
5 and 6). On the other hand, the curvature of policy matters in the aggregate (for both efficiency
and welfare) even in the long-run when adjustment at the individual level is frictional. This insight
should apply generally to models with fixed costs and non-linear policy tools, e.g. to the investment
literature.

6 Quantitative analysis

In this section I calibrate the model analyzed in the previous sections, and evaluate quantitatively the
novel effects highlighted in Proposition 7. I compute the magnitudes of the marginal social welfare
weights and labor income elasticities around the current U.S. tax code in a calibrated version of the
model, and finally compute the optimal tax schedules.

6.1 Calibration

I calibrate the marginal tax rates and the rate of progressivity (τ, p) of the tax schedule in the
U.S. using the empirical estimates from PSID data of Heathcote, Storesletten, and Violante (2014):
τ = −3 and p = 0.151. This value of p implies that earning twice as high an income leads to a
15.1% decrease in the net-of-tax rate (see equation (4)). These parameters yield a value for total
U.S. government revenue R̄ = $2.33tn (for a population of 320mn) which I keep constant throughout
the numerical analysis, so that whenever I vary the progressivity p I adjust τ in order to keep the
revenue R̄ unchanged.

The theoretical analysis above requires the coefficient of risk aversion γ to be strictly below 1, I
take γ = 0.9. There is substantial controversy in the literature about the value of the taxable income
elasticity ε. the micro literature typically finds values lower than 0.3, while the macro literature
and some structural estimates find it to be closer to 1 (see Saez, Slemrod, and Giertz (2012), and
Keane and Rogerson (2012), for an overview of the two strands). In a frictionless environment
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Gruber and Saez (2002) find an elasticity between 0.4 and 0.6, while in a context closely related
to this paper’s model, Chetty (2012) estimates the structural parameter (Hicksian intensive margin
elasticity) ε = 0.33 using a meta analysis of micro and macro studies and allowing for adjustment
frictions to reconcile the wide range of estimates. In my baseline calibration I thus take ε = 0.33.
I discuss below the effects of varying the preference parameters γ, ε on the results, in particular, I
show how the results are affected for ε = 1.

I calibrate the Pareto coefficients of the observed U.S. income distribution, rρ2y,1 and rρ2y,2, given

the parameters of the U.S. tax schedule. The Pareto coefficient of the right tail,
∣∣∣rρ2y,1∣∣∣, is well known:

it varies around 2 and has been decreasing (the tail of the distribution has become thicker, i.e. more
unequal) in the past few decades. The coefficient of the left tail has been estimated by, e.g., Reed
(2003), Reed and Jorgensen (2004), Toda (2012). I take

(
rρ2y,1, r

ρ2
y,2

)
= (−1.9, 1.4).

The mean my and variance s2
y of the lognormal “bulk” of the frictionless income distribution are

calibrated using the mean and variance of the observed U.S. distribution of log-incomes.10 Using
E [ln y] = 10.3 and V [ln y] = 1 I obtain (my, sy) = (10.46, 0.43).

There is a large literature estimating log-income dynamics that follow a geometric random walk,
that is equation (2) without the jumps, see e.g. Meghir and Pistaferri (2004, 2011). The volatility
of idiosyncratic wage risk σ2

y in my model corresponds to the variance of the permanent component
of the individual log-income process in this literature. I calibrate σ2

y = 0.01 (see also Jones and Kim
(2014), for an estimate in a model similar to mine and further references to the empirical literature).
The jump term in (2) can be calibrated from Guvenen, Karahan, Ozkan and Song (2014), who show
that the distribution of earnings growth rates follow double-Pareto distributions fν with coefficients
2 and 1.4 for the right and left tails, respectively. [Note: the simulations below do not have the
jumps, updated computations coming soon.]

Next, note that the cross-sectional income distribution in the economy, specifically the values
of the two Pareto coefficients at the tails, allows us to infer information about the time series of
individual income, since these Pareto tails are generated by the underlying random growth process
for income. We have

rρ2y,1 + rρ2y,2 =
2µy
σ2
y

, and rρ2y,1r
ρ2
y,2 = −2ρ2

σ2
y

,

which pin down the drift µy and the death rate ρ2. Note that this leads to a negative drift of
income µy, but the growth rate µy + 1

2σ
2
y is strictly positive. I take a discount rate ρ1 so that

(1 + ρ1 + ρ2)−1 = 0.95.
The parameters of the individual wage and consumption processes, (µw, σw) and (µc, σc), and

those of the wage and consumption distributions,
(
mw, sw, r

ρ2
1,w, r

ρ2
2,w

)
and

(
mc, sc, r

ρ2
1,c, r

ρ2
2,c

)
are

then obtained by equations (11) and (41). In the numerical exercises below, I compute the effects
of taxes keeping the parameters of the exogenous wage (or productivity) process (µw, σw,mw, sw)

10In the frictionless model, these coefficients are given in closed form by

E [ln y] = my −
1

ry,1
− 1

ry,2
, and V [ln y] = s2y +

1

r2y,1
+

1

r2y,2
.

34



constant, and use equations (11,41) to infer those of the endogenous income distribution.
The fixed adjustment cost κ and the arrival rate of costless adjustment opportunities q are

calibrated as follows. I take the average duration of searching for a new job, equal to ts = 1 month,
and the average duration of a job (with a given amount of hours) equal to ti + ts = 5 years. [Note:
get better empirical values] Using the explicit expressions

ts = q−1, and ti =
δ̄ − δ
µy

[
δ∗ − δ
δ̄ − δ

− e2δ∗µy/σ2
y − e2δµy/σ2

y

e2δ̄µy/σ2
y − e2δµy/σ2

y

]
,

I obtain the values of κ and q that yield these average durations.
For ε = 0.33, I get κ = 0.0038. This value implies that the cost of searching for a new job

κ is equal to 0.38% of the instantaneous utility g (c∗0), or 1.2% of the average monthly utility

E
´ T

0 e−(ρ1+ρ2)tg (c∗t ) dt = ρ−1
(
1− e−ρT

) (1+pε
1+ε

)1−γ
g (c∗0), that is, 1.2% of the total utility received

during the duration of the (one-month long) search. Despite this relatively small value for the
fixed cost, the corresponding inaction region is large (because the utility loss from choosing hours
suboptimally is second-order, see equation (15)) and given by δ = −0.09 and δ̄ = 0.09, so that an
individual starts searching for a new job when her hours are approximately 9% away from their
optimal value (given her wage). Finally, she then adjusts to δ∗ = −0.001, i.e. 0.1% below her
current optimal value (because of the small drift µδ). For ε = 1, I get κ = 0.015, which implies
that the cost of searching for a new job κ is equal to 5.1% of the average monthly utility. The
corresponding inaction region is given by δ = −0.19 and δ̄ = 0.19, so that an individual starts
searching for a new job when her hours are 20% away from their optimal value.

6.2 Numerical results

I now evaluate the quantitative magnitude of the effects highlighted in Section 5.
I first compute the extensive margin and relative margin labor income elasticities around the

current U.S. tax code, using their Definitions 3 and 4. They are represented in Figure 5 (relative
margin elasticities for ε = 0.33 on the left panel and ε = 1 on the right panel), and Figure 6
(relative margin elasticities for ε = 0.33 on the left panel and ε = 1 on the right panel). Specifically,
Figure 5 shows the extensive margin elasticities Ξ, Ξ̄ weighted by the effect of progressivity on the
adjustment thresholds, i.e., the tax elasticities(

d ln |δ|
dp

− d ln |σδ|
dp

)
Ξ (y) ,

(
d ln

∣∣δ̄∣∣
dp

− d ln |σδ|
dp

)
Ξ̄ (y) ,

and Figure 6 shows the relative margin elasticity ξ weighted by the effect of progressivity on the
the relative process of frictionless and frictional variables, i.e., the tax elasticities(

d lnσy
dp

− d ln |σδ|
dp

)
ξ (y) .

We first observe that the extensive margin elasticities are far from negligible: of the order of 0.1 to
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0.3 in absolute value (compare with the range of values obtained in the meta-analysis of Chetty,
Guren, Manoli and Weber (2011): 0.17-0.26 for the steady-state extensive margin participation
elasticities, and 0.33 for the intensive margin elasticities.

Figure 5: Extensive margin elasticities: ε = 0.33 and ε = 1
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The relative margin elasticities are an order of magnitude smaller than the extensive margin
elasticities.

Figure 6: Relative margin elasticities: ε = 0.33 and ε = 1
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Next, I compute the right hand side of formula (55) where the elasticities, marginal social welfare
weights, tax schedule, and income distribution are estimated in the current U.S. economy, and where
the marginal value of public funds is calculated by the right hand side of equation (53) evaluated at
the current U.S. tax code. I first show in Figure 7 the revenue effects disaggregated by income, that
is, I compute the behavioral effect of the right hand side (55) as functions of income (unweighted
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by the density of incomes)

T ′ (y)

[
yt′p (y)

1− T ′ (y)
η (y) +

d ln
σy
|σδ|

dp
yξ (y)

]
1

Etp
+ T (y)

 3∑
i=1

d ln |δi||σδ|

dp
Ξi (y)

 1

Etp
.

The left and right panels show the revenue effects in the frictionless and the frictional models for
ε = 0.33 and ε = 1, respectively. The schedules of revenue effects are nearly identical at every
income level. There are two reasons for getting such a small effect even though the extensive
margin elasticities are non-negligible. First, note that the elasticities represented in Figure 5 have
an opposite sign, so that the extensive margin terms partially cancel each other out in formula
(55). Second, and most importantly, these elasticities are bounded, because a given change in
progressivity changes the size of every individual’s inaction region and the volatility of their income
process in the same proportion; in fact, the elasticities are roughly constant at the tails, where the
income distribution is approximately Pareto distributed [Note: get a closed form for the elasticities
at the tails]. But on the other hand, an increase in progressivity induces a much larger effect on the
intensive margin (standard elasticity η), because it increases the marginal tax rates that individuals
face by an amount proportional to the log-income t′p (y), which is unbounded. Therefore the option
value effect is dominated by the standard intensive margin effect in the long-run, more so for larger
values of ε.

Figure 7: Revenue effects of tax reforms
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I then show in Figure 8 the welfare effects of increasing progressivity disaggregated by income,
that is, I compute

−

[
tp (y)ϕ (y) +

d lnρ

dp
ψ (y) +

d ln
σy
|σδ|

dp
ω (y)

]
1

Etp
+

 3∑
i=1

d ln |δi||σδ|

dp
Ωi (y) + Ωṽ (y)

 1

Etp
.

The left and right panels show the welfare effects in the frictionless and the frictional models for
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ε = 0.33 and ε = 1, respectively. These effects are non-negligible for the smaller value of the labor
income elasticity ε = 0.33, and almost zero for the larger value ε = 1. The change in the welfare
distribution within incomes in response to a change in progressivity (welfare weight Ω4) plays
almost no role in the discrepancy between the two curves in the left panel. This finding implies that
for small enough intensive margin labor income elasticities, ignoring the hours restrictions within
firms leads to substantially misestimating the welfare costs of raising the progressivity of the tax
schedule by not taking into account the extensive margin effects. The effect disappears as the labor
income elasticity gets higher, in which case the standard intensive margin welfare costs dominate
the extensive margin effects.

Figure 8: Welfare effects of tax reforms
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Another way to express these results is by computing the aggregate values of these effects by
summing over incomes, to obtain the integrals in the right hand side of (55). This gives the net
revenue and welfare effects, expressed in dollars, of a $1 statutory increase in tax revenue through
an increase in the rate of progressivity. It thus provides an estimate of the miscalculations in the
welfare cost of taxation when wrongly assuming that the economy is frictionless. For ε = 0.33, in
the frictionless model the total behavioral (revenue) loss of a $1 statutory increase in p is c11.10,
and the total welfare loss is c83.12.11 The frictional effect of perturbing progressivity on revenue
is 2.25% away from this frictionless effect (the behavioral loss is c0.25 higher), and the frictional
effect on welfare is 7.3% away from the frictionless effect (the welfare loss is $6.05 higher). Thus the
static model’s welfare calculations severely underestimate the welfare costs of raising progressivity,
which will translate into a lower optimal rate of progressivity. The reason why the extensive margin
effects on welfare tend to reduce the gains of raising progressivity is the following. We saw that the
sandard marginal social welfare weights capture the true welfare effects of taxes if the decrease in
the volatility of incomes due to an increase in progressivity is exactly compensated by the narrowing

11Note that the sum of the two is lower than the mechanical effect $1, implying that the U.S. tax code is too
regressive for the parameters of the calibration. The optimum rate of progressivity is increasing the risk aversion γ
and decreasing in the elasticity ε.

38



of the inaction region (option value effect). In general, however, the latter effect is dominated by the
former, so that an increase in progressivity is equivalent to a higher dispersion of individual incomes
around their desired values, which adversely affects welfare, relative to the frictionless benchmark.
In contrast, when ε = 1, the total behavioral revenue response of an increase in p is c33.44, and the
total welfare loss is c66.80.12 The frictional effects of perturbing progressivity are 0.46% and 0.75%

away from the frictionless effects on revenue and welfare, respectively; therefore the static model’s
calculations are extremely accurate in this case. This is because when the labor income elasticity
is high, most revenue and welfare effects are those related to the intensive margin of adjustment,
which dwarve the extensive margin effects.

I finally compute the optimal tax schedules in the frictionless and the frictional models. The
frictionless optimum corresponds to the tax schedule that a planner would compute, wrongly as-
suming that the observed economy is frictionless; it is thus not given by the optimum that one
would compute in a true frictionless economy (with double-Pareto-lognormal income distributions).
A frictionless planner would back out the (exogenous) wage or productivity distribution given the
observed income distribution using relationship (10) and the observed U.S. economy, and would
then infer the income distributions for different values of (τ, p) given the relationship (10). The
results are shown in Figures 10 and 10. The left panel shows the U.S. tax schedule, the optimal
tax schedule that a “static” planner would compute (ignoring the dynamic welfare weights defined
in Definition 6), and the optimal tax schedule that a “dynamic” planner would compute wrongly
assuming that the economy is frictionless (i.e., using equation (54)). The right panel shows the
latter (frictionless) optimal tax schedule, and the full optimum in the frictional economy (given by
equation (55)). The results for ε = 1 are (τ, p) = (xx, xx) for the “static” optimum, (τ, p) = (xx, xx)

for the frictionless optimum, and (τ, p) = (xx, xx) for the full optimum. [Note: The results for
ε = 0.33 and ε = 1 are coming soon! ]

Figure 9: Optimal tax schedules for ε = 0.33

[This figure will be added soon] [This figure will be added soon]

In contrast, the results for ε = 1 are (τ, p) = (xx, xx) for the “static” optimum, (τ, p) = (xx, xx)

for the frictionless optimum, and (τ, p) = (xx, xx) for the full optimum. Thus the optimum tax
schedule is only very slightly more progressive than the frictionless optimum when ε = 1.

Figure 10: Optimal tax schedules for ε = 1

[This figure will be added soon] [This figure will be added soon]

12Note that the sum of the two is slightly larger than the mechanical effect $1, implying that the U.S. tax code is
slightly too progressive for this higher value of the labor income elasticity.
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7 Conclusion

This paper analyzes a model where individual labor supply is subject to a fixed (search) adjust-
ment cost. The model allows for analytically tractable characterizations of the optimal individual
behavior and the long-run aggregate income distributions in the presence of stochastic idiosyncratic
wage shocks and a non-linear tax schedule. I derive a theoretical formula for the optimal long-run
progressive tax schedule in this frictional economy. I uncover several new effects that are not cap-
tured by standard frictionless optimal tax formulas with labor supply responses on the intensive
margin. Most importantly, the option value of adjusting hours of work creates an extensive margin
of labor supply conditional on participation, which is endogenous to tax rates. The optimal tax
schedule must take into account these additional effects on optimal individual behavior, and there-
fore depends on several new elasticities and marginal social welfare weights. Quantitatively, these
novel theoretical effects substantially affect the welfare calculations and optimal tax schedule in
the baseline calibration of the model, and decrease as the intensive margin labor income elasticity
becomes higher. This implies that the static frictionless optimal tax formula underestimates the
optimal long-run rate of progressivity in the frictional model. Finally, I argued that the insights
of this paper apply more broadly to environments where fixed costs interact with non-linear policy
tools, in which policy instruments have long-run real effects on welfare.

There are several directions for further research that would be interesting to study. First, it would
be valuable to estimate numerically the endogenous extensive margin effects of taxes highlighted
in the theoretical formulas of this paper in a more realistic structural model. This could allow
for such features as savings and borrowings, life-cycle and endogenous participation labor supply
choices, transitory as well as permanent wage shocks, income-varying labor supply elasticities, non-
proportional fixed adjustment costs, more general non-linear taxes and transfer programs, and other
dimensions of labor supply adjustment choices (e.g., job satisfaction). Such a model would also
provide realistic estimates of the speed of adjustment of the economy in response to tax changes,
and hence a comparison of the short-run versus long-run elasticities. It would also be interesting
to add aggregate shocks to the model and study the effects of taxes over the business cycle, if
aggregate shocks push the densities of incomes towards or away from the boundaries of the inaction
region. On the theoretical side, it would be worthwhile to characterize the optimal tax schedule
in environments with fixed costs of adjustment both on the labor supply and the labor demand
sides with an endogenous wage, leading to bilateral monopoly situations. I leave these questions for
future research.
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