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Abstract

We demonstrate that increasing the risk surrounding the variance of future consumption
generates a fourth-degree risk deterioration in future consumption, yielding an increase in
its excess kurtosis. Its impact on the equilibrium risk premium is thus positive if only if the
fourth derivative of the utility function is negative. Its impact on interest rates is negative
only if its fifth derivative is positive. We also show that the persistence of shocks to the
variance of the consumption growth rate, as assumed in long-run risk models, has no effect
on the term structure of the variance ratio which remains flat in expectation, but it makes
the term structure of the annualized fourth cumulant of log consumption increasing. It
generates term structures of interest rates and risk premia that are respectively decreasing
and increasing under constant relative risk aversion. Using recursive preferences does not
qualitatively modify these results, which are counterfactual. However, the persistence of
shocks to the variance of changes in log consumption is supported by the observation
that their annualized 4th cumulant exhibits an increasing term structure over the period
1947Q1-2016Q4 in the United States.
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1 Introduction

This paper provides a theoretical analysis of the effect of stochastic volatility on intertempo-
ral welfare and asset prices. Since the seminal work by Bansal and Yaron (2004), it has been
demonstrated that introducing stochastic volatility in the process governing aggregate con-
sumption can contribute to the resolution of the classical puzzles in finance when combined
with other ingredients. Our main objective in this paper is more theoretical. Rather than
showing that a realistic calibration of the parameters of the model can explain the observed as-
set prices if the model is rich enough, we focus on a single ingredient, i.e., stochastic volatility,
and we examine its consequence on asset pricing from a theoretical point of view. Technically,
the stochastic volatility contained in the Bansal-Yaron process produces an increase in risk
in the variance of log consumption. It is often suggested that stochastic volatility adds a
new layer of risk, which implies that risk-averse consumers should dislike it. This common
wisdom is not true.

To show this, consider two lotteries. With lottery L1, one loses or wins one monetary
unit with equal probabilities. With lottery L2, one loses or wins two monetary units with
probability 1/8. What is the preferred lottery? Observe that the first three moments of
these two lotteries are identical, with a zero first and third moments, and a unit second
moment. This implies that all expected-utility-maximizers with a third-degree polynomial
utility function will be indifferent between the two lotteries, independent of their degree of
risk aversion and prudence. In particular, it is not true that L2 is riskier than L1 in the
classical sense defined by Rothschild and Stiglitz (1970).1 How is this observation related to
stochastic volatility? In Figure 1, we represented L2 as two alternative compound lotteries,
L′2 and L′′2. Lottery L′2 compounds a sure payoff of x0 = 0 with probability 3/4 and a
zero-mean lottery x′1 ∼ (−2, 1/2; +2, 1/2) with probability 1/4. Because the variance of
x′1 equals 4, L1 differs from L′2 by the fact that the sure variance of 1 is replaced by an
uncertain variance that is distributed as (0, 3/4; 4, 1/4). This is a mean-preserving spread in
variance. This is also the case for the compound lottery L′′2, where the conditional variance
is distributed as (0, 1/2; 2, 1/2). In other words, determining the preference order between
lotteries L1 and L2 is equivalent to determining the welfare impact of an uncertain variance.
The cornerstone of our analysis is our Theorem 1 which states that any mean-preserving
spread in the distribution of the variance of a random variable x generates a fourth-degree
risk increase of x in the sense of Ekern (1980). In other words, it reduces (increases) Ef(x) if
and only if the fourth derivative of f is negative (positive). A necessary (but not sufficient)
condition is that the kurtosis of x is increased. Thus, we conclude that, under expected utility,
increasing the risk on the variance of final consumption is disliked if and only if the fourth
derivative of the utility function is negative. Under this condition, lottery L1 is preferred to
lottery L2.

The negativeness of the fourth derivative of the utility function is called "temperance"
1In fact, L2 is obtained from L1 through a sequence of two Mean-Preserving Spreads (MPS) and one

Mean-Preserving Contraction (MPC). In the first MPS, the outcome 1 of L1 is replaced by (+2, 3/4;−2, 1/4).
In the second MPS, the outcome -1 of L1 is replaced by (+2, 1/4;−2, 3/4). Finally, the MPC takes the form
of displacing probability masses of 3/8 from respectively −2 and 2 to 0.
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Figure 1: Two ways of representing lottery L2 ∼ (−2, 1/8; 0, 3/4; +2, 1/8) as a compound lottery with
stochastic variance.

in expected utility theory. Eeckhoudt and Schlesinger (2006) have shown that temperance
is necessary and sufficient for consumers to prefer compound lottery (x1, 1/2;x2, 1/2) over
compound lottery (0, 1/2;x1 + x2, 1/2), for any pair (x1, x2) of zero-mean independent lot-
teries. This is another form of aversion to a stochastic variance. In fact, the preference of L1
over L′′2 can be represented in this way, with L1 ∼ x1 ∼ x2. Gollier and Pratt (1996) showed
that temperance is necessary for any zero-mean background risk to raise the aversion to any
other independent risk. Under Constant Relative Risk Aversion (CRRA), temperance goes
together with risk aversion since the successive derivatives of the utility function alternate in
sign.

Under Discounted Expected Utility (DEU), the interest rate is decreasing in the risk
surrounding future consumption if and only if it raises the expected marginal utility of future
consumption. Since Leland (1968), Drèze and Modigliani (1972) and Kimball (1990), it is
well-known that, by Jensen’s inequality, this is the case if and only if the representative agent
is prudent, i.e., if the third derivative of the utility function is positive. Because it increases
the fourth-degree risk (kurtosis), the stochastic nature of the variance of consumption also
reduces the interest rate under DEU if and only if the fifth derivative of the utility function is
positive. In a two-period model with recursive preferences à la Kreps and Porteus (1978) and
Selden (1978), we characterize a necessary and sufficient condition in the small that combines
the fourth and fifth derivatives of the risk utility function with the difference between risk
aversion and fluctuation aversion.

The long-run risks literature focused on the prediction of the short-term interest rate and
of the price of equity. Up to our knowledge, there has been no analysis of the term structure
of zero-coupon bond and equity returns, with the exception of Beeler and Campbell (2012)
who examined interest rates. Bansal and Yaron (2004) considered a stochastic process of log
consumption in which the variance itself is governed by an independent stochastic process.

3



This is useful to explain why the equity premium on financial markets is time varying. Because
it raises the kurtosis of future log consumption, it reduces the interest rate and it raises the
equity premium, which is helpful to solve the financial puzzles. Moreover, the shocks on
variance are highly persistent in this literature, with an half-life around 35 years in the most
recent calibration of the model by Bansal et al. (2016). This persistence implies that the
term structure of the annualized kurtosis of log consumption is increasing. This magnifies
the effect of stochastic volatility at higher maturities. This means that, under DEU, the term
structures of interest rates and risk premia are respectively decreasing and increasing. These
theoretical predictions of this model are contradicted by asset prices observed on financial
markets. In particular, recent findings document the fact that dividend strip risk premia have
a decreasing term structure (Binsbergen et al. (2012), Binsbergen and Koijen (2016), Belo
et al. (2015), and Marfè (2016)).2 The traditional combination of stochastic volatility with
persistent shocks to the expected growth rate will make the problem even more puzzling, since
it will generate an increasing term structure of the annualized variance of log consumption.3
Because of prudence, this will make the term structure of interest rates more decreasing
(Campbell (1986), Gollier (2008)). Because of risk aversion, it makes the term structure of
risk premia more increasing. And the traditional combination of stochastic volatility with
recursive preferences does not solve the problem either. This is shown in this paper by
deriving analytically the term structures from the stochastic volatility model extracted from
Bansal and Yaron (2004). Because of the high persistence of the shocks, it takes many
centuries of duration for the interest rates and risk premia to converge to their asymptotic
value. For example, a dividend strip generated by a diversified portfolio of equity has a risk
premium 1.71% for a one-month maturity, and it goes up to 3.17% when the maturity tends
to infinity. However, this equity premium is only 1.86% for a 10-year maturity, and 2.28%
for a 50-year maturity.

The paper is organized as follows. In Section 2, we provide some generic results link-
ing stochastic volatility, fourth-degree stochastic dominance and kurtosis. We apply these
findings in a two-period Kreps-Porteus preferences in Section 3. In the next two sections,
we explore the term structures of asset prices under the standard long-run risk specification
yielding persistent shocks to the variance of log consumption. We do that in the DEU frame-
work in Section 4, and in the case of Epstein-Zin-Weil preferences in Section 5. In Section
6, we test whether the term structure of the 4th cumulant of changes in log consumption is
upward-sloping due to the persistence of shocks to the variance. We provide some concluding
remarks in the last section.

2These findings are for maturities up to 10 years. For longer maturities, Giglio et al. (2015) and Giglio
et al. (2016) provide evidence for real estate assets (leasehold contracts) with maturities measured in decades
and centuries.

3Beeler and Campbell (2012) show evidence of mean-reversion rather than persistence in U.S. consumption
growth in the period since 1930. On the contrary, mean-reversion makes the aggregate risk in the longer
run relatively smaller and can thus explain why interest rates and risk premia are respectively increasing and
decreasing in maturity, contrary to what the persistence in volatility shocks implies.
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2 Stochastic volatility and stochastic dominance

This section is devoted to the analysis of the impact of the stochastic variance of a random
variable x on Ef(x), where f is a four time differentiable real-valued function. The risk
structure of x is described by the following model:

x = x+ ση (1)
σ2 = σ2 + w, (2)

where (η, w) is a pair of independent random variables with a zero mean so that x and σ2 are
the mean of respectively x and σ2.4 If we assume that Eη2 = 1, then σ2 measures the variance
of x conditional to σ. Finally, we also assume that Eη3 = 0. This assumption guarantees
that the unconditional third moment of x is zero, independently of the distribution of σ.

Consider any real-valued function f that is at least twice differentiable. We want to
characterize the impact of the stochastic variance of x on Ef(x). By the law of iterated
expectations, we have that

Ef(x) = E
[
E[f(x) | σ2]

]
= Eh(σ2), (3)

where function h is derived from function f in such a way that h(σ2) equals E[f(x) | σ2]
for all σ. An increase in risk of variance is defined as a sequence of Rothschild-Stiglitz
Mean-Preserving Spreads (MPS) in the distribution of the variance σ2 of x. From Rothschild
and Stiglitz (1970), it is also defined as a change in the distribution of σ2 that reduces the
expectation of any concave function of σ2. This implies that, from equation (3), an increase
in risk on variance reduces Ef if and only if h is concave in σ2. The following theorem states
the necessary and sufficient condition for this to be true independent of the distribution of
the zero-mean random variable η.

Theorem 1. Suppose that x = x+ση, where x is a constant and σ and η are two independent
random variables with Eη = Eη3 = 0. Any increase in risk in the variance σ2 of x reduces
(raises) Ef(x) if and only if f ′′ is concave (convex).

Proof: See the appendix.

This result is related to the theory of stochastic dominance orders. Following Ekern
(1980), a random variable undergoes a n-th degree risk deterioration if and only if this change
in distribution reduces the expectation of any function g ∈ Gn of that random variable, where
Gn is the set of all real-valued functions g such that (−1)ng(n) ≤ 0, where g(n) denotes the
n-th derivative of g. For example, the case n = 1 corresponds to the concept of first-order
stochastic dominance, whereas the case n = 2 corresponds to the Rothschild-Stiglitz’s notion
of an increase in risk. Theorem 1 means that raising the uncertainty affecting the variance of

4Notice that σ is not the mean of σ in this model. By Jensen’s inequality, the uncertainty affecting σ2 has
a negative impact on the expected value of σ.
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x in the sense of Rothschild and Stiglitz (1970) deteriorates random variable x in the sense
of fourth-degree risk.

Because f(x) = (x − x)i has a linear second derivative for i = 1, 2 and 3, an immediate
consequence of Theorem 1 is that the mean, the variance and the skewness of x is unaffected
by an increase in risk in σ2. In the same vein, the fourth centered moment of x is increased
by it. More specifically, we have that the excess kurtosis of x equals

Kurt[x] = E(x− x)4

(E(x− x)2)2 − 3 = Eσ4

(Eσ2)2
Eη4

(Eη2)2 − 3. (4)

Because function σ4 is convex in σ2, the kurtosis of x is increased by any increase in risk in
σ2. If we assume that η is Normal, then the above equality simplifies to

Kurt[x] = 3
(

Eσ4

(Eσ2)2 − 1
)

= 3V ar[σ
2]

(Eσ2)2 = 3σ
2
w

σ4 . (5)

The excess kurtosis of x is proportional to the variance of the conditional variance of x in
that case. Thus, the variance of σ2 should be interpreted as a measure of the excess kurtosis
of x. An extreme illustration of this phenomenon has been proposed by Weitzman (2007).
Suppose that η is N(0, 1) and that the precision p = σ−2 has a Gamma distribution. Then, as
is well-known, the unconditional distribution of x is a Student-t, which has fatter tails than
the Normal distribution with the same expected variance. The moment-generating function
of the Student-t is undefined, which means that the expectation of exp(kx) is unbounded, for
all k ∈ R. This is an extreme illustration of Theorem 1 in which moving from a sure σ2 to a
risky one with the same mean makes the expectation of f undefined.5

It is useful to measure a "stochastic volatility premium" associated to function f which
is defined as the sure reduction πf in x that has the same impact on Ef as the uncertainty
affecting σ2. Technically, πf satisfies the following condition:

Ef(x+ ση − πf ) = Ef(x+ ση), (6)

where σ2 is the expectation of the uncertain variance σ2. Using Taylor expansions for both
sides of the above equality, it is easy to show that the stochastic volatility premium satisfies
the following property when η = kε with k ∈ R:

πf = 1
4!ψf (x)V ar[σ2]Eη4 +O(k5), (7)

where ψf (x) = −f (4)(x)/f ′(x) is an index of concavity of f ′′. When η has a standard Normal
distribution, the above approximation simplifies to

πf ' 0.125ψf (x)σ2
w. (8)

In the remainder of this section, we suppose that function f is exponential with f(x) =
exp(−Ax) for some A ∈ R, in which case ψf = A3. In that case, we have that

Ef(x) = χ(−A, x+ ση), (9)
5Gollier (2016) examined risk profiles for σ that generate a bounded solution.
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where χ(α, y) = log (E exp (αy)) is the Cumulant-Generating Function (CGF) of random
variable y.6 If η is standard normal, this can be rewritten as follows:

Ef(x) = −Ax+ χ(0.5A2, σ2). (10)

Using the properties of the CGF function, this implies that

Ef(x)− f(x) =
+∞∑
n=1

A2n

2nn!κ
σ2
n , (11)

where κσ2
n is the nth cumulant of σ2.7 The first term in the right-hand side of this equality

is 0.5A2σ2, which corresponds to the standard Arrow-Pratt risk premium 0.5Aσ2. The sec-
ond term is Aπf = 0.125A4V ar[σ2], which corresponds to the stochastic volatility premium
approximated in equation (8).

Two special cases are useful to examine when f is exponential. In line with the literature
on long-run risks pioneered by Bansal and Yaron (2004), suppose first that σ2 has a Normal
distribution. This implies that all cumulants of σ2 of order larger than 2, as they appear in
equation (11), are zero. This implies that approximation (8) is exact in that case. Although
this specification of the model is ubiquitous in the long-run risks literature, it is problematic
because of the positive probability of a negative variance.8 An alternative specification which
has a more satisfactory theoretical foundation is obtained when assuming that σ2 has a
Gamma distribution. We show in the appendix that this implies the following analytical
characterization of the stochastic volatility premium:

πf = − σ4

Aσ2
w

log
(

1− 1
2A

2σ
2
w

σ2

)
− 1

2Aσ
2. (12)

Let us apply these results to the case of an agent who has a constant relative risk aversion γ
and whose log consumption next year conditional to σ is x ∼ N(µ, σ2). This agent’s expected
utility next period is thus given by Ef(x), where f(x) is proportional to exp((1− γ)x). The
above formulas allow us to compute the stochastic volatility premium, i.e., the sure reduction
in the growth rate of consumption that has the same impact on welfare than the uncertainty
affecting its variance, in the Normal and Gamma cases. In Figure 2, we assume γ = 10.
Suppose also that the expected annual volatility is σ = 3%. The dashed curve corresponds to
the stochastic volatility premium as a function of the standard deviation of the variance σ2

when σ2 is normally distributed. As explained earlier, this premium is measured exactly by
equation (8) with ψf = (γ−1)3. The plain curve measures that function in the alternative case
in which σ2 has a Gamma distribution with the same first two cumulants. This premium

6Martin (2013) uses the properties of the CGF function to derive analytical solutions for interest rates and
risk premia under Epstein-Zin-Weil preferences with i.i.d. growth rates.

7The nth cumulant of y is defined as κyn = χ(n)(0, y). For example, the 4th cumulant of y is equal to
µ4 − 3µ2

2, where µn is the nth centered moment of y.
8Under this specification, the cumulants of x computed with formula κxn = χ(n)(0, x) are equal to x, σ2

and 3σ2
w respectively for the first, second and fourth orders. All other cumulants are zero. In fact, there is no

random variable with a well-defined cumulative distribution function having such series of cumulants.

7



Normal

Gamma

0.005 0.010 0.015 0.020 0.025 0.030
σw

0.05

0.10

0.15

π

Figure 2: The relative stochastic volatility premium as a function of the degree of uncertainty σw affecting the
variance of log consumption. The dashed curve corresponds to σ2 ∼ N(3%, σ2

w). The plain curve corresponds
to σ2 having a Gamma distribution with the same mean and variance. We assume a CRRA of 10 and
η ∼ N(0, 1).

is given by equation (12) with A = γ − 1. It is easy to verify from these two functions
are identical up to the fourth order of σw, so that the two curves coincide for low levels of
uncertainty. In the long-run risks literature, σw is in the order of magnitude of 10−5...10−6 on
an annual basis (Bansal et al. (2016)). Figure 2 thus suggests that the Normal approximation
is acceptable, at least for small maturities.9

3 Asset pricing in the Kreps-Porteus model
In this section, we explore the pricing implications of stochastic volatility in the simple 2-
period model proposed by Kreps and Porteus (1978) and Selden (1978):

W0 = u(c0) + e−δu(e1) (13)
v(e1) = Ev(c1). (14)

The intertemporal welfareW0 is a discounted sum of the current utility extracted from current
consumption c0 and of the future utility extracted from the certainty equivalent e1 of future
consumption c1. Utility functions u and v are the time and risk aggregators, respectively.
They are assumed to be increasing and five times differentiable. Parameter δ is the rate
of pure preference for the present. Future consumption is affected by stochastic variance
structured as follows:

c1 = c1 + ση (15)
σ2 = σ2 + w, (16)

where η and w are independent and have a zero mean, with Eη3 = 0.
9However, the high persistence of the volatility shocks magnifies the variance of log consumption at very

long maturities.
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An immediate application of Theorem 1 is that stochastic volatility reduces welfare if and
only if v(4) is negative. Following Eeckhoudt and Schlesinger (2006), this condition is referred
to as "temperance". Gollier and Pratt (1996) showed that temperance is necessary for any
zero-mean background risk to raises the aversion to any other independent risk. Eeckhoudt
and Schlesinger (2006) showed that temperance is necessary and sufficient for an individual
to prefer a 50-50 compound lottery yielding either x1 or x2 over another 50-50 compound
lottery yielding either 0 or x1 +x2, where x1 and x2 are two zero-mean independent lotteries.

We now turn to the analysis of asset prices. As in Campbell (1986), Abel (1999) and
Martin (2013) for example, let P (φ) denote the price today of an asset that generates a
payoff distributed as cφ1 in the future. The risk-free asset corresponds to φ = 0, and a claim on
aggregate consumption corresponds to φ = 1. In a Lucas tree economy with a representative
agent whose preferences are represented by equations (13) and (14), and where c0 and c1
are the fruits endowment at date 0 and 1, the equilibrium price P (φ) is characterized by the
following pricing equation:

P (φ) = e−δ
Ecφ1v

′(c1)
v′(e1)

u′(e1)
u′(c0) . (17)

The continuously compounded expected return r(φ) of the asset is equal to the logarithm of
Ecφ1/P (φ). For example, the interest rate rf is equal to − log(P (0)). The risk premium of
asset φ is the difference between the expected return of that asset and of the risk-free asset.
It is equal to

π(φ) = log
(
Ecφ1Ev

′(c1)
Ecφ1v

′(c1)

)
. (18)

We first examine the impact of stochastic volatility on the risk-free rate. We obtain a
clearcut result in the special case of Discounted Expected Utility (DEU) where u and v are
identical. In the DEU case, equation (17) directly implies that the price P (0) of a risk-
free asset is increased by stochastic volatility if and only if it raises Ev′(c1). The following
proposition is thus another immediate application of Theorem 1.

Proposition 1. Suppose u ≡ v. Any increase in risk in the variance of future consumption
reduces the interest rate if and only if v′′′ is convex.

This is the consequence of the fact that increasing risk surrounding the variance of future
consumption generates a 4th-degree risk deterioration of consumption. By definition, this
raises Ev′ if the fourth derivative of v′ is positive. This is in line with earlier results by
Eeckhoudt and Schlesinger (2008) who demonstrated that, in the DEU model, any nth-degree
increase in future income risk increases optimal savings if and only if sgn[v(n+1)] = (−1)n.
Notice that condition v(5) ≥ 0 is referred to as "edginess" by Lajeri-Chaherli (2004) and
Eeckhoudt and Schlesinger (2008). Deck and Schlesinger (2014) and Deck and Schlesinger
(2016) tested the sign of up to the fifth derivative of the utility function in the laboratory,
showing some evidence of edginess.10

10Theoretical results relating asset prices to the fifth derivative of the utility function are scarce. Gollier
(2001) showed that wealth inequality reduces the equilibrium interest rate if −v′′/v′′′ is concave.
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With recursive preferences, the impact of stochastic volatility on the interest rate is
also affected by the marginal rate of transformation u′(e1)/v′(e1). This rate tells us how
a marginal increase in risk utility v(e1) generated by an increase in e1 translates into an
increase in temporal utility u(e1). Because stochastic volatility affects the certainty equivalent
consumption e1, it also affects this marginal rate of transformation. It is increasing in e1 if and
only if −v′′(c)/v′(c) is larger than −u′′(c)/u′(c) for all c. If v(4) is negative, we know that e1 is
reduced by stochastic volatility. This implies that stochastic volatility reduces the marginal
rate of transformation u′(e1)/v′(e1) when v is more concave than u. This counterbalances the
direct effect of stochastic volatility on Ev′(c1) when v(5) is positive, implying an ambiguous
effect. This is summarized in the following proposition, which also characterizes the risk
premium π(1) on aggregate consumption.

Proposition 2. Suppose that the risk on the variance of future consumption is small in the
sense that η is distributed as kε with k small. Any increase in risk in the variance of future
consumption reduces the interest rate if and only if

v(5)(c1) + v(4)(c1)
(−v′′(c1)
v′(c1) −

−u′′(c1)
u′(c1)

)
≥ 0. (19)

It raises the risk premium π(1) on aggregate consumption if and only if v(4)(c1) is negative.

Proof: See the appendix.

If we assume that v(4) is negative, then condition (20) can be rewritten as follows:

v(5)(c1)
−v(4)(c1)

≥ −v
′′(c1)

v′(c1) −
−u′′(c1)
u′(c1) . (20)

Because u is concave, a sufficient condition for an increase in risk in the variance of consump-
tion to reduce the interest rate is that the index of edginess −v(5)/v(4) be larger than the
index of risk aversion −v′′/v′.11 This condition, which is necessary and sufficient in the small
when u is linear, is satisfied for example when v is a power or an exponential function.

Notice also that these results hold only in the small. As already shown by Gollier (1995)
and Abel (2002), an increase in consumption risk does not necessarily raise the risk premium
at equilibrium under risk aversion. Similarly, a 4th-degree increase in consumption risk does
not necessarily raise it either under condition v(4) ≤ 0.

In the long-run risks literature, the uncertainty affects the variance of log consumption
rather than consumption itself. This means that equations (15) and (16) are replaced by the

11This condition is parallel to the condition by Kimball and Weil (2009) who showed that an increase in
future income risk raises savings – and thus reduces the interest rate at equilibrium – if the index of prudence
−v(3)/v(2) is larger than the index of risk aversion −v′′/v′. This condition is equivalent decreasing absolute
risk aversion. Bostian and Heinzel (2016) examine the impact of a nth-degree risk affecting future income on
optimal saving in the large within the Kreps-Porteus framework.
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following specification:

x = log
(
c1
c0

)
= µ+ ση (21)

σ2 = σ2 + w, (22)

where η and w are independent and have a zero mean, with Eη3 = 0. In this framework,
although the uncertainty surrounding σ does not affect the first three moments of x, it
increases all moments of c1, since function f(x) = exp(nx) has a positive fourth derivative
for all n ∈ N0. The problem is much simplified if one assumes that the utility function v
exhibits constant relative risk aversion γ ≥ 0, i.e., v(c) = c1−γ/(1 − γ), so that Ev(c1) is
equal to Ef(x) with

f(x) = −exp (−(γ − 1)x)
γ − 1 . (23)

This implies that function f exhibits constant absolute risk aversion A = γ − 1, yielding
f (4)(x) = −(γ − 1)3 exp(−(γ − 1)x). Theorem 1 implies that the stochastic volatility of the
consumption growth rate reduces welfare in the Kreps-Porteus model with constant relative
risk aversion if and only if relative risk aversion is larger than unity. When η is standard
Normal, the relative stochastic volatility premium is approximately equal to 0.125(γ−1)3σ2

w.
This approximation is exact when the variance of log consumption is normally distributed.

We now turn to the analysis of the impact of the uncertain variance of log consumption
on the risk-free rate and the risk premium. Following Epstein and Zin (1989) and many
others after them, we hereafter assume that v(c) = c1−γ/(1 − γ) and u(c) = c1−ρ/(1 − ρ).
Parameter ρ is the relative aversion to consumption fluctuations over time. It is the inverse of
the elasticity of intertemporal substitution. The following proposition is a direct consequence
of using equation (8) (which is exact under our specification) to estimate the expectations
that appear in equations (17) and (18).

Proposition 3. Suppose that log(c1/c0) is distributed as µ+ ση where σ and η are indepen-
dent, η has a standard Normal distribution, and σ2 is N(σ2, σ2

w). Suppose also that relative
risk aversion γ and the relative aversion to fluctuations ρ are constant. The interest rate
rf and the risk premium π(φ) associated to an asset whose future payoff is cφ1 satisfy the
following conditions:

rf = δ + ρµ− 1
2
(
γ2 − (γ − ρ)(γ − 1)

)
σ2 − 1

8
(
γ4 − (γ − ρ)(γ − 1)3

)
σ2
w (24)

π(φ) = φγσ2 + 1
2φγ

(
γ2 − 3

2φγ + φ2
)
σ2
w. (25)

These results are reminiscent of earlier results by Martin (2013) who characterized the
interest rate and risk premia with power functions for u and v when changes in log con-
sumption are i.i.d. but not Normal. The coefficients of the last term in equations (24) and
(25) correspond to those obtained by Martin for the impact of the 4th cumulant of x on the
interest rate and the risk premia. This is the consequence of the fact that the 4th cumulant
of x equals 3σ2

w in this framework.
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Increasing the risk on the variance of log consumption always raises the risk premium
associated to any asset with φ > 0 since the last term in equation (25) has the same sign as
φ. In particular, it increases the risk premium associated to a claim on aggregate consumption
(φ = 1). Increasing the risk on the variance of log consumption reduces the interest rate if
γ4 is larger than (γ−ρ)(γ−1)3. The intuition of this result is similar to the one of condition
(20): The increased kurtosis of log consumption raises Ev′(c1) proportionally to γ4. This
"precautionary effect" tends to reduce the interest rate. It also reduces the certainty equivalent
growth rate proportionally to (γ − 1)3. This implies in turn a reduction in the marginal rate
of transformation u′(e1)/v′(e1) proportionally to (γ − ρ)(γ − 1)3. This "income effect" tends
to raise the interest rate when γ is larger than ρ. Globally, the stochastic volatility affecting
log consumption reduces the interest rate if and only if the precautionary effect dominates
the income effect. This is the case for example when both γ and ρ are larger than unity.
When ρ equals 1, it requires that γ be larger than 1/2.

We now explore the impact of stochastic volatility on wealth, which is here defined as the
equilibrium price at date 0 of a claim on the future aggregate consumption c1. It is equal to
Ec1 discounted at the risk-adjusted discount rate rf + π(1). Using Proposition 3, we obtain
that

Wealth = c0 exp
(
−δ − (ρ− 1)µ+ 1

2(γ − 1)(ρ− 1)σ2 + 1
8(γ − 1)3(ρ− 1)σ2

w

)
. (26)

As is well-known, in the DEU model (ρ = γ), an increase in uncertainty affecting growth, as
measured by σ2, raises wealth in the economy. We obtain the same result for an increase in
the uncertainty affecting volatility, as measured by σ2

w. One of the benefits of the recursive
utility model is to reverse the sign of these impacts when ρ ≤ 1 ≤ γ. In this case, an increase
in risk on growth or on volatility reduces wealth in the economy.

4 Long-run stochastic volatility under Discounted Expected
Utility

In the remainder of this paper, we characterize the term structures of the stochastic volatility
premia for intertemporal welfare, interest rates and risk premia in the context examined by
Bansal and Yaron (2004) in which the variance of the growth rate of consumption follows an
autoregressive process of order 1:

log
(
ct+1
ct

)
= µ+ σtηt+1, (27)

with
σ2
t+1 = σ2 + ν

(
σ2
t − σ2

)
+ σwwt+1, (28)

where σ2 is the unconditional variance, ν ∈ [0, 1[ is the coefficient of persistence of shocks
on variance, σw is the standard deviation of these shocks, and the two shocks η and w
are assumed to be i.i.d. standard Normal.12 This stochastic process has three interesting

12Bansal and Yaron (2004) consider a more general model in which the expected growth rate µ also follows
an autoregressive process. In this paper, we focus on the impact of the uncertain variance of growth.
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features. First, the volatility σt is stochastic. Second, the shocks to volatility exhibit some
persistence. Third, the volatility is known one period in advance. Notice also that an asset
φ that generates a cash flow Dt = cφt is governed by the following stochastic process:

log
(
Dt+1
Dt

)
= µD + φσtηt+1, (29)

with µD = φµ.13 As in Bansal and Yaron (2004), the stochastic volatility of dividend growth
is proportional to the stochastic volatility of consumption growth.

Under equations (27) and (28), the variance of log-consumption t periods ahead is as
follows:

vt = V ar

[
log

(
ct
c0

)∣∣∣∣w1, ...wt−1, σ0

]
= tσ2 + 1− νt

1− ν
(
σ2

0 − σ2
)

+ σw

t∑
τ=1

1− νt−τ

1− ν wτ . (30)

The last term in this equality characterizes the stochastic nature of the volatility of long-term
growth. It is normally distributed. This means that the stochastic process (27)-(28) yields
the same stochastic structure of log consumption as the one described by equations (21)-
(22), with maturity-specific parameters. The following lemma characterizes the nature of the
stochastic variance of log-consumption at different maturities in this long-run risk context.

Lemma 1. Suppose that log-consumption is governed by process (27)-(28). Then, for any
maturity t ∈ N0, x0,t = log(ct/c0) conditional to σ0 is distributed as µt+√vtε, where vt and
ε are independent, ε is N(0, 1), and vt is normally distributed with annualized mean

E0 [vt]
t

= σ2 + 1− νt

t(1− ν)
(
σ2

0 − σ2
)

(31)

and annualized variance

V ar0 [vt]
t

= 1
3
κ
x0,t
4
t

= σ2
w

(1− ν)2

(
1− 2 1− νt

t(1− ν) + 1− ν2t

t(1− ν2)

)
, (32)

where κx0,t
4 is the fourth cumulant of log consumption x0,t.

Notice that E0vt measures the unconditional variance of log(ct/c0). If one divides this
measure by tσ0, one obtains the "variance ratio" that has already been examined by Cochrane
(1988), Beeler and Campbell (2012) and many others. Equation (31) tells us that this variance
ratio has a flat term structure in expectation, i.e., when σ0 equals σ. This is consistent
with the recent findings obtained by Marfè (2016) who used postwar U.S. output.14 As
explained earlier, stochastic volatility does not increase the risk as measured by the variance

13This constraint on the expected growth of dividends is irrelevant for our analysis. It affects the price of
the asset, but not its risk premium.

14In fact, Marfè (2016) obtained term structures of the variance ratio for output, salary and dividend that
are respectively flat, increasing and decreasing. He convincingly argues that this comes from the fact that firms
provide short-term insurance to their employees against the transitory fluctuations of their labor productivity,
in line with the theory of implicit labor contract.
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of log consumption. Similarly, it does not affect its skewness. Turning to equation (32),
the annualized variance of vt goes from 0 for a one-period maturity up to σ2

w/(1 − ν)2 for
very large maturities. This upward sloping term structure is due to the combination of the
fact that the variance is known one period in advance and of the persistence of shocks to
volatility. These two features of the stochastic process of growth magnify the long-term risk
on variance. As noticed in Section 2, in this Gaussian framework, the fourth cumulant of x0,t
is equal to three times the variance of vt. It implies that the annualized fourth cumulant of
log consumption has an increasing term structure too. We test this hypothesis in Section 6.

As a benchmark, consider a Lucas tree economy with a representative agent that maxi-
mizes the discounted expected utility of the flow of aggregate consumption:

W0 = E

[+∞∑
t=0

exp(−δt)v(ct)
]
. (33)

We hereafter assume that W0 is bounded. Using the same approach as in the previous
section adapted to the case with u(c) = v(c) = c1−γ/(1 − γ) and with the maturity-varying
parameters of the stochastic volatility process described in Lemma 1, we obtain the following
proposition.

Proposition 4. Suppose that the growth process is governed by equations (27)-(28). Under
the DEU model with constant relative risk aversion γ, the term structures at date 0 of interest
rates and the risk premia satisfy the following conditions:

rft = δ + γµ− 1
2γ

2E0 [vt]
t
− 1

8γ
4V ar0 [vt]

t
(34)

πt(φ) = φγ
E0 [vt]
t

+ 1
2φγ

(
γ2 − 3

2φγ + φ2
)
V ar0 [vt]

t
, (35)

where E0[vt] and V ar0[vt] are given by Lemma 1.

The first two terms in the right-hand side of equation (34) correspond to the Ramsey rule
(Ramsey (1928)). The third term measures the impact of the risk affecting economic growth
on the interest rate in the absence of stochastic volatility. Its term structure is flat when the
current variance σ2

0 equals its historical mean σ2. This is because stochastic volatility does not
increase the long-run risk measured by the annualized unconditional variance, which is equal
to σ2 at all maturities in that case. The last term measures the stochastic volatility premium
for interest rates. Because the volatility of the growth rate is known one period in advance
in the Bansal-Yaron model, this premium is zero for a one-period maturity. Because of the
persistence of the shocks to volatility, the annualized variance of the conditional variance
of log consumption defined as V ar0 (vt) /t is increasing with maturity, thereby magnifying
the kurtosis of the distant log consumption. This makes the term structure of interest rates
decreasing in expectation.

The first term in the right-hand side of equation (35) is the classical CCAPM risk pre-
mium, which is the product of three elements: the CCAPM beta of the asset, the relative
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rf+∞ − r
f
1 π+∞(1)− π1(1) π+∞(3)− π1(3)

γ = ρ = 1 −2.63× 10−4 5.27× 10−4 1.74× 10−2

γ = ρ = 10 −2.63 0.91 2.02
γ = ρ = 20 −42.13 7.82 20.16

Table 1: Expected term spreads of interest rates, risk premia on aggregate consumption and
equity premia under neutral expectations (σ0 = σ). As in Bansal et al. (2016), we assume
σw = 2.12× 10−6, and ν = 0.9984 on a monthly basis. Spreads are expressed in percents per
year.

risk aversion of the representative agent, and the expected annualized variance of the growth
rate until maturity t. This latter element has a flat term structure when the current variance
σ2

0 is equal to its historical mean σ2. An important feature of this model is that short-
term risk premia are time-varying, in parallel to changes in expectation about the short-term
volatility. However, the long-term risk premium of any asset φ is fixed. The second term
measures the impact of stochastic volatility. It is always positive and proportional to the
annualized variance of the conditional variance of log(ct/c0). Because this element has an
increasing term structure, we can conclude that, on average, risk premia have an increasing
term structure due to the persistence of the shocks to volatility. This magnifies the kurtosis
of the distribution of long term log consumption, together with the contribution of any risky
asset to this kurtosis. This explain why the term structure of risk premia must be increasing
in expectation in this model with stochastic volatility. This raises new concern about the
empirical test of this model. Indeed, it has recently been shown that the term structure of
equity premia is decreasing (Binsbergen et al. (2012), Binsbergen and Koijen (2016), Giglio
et al. (2015), and Giglio et al. (2016)).

Let us now quantify the impact of stochastic volatility on asset prices under the DEU
model. We focus on the term spreads. Because volatility is known one period in advance,
stochastic volatility has no impact on the short-term interest rate and risk premium. But it
reduces the long-term interest rate and it raises the long-term risk premium. Bansal et al.
(2016) assumed γ = 9.67, σw = 2.12× 10−6, and ν = 0.9984 on a monthly basis. This yields
a term spread of interest rates of −2.30% on an annual basis. This number provides an upper
bound of the impact of stochastic volatility on interest rate for finite maturities. Bansal et al.
(2016) also calibrated the elasticity of the payoff of equity to aggregate consumption at φ = 3.
This yields a term spread of annualized equity premia of 1.80%. It should be stressed that
these term spreads are very sensitive to relative risk aversion. This is particularly the case
for the interest rate whose term spread is proportional to γ4. In Table 1, we document this
high sensitivity.

To sum up, the stochastic volatility of the growth rate raises the kurtosis of future log
consumption. Because the 4th and 5th derivatives of v are respectively negative and positive,
this tends to reduce interest rates and to raise equity premia in the DEU framework. The
persistence of shocks to volatility magnifies these effects for longer maturities, thereby making
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the term structures of interest rates and equity premia respectively decreasing and increasing
on average.

5 Long-run stochastic volatility under Recursive Utility

The use of recursive preferences is helpful to solve the equity premium puzzle and the risk-free
rate puzzle. Can it also solve the puzzle of the decreasing term structure of risk premia? In
the Epstein-Zin-Weil model, welfare Vt is obtained by backward induction:

V 1−ρ
t = (1− β)c1−ρ

t + β
(
EtV

1−γ
t+1

) 1−ρ
1−γ if ρ 6= 1 (36)

log Vt = (1− β) log ct + β log
(
EtV

1−γ
t+1

) 1
1−γ if ρ = 1. (37)

where parameters γ and ρ are the indices of relative aversion to risk and to consumption
fluctuations, respectively. Parameter β = exp(−δ) is a discount factor. The equilibrium
price at date t for an asset that generates a single payoff Dτ = cφτ at date τ > t satisfies the
following condition:

Pt,τ = Et

[
Dτ

Sτ
St

]
. (38)

The one-period-ahead stochastic discount factor Sτ+1/Sτ to be used at date τ to value a
payoff occurring at date τ + 1 is:

Sτ+1
Sτ

= β

(
cτ+1
cτ

)−γ
Zρ−γτ+1

(
Eτ

(
cτ+1
cτ

Zτ+1

)1−γ
) γ−ρ

1−γ

, (39)

where Zτ = Vτ/cτ is the future expected utility per unit of current consumption. Proposition
5 describes an approximation of the term structures of interest rates and risk premia with
recursive preferences and stochastic volatility.15 These results are obtained by assuming that
the log(Zt) is linear in the state variable σ2

t , which is the case when the EIS ρ−1 is equal to
one. We show in the appendix that the coefficient

b = d log(Zt)
dσ2

t

∣∣∣∣
σ2
t=σ2

(40)

satisfies the following condition:

b =
(1

2(1− γ) + bν

)
β exp

(
(1− ρ)

(
µ+ 1

2(1− γ)σ2 + 1
2(1− γ)b2σ2

w

))
. (41)

When ρ equals unity, b equals 0.5β(1 − γ)/(1 − βν). Notice that b is negative when γ is
larger than unity, which implies that the intertemporal welfare Z is decreasing in the current
volatility of the growth rate of consumption.

15As done in this literature, we will hereafter use equalities to refer to the approximations obtained when
using this linearization.
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Proposition 5. Suppose that the growth process is governed by equations (27)-(28). Under
the recursive utility model (36)-(37), the term structures at date 0 of interest rates and the
risk premia are approximated by the following equations:

rft = δ + ρµ− 1
2
(
γ2 − (γ − ρ)(γ − 1)

) E0 [vt]
t
− 1

8
(
γ2 − (γ − ρ)(γ − 1)

)2 V ar0 [vt]
t

−1
2(γ − ρ)(1− ρ)b2σ2

w + 1
2
γ − ρ
1− ν

(
γ2 − (γ − 1)(γ − ρ)

)
b

(
1− 1− νt

t(1− ν)

)
σ2
w (42)

πt(φ) = φγ
E0 [vt]
t

+ 1
2φ
(
γ(γ − ρ+ γρ)− 1

2φ(2γ2 + γ − ρ+ γρ) + γφ2
)
V ar0 [vt]

t

+1
2σ

2
w(γ − ρ)φbφ− 2γ

1− ν

(
1− 1− νt

t(1− ν)

)
, (43)

where E0[vt] and V ar0[vt] are given by Lemma 1, and b solves equation (41). These approx-
imations are exact when ρ is equal to unity.

Proof: See the appendix.

A direct consequence is that, in expectation (σ0 = σ), the short-term interest rate sim-
plifies to16

rf1 = δ + ρµ− 1
2
(
γ2 − (γ − ρ)(γ − 1)

)
σ2

0 −
1
2(γ − ρ)(1− ρ)b2σ2

w. (44)

Although the variance of growth is known one period in advance, the stochastic nature of
future volatility reduces the short-term interest rate when the representative agent has a
Preference for an Early Resolution of Uncertainty (PERU), i.e., when γ is larger than ρ, and
ρ is smaller than unity. The representative agent will observe at date 1 the volatility σ1
that will prevail in the second period, and this additional date-1 risk has an impact on the
willingness to raise savings today for date-1 consumption.

The term structure of interest rates in this long-run risk model with recursive preferences
combines features already discussed in the DEU model and a new element coming from
PERU. Indeed, the first line in equation (42) is symmetric to the equation (34), with adapted
coefficients for E0[vt] and V ar[vt] to account for the discrepancy between γ and ρ. The second
line in equation (42) is new compared to the DEU framework. We have seen above that it
tends to reduce the short-term interest rate. It is easy to check that the last term in this
equation has a decreasing term structure under PERU and γ ≥ 1 (so that b is negative).
This means that PERU cannot reverse the tendency of the term structure of interest rates to
be decreasing. This result parallels Beeler and Campbell (2012) who showed that when the
persistence of shocks to the growth rate of consumption is added to the model as in Bansal

16Although they do not compute the term structure of interest rates, Bansal et al. (2016) characterize the
short-term interest rate rf1 , which corresponds to equation (44) with their constant of log-linearization κ1
equaling 2b(1− βν)/(1− γ).
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β 0.999 discount factor
γ 9.67 relative risk aversion
ρ−1 2.18 elasticity of intertemporal substitution
µ 0.0016 expected growth rate of consumption
σ0 = σ 0.007 current and expected volatility
σw 2.12× 10−6 standard deviation of shocks to volatility
ν 0.9984 coefficient of persistence

Table 2: Calibration parameter based on monthly data extracted from Bansal et al. (2016).

et al. (2012), then real interest rates have a decreasing term structure, and are negative for
maturities exceeding 10 years.

The short-term risk premium π1(φ) = φγσ2
0 is not affected by stochastic volatility. This

is because the volatility for the first period is known at date 0. The middle term in the right-
hand side of equation (43) is similar to the last term of equation (35) in the DEU model. The
persistence of shocks to volatility magnifies the long-term kurtosis of log consumption, thereby
tending to make the term structure of risk premia increasing. The last term of equation (43)
takes account of PERU in the recursive utility model. As long as φ is smaller than 2γ, this
new term has an increasing term structure too. We can thus conclude that PERU cannot
reverse the increasing nature of the term structure of risk premia already observed under
DEU.

Consider again the calibration extracted from Bansal et al. (2016), as summarized in
Table 2. Figure 3 describes the term structures under this calibration, respectively for the
interest rates (rft ), the risk premia on aggregate consumption (πt(1)), and the equity premia
(πt(3)). The benchmark case without stochastic volatility is obtained by selecting σw = 0. It
is represented by the dashed lines in this figure. As in the DEU framework, although shocks
to volatility are small, their high persistence has a strong impact on the pricing of long-
dated assets. It reduces the long interest rate by around 0.4%, and it raises the long equity
premium by almost 1.5%. Notice that because the half-life of the shocks to the variance
of log consumption is around 36 years, it takes many centuries for these term structures to
converge to these asymptotic values.

A comparative static analysis is summarized in Table 3. Long-term rates are much more
affected by the unilateral change of a parameter than short-term rates. For example, consider
an increase in the persistence parameter ν from its benchmark value of 0.9984 to 0.999.
Because Bansal et al. (2016) estimated ν with a standard error of 0.0007, this change in ν
cannot be excluded by their data.17 This unilateral change has no effect on the risk premium

17In fact, ν = 0.999 is the calibration used by Bansal et al. (2012). Notice that using the calibration
with ν = 0.987 as in Bansal and Yaron (2004) would yield the following equilibrium prices: rf1 = 1.68%,
rf+∞ = 1.67%, π1(3) = 1.71% and π+∞(3) = 1.73%. As noticed by Beeler and Campbell (2012), the stochastic
nature of volatility has very little effect on asset prices in this initial calibration of the long-run risk model.
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Figure 3: The term structures of interest rates (top), risk premia on aggregate consumption (φ = 1, middle)
and equity premia (φ = 3, bottom) with recursive utility under the stochastic process (27)-(28). The calibration
of the parameters is described in Table 2. The dashed curves are obtained by imposing σw = 0 (no stochastic
volatility). Rates are in percent per year and durations are in years.
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rf1 rf+∞ π1(3) π+∞(3)
Benchmark 1.61 1.08 1.71 3.17
γ = 5 1.87 1.80 0.88 1.04
ρ = 1 2.58 2.04 1.71 2.76
σw = 4× 10−6 1.46 -0.32 1.71 6.57
ν = 0.999 1.54 0.35 1.71 4.91
Fixed volatility (σw = 0) 1.68 1.68 1.71 1.71

Table 3: Comparative static analysis based on the benchmark described in Table 2, with
γ = 9.67, ρ = 1/2.18, σw = 2.12 × 10−6, and ν = 0.9984. The first column describes the
modified parameter, everything else held unchanged. Rates are in percent per year.

on short-term equity, but it raises its term spread from 1.46% to 3.20%.

6 The term structure of the 4th cumulant of log consumption
The long-run risk specification (27)-(28) of stochastic volatility generates an increasing term
structure of the uncertainty affecting the conditional variance of the growth rate. This does
not change the annualized variance whose term structure remains flat. But it makes the term
structure of the annualized fourth cumulant of log consumption increasing, as expressed in
equation (32). This is the driving force behind the shapes of the term structures described
in the previous two sections. It is useful to test whether consumption data generates an
increasing term structure of the annualized fourth cumulant of log consumption. As Bansal
et al. (2016) and many others, our consumption data are extracted from the NIPA Tables
2.33, 2.34 et 7.1 of the Bureau of Economic Analysis. We use quarterly data of per-capita real
consumption expenditure on nondurables and services from 1947Q1 to 2016Q4. In Figure
4, we used plain circles to represent the term structure of the empirical annualized fourth
moment of log consumption, which is computed as follows for each maturity t ∈ {1, ..., 40}:

K
x0,t
4
t

= 1
t

(278− t)−1
278−t∑
τ=1

(xτ,τ+t − xt)4 − 3
(

(278− t)−1
278−t∑
τ=1

(xτ,τ+t − xt)2
)2 , (45)

where xt is the mean of the series
(
xτ,τ+t

)
τ=1,...,278−t. The increasing term structure for

K
x0,t
4 /t observed in the data suggests the persistence of shocks to the variance and is sup-

portive of decreasing interest rates and increasing risk premia. This is compatible with the
long-run risk model (27)-(28) with a positive coefficient of persistence. The quarterly cali-
bration proposed by Bansal et al. (2016) is also described in Figure 4, with ν = 0.9978 and
σw = 6.07× 10−6. This is computed as follows:

κ
x0,t
4
t

= 3σ2
w

(1− ν)2

(
1− 2 1− νt

t(1− ν) + 1− ν2t

t(1− ν2)

)
. (46)

This figure shows that this calibration tends to generate too much kurtosis for maturities
exceeding one year. This is why we also calibrated the term structure of the annualized 4th
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Figure 4: The term structure of the annualized 4th cumulant of log consumption κx0,t

4 /t, where the maturity
t is measured in quarters. The bullets are obtained for maturities t ∈ {1, ..., 40} by measuring the empirical
4th cumulant of the series

(
xτ,τ+t

)
τ=1,...,278−t

, using quarterly real U.S. consumption from 1947Q1 to 2016Q4.
The squares correspond to the theoretical term structure of the 4th cumulant using equation (46) with the
calibration ν = 0.9978 and σw = 6.07× 10−6 proposed by Bansal et al. (2016). The crosses correspond to an
alternative calibration with ν = 0.9826 and σw = 2.96× 10−6.

cumulant with parameters ν = 0.9826 and σw = 2.96× 10−6 that better fit the data. In fact,
these parameter values minimize the sum of the square of the differences between Kx0,t

4 /t and
κ
x0,t
4 /t for maturities between 1 and 40 quarters. This calibration exhibits a smaller degree

of persistence of shocks to the variance, and a smaller standard deviation for these shocks.

7 Concluding remarks

With power utility functions, risk aversion, prudence, temperance, edginess and higher degree
risk attitudes are all summarized by one parameter usually referred to as risk aversion. The
classical asset pricing theory, which heavily relies on this isoelastic specification, has therefore
developed arguments based on the sole concept of risk aversion. We find that problematic for
the development of this theory. For example, the negative impact of risk – as measured by
the variance – on the interest rate is exclusively linked by the notion of prudence (v′′′ ≥ 0),
which is orthogonal to the concept of risk aversion (v′′ ≤ 0). In the same fashion, this paper
demonstrates that stochastic volatility also reduces the interest rate if and only if the fifth
derivative of the risk utility function v is positive. This condition is sometimes referred to
as "edginess". In other words, departing from the power utility function would in theory
allows us to disentangle these psychological traits of our preferences under risk. This agenda
of research is in line with recent findings that are incompatible with constant relative risk
aversion (see for example Ogaki and Zhang (2001), Guiso and Paiella (2008), and Deck and
Schlesinger (2014)). This is also in line with the trend of behavioral finance in which the
utility function is distorted by additive habit formation, by background risks, or by a reference
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point for example.

The fact that increasing the risk surrounding the variance of log consumption yields a
4th-degree increase in the risk surrounding log consumption has important consequences for
asset pricing. First, the proxy measure of 4th-degree risk is the kurtosis. This means that
stochastic volatility generates a flat term structure of the variance ratio in expectation. This
is in striking contrast with our theoretical result that the term structure of risk premia is
decreasing. The explanation of this seemingly inconsistent results comes from the fact that
the aggregate risk cannot be measured only by annualized variance of future log consumption
alone. Outside the Gaussian world, the annualized kurtosis matters too, and the persistence of
shocks to the variance of log consumption makes its term structure increasing. This explains
the increasing nature of the term structure of risk premia. This suggests that the kurtosis
ratio should be used in parallel to the variance ratio in order to interpret the term structures
of asset prices.

Second, the impact of stochastic volatility on the aggregate risk premium is approximately
proportional to the intensity of the aversion to kurtosis. In the isoelastic case, this intensity
if equal to the third power of risk aversion. This implies that the link between the aggregate
risk premium and stochastic volatility is highly sensitive to the choice of the index of risk
aversion. This is even worse for the interest rate because its precautionary stochastic volatility
premium is proportional to the fourth power of the index of relative risk aversion.
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Appendix

Appendix 1: Proof of Theorem 1

We have to prove that function h is concave, with

h(σ2) = E [f(x+ ση)|σ] . (47)

It is easy to verify that

h′′(σ2) = σ4

4 E
[(
σ2η2f ′′(x+ ση)− σηf ′(x+ ση)

)∣∣∣σ] .
For each σ, define random variable yσ in such a way that yσ/σ be distributed as η. This
implies that Eyσ = 0 and Ey3

σ = 0. Using this change of variables, the above equation can
be rewritten as follows:

h′′(σ2) = σ4

4 E
[
y2
σf
′′(x+ yσ)− yσf ′(x+ yσ)

]
.

The concavity of h requires the right-hand side of this equality to be non-positive for all
random variable yσ such that Eyσ = Ey3

σ = 0. This condition is summarized as follows:

Ey = 0 and Ey3 = 0 ⇒ E
[
y2f ′′(x+ y)− yf ′(x+ y)

]
≤ 0. (48)

We will use the following lemma, which is a direct consequence of Theorem 3 in Gollier and
Kimball (1996).

Lemma 2. Consider three functions (f1, f2, f3) from R to R such that f1(0) = f2(0) =
f3(0) = 0. The following two conditions are equivalent:

• For any random variables y such that Ef1(y) = 0 and Ef2(y) = 0, we have that
Ef3(y) ≤ 0.

• There exists a pair (λ1, λ2) ∈ R2 such that f3(y) ≤ λ1f1(y) + λ2f2(y) for all y ∈ R.

Applying this lemma to condition (48) makes it equivalent to requiring that there exists
a pair (λ1, λ2) ∈ R2 such that

H(y) = y2f ′′(x+ y)− yf ′(x+ y)− λ1y − λ2y
3 ≤ 0 (49)

for all y. Notice that H(0) = 0 and H ′(0) = −f ′(x)− φ1. This implies that λ1 = −f ′(0) is a
necessary condition for H to be non-positive. We also have that

H ′′(y) = 3yf ′′′(x+ y) + y2f ′′′′(x+ y)− 6λ2y,

which implies that H ′′(0) also vanishes. We also get

H ′′′(y) = 3f ′′′(x+ y) + 5yf ′′′′(x+ y) + y2f (5)(x+ y)− 6λ2.
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This implies that H ′′′(0) = 3f ′′′(x)− 6λ2. A necessary condition for H to be non-positive is
thus that λ2 = 0.5f ′′′(x). Because H ′′′′(0) = 8f ′′′′(x), a necessary condition for an increase
in risk in the variance v of x to reduces Ef(x) is that f ′′′′ be non-positive, or that f ′′ be
concave.

We now show that this condition is also sufficient. Using the conditions on λ1 and λ2, we
can rewrite H in such a way that for all y, H(y) = yK(y) with

K(y) = yf ′′(x+ y)− f ′(x+ y) + f ′(0)− 0.5y2f ′′′(0). (50)

We would be done if we could show that H is uniformly non-positive. This requires K(y) to
have a sign opposite to y. Because K(0) = 0 a sufficient condition for this to be true is that
function K be decreasing. Observe now that

K ′(y) = y
[
f ′′′(y)− f ′′′(0)

]
is negative when f ′′′ is decreasing, i.e., if f ′′ is concave. This demonstrates that this condition
is necessary and sufficient for an increase in risk in variance to reduce Ef . �

Appendix 2: Solution (12) when σ2 has a Gamma distribution

Suppose that σ2 has gamma distribution Γ(a, b), so that its density function is

f(v; a, b) = va−1 e
−v/b

baΓ(a) , for all v > 0,

where a and b are two positive constants. This implies that the mean variance is σ2 = ab,
and its variance is σ2

w = ab2. It implies that

E [exp(−A(x+ ση)] = E
[
exp(−Ax+ 0.5A2σ2σ2

η)
]

=
∫ +∞

0
exp(−Ax+ 0.5A2vσ2

η)f(v; a, b)dv

= exp(−Ax)
baΓ(a)

∫ +∞

0
va−1 exp

(
v(0.5A2σ2

η − b−1)
)
dv

= exp (−Ax)
(

1− 1
2A

2σ2
ηb

)−a
. (51)

The last equality is a consequence of the observation that18

∫ +∞

0
va−1e−v/kdv = kaΓ(a).

Similarly, we have that

E [exp(−A(x+ ση − πf )] = exp(−Ax+ 0.5A2σ2σ2
η +Aπ). (52)

18This is a direct consequence that the integral of the density f must be equal to 1.
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Combining equations (6), (51) and (52) yields

exp(0.5A2σ2σ2
η +Aπf ) =

(
1− 1

2A
2σ2
ηb

)−a
.

Using the fact that a = σ4/σ2
w and b = σ2

w/σ
2, this equation is equivalent to (12). �

Appendix 3: Proof of Proposition 2

It is useful to explore first the properties of the following function:

Hf (k) = log (Ef(x+ σkε))− log (Ef(x+ σkε)) (53)
= log (Ef(x+ σkε− πf (k)))− log (Ef(x+ σkε))

Function Hf measures the relative increase in the expectation of f which is due to the
stochastic nature of the variance of x. Using the fact that the first three derivatives of
function πf evaluated at k = 0 are zero together with the assumption that Eε = Eε3 = 0, it
is straightforward to show that

Hf (k) = − 1
4!π

(4)
f (0)f

′(x)
f(x) +O(k5).

Using equation (7), this implies that

Hf (k) = k4

4!
f (4)(x)
f(x) V ar(σ2)Eε4 +O(k5). (54)

We first examine the risk-free rate. By equation (54), we have that

log
(
Ev′(c1)

)
= log

(
Ev′(c1 + ση)

)
+ k4

4!
v(5)(c1)
v′(c1) V ar(σ2)Eε4 +O(k5). (55)

Define function φ such that φ(e) = u′(e)/v′(e) for all e, and define e?1(k) as the certainty
equivalent of c1 + σkη. From equation (7), we have that

log
(
u′(e1)
v′(e1)

)
= log (φ(e1))

= log (φ(e?1)) + φ′(c1)
φ(c1)

k

4!
v(4)(c1)
v′(c1) V ar(σ2)Eε4 +O(k5)

= log (φ(e?1)) + v′(c1)
u′(c1)

u′′(c1)v′(c1)− u′(c1)v′′(c1)
(v′(c1))2

k

4!
v(4)(c1)
v′(c1) V ar(σ2)Eε4 +O(k5)

= log (φ(e?1)) +
(
u′′(c1)
u′(c1) −

v′′(c1)
v′(c1)

)
k

4!
v(4)(c1)
v′(c1) V ar(σ2)Eε4 +O(k5). (56)

From equation (17) and the above two equations, we see that the increase in log price due to
stochastic volatility is equal to

k4

4!
v(5)(c1)
v′(c1) V ar(σ2)Eε4 +

(
u′′(c1)
u′(c1) −

v′′(c1)
v′(c1)

)
k

4!
v(4)(c1)
v′(c1) V ar(σ2)Eε4 +O(k5).
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If k is small enough, this is positive if and only if equation (20) is satisfied.

We now turn to the risk premium. We have to prove that the following inequality holds
for small k if and only if v(4) is negative:

log
(
E(c1 + σkε)Ev′(c1 + σkε)
E(c1 + σkε)v′(c1 + σkε)

)
≥ log

(
E(c1 + σkε)Ev′(c1 + σkε)
E(c1 + σkε)v′(c1 + σkε)

)
(57)

Notice that
E(c1 + σkε) = E(c1 + σkε)

because the expectation of ε is zero. This implies that we can rewrite the above inequality
as follows:

log
(
Ev′(c1 + σkε)

)
− log

(
Ev′(c1 + σkε)

)
≥ log

(
E(c1 + σkε)v′(c1 + σkε)

)
− log

(
E(c1 + σkε)v′(c1 + σkε)

)
. (58)

Let Hf (k) be defined by equation (53), and let function f1 and f2 be respectively defined by
f1(c) = v′(c) and f2(c) = cv′(c). This implies that the above inequality can be rewritten as
follows:

Hf1(k) ≥ Hf2(k). (59)

Using equation (54) twice, this inequality holds for k small if and only if

f
(4)
1 (c1)
f1(c1) ≥

f
(4)
2 (c1)
f2(c1) . (60)

This can be rewritten as
v(5)(c1)
v′(c1) ≥

4v(4)(c1) + c1v
(5)(c1)

c1v′(c1) .

This is true if and only if v(4)(c1) is negative. �

Appendix 4: Proof of Proposition 5

Let us define the growth rate of consumption as xt,τ = log cτ/ct and the annualized log return
as rt,τ = (τ − t)−1 log(cφτ /Pt,τ ), τ > t. Let us also define the log SDF st = logSt, and the
log future normalized utility zt = logZt. This allows us to rewrite the pricing equations (38)
and (39) as follows:

0 = χ0 (tr0,t + st − s0) , (61)

sτ+1 − sτ = −δ − γxτ,τ+1 + (ρ− γ)zτ+1 + γ − ρ
1− γ χτ ((1− γ)(xτ,τ+1 + zτ+1)) , (62)

where operator χt is defined as

χτ (x) = log (Eτ exp(x)) . (63)
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One can obtain zτ by backward induction from equations (36)-(37) which are rewritten as
follows:

zτ =

 (1− ρ)−1 log
(
1− β + β exp

(
1−ρ
1−γχτ ((1− γ)(xτ,τ+1 + zτ+1))

))
if ρ 6= 1

β
1−γχτ ((1− γ)(xτ,τ+1 + zτ+1)) if ρ = 1,

(64)

Suppose that the growth process is governed by equations (27)-(28). In case ρ = 1, it is easy
to check that the guess solution

zt = at + bσ2
t (65)

satisfies equation (64) with

b = β(1− γ)
2(1− βν) . (66)

When ρ 6= 1, the linearization (65) is a first-order approximation of the exact link between
zt and the state variable σ2

t around the steady state with σ2
t = σ2 if b satisfies the following

condition:

b =
(1

2(1− γ) + bν

)
β exp

(
(1− ρ)

(
µ+ 1

2(1− γ)σ2 + 1
2(1− γ)b2σ2

w

))
. (67)

Using this linearization, equation (62) can be rewritten as

sτ+1 − sτ = −δ − ρµ+ 1
2(γ − ρ)(1− γ)

(
σ2
τ + b2σ2

w

)
− γστητ+1 − (γ − ρ)bσwwτ+1. (68)

By definition of r0,t, we have that

tr0,t = tE0r0,t + φ(x0,t − E0x0,t) = tE0r0,t + φ
t−1∑
τ=0

στητ+1. (69)

Combining this with equation (68), one can rewrite the pricing equation (61) as follows:

0 = χ0 (Q) , (70)

with

Q = tE0r0,t + 1
2(φ− γ)2

t−1∑
τ=0

σ2
τ − δt− ρµt

+ 1
2(γ − ρ)(1− γ)

(
t−1∑
τ=0

σ2
τ + b2σ2

wt

)
− (γ − ρ)bσw

t−1∑
τ=0

wτ+1. (71)

This is rewritten as

Q = tE0r0,t − δt− ρµt+ 1
2(γ − ρ)(1− γ)b2σ2

wt− (γ − ρ)bσw
t−1∑
τ=0

wτ+1

+ 1
2
(
(φ− γ)2 + (γ − ρ)(1− γ)

) t−1∑
τ=0

σ2
τ . (72)
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Using equation (30), this can be rewritten as follows:

Q = tE0r0,t − δt− ρµt+ 1
2(γ − ρ)(1− γ)b2σ2

wt+ 1
2
(
(φ− γ)2 + (γ − ρ)(1− γ)

)
E0vt

+ σw

t∑
τ=1

(
1
2
(
(φ− γ)2 + (γ − ρ)(1− γ)

) 1− νt−τ

1− ν − (γ − ρ)b
)
wτ . (73)

Because Q is normally distributed, the pricing equation (70) implies that

0 = tE0r0,t − δt− ρµt+ 1
2(γ − ρ)(1− γ)b2σ2

wt+ 1
2
(
(φ− γ)2 + (γ − ρ)(1− γ)

)
E0vt

+ 1
2σ

2
w

t∑
τ=1

(
1
2
(
(φ− γ)2 + (γ − ρ)(1− γ)

) 1− νt−τ

1− ν − (γ − ρ)b
)2

. (74)

The return of the strategy in which one purchases at price P0 at date 0 an asset that delivers
payoff cφt at date t is R0,t = cφt /P0. The expected return expressed as an annualized rate is

t−1 log (E0R0,t) = E0r0,t + 1
2φ

2E0vt
t

+ 1
8φ

4V ar[vt]
t

. (75)

Combining the above two equations implies that

t−1 log (E0R0,t) = δ + ρµ− 1
2
(
(φ− γ)2 − (γ − ρ)(γ − 1)− φ2

) E0vt
t

− 1
8

((
(φ− γ)2 − (γ − ρ)(γ − 1)

)2
− φ4

)
V ar[vt]

t
− 1

2(γ − ρ)(1− ρ)b2σ2
w

+ 1
2
σ2
wb(γ − ρ)

1− ν
(
(φ− γ)2 − (γ − ρ)(γ − 1)

)(
1− 1− νt

t(1− ν)

)
. (76)

The interest rate is obtained by replacing φ by zero, thereby generating equation (42). The
risk premium is obtained by subtracting the interest rate from the expected return described
above, which yields equation (43). This concludes the proof. �
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