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Abstract

We fill a gap in the literature by formally defining the notion of aversion to risk of
regret. In the spirit of the seminal work by Loomes and Sugden (1982), regret is measured
by the distance between the payoff x of the chosen act and the maximum payoff y that
could have been obtained if another action would have been selected. An increase in
the risk of regret occurs when x and y become statistically less concordant. It is shown
that an agent dislikes any such increase in risk of regret iff the utility function U(x, y) is
supermodular. We define an index of regret-risk aversion accordingly. When confronted
to a one-risky-one-safe-lottery menu, we show that more regret-risk-averse agents are
more willing to choose the risky act, and that this bias is increasing in the skewness
of the chosen act. Regret-risk aversion also yields a pseudo-RDEU optimistic inverse-S
shaped probability weighting function. Moreover, if the index of regret-risk aversion is
larger than half the Arrow-Pratt index of risk aversion, the decision maker likes local
mean-preserving spreads in the domain of no-regret payoffs.
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1 Introduction
Regret is a negative emotional reaction to personal past acts. It is experienced when realizing
that one would have been in a better situation, if only one would have decided differently. It
can come from missed opportunities, such as failing to pass a medical test that would have
revealed a cancer, or as not buying that asset whose market value has recently surged. It can
also come from past actions yielding a bad outcome, such as lost gambles and unsuccessful
investments. These emotions are mediated by a cognitive process known as counterfactual
thinking involving the orbitofrontal cortex (Camille et al. (2004), Stalnaker et al. (2015)).
If regret affects utility ex post, it should not be a surprise that it does influence decisions
ex ante. Since Gilovich and Medvec (1995), there is indeed overwhelming evidence in the
psychology literature that people alter their choices in response to the anticipation of regret
(Zeelenberg and Pieters (2004), Zeelenberg and Pieters (2007)), with applications in mar-
keting (Inman and McAlister (1994)), medicine (Brehaut et al. (2003), Chapman and Coups
(2006)), insurance (Braun and Muermann (2004)), and finance (Michenaud and Solnik (2008)
and Muermann et al. (2006)) for example.1

Since Bell (1982) and Loomes and Sugden (1982), economists have explored the role of
the anticipation of regret on optimal choices under uncertainty. Under the modern economic
theory of regret that we reexamine in this paper, decision makers (DM) are assumed to
maximize expected utility. But, when confronted with a non-trivial menu of lotteries, it is
assumed that each DM’s statewise utility U depends not just on the state-specific payoff x
of the chosen lottery but also on the largest payoff y that could have been obtained within
the menu in that state.2 Observe that the distribution of the forgone best alternative is a
function of the menu. This implies that the optimal choice is menu-specific, which implies
in turn a potential intransitivity of the preference ordering.3 Following Loomes and Sugden
(1982, 1987a,b), we measure the intensity of regret in any specific state by the difference
between y and x that prevails in that state.

How does the anticipation of regret affect choice? The answer to this question obviously
depends upon the properties of the bivariate utility function. The key concept here is regret
aversion. The problem is that the existing literature has not been very effective to produce
a coherent and consensual definition of regret aversion. For example, Sarver (2008) defines
regret aversion by the property that adding an ex ante dominated lottery in the choice menu
makes the DM worse off. This is because this lottery can yield an ex post payoff that is
larger than the payoff of the optimal lottery, thereby raising regret. Obviously, this definition
of regret aversion is supported by the assumption that the utility function is decreasing in

1Zeelenberg and Pieters (2007) documents an exponentially increasing number of papers published on
regret, starting around 1980 and culminating around 100 papers per year at the time of the publication of
their paper.

2The original theory proposed by Bell (1982, 1983), Loomes and Sugden (1982, 1987a,b) and Loomes (1988))
was limited to menus with only two lotteries, and allowed for rejoice when the chosen lottery generated the
largest payoff. In order to generalize the theory to menus containing more than two lotteries, and considering
that people focus more on regret than on rejoice, Quiggin (1994) introduced an additional assumption into
the model by claiming that statewise dominated alternative should be irrelevant. This supports the theory of
regret that has been used by economists since then, and that is used in this paper.

3For more on intransitivity with regret-sensitive preferences, see Bikhchandani and Segal (2011).
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the forgone best alternative. Gee (2012) refers to this notion of regret aversion as first-order
regret aversion. In this paper, we show that the optimal choice within an exogenously given
menu of lotteries can be characterized only if one defines a notion of aversion to risk of
regret that has never been formally defined before.4 In simple words, a DM is averse to
the risk of regret if, everything else unchanged, she dislikes any mean-preserving spread in
the distribution of the intensity of regret. As suggested by the psychology and economics
literature on the subject,5 most people prefer a sure regret of 1 than a regret of 100 occurring
with probability of 0.01. Savage (1951), who introduced the notion of regret in economics,
took the extreme view that a useful decision criterion under uncertainty is the minmax regret
in which this aversion to the risk of regret is infinite.

The primitive variables relevant for ex post utility is the actual payoff x and the forgone
best alternative y, from which one can derive regret y−x. Ex ante, expected utility of the DM
depends upon the joint probability distribution of (x, y). It is thus important to define the risk
of regret from these primitive variables. In this paper, we define an increase in risk of regret
by a reduction in concordance between x and y. The concept of comparative concordance has
been introduced in economics by Epstein and Tanny (1980) and Tchen (1980). It is obtained
by transferring some probability masses at the corners of any rectangle in the (x, y)-space
towards its main diagonal in a way that does not affect the marginal distributions of the two
random variables. A reduction in concordance reduces the covariance, but the opposite is
not necessarily true. We show that a reduction in concordance between x and y increases the
risk of y − x in the sense of Rothschild and Stiglitz (1970). In other words, a reduction in
concordance between the actual payoff and the forgone best alternative makes regret riskier
without affecting the marginal distributions of the actual payoff and of the forgone best
alternative. Our definition of aversion to risk of regret is that the DM dislikes any such
reduction in concordance. For example, consider the following two menus described in Table
1. MenuM123 = {x∗1, x2, x3} has three lotteries whose payoffs all depend upon the same draw
of a fair coin. Let us contemplate the possibility to select lottery x∗1 in this menu in which the
best forgone alternative is 1 or 2 respectively in state H and T. Because the actual payoff in
these states are respectively 0 and 1, regret takes value 1 with certainty. Let us alternatively
contemplate the same choice x∗1 in menu M145 = {x∗1, x4, x5}. In that context, the statewise
forgone best alternative are reversed, so that regret takes value 0 or 2 with equal probabilities.
In short, the two risk contexts yields exactly the same marginal distributions for x and y,
but the second context has these variables less concordant. That yields an increase in the
risk in regret. Under our definition, any regret-risk-averse DM should prefer the first menu
over the second.

We show that a DM is averse to risk of regret if and only if U is supermodular. We define
4Gee (2012) proposes a definition of second-order regret aversion that relies on the longshot bias. This is

not intuitive. As we show in this paper, this merely substitutes an assumption by a result.
5Zeelenberg and Pieters (2004) illustrates the nature of the relationship between the intensity of regret

and its emotional impact on utility by the following extreme example: "In April 1995, a man took his own
life after missing out on a £2 million price in the British National Lottery. He did so after discovering that
the numbers he always selected, 14, 17, 22, 24, 42, and 47 were that week’s winning combination. On this
particular occurrence, however, he had forgotten to renew his five-week ticket on time. The ticket had expired
the previous Saturday."
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H T H T
Lottery x∗1 0 1 Lottery x∗1 0 1
Lottery x2 1 -1 Lottery x4 -1 1
Lottery x3 -2 2 Lottery x5 2 -2
y123 1 2 y134 2 1
Regret 1 1 Regret 2 0

Table 1: Two menus of choices: M123 = {x∗1, x2, x3} and M145 = {x∗1, x4, x5}.

a regret-risk premium associated to a marginal-preserving reduction in concordance between
the actual payoff and its forgone best alternative as the sure reduction in actual outcome
that compensates for it. We show that, in the small, the regret-risk premium equals the
product of the increase in the covariance by an index of absolute aversion to risk of regret
measured by Uxy/Ux. Our approach differs much from the economic literature in which
most contributions assumed a specific functional form for the utility function, with U(x, y) =
u(x)−R(u(y)−u(x)).6 Although this specification has the advantage to intuitively separate
the "choiceless/regretless" utility function u from the penalty R coming from the feeling of
regret, we believe that it is too specific, with little benefit associated to this restriction.

An important contribution of this paper is to show that, in spite of the fact that our
definition of regret-risk aversion is based on the attitude towards a Rothschild-Stiglitz increase
in regret, this concept implies a preference for longshots, i.e., for positively skewed lotteries.
Such a preference is well documented in the finance and economics literature.7 This can be
potentially explained by the assumption that people are prudent in the classical expected
utility model, or by the assumption that they have an inverse-S shaped probability weighting
function in the cumulative prospect theory (CPT) and in the rank-dependent expected utility
(RDEU) model, as shown by Tversky and Kahneman (1992). It can alternatively be explained
by the aversion to risk of regret. Let us consider a menu that contains a risky binary lottery
x1 ∼ (a, 1 − p;A, p), with a < A, and a sure payoff equaling µ = pA + (1 − p)a. We show
in this paper that in this context, moving from the safe choice to the risky one entails one
mean-preserving spread in the distribution of x|y = µ, one mean-preserving spread in the
distribution of x|y = A, and a marginal-preserving increase in concordance between x and y.
In other words, the risky choice yields a reduction in the risk of regret compared to the safe
choice. To illustrate, let us consider the zero-mean symmetric case with a = −1, A = 1 and
p = 1/2. The safe choice entails a risk context (x, y) taking value (0, 0) or (0, 1) with equal
probabilities. The risky choice entails (−1, 0) or (1, 1) with equal probabilities. Moving from
safe to risky is done by a sequence of two manipulations on the joint probability distribution
that are described in Figure 1. We first increase the risk on x to generate the intermediary
lottery appearing in this figure (all outcomes are equally likely). The second manipulation is

6Quiggin (1994) is an exception.
7See for example Golec and Tamarkin (1998), Garrett and Sobel (1999), Harvey and Siddique (2000),

Bhattacharya and Garrett (2008), and Eichner and Wagener (2011). By showing that adding low-probability
macroeconomic catastrophes into the beliefs of the representative agent can explain the equity premium puzzle,
Barro (2006, 2009) is in line with the idea that investors particularly dislike negatively skewed returns.
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Figure 1: Moving from the safe to the risky context entails an increase in concordance.

performed by the two vertical arrows. In words, one displaces probability masses from atoms
where x and y are far apart to atoms where they are closer, without changing the marginal
distribution of x and y. This second transformation is an example of increase in concordance.
It yields a reduction in the risk of regret, which is desirable for regret-risk-averse agents.

This implies that the optimal choice is ambiguous under the combination of risk aversion
and regret-risk aversion. But we also show that their relative role in this comparison of the
safe and risky choices is sensitive to the skewness of the risky lottery. More precisely, we show
that when moving from the safe to the risky choice, a reduction in the success probability
p makes the positive effect of the reduction in the risk of regret stronger relative to the
negative effect of the risky payoff. Thus increasing the skewness of the risky lottery raises the
plausibility for the DM to prefer the risky lottery over its expectation. This apparent risk-
seeking behavior is well documented since Kahneman and Tversky (1979) and Tversky and
Kahneman (1992), in particular through the so-called reflection effect, i.e., the tendency to
prefer the risky choice in the above menu when p is small either in the loss domain (a < A = 0)
and in the gain domain (0 = a < A).8 This explains why regret theory can solve the Allais
paradox (Bell (1982)).

Tversky and Kahneman (1992), Wu and Gonzalez (1996), Abdellaoui (2000), Abdellaoui
et al. (2010) and many others have performed laboratory experiments to elicit the probability
weighting function. The typical experiment consists in eliciting the certainty equivalent c of
various binary lotteries x1 ∼ (a, 1 − p;A, p) with a given pair (a,A) and various success
probabilities p. In this context, we show that the regret-sensitive expected-utility-maximizer
with a multiplicative bivariate utility function behaves as a RDEU agent with a concave
utility function and an inverse-S shaped probability weighting function. Notice however that
the weighting function derived from this regret theory always exhibits optimism. This is due

8In the wording of Tversky and Kahneman (1992), DMs exhibit "risk-seeking preferences [...] for losses of
moderate and large probability [and] for small probabilities of gains."
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to the above-mentioned result that moving from safe to risky always yields a combination of
more payoff risk and less regret risk, so that the effect of regret-risk aversion is always in favor
of the risky choice, i.e., of optimism. Thus, our theory is unable to reproduce the elevation
(Abdellaoui et al. (2010)) of the weighting function extracted from these experiments.

Section 2 is devoted to the definitions and the characterization of the risk of regret and of
regret-risk aversion. We also show there the link between the risk of regret and the reduction
in concordance between the payoff and the forgone best alternative. In Section 3, we define
the regret-risk premium and we derive an index of regret-risk aversion that is consistent
with these definitions. We derive an approximation à la Arrow-Pratt of the former by using
the latter. In Section 4, we examine the role of regret-risk aversion in the risk attitude
towards menus that contain a binary lottery and its mean (or certainty equivalent), and we
characterize the link between regret-risk aversion and the preference for positively skewed
lotteries. We generalize these results in Section 5 for non-binary lotteries, whereas Section 6
is devoted to a short analysis of the two-asset portfolio problem.

2 A definition of aversion to risk of regret
The uncertainty is described by a set of S possible states of nature, indexed s = 1, ..., S. There
is an objective probability distribution of the states given by vector (p1, ..., pS) in the simplex
of RS . A lottery (or an act) is defined by a function from S to R that specifies the final payoff
x(s) in each state s. The choice problem is characterized by a menuM = {xθ : S → R |θ ∈ Θ}
of lotteries indexed by θ in some index set Θ. In the spirit of Bell (1982, 1983), Loomes and
Sugden (1982, 1987a,b) and following Quiggin (1994), we assume that the expected-utility-
maximizing agent is sensitive to regret in the sense that her utility U in any state s is a
function of two variables: (1) the actual payoff x(s) of the chosen lottery, and (2) the maximal
consumption yM (s) that could have been attained in that state if another feasible choice had
been made at the beginning of the period: yM (s) = maxxθ∈M xθ(s) for all s ∈ S. Observe
that yM is associated to menu M , but is independent of the lottery selected in that menu. A
choice xθ in menu M is expressed by the joint distribution of (xθ, yM ), and yields an ex-ante
well-being equaling EU(xθ, yM ). In this model, preferences over lotteries are menu-specific.

We assume that the decision-maker always prefers to consume more to less, and is averse
to risk on actual consumption. More precisely, U is increasing in x, which means that any
first-order stochastic improvement in the conditional distributions x |y = b increases welfare,
for any b ∈ R. Similarly, U is concave in x, which means that any increase in risk of x |y = b
reduces welfare. We now define the notion of regret aversion. Sarver (2008) and Gee (2012)
define regret aversion as follows:9 If menu M2 = {x2} is preferred to menu M1 = {x1}, then
adding lottery x1 in a menu that already contains x2 cannot make that menu more attractive.
In particular, this means that

EU(x2, x2) ≥ EU(x1, x1)⇒ EU(x2, x2) ≥ EU(x2, y), (1)
9In fact, Sarver (2008) calls this "regret", but this is clearly a concept of aversion to regret. Gee (2012)

refers to this notion as "first-order regret aversion".
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Ball number 0 1 ... 49 50 ... 99
Lottery x∗1 0 1 ... 49 50 ... 99
Lottery x0 100 0 ... 0 0 ... 0
y01 = max{x∗1, x0} 100 1 ... 49 50 ... 99
Regret 100 0 ... 0 0 ... 0

Table 2: Menu M01.

Ball number 0 1 ... 49 50 ... 99
Lottery x∗1 0 1 ... 49 50 ... 99
Lottery x2 1 2 ... 50 0 ... 0
Lottery x3 0 0 ... 0 51 ... 100
y123 = max{x∗1, x2, x3} 1 2 ... 50 51 ... 100
Regret 1 1 ... 1 1 ... 1

Table 3: Menu M123.

with y(s) = max {x1(s), x2(s)} for all s ∈ S. The intuition is that adding an ex-ante dom-
inated lottery can potentially increase the best alternative outcome in some states, thereby
raising the negative feeling of regret in these states. It is obvious that regret aversion holds
if and only if U is decreasing in y. It is useful to measure the intensity of regret r(s) in any
specific state s by the difference between the forgone best alternative y(s) and the actual
payoff x(s): r(s) = y(s) − x(s). It is menu-specific. By definition, the intensity of regret
is non-negative. Regret aversion means that the agent dislikes any increase in state regret.
Given the fact that y can only increase when enlarging the menu of choices, regret aversion
is a also a preference for reducing the choice opportunity set containing the optimal solution
(Sarver (2008)).

By contrast, our results rely on another concept that we call Aversion to Risk of Regret
(ARR). To illustrate, let us consider an urn that contains 100 balls numbered from 0 to 99.
A ball is randomly extracted from the urn. Lottery x0 yields a payoff of 100 if ball numbered
0 is extracted from the urn, and a payoff of 0 otherwise. Lottery x∗1 yields a payoff equaling
the number of the ball extracted from the urn. Suppose that the agent prefers lottery x∗1 in
menu M01 = {x0, x

∗
1}, as described in Table 2. Observe that the agent faces regret only if

ball 0 is obtained. In other words, the intensity of regret r is 100 with probability 1%, and
is 0 otherwise.

Let us contemplate alternatively menu M123 = {x∗1, x2, x3} described in Table 3. Lottery
x2 yields a payoff of s + 1 if the number of the ball is s if s is less or equal to 49, and 0
otherwise. Lottery x3 yields a payoff of s + 1 if the number of the ball is s if s is larger or
equal to 50, and 0 otherwise. Suppose that the agent also prefer lottery x∗1 in menu M123.
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But the agent will always face regret from not having selected lottery x2 (if s ≤ 49) or lottery
x3 (if s ≥ 50) ex post, yielding an intensity of regret r equaling unity with certainty.

Let us now compare the risk outcomes of the two menus M01 and M123 in more details.
Because x∗1 is always preferred, the marginal distribution of the final payoff is the same in
the two menus. Observe also that the marginal distributions of the best alternative payoff
y are also identical in the two menus. More specifically, the marginal distribution of y is
uniform over set {1, 2, ..., 100} in both menus. Thus, in terms of the marginal distributions of
x and y, the two menus are identical. However, the distributions of regret r are different. In
menu M01, regret is equal to 1 with certainty, whereas in menu M123 it is equal to 100 with
probability 0.01. Their expectations are equal, but menu M01 generates an increase in the
risk of regret compared to menu M123. Thus, a regret-risk-averse agent should prefer menu
M123 over menu M01.

Because the intensity of regret is measured by the difference between x and y, risk on
regret increases when these two random variables are less statistically concordant, a concept
developed by Tchen (1980) and Epstein and Tanny (1980). To show this, let us compare
two risk contexts characterized respectively by (x1, y1) and (x2, y2). Let Fi : R2 → R denote
the bivariate distribution function associated to context i, i = 1, 2. Suppose that F2 is
obtained from F1 through a Marginal-Preserving Reduction in Concordance (MPRC). A
MPRC is based on two transfers of probability masses among four realizations of (x, y), with
x ∈ {a,A}, a < A and y ∈ {b, B}, with b < B, as shown in Figure 1. First, probability
mass ε in the neighborhood of (a, b) is transferred upwards in the neighborhood of (a,B).
Second, probability mass ε in the neighborhood of (A,B) is transferred downwards in the
neighborhood of (A, b). Observe that this does not change the marginal distributions of x
and y. But it reduces the correlation between x and y, and it yields a mean-preserving spread
in the distribution of the intensity r = y − x of regret in the sense of Rothschild and Stiglitz
(1970), as claimed in the following proposition.

Proposition 1. Any marginal-preserving reduction in concordance in (x, y) yields a mean-
preserving spread in regret r = y − x.

Proof. A mean-preserving spread in r is obtained by defining an interval I in the support of
r from which some probability mass is extracted to be transferred outside I, preserving the
mean of r. Define rmin = min{B−A, b− a} and rmax = max{B−A, b− a}. Let us consider
interval I = [rmin, rmax]. The MPRC described above transfers a probability mass ε in the
distribution of regret r = y−x from I to B− a > rmax, and another probability mass ε from
I to A − b < rmin. Moreover, this change in the distribution of regret preserves the mean.
This is because the MPRC preserves the mean of x and y, thereby preserving the mean of
r = y − x.

Marginal-Preserving Increases in Concordance (MPIC) are defined symmetrically. More
generally, F2 is said to be less concordant than F1 if and only F2 is obtained from F1 through
a sequence of MPRCs. Tchen (1980) and Epstein and Tanny (1980) have shown that F2 is
less concordant than F1 if and only if they have the same marginal distributions and
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Figure 2: Example of a marginal-preserving reduction in concordance (MPRC).

∀(a, b) ∈ [x, x]× [y, y] ⊂ R2 : F2(a, b) ≤ F1(a, b). (2)

Remember that because a reduction in concordance has no effect on the marginal distributions
of x and y, it does not affect the risk characteristics of the final payoff and of the best
alternative payoff. But it increases the risk of regret since the sequence of MPRCs that
generates it yields a sequence of mean-preserving spreads in the distribution of regret, i.e., a
Rothschild-Stiglitz increase in risk of regret.

Definition 1. Let F1 and F2 be two cumulative distribution functions from [x, x] × [y, y] ⊂
R2 → R having the same marginal distributions: For all x ∈ [x, x], F2(x, y) = F1(x, y), and
for all y ∈ [y, y], F2(x, y) = F1(x, y). F2 exhibits more risk of regret than F1 if and only if F2
is less concordant than F1, i.e., if and only if condition (2) is satisfied.

This justifies the following definition of ARR.

Definition 2. U is averse to risk of regret if any increase in risk of regret reduces expected
utility.

It is easy to show that in the numerical illustration described in tables 2 and 3, menuM01
yields a risk context (x, y) that is less concordant than menu M123, which implies an increase
in risk of regret.10 All agents that are averse to risk of regret should therefore prefer menu
M123 over menu M01. Observe now that the MPRC described in Figure 2 reduces expected
utility EU(x, y) if and only if for all a ≤ A and b ≤ B,

10This reduction of concordance can be obtained through a sequence of 100 MPRCs. The first is to move
the 0.01 probability mass at (0, 100) downward to (0, 99), and to compensate this by an upward move of the
same probability mass from (99, 99) upward to (99, 100).
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U(a, b) + U(A,B) ≥ U(a,B) + U(A, b). (3)

By definition, this is true if and only if u is supermodular. When U is twice differentiable,
this means that Ux is increasing in y, or Uxy ≥ 0. This yields the following result, which is an
application of Epstein and Tanny (1980). This result implies in particular that an increase
in risk of regret reduces the covariance between x and y.

Theorem 1. U is averse to risk of regret if and only if U is supermodular.

Thus, the aversion to regret corresponds to U being decreasing in y, whereas the aversion
to risk of regret corresponds to Ux being increasing in y. Because y is a bad under regret
aversion, the aversion to risk of regret can also be interpreted as a preference for mixing good
(x) with bad (y), a common property of individual preferences first suggested by Eeckhoudt
and Schlesinger (2006).11

3 Measure of aversion to risk of regret
It is natural to define the premium associated to an increase in risk of regret by the sure
reduction in consumption that has the same effect on expected utility.

Definition 3. Consider an increase in risk of regret from F1 to F2. The associated regret
risk premium π is defined as follows:∫∫

U(x− π, y)dF1(x, y) =
∫∫

U(x, y)dF2(x, y) (4)

Because U is increasing in its first argument, the regret-risk premium is non-negative
under regret-risk aversion. Condition (4) can be rewritten as∫∫

[U(x, y)− U(x− π, y)]dF1(x, y) =
∫∫

U(x, y)d(F1(x, y)− F2(x, y)) (5)

Suppose that the increase in risk of regret is limited to a sequence of small MPRCs in the
neighborhood of (a, b). The left-hand side of equation (5) can then be approximated by
Ux(a, b)π. Using a second-order Taylor approximation, and taking advantage of the fact that
the marginals are unaffected by the change in distribution, we also have that

∫∫
U(x, y)d(F1(x, y)− F2(x, y))

≈ Uxy(a, b)
∫∫

(x− a)(y − b)d(F1(x, y)− F2(x, y))

= Uxy(a, b)[cov1(x, y)− cov2(x, y)]
= Uxy(a, b)4cov(x, y),

(6)

11These authors examined the special case of a univariate utility function. Eeckhoudt et al. (2007) extended
this analysis to the case of a multivariate utility function.
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where covi(x, y) is the covariance between x and y under distribution Fi, and 4cov(x, y) is
the reduction in covariance in (x, y) that is associated to this increase in risk of regret. This
implies that equation (5) implies that

π ≈ Uxy(a, b)
Ux(a, b) 4cov(x, y), (7)

This justifies the following definition of an index of absolute aversion to risk of regret (AARR),
which parallels the standard Arrow-Pratt definition of absolute risk aversion.

Definition 4. We define the indexes of absolute risk aversion α and of absolute regret-risk
aversion ρ as follows:

α(a, b) = −Uxx(a, b)
Ux(a, b) , and ρ(a, b) = Uxy(a, b)

Ux(a, b) . (8)

When the increase in risk of regret is localized in the neighborhood of (a, b), ρ(a, b) is
the certainty equivalent reduction in consumption corresponding to a unit reduction in the
covariance between the actual payoff and the forgone best alternative. For example, if (A,B)
is in the neighborhood of (a, b) in Figure 2, the corresponding MPRC has a regret risk
premium that can be approximated by this equation:

π ≈ ∆p ∆x ∆y ρ(a, b), (9)

where ∆p = ε, ∆x = A− a and ∆y = B − b.

Various specifications of the bivariate utility function U exist in the literature. Bell (1982)
proposed to use a function U(x, y) = u(x) − R(u(y) − u(x)), where u is an increasing and
concave "choiceless" utility function, and R is a regret penalty function.12 Several authors,
such as Braun and Muermann (2004), Muermann et al. (2006), Sarver (2008), Michenaud
and Solnik (2008), and Gee (2012) for example, have followed this tradition. Under this
specification, the index of regret-risk aversion equals ρ(a, b) = u′(b)R′′/(1 + R′) where the
derivatives of R are evaluated at u(b) − u(a). Notice that disentangling regret-risk aversion
from risk aversion is only partial in this model, since the index of risk aversion α obviously
depends upon the shape of R.

Savage (1951) proposed the decision criterion in which the DM minimizes the maximum
statewise regret r(x, y) = y−x. This can be interpreted as an extreme version of our general
model with U(x, y) = u(r(x, y)) and u(r) = −A−1 exp(Ar) for A ∈ R+. This implies indexes
α(a, b) = ρ(a, b) = A. Let us define the certainty equivalent regret R as u(R) = Eu(r(x, y)).
This is equivalent to R equaling A−1 lnE exp(Ar), which is the cumulant-generating function
of random variable r. As is well-known, when A tends to infinity, R tends to the maximum
statewise regret. Because u is decreasing in R, maximizing u(R) = EU(x, y) is equivalent
to minimizing R. So this specification of our general model leads to the minmax regret
criterion that has played an historical role in the development of decision theory during the
last century.

12Loomes and Sugden (1982, 1987b) considered the special case of this specification with u(x) = x.
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Finally, in the spirit of this exponential specification, we propose a multiplicative formu-
lation with U(x, y) = u(x)v(y), with u′ ≥ 0, u′′ ≤ 0, v ≥ 0. Under this specification, the
agent is averse to risk of regret if and only if v is increasing: v′ ≥ 0. The index of regret-risk
aversion is ρ(a, b) = v′(y)/v(y), whereas the index of risk aversion is α(a, b) = −u′′(a)/u′(a).
This specification allows for a full separation of risk and regret-risk attitudes in the small.

4 The one-risky-one-safe-lottery menu with two states: Pref-
erence for skewness

In this section, we explore the link that exists between the attitude towards skewed risk and
the aversion to risk of regret as defined in the previous section. Although we defined ARR
strictly in relation to mean-preserving spreads in the intensity of regret, we hereafter show
that ARR generates a form of preference in favor of skewed risks in consumption.

To do this, we examine simple menusM = {x1, x2} that contain two lotteries. We further
assume in this section that lottery x2 is safe as it generates a payoff equaling the mean of
x1 with certainty. Without loss of generality, we assume that Ex1 = 0. We examine the
conditions under which, in spite of her risk aversion, the decision-maker wants to select the
risky lottery over its mean in this menu. In this problem, the agent faces two risks of regret
depending upon her decision. First, if she takes the risky lottery, she will feel regret if she
makes a loss on this gamble. Second, if she does not take the risk, she will feel regret if
the payoff of the lottery is positive. If the risky lottery yields a large payoff with a small
probability, the risk of regret is larger in this second scenario than in the first. If the skewness
of the risky lottery large enough, the effect of aversion to risk of regret may dominate the
effect of risk aversion to induce the decision-maker to prefer the risky lottery in menu M .
In this section, we consider the special case in which the risky lottery x1 of this menu is
binary, with payoffs K and −k respectively with probability p and 1 − p. We assume that
K = k(1 − p)/p in order to have Ex1 = 0. This lottery can be interpreted as betting k > 0
on a horse whose probability to win the race is p, under an actuarially fair pricing. Without
loss of generality, let’s assume at this stage k = 1. Obviously, a reduction in p raises the
skewness of x1. Because the alternative choice in menu M is x2 =p 0, the distribution of
forgone best alternative y associated to this menu is characterized by y = 0 if x1 = −k and
y = K if x1 = K.

4.1 Selecting the risky lottery yields an increase in outcome-risk and a
reduction in regret-risk

In Figure 3, we drew in red the distribution of the risk context (x2, y
M ) if the safe lottery x2

is selected. It takes value (0, 0) and (0,K) respectively with probability 1− p and p. We also
drew in blue the distribution of (x1, y

M ) when the risky lottery is selected.

We hereafter show how to transfer probability masses to transform the risk context where
the safe lottery x2 is selected in menu M into the one in which the risky lottery x1 is
selected, i.e., when moving from red to blue. A sequence of three transfers of probability
masses will generate this transformation, two yielding a mean-preserving spread (MPS) in
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Figure 3: Transfers of probability masses in the context of a menu M = {x1 ∼ (K, p;−1, 1−
p), x2 =p 0}.

the distribution of x conditional to y, and one yielding a marginal-preserving increase in
concordance (MPIC):

• A MPS in x conditional to y = 0: The probability mass 1 − p at (0, 0) is split into
(1− p)2 and p(1− p). These masses are transferred horizontally respectively to (−k, 0)
and to (K, 0).

• A MPS in x conditional to y = K: The probability mass p at (0,K) is split into
p(1− p) and p2. These masses are transferred horizontally respectively to (−k,K) and
to (K,K).

• A MPIC: The two probability masses p(1−p) now at (−k,K) and (0,K) are transferred
vertically respectively at (−k, 0) and (K,K).

This sequence of three transfers of probability masses are represented in Figure 3. They
transform the risk environment (x1, y

M ) into (x2, y
M ). Because the agent is risk-averse in

x (Uxx ≤ 0), the two mean-preserving spreads in x | y reduce expected utility. But the
marginal-preserving increase in concordance reduces the risk of regret. Under the regret risk
aversion (Uxy ≥ 0), the MPIC involved in the transformation of the risk context (x, y) from
the safe lottery to the risky one raises expected utility, thereby making the optimal choice in
M ambiguous.

4.2 The case of small risk

This ambiguity can be removed if we examine the special case of x1 being a small binary risk,
as shown in our next proposition.
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Proposition 2. Consider a menu M = {x1, x2} with x1 ∼ (k(1 − p)/p, p;−k, 1 − p) and
x2 =p 0. In this menu, switching from the safe lottery x2 to the risky one x1 yields a MPS
in x|y = x1, a MPS in x|y = x2, and a MPIC. The corresponding increase in expected utility
equals

EU(x1, y
M )− EU(0, yM ) = k2 1− p

p
Ux(0, 0)

[
(1− p)ρ0 − 0.5α0

]
+O(k3). (10)

Proof. We rewrite the left-hand side of equation (10) as follows:

f(k) = pU

(
k

1− p
p

, k
1− p
p

)
+ (1− p)U (−k, 0)− pU

(
0, k1− p

p

)
− (1− p)U (0, 0) . (11)

It is easy to check that f(0) = f ′(0) = 0 and that

f ′′(0) = Uxx(0, 0)1− p
p

+ 2Uxy(0, 0)(1− p)2

p
= 1− p

p
Ux(0, 0) [2(1− p)ρ0 − α0] . (12)

This implies that

f(k) = 1
2k

2f ′′(0) +O(k3) = k2V ar(x1)Ux(0, 0)
[
(1− p)ρ0 − 0.5α0

]
+O(k3). (13)

This concludes the proof.

Suppose now that bet k is close to zero. In that context, the risk premium associated
to x1 is approximately to its Arrow-Pratt approximation 0.5α0Ex

2
1, with Ex2

1 = k2(1− p)/p
and α0 = α(0, 0). This measures the certainty equivalent loss in x associated to the sequence
of the two MPS described above. Similarly, following equation (9), the (negative) regret risk
premium associated to the MPIC can be approximated by −k2(1−p)2ρ0/p, with ρ0 = ρ(0, 0),
since ∆p = −p(1 − p), ∆x = k/p and ∆y = k(1 − p)/p. This provides an intuition to
Proposition 10.

Observe that the MPIC necessary to transform the risk context (x2, y
M ) into (x1, y

M )
reduces the covariance between x and y by (1 − p)2/p, whereas the increase in variance in
the final payoff equals (1− p)/p. This means that

∆cov(x, y) = (1− p)V ar(x1). (14)

Because the negative regret risk premium is approximately proportional to ∆cov(x, y) whereas
the positive risk premium is approximately proportional to V ar(x1), we can conclude that
the relative effect of the aversion to risk of regret is decreasing in p. In other words, our
definition of ARR is compatible with a preference for longshots. This is formalized in the
following corollary, which is a direct consequence of equation (10).

Corollary 1. Under the assumptions of Proposition 2, and assuming that the size k of the
bet is small, then
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• the safe lottery is always preferred if and only if the regret-risk aversion is smaller than
half the risk aversion, i.e., iff ρ(0, 0) ≤ 0.5α(0, 0);

• a mean-preserving reduction in the probability of success p makes the risky choice more
desirable. Technically, if the risky lottery x1 ∼ (k(1−p)/p, p;−k, 1−p) is preferred to 0
in menu M = {x1, 0}, then for all p′ ≤ p, the risky lottery x′1 ∼ (k(1−p′)/p′, p′;−k, 1−
p′) is preferred to 0 in menu M = {x′1, 0}.

The first result in this corollary states that there is a strictly positive lower bound (equal-
ing 0.5α0) for the regret risk aversion ρ0 below which the risky choice in M can never be
optimal. This lower bound is obtained from equation (10) by pushing the skewness of the
risky lottery to its extreme, with p → 0 and K/k → ∞. The second result illustrates a
preference for longshots when ρ0 > 0.5α0. In fact, under our assumption of an actuarially
fair pricing, betting on a horse whose probability to win is p is optimal if and only if p is
smaller than 1− 0.5α0/ρ0.

4.3 Reinterpretation in the RDEU framework

Our results provide an explanation for the standard risk-seeking observations made first by
Tversky and Kahneman (1992). First, people often prefer a small probability of winning a
large prize over the expected value of that prospect. Second, people also often prefer a large
probability of losing a substantial amount of money over the expected loss of that prospect.
In both cases, the risky choice is positively skewed. This implies that people who contemplate
the safe choice particularly fear the risk of regret when the higher payoff materializes. In the
RDEU framework, this is usually explained by the hypothesis that people tend to distort
the cumulative distribution function. In this section, we show that some of these distortions
can be explained by ARR. The standard method to elicit probability distortion consists in
asking respondents to evaluate their certainty equivalent payoff c for various binary lotteries
x1 ∼ (x+, p+;x−, p−), with x− < x+ and p− + p+ = 1. Eliciting a certainty equivalent
associated to a lottery places the respondent in a situation to recognize that she is indifferent
between x1 and c when confronted to menu {x1, c}. In our ARR model, this certainty
equivalent payoff is defined as follows

p−U(x−, c) + p+U(x+, x+) = p−U(c, c) + p+U(c, x+). (15)

Suppose that the utility function U is multiplicative as described in the previous section:
U(x, y) = u(x)v(y). The absolute aversion to risk of regret equals ρ(x, y) = v′(y)/v(y). Under
this specification, equation (15) can be rewritten as

w(p−)u(x−) + (1− w(p−))u(x+) = u(c), (16)

with
w(p−) = p−v(c)

p−v(c) + (1− p−)v(x+) . (17)

Equation (16) is the standard formulation of the rank-dependent expected utility model. In
our model, for each value of p−, the probability-distortion w is jointly determined with the
certainty equivalent payoff c by solving system (16)-(17) with respect to these two unknowns.
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Figure 4: Probability transformation functions induced by the aversion to risk of regret

We can prove that there is an interior solution to this system, as stated in the following
proposition, whose proof is releguated to the appendix.

Proposition 3. Suppose that U(x, y) = u(x)v(y) and that u is increasing. System (16)-(17)
has an interior solution with a certainty equivalent c in [x−, x+]. If v is increasing, i.e., if
the DM is regret-risk-averse, then

• the probability weighting w(p−) is smaller than p− for all p− ∈ [0, 1];

• the probability weighting function is concave in the neighborhood of p− = 0 and is convex
in the neighborhood of p− = 1.

These results are reversed if the DM is regret-risk-seeking. Moreover, w′(0) = 1.

Consider an external observer who knows the agent’s utility function u and who tries to
elicit the weighting function w by observing a set of certainty equivalent payoffs associated to
different binary lotteries with the same support (x−, x+). For each possible probability p− of
the low payoff, the observer deduces w(p−) from the observation of c by solving equation (16).
We showed in Proposition 3 that such an observer will deduce from this process that the agent
is RDEU with a probability weighting function w that is optimistic (w(p−) ≤ p−) if the agent
is averse to risk of regret (and that is pessimistic if the agent is regret-risk-seeking). This
optimism may dominate risk aversion (u′′ < 0), as shown in the previous section. Proposition
3 suggests that this probability weighting function is inverse-S shaped, since it is concave for
low probabilities, and convex for large ones. It is noteworthy that this shape is the one
that emerges from all empirical studies such as in Tversky and Kahneman (1992), Wu and
Gonzalez (1996), Abdellaoui (2000) and Abdellaoui et al. (2010) for example. However, as
noticed earlier, this model is unable to generate both optimism for some probabilities and
pessimism for others. Using the wording in Abdellaoui et al. (2010), our weighting function
has an elevation which is too low.

16



To illustrate, we have drawn in Figure 4 the probability weighting function that would
emerge from this elicitation process when considering lotteries with payoffs 1 and 100, and
functions u(x) = x1−γ/(1 − γ), γ ≥ 0, and v(y) = yη, η ≥ 0. Observe that ρ(x, y) = η/y,
so that η can be interpreted as an index of relative aversion to risk of regret. The left figure
corresponds to a relatively low risk aversion of γ = 0.5, whereas the right one corresponds
to a larger risk aversion of γ = 2. In each case, we have drawn the probability distortion
functions associated to different degrees of relative regret-risk aversion η = 0, 0.1, 0.4, 1, 2 and
3. Observe that an increase in ARR makes the agent more optimistic, with all probability
weighting functions exhibiting a typical inverse-S shape. The high discrepancy between the
true probability p− and its distorted value w(p−) when p− is close to unity illustrates the
longshot bias of ARR agents.

The two figures also illustrate the fact that the theory of regret aversion yields a probabil-
ity weighting function that cannot be disentangled from the utility function u. They suggest
in particular that more risk-averse agents exhibit more optimism. It should also be noticed
that the probability weighting function w is sensitive to the context given by (x−, x+).

5 The general case of the one-risky-one-safe-lottery menu
In this section, we relax the assumption that the risky lottery has only two atoms. In other
words, we characterize the choice of regret-risk-averse agents who face a menu that contains
an arbitrary lottery and a safe bet. Since the impact of a change in the payoff of the safe
bet has a trivial consequence on the choice, we hereafter assume that the two choices yield
the same expected payoff. The generalization presented in this section is derived from the
following lemma, whose proof is relegated to the appendix.

Lemma 1. Any lottery with mean µ and S possible payoffs can be decomposed into a com-
pound lottery of S − 1 binary lotteries with mean µ.

Let x1 with Ex1 = µ have S = m+n possible outcomes in the union of A− = {a−1 , ..., a−m}
and A+ = {a+

1 , ..., a
+
n }, with a−1 < ... < a−m < µ < a+

1 < ... < a+
n . Let us decompose this

lottery into x1 ∼ (x1, π1; ...;xS−1, πS−1), where xk ∼ (ak−, pk, ak+, 1−pk) is a µ-mean binary
lottery with ak− ∈ A−, ak+ ∈ A+, and pk ∈ [0, 1], for all k ∈ {1, S − 1}. For each lottery xk,
define yk that takes value µ if xk = ak−, and ak+ otherwise. It is then obvious that

EU(x1, y
M )− EU(µ, yM ) =

S−1∑
k=1

πk
[
EU(xk, yk)− EU(µ, yk)

]
. (18)

In other words, comparing risk contexts (x1, y
M ) and (µ, yM ) can be performed by compar-

ing S − 1 pairs of risk contexts (xk, yk) and (µ, yk). Building on what we know on these
comparisons from Section 4.1, we obtain the following results.

Proposition 4. Consider any menu M containing two lotteries, a risky one x1 and a safe
one x2 with the same mean. Let random variable yM denote the forgone best alternatives
associated toM . The distribution of (x1, y

M ) can be obtained from the distribution of (x2, y
M )

through a sequence of mean-preserving spreads in x|yM and of marginal-preserving increases
in concordance between x and y.
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Combining this with Proposition 2, this immediately implies the following corollary.

Corollary 2. Consider menu M = {x1, x2}, where x2 takes value Ex1 = µ with certainty.
Risk-averse and regret-risk-seeking agents always prefer the safe choice in this menu. If the
riskiness of x1 is small in the sense of Arrow-Pratt, then the risky choice can potentially be
preferred only if the local aversion to risk of regret is larger than half the local aversion to
risk, i.e., iff ρ(µ, µ) ≥ 0.5α(µ, µ).

It is interesting to examine how a local mean-preserving spread in the distribution of the
risky lottery x1 in menu M affects its attractiveness. As we will show, it is important to
determine whether this MPS takes place to the regret domain or in the rejoice domain, where
regret and rejoice are defined from the point of view of the risk-taker. To examine this, let us
formally decompose lottery x1 into its regret and rejoice domains, where the regret domain
corresponds to the state of nature in which the payoff of the risky lottery is less than the
payoff of the safe bet: x1 ∼ (kx+, p+; kx−, p−), with supp x+ ⊂ [µ,+∞[, supp x− ⊂]−∞, µ],
p+ > 0, p− > 0, p+ + p− = 1, and p+Ex+ + p−Ex− = µ. The risky lottery is preferred iff

p+E [U(x+, x+)− U(µ, x+)] + p−E [U(x−, µ)− U(µ, µ)] ≥ 0. (19)
We can rewrite this condition as follows:

p+Eu+(x+) + p−Eu−(x−) ≥ 0, (20)

where functions u+ and u− are defined as

u+(x) = U(x, x)− U(µ, x) (21)

and
u−(x) = U(x, µ)− U(µ, µ). (22)

This is a model of state-dependent expected utility. Obviously, the concavity of utility func-
tion u− in the regret domain is the same as the concavity of U(x, µ) with respect to x. This
means that the agent is risk-averse in the regret domain, in the sense that any local MPS
in the regret domain reduces the attractiveness of the risky lottery. Its risk aversion in this
domain is measured by α(x, µ). But the analysis is very different in the rejoice domain.
Indeed, the local risk aversion of u+ in this domain of payoffs is measured by

−
u′′+(x)
u′+(x) = −Uxx(x, x) + 2Uxy(x, x) + Uyy(x, x)− Uyy(µ, x)

Ux(x, x) + Uy(x, x)− Uy(µ, x) . (23)

The sign of this index of risk aversion is ambiguous. When x is only marginally larger than
µ, this can be approximated by

−
u′′+(µ)
u′+(µ) = α(µ, µ)− 2ρ(µ, µ). (24)

These results are summarized in the following proposition.

Proposition 5. Consider menu M = x1, x2}, where x2 is degenerated and take value Ex1
with certainty. Any mean-preserving spread of x1 in the regret domain x ≤ Ex1 = µ reduces
the attractiveness of the risky lottery. A mean-preserving spread of x1 in a small neighborhood
above µ reduces its attractiveness if and only if ρ(µ, µ) ≤ 0.5α(µ, µ).
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An alternative intuition of this result can be obtained by examing the case of small risks.
The following proposition, whose proof is skipped, generalizes Proposition 2.

Proposition 6. Consider a menu M = {x1, x2} in which the risky lottery x1 and the safe
bet x2 have the same mean kµ. Let x1 ∼ (kx+, p+; kx−, p−) with x− ≤p µ ≤p x+. In this
menu, the increase in expected utility when switching from the safe lottery x2 to the risky one
x1 equals

EU(x1, y
M )− EU(0, yM )
Ux(0, 0) = k2

[
p+ (ρ0 − 0.5α0)E(x+ − µ)2 − 0.5p−α0E(x− − µ)2

]
+O(k3),

(25)
where ρ0 = ρ(µ, µ) and α0 = α(µ, µ).

The intuition of this result goes as follows. For small risk, the outcome-risk premium is
proportional to V ar(x1), with

V ar(x1) = k2
[
p+E(x+ − µ)2 + p−E(x− − µ)2

]
. (26)

As we know from section 3, this outcome-risk premium should be compared to the (negative)
regret-risk premium which is proportional to −∆cov(x, yM ). The increase in the covariance
in (x, y) when shifting risk context from the safe choice yielding (0, yM ) to the risky one
(x1, y

M ) equals

−∆cov(x, yM ) = k2p+E(x+ − µ)2. (27)

The first term of the right-hand side of equality (25) is the difference between these two
premia, weighted respectively by 0.5α0 and ρ0.

Proposition 6 confirms our earlier findings. For example, in the small, a regret-sensitive
agent will never choose the risky option in her degree of regret-risk aversion is smaller than
half her absolute risk aversion. Indeed, in that case, the two terms in the right-hand side of
equation (25) are negative. Moreover, the bias in favor of the risky choice is increasing in
p+E(x+ − µ)2/p−E(x− − µ)2, which is a measure of positive asymmetry in the distribution
of x1. This generalizes our findings on the positive skewness bias of regret-risk-averse DM
when there are more than two possible outcomes in the risky choice.

6 The portfolio problem
In this section, we apply our definition of regret-risk aversion to the static one-risky-one-safe-
asset portfolio. Consider an investor with initial wealth z who can invest in a safe asset whose
return is normalized to zero and in a risky asset whose return is a random variable x with a
known distribution function F . We normalize z to unity. To make the problem interesting,
let us suppose that 0 is in the interior of the support of x. If k denotes the share of wealth
invested in the risky asset, final wealth is 1 + kx. Let us assume that the equity share k is
restricted to belong to [k, k] for some arbitrary pair (k, k) ∈ R2 such that k < k. A typical

19



example is k = 0 in which shorting the risky asset is prohibited. Another example is k = 1,
in which borrowing at the riskfree rate to invest in the risky asset is prohibited. This analysis
generalizes what has been done before in this paper by allowing more than two choices in the
menu.13

The portfolio menu isM = {1+kx|k ∈ [k, k]}. The forgone best alternative yM associated
to this menu is either 1 +kx if x is negative, and 1 +kx if x is positive. In words, the forgone
best alternative is always the minimum risk exposure k if the return of the risky asset is
negative, and the maximum risk exposure k otherwise. The decision problem can be written
as

k∗ ∈ arg max
k∈[k,k]

V (k; k, k) = EU(1 + kx, yM ). (28)

Notice that the objective function V is concave in k, so that the first-order condition is
necessary and sufficient. We hereafter suppose that the solution is interior, so that the first-
order condition is

∂V

∂k
(k∗; k, k) = ExUx(1 + k∗x, yM ) = 0. (29)

We are interested in determining the impact of a change in the lower and upper constraints
on the optimal portfolio allocation k∗.14 Because V is concave in k, this comparative static
analysis is driven by the cross-derivatives of V . We have that

∂2V

∂k∂k

∣∣∣∣∣
k=k∗

=
∫ 0

−∞
x2Uxy(1 + k∗x, 1 + kx)dF (x). (30)

This is unambiguously positive under regret-risk aversion, which implies that increasing the
minimum risk exposure x always raises the optimal risk exposure k∗. Similarly, we have that

∂2V

∂k∂k

∣∣∣∣∣
k=k∗

=
∫ +∞

0
x2Uxy(1 + k∗x, 1 + kx)dF (x). (31)

This is also positive under regret-risk aversion. This yields the following proposition.

Proposition 7. Consider the portfolio problem in which final wealth is 1+kx, with k ∈ [k, k],
and suppose that the optimal solution k∗ is interior. Raising the lower limit k or the upper
limit k of the risk exposure always raises (resp. reduces) the optimal risk exposure k∗ under
regret-risk aversion (resp. seeking).

13There exist other interpretations of this model. For example, consider the case of an insurable risk of loss
`, which is random. A coinsurance contract can be purchased in which the policyholder with initial wealth z0
gets indemnity (1 − k)` ex post against the payment of a premium (1 − k)P ex ante, where k is the retention
rate, and P is the full insurance premium. Final wealth is thus z0 − ` + (1 − k)` − (1 − k)P , which can be
rewritten as z + kx, with z = z0 − P and x = P − `.

14The welfare analysis is immediate. As shown by Sarver (2008), if Uy < 0, i.e., if the investor is averse
to regret, any reduction in the choice set (increase in k, reduction in k) that does not eliminate the optimal
solution k∗(k, k) raises welfare ex ante.
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This means that regret-risk aversion tends to push the optimal risk exposure to the center
of the opportunity set. An extreme illustration of this phenomenon is obtained when assuming
that the equity premium is zero, so that Ex = 0. As is well-known, in the absence of regret-
risk aversion, the optimal portfolio is fully invested in the safe asset in that case. But it is a
simple extension of the above proposition that imposing a no-borrowing constraint k = 0 will
induce the regret-risk-averse investor to accept some equity risk in her portfolio.15 Braun
and Muermann (2004), Muermann et al. (2006) and Michenaud and Solnik (2008) derived
this result respectively in the context of insurance, portfolio choice and currency hedging
decisions, under the Bell’s specification U(x, y) = u(x)−R(u(y)− u(x)).16

Observe also that one can rewrite the first-order condition (29) by using an indirect utility
function u:

Exu′(1 + k∗x) = 0, (32)

with

u′(w) =
{
Ux(w, y(w)) if w < 1
Ux(w, y(w)) if w ≥ 1, (33)

with y(w) = 1+k(w−1)/k∗ and y(w) = 1+k(w−1)/k∗. The index of absolute risk aversion
of this indirect utility function equals

−u
′′(w)
u′(w) =

{
α(w, y(w))− k

k∗ ρ(w, y(w)) if w < 1
α(w, y(w))− k

k∗ ρ(w, y(w)) if w > 1.
(34)

This shows that ARR plays a more important role to reduce risk aversion in the rejoice
domain (w > 1) than in the regret domain (w < 1). Notice in particular that there is a
downward discontinuity in risk aversion around w = 1. More specifically, risk aversion goes
down from α(1, 1) − kρ(1, 1)/k∗ for small negative returns to α(1, 1) − kρ(1, 1)/k∗ for small
positive returns. This suggests that the impact of a mean-preserving spread in returns reduces
the demand for the risky asset less if it concentrated in the domain of positive excess returns
than in the domain of negative excess returns. If the ARR is large enough compared to risk
aversion, such MPS in the rejoice domain can even raises the demand for the risky asset.17

This is another illustration of the longshot bias that is generated by regret-risk aversion.
15The proof of this result comes from the fact that ExUx(1, max(1, 1 + kx)) is necessarily positive if Ex = 0

and Uxy is positive.
16These results illustrate again the fact that the optimal choices of regret-sensitive DMs are menu-dependent.

Expanding the number of options in the menu changes the nature of the choice problem. In Gollier and Salanié
(2012), we explore the portfolio choice problem when the number of assets is large enough to make markets
complete.

17As shown by equation (32) and discussed in Gollier (1995), what matters to determine the impact of a
MPS in the distribution of returns on the asset demand is the concavity of function f(x) = xu′(1 + k∗x).
But there is a close relationship between the concavity of f and the concavity of u (Rothschild and Stiglitz
(1971)).
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7 Conclusion
In spite of its intuitive appeal and the many testable predictions of the theory, regret-risk
aversion has received relatively little attention by economists. A possible explanation is
the relatively weak theoretical foundation of their regret model. The theory has no clear
definition of what actually is regret and regret aversion, or regret-risk and regret-risk aversion.
For the sake of comparison, the axiomatic development of the EU theory after WWII has
quickly been followed by the building of the crucial tools of an index of risk aversion and
of stochastic dominance orders. This has opened the door to a myriad of applications in
finance, macroeconomics and IO researches for example. No such evolution has been possible
in regret theory. In this paper, we tried to fill this gap by proposing a coherent theory
and measurement of regret risk and regret risk aversion. We did that by using a general
formulation in which the decision maker maximizes the expectation of a bivariate utility
function which is not only sensitive to the actual payoff of the chosen act, but also to the
best alternative payoff if another action would have been selected ex ante.

When the decision maker is confronted to a menu of lotteries, we have defined regret in
each state as the difference between the best possible payoff and the actual payoff associated
to the chosen lottery. We used the concept of comparative concordance, which is a stochastic
order useful to measure the degree of dependence between two random variables. We have
shown that a reduction in concordance between the forgone best alternative and the actual
payoff yields an increase in risk of regret, without affecting the marginal distributions of
these two random variables. It is thus natural to define the notion of regret-risk aversion
by requiring that ex-ante welfare is reduced by any such reduction in concordance. We have
shown that this requires the bivariate utility function to be supermodular. We have defined
accordingly the concept of regret-risk premium together with a local index of regret-risk
aversion, and we have shown that in the small, the former is proportional to the latter. More
importantly, we have shown that regret-risk-averse agents exhibit a natural bias in favor of
positively skewed risks, whereas regret-risk-seeking agents would exhibit a bias in favor of
negatively skewed risks. If the menu contains a risky lottery and its certainty equivalent, as is
the case in most experiments used to elicit preferences under risk, the behavior of regret-risk-
averse agents is equivalent to the one of rank-dependent-expected-utility agents who would
use a probability distortion function that exhibits both optimism and an inverse-S shape.
This observation may lead to a behavioral explanation to the RDEU model.

22



Appendix 1: Proof of Proposition 3

Eliminating w from (16)-(17) yields

F (c) = p−v(c)
p−v(c) + (1− p−)v(x+)u(x−) + (1− p−)v(x+)

p−v(c) + (1− p−)v(x+)u(x+)− u(c) (35)

We have that

F (x−) = (1− p−)v(x+)
p−v(x−) + (1− p−)v(x+) (u(x+)− u(x−)) ≥ 0 (36)

and
F (x+) = p− (u(x−)− u(x+)) ≤ 0. (37)

Because F is continuous, there must exists a real c ∈ [x−, x+] such that F (c) = 0. This must
be the solution of system (16)-(17). Because c is less than x+, its is immediate from (17)
that w(p−) is smaller than p− if v is increasing.

We now examine the shape of the probability weighting function. To do this, we fully
differentiate system (16)-(17) with respect to p−. It yields (we simplify the notation by
replacing p− = p)

dc

dp
= (u(x−)− u(x+))v(x+)v(c)
u′(c)(pv(c) + (1− p)v(x+))2 + p(1− p)v(x+)(u(x+)− u(x−))v′(c) (38)

and

dw

dp
= u′(c)v(x+)v(c)
u′(c)(pv(c) + (1− p)v(x+))2 + p(1− p)v(x+)(u(x+)− u(x−))v′(c) . (39)

Let us first examine the case p = 0. The above equations imply that c = x+ and w = 0,
c′(0) = (u(x−)− u(x+))/u′(x+) and w′(0) = 1. Moreover differentiating the above equation
around p = 0 yields

d2w

dp2

∣∣∣∣∣
p=0

= −2v′(x+)(u(x+)− u(x−))
u′(x+)v(x+) ≤ 0. (40)

Let us alternatively consider the case p = 1, which implies that c = x−, w = 1, c′(1) =
(u(x−)−u(x+)v(x+)/u′(x−)v(x−) and w′(1) = v(x+)/v(x−). Finally, differentiating equation
(39) in the neighborhood of p = 1 yields

d2w

dp2

∣∣∣∣∣
p=0

= 2v(x+)2v′(x−)(u(x+)− u(x−))
u′(x−)v(x−)3 + 2v(x+)(v(x+)− v(x−))

v(x−)2 ≥ 0. (41)

This concludes the proof of Proposition 3.

Appendix 2: Proof of Lemma 1
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Without loss of generality, let µ be zero. Let S = m + n, and let the risky lottery x1 in
menu M be

x1 = x0
1 ∼ (a−1 , p

−
1 ; ...; a−m, p−m; a+

1 , p
+
1 ; ...; a+

n , p
+
n ), (42)

with a−1 < ... < a−m < 0 < a+
1 < ... < a+

n , p−i > 0, i = 1, ...,m, p+
j > 0, j = 1, ..., n, and∑m

i=1 p
−
i +

∑n
j=1 p

+
j = 1. Assume that Ex1 = 0. Define pij as

pij = −a−i
a+
j − a

−
i

∈ [0, 1]. (43)

Define lottery xij ∼ (a+
j , pij ; a

−
i , 1−pij). By construction, Exij = 0. Initialize the probability

vector Q = (q0−
1 , ..., q0−

m , q0+
1 , ..., qn0+) such that for all i , q0,−

i = p−i and for all j, q0+
j = p+

j .
We also initialize two sets I = J = {∅}.

We consider the following n + m − 2 iterations. At the beginning of iteration k, I ∪ J
contains the k−1 states of nature whose lottery’s initial payoff has been replaced by a binary
zero-mean lottery.

Iteration k: Take an arbitrary pair (i, j), i ∈ {1, ...,m}/I, j ∈ {1, ..., n}/J . Consider
two cases.

Case 1: Suppose that qk−1−
i < −qk−1+

j a+
j /a

−
i . Then, define πk = qk−1−

i (a+
j − a

−
i )/a+

j .
Perform the following two operations on lottery xk−1:

• Replace the atom a−i by lottery xij , and raises the associated probability qk−1−
i up to

qk−i = πk.

• Reduce the probability associated to a+
j from qk−1+

j to qk+
j = qk−1+

j + (qk−1−
i a−i /a

+
j ) >

0.

Moreover, append state i into the set of negative states whose initial payoff a−i as been
replaced by a binary zero-mean lottery xij : Ik = Ik−1 ∪ i.

Case 2: Suppose that qk−1−
i ≥ −qk−1+

j a+
j /a

−
i . Then, define πk = −qk−1+

j (a+
j − a

−
i )/a−i .

Perform the following two operations on lottery xk−1:

• Replace the atom a+
j by lottery xij , and raises the associated probability qk−1+

j up to
qk+
j = πk.

• Reduce the probability associated to a−i from qk−1−
i to qk−i = qk−1−

i + (qk−1+
j a+

j /a
−
i ) ≥

0.

Moreover, append state j into the set of positive states whose initial payoff a+
j as been

replaced by a binary zero-mean lottery xij : Jk = Jk−1 ∪ j.

In both cases, this procedure yields a new lottery xk that has the same distribution of
payoffs, but in which one payoff has been replaced by a binary zero-mean lottery. After
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m + n − 2 iterations, all payoffs have replaced by such lotteries, expect two of them. By
construction, since the Exk = 0, the remaining two atoms (a−i , a

+
j ) must be opposite in sign

and have remaining probabilities qm+n−2−
i and qm+n−2+

j such that

a−i q
m+n−2−
i + a+

j q
m+n−2+
j = 0. (44)

This concludes the proof of Lemma 1.
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