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Abstract

When faced with multiple inputs X ∈ R
p
+ and outputs Y ∈ R

q
+, traditional quantile

regression of Y conditional on X = x for measuring economic efficiency in the output
(input) direction is thwarted by the absence of a natural ordering of Euclidean space
for dimensions q (p) greater than one. Daouia and Simar (2007) used nonstandard
conditional quantiles to address this problem, conditioning on Y ≥ y (X ≤ x) in the
output (input) orientation, but the resulting quantiles depend on the a priori chosen
direction. This paper uses a dimensionless transformation of the (p + q)-dimensional
production process to develop an alternative formulation of distance from a realization
of (X,Y ) to the efficient support boundary, motivating a new, unconditional quantile
frontier lying inside the joint support of (X,Y ), but near the full, efficient frontier.
The interpretation is analogous to univariate quantiles and corrects some of the dis-
appointing properties of the conditional quantile-based approach. By contrast with
the latter, our approach determines a unique partial-quantile frontier independent of
the chosen orientation (input, output, hyperbolic or directional distance). We prove
that both the resulting efficiency score and its estimator share desirable monotonic-
ity properties. Simple arguments from extreme-value theory are used to derive the
asymptotic distributional properties of the corresponding empirical efficiency scores
(both full and partial). The usefulness of the quantile-type estimator is shown from
an infinitesimal and global robustness theory viewpoints via a comparison with the
previous conditional quantile-based approach. A diagnostic tool is developed to find
the appropriate quantile-order; in the literature to date, this trimming order has been
fixed a priori. The methodology is used to analyze the performance of U.S. credit
unions, where outliers are likely to affect traditional approaches.



1 Introduction

In production theory and efficiency analysis, interest lies in estimating the boundary of the set

of feasible combinations of inputs and outputs; with multiple inputs and multiple outputs,

this is a surface in a multivariate space. Using nonparametric methods to measure firm

performance has several advantages, especially when applying robust quantile regression

approaches which are not overly influenced by extremes and outliers. As Hendricks and

Koenker (1992, p. 58) stated, “In the econometric literature on the estimation of production

technologies, there has been considerable interest in estimating so-called frontier production

models that correspond closely to models for extreme quantiles of a stochastic production

surface.” Landajo et al. (2008) and Daouia et al. (2013) review the basic features of quantile

modeling for estimation of firms’ performance and provide some arguments for the usefulness

of quantile regression for such purposes.

Unfortunately, generalization of traditional quantile regression methods to the full multi-

variate framework, where firms transform a vector of input quantities X ∈ R
p
+ into a vector

of output quantities Y ∈ R
q
+, is thwarted by the absence of a natural ordering of Euclidean

space for dimensions p, q greater than one. In applications where p > 1 and q > 1, if the

production of a firm is y and its input usage is x, then its relative economic efficiency can be

measured via a distance from the point (x, y) to the efficient frontier of the production set,

i.e., the upper support boundary of (X, Y ). While output- or input-oriented nonparamet-

ric methods based on ideas of Debreu (1951), Farrell (1957), and Shephard (1970) consider

maximization of production along radial paths while holding inputs fixed, or minimization

of inputs along radial paths while holding outputs fixed, Färe et al. (1985) suggest an hy-

perbolic distance function that measures the maximum feasible reduction in input quantities

and simultaneous feasible expansion of output quantities along a hyperbolic path to the ef-

ficient frontier. Both radial and hyperbolic efficiency measures are multiplicative, and hence

require that input and output quantities be nonnegative. Chambers et al. (1996) introduce

a directional distance function that measures distance in an arbitrary, linear direction to-

ward the frontier. The directional distance function can be viewed as an additive measure

of efficiency, and thus is able to accommodate negative input or output quantities. All these

cases are covered by our approach.
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Most of the nonparametric approaches are based on envelopment estimators that are

very sensitive to extreme data points and outliers since they envelop the cloud of sample

observations. Quantile regression offers an attractive tool to build frontier estimates that are

robust to these extreme data points, but, as pointed above, traditional quantile regression

cannot be used due to the absence of a natural ordering of Euclidean space for dimensions p, q

greater than one. Daouia and Simar (2007) implemented the idea in the output orientation

by using quantiles of the conditional distribution of Y given X ≤ x. A similar idea can

be adapted to the input orientation, using the conditional distribution of X given Y ≥
y. The use of such a non-standard conditional distribution is motivated by econometric

considerations of tail monotonicity but the resulting estimators may exhibit disappointing

behavior (see below).

In this paper, we provide a simple and promising procedure for measuring efficiency in

the full multivariate case by exploiting unconditional quantiles and their attractive statis-

tical and computational properties, without recourse to regression or dimension-reduction

techniques, while overcoming some limitations of the Daouia and Simar (2007) approach

based on conditional quantiles. We propose an alternative formulation of the distance from

a point (x, y) to the optimal production surface by considering a dimensionless transforma-

tion of the (p+ q)-dimensional production process. This motivates a new concept of partial

frontiers inside the joint support of (X, Y ) but lying close to its efficient full frontier, by using

large unconditional quantiles of the transformed variable. By doing so, we recover also the

concepts of quantile frontiers obtained by Wheelock and Wilson (2008) for the hyperbolic

orientation and by Simar and Vanhems (2012) for the directional distance case. We show

that, contrary to the conditional approach, the resulting α-th quantile frontier is uniquely

determined regardless the chosen orientation. We also derive desirable monotonicity prop-

erties of the resulting efficiency scores and their nonparametric estimators. We provide the

asymptotic distributional behavior of the resulting empirical efficiency scores (both full and

partial) by using simple arguments from extreme-value theory. The usefulness of the quantile

estimator is also established from infinitesimal and a global robustness theory points of view

via a comparison with the properties of the conditional quantile-based approach of Daouia

and Simar (2007). In addition, diagnostic tool suggested by robustness theory is presented

to find the adequate quantile order α. Finally, we illustrate the approach with an application
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in the US Bank Industry.

The next section introduces the basic notation and summarizes the previous approaches

in this field. Section 3 describes the new formulation of the model and the dimensionless

transformation of (X, Y ) that permits generalization of the asymptotic properties of the

free-disposal hull (FDH) estimator of Daouia et al. (2010) to the full multivariate setup

and extension these properties to hyperbolic and directional distances cases. Using this

transformation, Section 3.2 introduces the new quantile-frontier concept, its nonparametric

estimator, and provides its asymptotic properties. The links with the (conditional) order-α

quantile frontier introduced by Daouia and Simar (2007) are discussed. Section 3.5 analyzes

the properties of the new estimator from a robustness point of view by deriving its gross-

error sensitivity and its finite sample breakdown point, and compares these with properties

of the Daouia and Simar order-α conditional quantile frontier. The theoretical robustness

properties suggest a diagnostic tool for choosing the quantile order α in applications. As

demonstrated in Section 4 this methodology is particularly useful for measuring the perfor-

mance of U.S. credit unions, where outliers outliers distort efficiency estimates obtained with

more traditional methods.

2 Basic Notations and Usual Approaches

2.1 Previous work on efficiency analysis

Formally, let x ∈ R
p
+ denote a vector of input quantities and let y ∈ R

q
+ denote a vector

of output quantities. The attainable set, i.e., the set of feasible combinations of inputs and

outputs is

Ψ = {(x, y) ∈ R
p
+ × R

q
+ | y can be produced by x}. (2.1)

The efficient frontier is defined by

Ψ∂ =
{
(x, y) ∈ Ψ |

(
γ x, γ−1 y

)
6∈ Ψ for any γ < 1

}
. (2.2)

A typical, minimal assumption on Ψ is free disposability of both inputs and outputs; i.e.,

if (x, y) ∈ Ψ, then (x′, y′) ∈ Ψ for any (x′, y′) such that x′ ≥ x and y′ ≤ y. This implies a

monotonicity property of the frontier Ψ∂. Sometimes convexity of Ψ is also assumed, but
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we will not use this assumption in our presentation (see, for example, Shephard, 1970 for a

comprehensive presentation of production theory).

The efficiency of a firm operating at level (x, y) ∈ Ψ is characterized by the distance to its

projection on the efficient frontier. As noted in Section 1, there are several possible directions

in which (x, y) might be projected onto Ψ∂ or in which efficiency might be measured. In the

input direction, efficiency is measured by

θ(x, y) = inf{θ > 0 | (θx, y) ∈ Ψ}, (2.3)

while in the output direction efficiency is measured by

λ(x, y) = sup{λ > 0 | (x, λy) ∈ Ψ}. (2.4)

The hyperbolic measure of efficiency is given by

γ(x, y) = sup{γ > 0 | (γ−1x, γy) ∈ Ψ} (2.5)

and the directional measure is given by

δ(x, y | gx, gy) = sup{δ ≥ 0 | (x− δgx, y + δgy) ∈ Ψ}, (2.6)

where gx ∈ R
p
+ and gy ∈ R

q
+ give the direction in which (x, y) is projected onto Ψ∂.

Recent work by Daraio and Simar (2005, 2007), Wheelock and Wilson (2008), and Simar

and Vanhems (2012) has extended the probabilistic interpretation of these measures by

Cazals et al. (2002). Assuming that the random pair (X, Y ) is drawn from a density f(x, y)

with support over Ψ, the joint distribution of (X, Y ) can be described by

HXY (x, y) = Pr(X ≤ x, Y ≥ y), (2.7)

which gives the probability of the firm at (x, y) being dominated by another firm producing

at least as much output as y but using no more input than x. Under the assumption of free

disposability of inputs and outputs, the efficiency scores defined in (2.3)–(2.6) can be defined

equivalently as

θ(x, y) = inf{θ > 0 | HXY (θx, y) > 0}, (2.8)

λ(x, y) = sup{λ > 0 | HXY (x, λy) > 0}, (2.9)
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γ(x, y) = sup{γ > 0 | HXY (γ
−1x, γy) > 0}, (2.10)

and δ(x, y) = log(δ∗), where

δ∗ = sup{γ > 0 | HX∗Y ∗(γ
−1x∗, γy∗) > 0}, (2.11)

and (x∗, y∗) is a simple monotonic transformation of (x, y), (X∗, Y ∗) denotes the correspond-

ing transformed random vector, and HX∗Y ∗(x, y) denotes the corresponding distribution

function, analogous to (2.7). If all elements of gx and gy are strictly greater than zero, then

x∗ = exp(x./gx) and y∗ = exp(y./gy), where ./ denotes the element-wise division of two

vectors having the same dimension.1

In practice, Ψ is unknown and must be estimated from a sample of iid observations

Xn = {(Xi, Yi)}ni=1. The familiar FDH estimator proposed by Deprins et al. (1984) estimates

Ψ by the smallest monotone set enveloping the data in Xn, and hence relies only on the

free disposability assumption. The resulting estimators of the efficiency scores defined in

(2.3)–(2.6) are obtained by replacing Ψ with the FDH estimator of Ψ, or equivalently, by

replacing HXY (x, y) in (2.8)–(2.10) with its empirical analog,

Ĥn,XY (x, y) = n−1
n∑

i=1

1(Xi ≤ x, Yi ≥ y), (2.12)

where 1(·) is the indicator function. For directional distances, the similarly-defined empirical

analog of HX∗Y ∗(x
∗, y∗) can be used to replace HX∗Y ∗(x

∗, y∗) in (2.11).

In the input and output oriented cases, asymptotic properties of the FDH estimators

have been established by Park et al. (2000) for the case where the joint density of (X, Y ) is

strictly positive and finite on the frontier Ψ∂. These properties have been extended, under

similar conditions, to hyperbolic measures by Wheelock and Wilson (2008) and to directional

distances by Simar and Vanhems (2012). Recently Daouia et al. (2010) extended the result

for the input and the output oriented measures to more general settings (e.g., where the

density f(x, y) either tends smoothly to zero or explodes to infinity when approaching the

frontier) using results from extreme value theory. To date, however, these extensions are

limited to univariate output (in the output direction) or univariate input (in the input

direction), with no such results available for the hyperbolic or directional cases.

1 Note that some elements of (gx, gy) could be defined as zero for non-discretionary inputs or outputs
(see Simar and Vanhems, 2012 for details on handling such situations).
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2.2 A Quantile-based benchmark

In many empirical applications, it would be dubious to assume all observations are measured

accurately, raising doubts about the meaningfulness of envelopment estimators such as FDH

or data envelopment analysis (DEA).2 In many applications, some observations may appear

so isolated that they hardly seem related to the sample. Indeed, they may not be related

when outliers result from data corruption due to by reporting, transcription, or other errors.

Rather than estimating the full frontier Ψ∂ or distance from a point (x, y) to Ψ∂, it may

be more sensible to use instead as a benchmark for gauging efficiency a partial frontier

lying inside the FDH of the sample. This is the idea of benchmarking relative to quantile

frontiers for large values of the quantile order. In the following presentation, we summarize

the basic idea for the output orientation; extension to the input, hyperbolic, and directional

orientations is trivial.

Instead of estimating the full efficiency measure λ(x, y) defined in (2.9), Daouia and

Simar (2007) extend the “univariate” ideas of Aragon et al. (2005) to estimate the order-α

partial efficiency score

λα(x, y) = sup

{
λ > 0 | HXY (x, λy)

HXY (x, 0)
> 1− α

}
, (2.13)

where α ∈ (0, 1] and HXY (x, 0) = FX(x) is the marginal distribution function of X . Note

that this is related to a quantile of the non-standard conditional survival function SY |X(y |
x) = Pr(Y ≥ y | X ≤ x) of Y given X ≤ x since we can write equivalently

λα(x, y) = sup
{
λ > 0 | SY |X(λy | x) > 1− α

}
. (2.14)

Here, for any level of input x such that FX(x) > 0, the order-α output oriented frontier

could be described by the surface y∂α(x) = y λα(x, y).

Note that for fixed sample size n, λα(x, y) → λ(x, y) as α → 1; i..e, when α is close to 1,

λα(x, y) is close to the full measure λ(x, y). The empirical analog of (2.13) is

λ̂α(x, y) = sup

{
λ > 0 | Ĥn,XY (x, λy)

Ĥn,XY (x, 0)
> 1− α

}
, (2.15)

2 DEA estimators are based on using either the conical or convex hulls of the FDH of sample observations;
see Simar and Wilson (2013) for a recent survey and discussion.
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and it is easy to see that for fixed n, λ̂α(x, y) → λ̂α(x, y) as α → 1, where

λ̂(x, y) = sup
{
λ > 0 | Ĥn,XY (x, λy) > 0

}
(2.16)

is the FDH estimator of λ(x, y). Daouia and Simar (2007) establish that if the order α =

α(n) > 0 approaches 1 at the rate n(p+q+1)/(p+q) (1− α(n)) → 0 as n → ∞, then λ̂α(x, y)

provides alternative estimator of λ(x, y) with asymptotic properties similar to those of the

FDH estimator (i.e., with Weibull limiting distribution and convergence rate n1/(p+q)). For

finite n, α(n) < 1 and so the corresponding order-α frontier surface (which converges to the

full frontier surface Ψ∂) will not envelop all the data points, and so will be more robust to

extreme points and outliers than the FDH estimators. The properties of λ̂α(x, y) from the

viewpoint of robustness theory have been investigated by Daouia and Ruiz-Gazen (2006)

and Daouia and Gijbels (2011).

Daouia and Simar (2007, Proposition 2.5) establish that λα(x, y) is monotone nonde-

creasing with x for all α if and only if tail monotonicity of the conditional distribution

FY |X(y | x) = Pr(Y ≤ y | X ≤ x) holds. The latter is formalized as follows. Let SX ⊂ R
p
+

and SY ⊂ R
q
+ denote the supports of X and Y , respectively. Then tail monotonicity of

FY |X(y | x) holds if

FY |X(y | x) ≤ FY |X(y|x′) ∀ y ∈ SY , x ≥ x′, x, x′ ∈ SX . (2.17)

The hypothesis (2.17) is natural in production theory; it implies that the chance of pro-

ducing less than some value y decreases as firms use more inputs (see, e.g., Cazals et al.,

2002). However, in finite samples, and as illustrated in a simple example below, the estima-

tor λ̂α(x, y) does not share this property.3 It will be seen later that both the unconditional

quantile-based benchmark introduced below in Section 3.2 and its estimator share this de-

sirable monotonicity property, even without the assumption (2.17).

The adaptation of the conditional quantile approach for other orientations (input, hyper-

bolic, directional distance) is straightforward (see the references given above, or the survey

provided by Simar and Wilson, 2013). It is important to remember, however, that the result-

ing order-α frontiers are different depending on the chosen orientation, except in the trivial

case where α = 1 (see, e.g., Figure 1 in Wheelock and Wilson, 2008). We will see in Section

3 This drawback has been addressed by Daouia and Simar (2005) for the case q = 1 by isotonizing the
resulting estimate of the production function.
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3 that the unconditional order-α quantile frontier defined therein is uniquely determined

regardless the chosen orientation.4

3 New Model Formulation and Results

3.1 Traditional full efficiency measures

Let (X, Y ), (X1, Y1), (X2, Y2), . . . be a sequence of independent observations in R
p
+ × R

q
+

with a continuous, common distribution, and let (x, y) to be input-output pair of the produc-

tion unit of interest. The following discussion establishes an important connection between

traditional efficiency measurement, its empirical estimation, and extreme-value theory. We

focus on the output-orientation, but the results extend trivially to other directions. We begin

by considering a new formulation of λ(x, y) and its FDH estimator λ̂(x, y). First, define the

random variable Zxy(X, Y ) by writing

Zxy(X, Y ) = min
1≤j≤q

Y [j]

y[j]
1(X ≤ x), (3.1)

where superscripts j denote the jth elements of the vectors Y and y. It is then easily seen

that the survival function for the transformed random variable Zxy(X, Y ) is given by

Sxy(z) = 1− Fxy(z) =

{
HXY (x, zy) if z ≥ 0;

1 if z < 0,
(3.2)

and that its right endpoint F←xy (1) coincides with the technical efficiency of interest λ(x, y).

Here, F←xy (1) is the smallest value of z such that Fxy(z) = 1, where Fxy(z) is defined implicitly

in (3.2). More generally, let

F←W (α) = inf{w | FW (w) ≥ α} (3.3)

denote the quantile of order α ∈ (0, 1] of a random variable W with distribution function

FW .

Now let Zxy(Xi, Yi) = min1≤j≤q
Y

[j]
i

y[j]
1(Xi ≤ x) for i = 1, . . . , n. This leads to a sample

of n independent draws of Zxy(X, Y ). By denoting the order statistics of the transformed

sample {Zxy(X1, Y1), . . . , Z
xy(Xn, Yn)}, by Zxy

(1) ≤ . . . ≤ Zxy
(n), it is clear that the maximum

4 Of course, the distance to the unconditional order-α frontier will depend on the chosen orientation.
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value Zxy
(n) coincides with the FDH estimator λ̂(x, y). As shown below, the general asymptotic

distributional behavior of the latter follows immediately from classical extreme-value theory.

Before proceeding, consider briefly the input, hyperbolic, and directional orientations. In

the input-orientation, redefine Zxy(X, Y ) as

Zxy(X, Y ) = − max
1≤j≤p

X [j]

x[j]
/1(Y ≥ y), (3.4)

where division of a nonnegative real number by 0 is defined to yield infinity. Then Zxy(X, Y )

has support [−∞, 0] and survival function

1− Fxy(z) =

{
HXY (−zx, y) if z > −∞;

1 if z = −∞ (3.5)

(note that here, the support of Zxy(X, Y ) is the affinely extended set of nonpositive real

numbers R−∪{−∞}, indulging some abuse due to the possibility that an element y[j] might

equal zero). It is easy to see that θ̂(x, y) = −max1≤i≤n Z
xy(Xi, Yi) and θ(x, y) = −F←xy (1).

Likewise, for hyperbolic paths, it is not hard to verify that γ̂(x, y) = max1≤i≤n Z
xy(Xi, Yi)

and γ(x, y) = F←xy (1), where the transformed random variable is

Zxy(Xi, Yi) = min

{
min
1≤j≤p

x[j]

X
[j]
i

, min
1≤j≤q

Y
[j]
i

y[j]

}
, (3.6)

with survival function given by

Sxy(z) = 1− Fxy(z) = HXY (z
−1x, zy) (3.7)

for z ≥ 0.

By using the monotonic transformation described in Simar and Vanhems (2012), the

directional distance case, for any direction (gx, gy) > 0, is covered by the hyperbolic case,

with the modifications given in Simar and Vanhems if some of the components of (gx, gy) are

equal to zero. Note that efficiency measurement is not a symmetric concept, and thus the

three directions related to the distributions HXY (x, zy), HXY (−zx, y) and HXY (z
−1x, zy)

have to be treated separately. For the sake of conciseness, the presentation below is only in

terms of the output-orientation; similar considerations apply for the other directions.

The following proposition provides a necessary and sufficient condition under which the

FDH estimator converges in distribution and characterizes the limit distribution with the

convergence rate.
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Proposition 3.1. There exist constants bn(x, y) and a non-degenerate distribution Gxy such

that as n → ∞,

b−1n (x, y)[λ̂(x, y)− λ(x, y)]
L−→ Gxy (3.8)

if and only if

HX,Y (x, zy) = [λ(x, y)− z]ρxy Lxy

(
[λ(x, y)− z]−1

)
(3.9)

for some ρxy > 0, where Lxy is a slowly varying function (Lxy ∈ RV0); i.e.,

lim
t↑∞

Lxy(tw)

Lxy(t)
= 1 ∀ w > 0. (3.10)

In addition, the only possible limit distribution is the Weibull with parameter ρxy, i.e.,

Gxy(w) =

{
exp (−(−w)ρxy) , w < 0

1, w ≥ 0.
(3.11)

The normalizing constants may be chosen as bn(x, y) = λ(x, y)− F←xy (1− 1/n).

Proof: Following, e.g., Resnick (1987, Proposition 0.3, p.9), if there exist bn > 0 and a

non-degenerate distribution G such that b−1n

(
Zxy

(n) − F←xy (1)
)

L−→ G as n → ∞, then G is of

the type of extreme-value distribution described in the proposition. By Proposition 1.13 in

Resnick (1987, p.59), there exists bn > 0 such that b−1n

(
Zxy

(n) − F←xy (1)
)

L−→ Gxy if and only

if the function U(t) = 1− Fxy

(
F←xy (1)− 1/t

)
is regularly varying at ∞ with index ρxy, that

is

lim
t↑∞

U(tw)

U(t)
= wρxy ∀ w > 0. (3.12)

In this case, we may set bn = F←xy (1)−F←xy (1− 1/n). It is easily seen that the necessary and

sufficient condition is equivalent to (3.9), which completes the proof given that λ(x, y) =

F←xy (1) and λ̂(x, y) = Zxy
(n).

In the particular class of slowly varying functions Lxy such that Lxy(t) = ℓxy > 0 as

t → ∞, or equivalently, Lxy

(
[λ(x, y)− z]−1

)
= ℓxy when z ↑ λ(x, y), we recover the standard

assumption in the statistical literature on frontier modeling that the joint distribution of

(X, Y ) is an algebraic function of the distance from its support boundary ; see, e.g., Härdle

et al. (1995), Hall et al. (1997), Hall et al. (1998), Gijbels and Peng (2000), Hwang et al.

(2002), and Daouia et al. (2010). This translates in our context into the property

HXY (x, zy) = ℓxy[λ(x, y)− z]ρxy as z ↑ λ(x, y). (3.13)
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The condition (3.13) turns out to have an intuitive interpretation in terms of the data

dimension (p+ q) and of the shape of joint density

f(x, y) = (−1)q
∂p+q

∂x1 . . . ∂xp∂y1 . . . ∂yq
HXY (x, y)

near the upper support boundary of (X, Y ). Indeed, assuming that ρxy > p+ q− 1 and that

ρxy, ℓxy and λ(x, y) are differentiable with positive first partial derivatives of λ(x, y) with

respect to x, and negative first partial derivatives with respect to y, it is not hard to verify

that

f(x, zy) = cxyz [λ(x, y)− z]βxy + o
(
[λ(x, y)− z]βxy

)
, as z ↑ λ(x, y), (3.14)

where βxy = ρxy − (p+ q) > −1 and cxyz is a positive constant.

Thus the regular variation exponent ρxy turns into a parameter with an intuitive inter-

pretation. We see that the case ρxy = p+ q corresponds to a joint density having a jump at

the frontier (i.e. βxy = 0).5 In this case we easily recover the standard rate of convergence

n1/(p+q) for the FDH estimator λ̂(x, y) as established by Park et al. (2000), where the rate

was obtained after a rather complicated proof under some restrictive conditions. The case

ρxy > p + q (respectively: ρxy < p + q) corresponds to a joint density which decays to zero

smoothly (respectively: rises up to infinity) as it approaches the support boundary.

The mean-square error of λ̂(x, y) follows from the next proposition.

Proposition 3.2. If b−1n (x, y)
(
λ̂(x, y)− λ(x, y)

)
L−→ Gxy with bn(x, y) = λ(x, y)−F←xy (1−

1/n), then for any integer m ≥ 1,

lim
n→∞

E

(
b−1n (x, y)

[
λ̂(x, y)− λ(x, y)

])m
= (−1)mΓ

(
1 +

m

ρxy

)
, (3.15)

where Γ(·) denotes the gamma function.

Proof: Since E (|Zxy|m) ≤ λm(x, y) < ∞ for any integer m ≥ 1, we have by Proposition 2.1

in Resnick (1987, p.77) that

E




[
Zxy

(n) − F←xy (1)
]

[
F←xy (1)− F←xy (1− 1/n)

]



m

−→ (−1)mΓ

(
1 +

m

ρxy

)
, (3.16)

provided that the convergence in distribution to Gxy holds.

5 In the econometric literature on efficiency analysis it is common to assume that the density of (X,Y ) has
a jump at the frontier; e.g., see Park et al. (2000), Kneip et al. (1998), Kneip et al. (2008) for nonparametric
models and Aigner et al. (1977), Meeusen and van den Broeck (1977), Battese and Corra (1977), and
Stevenson (1980) for parametric models.
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3.2 New quantile-based partial efficiency scores

Section 3.1 demonstrates the that transformation to the multivariate, random variables

(X, Y ) to the univariate random variable Zxy(X, Y ) introduced in (3.1) allows derivation

of asymptotic properties of the FDH efficiency estimator in a much simpler fashion than was

previously known. Of course, applying the transformation in (3.1) to each of the sample

observations does not get rid of any effects of outliers in the sample. However, the trans-

formation allows us to derive unconditional output- and input-oriented quantile estimators

that are robust with respect to outliers.

Motivated by the arguments and the transformation introduced above, we first propose

the following alternative formulation of a quantile-type efficiency score and its estimator, in

place of λα(x, y) and λ̂α(x, y) defined in (2.13)–(2.15). For any α ∈ (0, 1), define

λ⋆
α(x, y) = F←xy (α) (3.17)

and

λ̂⋆
α(x, y) = F̂←xy (α), (3.18)

where F̂xy(z) =
1
n

∑n
i=1 1(Z

xy(Xi, Yi) ≤ z) and F̂←xy (α) is the quantile of order α correspond-

ing to the empirical distribution function F̂xy(z). Hence λ̂⋆
α(x, y) = Zxy

([αn]+1), where [αn]

denotes the integer part of αn.

The new α-score λ⋆
α(x, y) is closely related to the quantile efficiency score λα(x, y). On

one hand we have

λ⋆
α(x, y) = inf{z | Fxy(z) ≥ α} = sup{z | Fxy(z) < α}

= sup{z | Sxy(z) > 1− α} = sup{z > 0 | HXY (x, zy) > 1− α}. (3.19)

On the other hand, the efficiency score of Daouia and Simar (2007) is

λβ(x, y) = sup{z > 0 | HXY (x, zy) > FX(x)(1− β)}. (3.20)

Clearly, the former is equal to the latter, i.e. λ⋆
α(x, y) = λβ(x, y), if and only if FX(x)(1−β) =

1− α, implying

λ⋆
α(x, y) =

{
0 if α ≤ 1− FX(x)

λ1− 1−α
FX (x)

(x, y) otherwise.
(3.21)
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This provides a natural lower bound for the choice of the order α for our new measure: for

a particular firm operating at the level (x, y), we shall use the efficiency score λ⋆
α(x, y) of

orders α > 1 − FX(x), i.e. orders exceeding the probability of observing firms with larger

inputs than the level x. We will discuss below in detail how one might choose α in practice,

when robustness of the estimates is of concern.

Note also that the empirical order-α efficiency score in (2.15) has no guarantee of being

monotone even if the population counterpart in (2.13) is so. However, both λ⋆
α(x, y) and its

estimator λ̂⋆
α(x, y) enjoy the desirable monotonicity property established in the next result.

Proposition 3.3. The quantile score function x 7→ λ⋆
α(x, y) is monotone nondecreasing on

the support of X, for every y ∈ R
q and α ∈ (0, 1]. The same property holds for the function

x 7→ λ̂⋆
α(x, y).

Proof: We have seen that

1− Fxy(z) =

{
HXY (x, zy) if z ≥ 0;

1 if z < 0.
(3.22)

From this, it is easily seen that the function x 7→ Fxy(z) is monotone nonincreasing with x,

for every y ∈ R
q and z ∈ R. Recall that λ⋆

α(x, y) = F←xy (α), i.e., the α-quantile of Fxy. Let

α ∈ (0, 1] and y ∈ R
q. If x1 ≤ x2, we have

Fx1y

(
F←x2y

(α)
)
≥ Fx2y

(
F←x2y

(α)
)
≥ α, (3.23)

where the last inequality holds by the definition of quantiles. It follows that λ⋆
α(x2, y) =

F←x2y(α) ∈ {z | Fx1y(z) ≥ α}. Therefore

λ⋆
α(x2, y) ≥ inf{z | Fx1y(z) ≥ α} = λ⋆

α(x1, y), (3.24)

which completes the proof. The same argument can be applied for the estimator once we

realize that

1− F̂xy(z) =

{
Ĥn,XY (x, zy) if z ≥ 0;

1 otherwise,
(3.25)

and using the fact that λ̂⋆
α(x, y) is the α-quantile of F̂xy.

By contrast, and as observed in Section 2, the usual conditional quantile score λα(x, y)

shares this monotonicity property if and only if (2.17) holds, whereas, the nonparametric
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estimator λ̂α(x, y) does not share this property in finite samples, leading often to disappoint-

ing results. It is also clear that this monotonicity property holds for any chosen orientation

(input, hyperbolic or directional distance).

As discussed by Daouia and Simar (2007) and illustrated by Wheelock and Wilson (2008)

and the example below in Section 3.3, the conditional approach in Daouia and Simar yields

partial frontiers of the same order that are different, depending on whether an input- or

output-orientation is used. As noted above, the (unconditional) quantile frontier developed

here is unique for a given order α; i.e., it does not depend on the chosen direction. Consider

the set

Ψ∂
α = {(x, y) ∈ Ψ | λ⋆

α(x, y) = 1} . (3.26)

This frontier has a natural economic interpretation as the locus of production plans having

probability (1−α) of being dominated. Clearly it is straightforward to adapt the notations for

the other orientations, defining the order-α frontiers by the set of points satisfying θ⋆α(x, y) =

1, γ⋆
α(x, y) = 1 or δ⋆α(x, y) = 0, respectively. The interesting feature of the unconditional

approach is that the order-α frontier is uniquely determined, keeping the same economic

interpretation regardless the chosen orientation. Of course distance to the frontier, measured

by the order-α efficiency scores, will differ depending on the orientation.

3.3 A simple example

To illustrate the ideas presented so far, consider a simple example where p = q = 1 and Ψ is

the triangle with vertices at (0, 0), (1, 0), and (1, 1) with the joint density of (X, Y ) given by

f(x, y) =

{
2 ∀ x ∈ [0, 1], y ∈ [0, x],

0 otherwise.
(3.27)

For α ∈ (0, 1] and 0 < y ≤ x ≤ 1, it is easy to see that the input- and output-oriented

conditional order-α efficiency measures suggested by Daouia and Simar (2007) are given by

θα(x, y) := inf
{
θ > 0|FX|Y (θx|y) > 1− α

}
= [y + (1− y)

√
1− α]/x (3.28)

and

λα(x, y) := sup
{
λ > 0|SY |X(λy|x) > 1− α

}
= x(1−

√
1− α)/y. (3.29)
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It is also not hard to verify that the hyperbolic order-α efficiency measure introduced by

Wheelock and Wilson (2008) is given by

γα(x, y) := sup{γ > 0|HXY (γ
−1x, γy) > 1− α}

=

{(√
1− α + 4xy −

√
1− α

)
/2y if (1− α) ≤ (1− xy)2(

1−
√
1− α

)
/y otherwise.

(3.30)

We have in particular, λ(x, y) = θ−1(x, y) = γ2(x, y) = x/y. The corresponding partial

α-frontiers are defined by the sets {(θα(x, y)x, y) | (x, y) ∈ Ψ} in the input direction,

{(x, λα(x, y)y) | (x, y) ∈ Ψ} in the output direction, and {(γα(x, y)−1x, γα(x, y)y) | (x, y) ∈
Ψ} in the hyperbolic direction.

Figure 1 shows the full frontier Ψ∂ corresponding to the density in (3.27) as a dashed,

45-degree line. Setting α = 0.95 and using the equations above to plot the conditional

order-α quantiles produces the two dash-dot-dash lines in Figure 1; the less-steeply sloped

line corresponds to the output orientation, and the line with greater slope corresponds to

the input orientation. For the same value of α, the two quantiles are different; as input

level increases, the output-oriented conditional order-α quantile diverges from Ψ∂, while the

input-oriented conditional order-α quantile approaches Ψ∂ as input level increases.

Now turn to the new measure λ⋆
α(x, y) given by (3.19). The corresponding partial frontier

is the set {(x, λ⋆
α(x, y)y) : (x, y) ∈ Ψ}, with the associated unconditional quantile function

being λ⋆
α(x, y)y = max{0, x −

√
1− α}. This is plotted as a solid line in Figure 1, again

with α = 0.95. It is clear from the plot as well as the previous expression that the uncondi-

tional quantile is parallel to Ψ∂, due to the uniform density in (3.27). Turning to the input

orientation, we have

θ⋆α(x, y) := inf {θ > 0|HXY (θx, y) > 1− α} , (3.31)

with the unconditional quantile frontier function θ⋆α(x, y)x = min{y +
√
1− α, 1}. It is

apparent that the two quantiles are the same; i.e., the unconditional order-α quantile is

determined uniquely for a given value of α, regardless of the orientation. Similar results

obtain for the hyperbolic and directional cases, where there is no conditioning on either x or

y.

Now consider a random sample of size n = 100 drawn from the density in (3.27). Panels

(a)–(b) in Figure 2 show such a sample. In both panels, the full frontier Ψ∂ is depicted by
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a dotted line. In panel (a), the unconditional order-α quantile for α = 0.95 is shown by a

dashed line; the corresponding estimate of this quantile is shown by the solid curve, which

is clearly monotonic. For comparison, the FDH estimate of Ψ∂ is shown by a dash-dot-dash

pattern, and is also monotonic. Panel (a) shows that, for this particular draw of data, the

unconditional quantile estimator tracks the true quantile rather well; by contrast, the FDH

frontier estimate deviates widely from Ψ∂ in the neighborhood where x ≈ 0.4, and is clearly

biased. Panel (b) of Figure 2 shows, for the same data and the same value of α, the estimated

output-oriented conditional order-α quantile as a solid curve. The estimate appears to be

more variable in this example, and is clearly not monotonic.

Panel (a) of Figure 3 shows the same data as in Figure 2, but with two additional ob-

servations, (0.2, 0.5) and (0.4, 0.9) that are outliers. The dash-dot-dash pattern shows the

FDH frontier estimate, while the solid curve shows the unconditional order-α quantile esti-

mate for α = 0.95 (the dashed line again depicts the true quantile for α = 0.95). Comparing

this with panel (a) in Figure 2, it is apparent that the outliers have a large effect on the

FDH estimate, but almost no discernible effect on the quantile estimate, demonstrating the

robustness of the quantile method.

As in panel (b) of Figure 2, panel (b) of Figure 3 shows the estimated conditional output-

oriented α-quantile for α = 0.95. The estimated quantile is less affected by the outliers than

the FDH estimate in panel (a) of Figure 3, but nonetheless is still affected because the

outliers lie toward the left end of the range of inputs. The lack of monotonicity for the

conditional quantile estimate is even more apparent with the outliers that have been added.

We will return to this example, and to panels (c)–(d) in Figures 2–3 later, in Section 3.5

after discussing asymptotic properties of the new estimators below in Section 3.4.

3.4 Asymptotic properties of λ̂⋆
α(x, y)

Continuing the focus on the output-oriented case, we first establish some basic asymptotic

properties of λ̂⋆
α(x, y) for cases where α is fixed.

Proposition 3.4. For a fixed order α ∈ (0, 1), suppose that the derivatives fxy = F ′xy and

f ′xy exist in a neighborhood of λ⋆
α(x, y) with fxy(λ

⋆
α(x, y)) > 0. Then

λ̂⋆
α(x, y) = λ⋆

α(x, y) +
α− F̂xy(λ

⋆
α(x, y))

fxy(λ⋆
α(x, y))

+Rn, (3.32)
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where Rn = O
(
n−3/4(log n)3/4

)
as n → ∞ with probability one.

Proof: Using the fact that λ⋆
α(x, y) and λ̂⋆

α(x, y) are identical to the population and sample

quantiles F←xy (α) and F̂←xy (α), respectively, it follows immediately that (3.32) corresponds to

the well known Bahadur-Kiefer representation for central quantiles. A proof can be found,

e.g. in Serfling, 1980, p.91).

Important limiting properties of the estimator λ̂⋆
α(x, y) can be obtained from the Bahadur-

Kiefer-type representation in (3.32), such as asymptotic normality which follows immediately

from the central limit theorem applied to n1/2
[
α− F̂xy(λ

⋆
α(x, y))

]
. The conclusion stated

in the proposition goes much farther, however, and may alternatively expressed as follows:

the difference between the random variable n1/2
[
λ̂⋆
α(x, y)− λ⋆

α(x, y)
]
and the random vari-

able n1/2
[
α− F̂xy(λ

⋆
α(x, y))

]
/fxy(λ

⋆
α(x, y)) tends to zero as n → ∞ almost surely with rate

n1/4(log n)−3/4.

Asymptotic normality of λ̂⋆
α(x, y) is established in the next result, and does not depend

on the extra requirement on f ′xy needed in Proposition 3.4.

Proposition 3.5. Let 0 < α < 1. If Fxy is differentiable at λ⋆
α(x, y) with fxy(λ

⋆
α(x, y)) > 0,

then
√
n√

α(1− α)
fxy(λ

⋆
α(x, y))

[
λ̂⋆
α(x, y)− λ⋆

α(x, y)
]

L−→ N(0, 1), as n → ∞. (3.33)

Proof: By Serfling (1980, Theorem A, p.77),

√
n
[
F̂←xy (α)− F←xy (α)

]
L−→ N

(
0,

α(1− α)
[
fxy
(
F←xy (α)

)]2

)
(3.34)

as n → ∞. Then the desired result holds automatically since
√
n
[
F̂←xy (α)− F←xy (α)

]
coin-

cides with
√
n
[
λ̂⋆
α(x, y)− λ⋆

α(x, y)
]
.

By the asymptotic normality of λ̂⋆
α(x, y), the interval IQn(z) =

]
λ̂⋆
α(x, y)± z[α(1−α)]1/2√

nfxy(λ⋆
α(x,y))

[

satisfies limn→∞Pr[λ⋆
α(x, y) ∈ IQn(z)] = 2Φ(z)−1 for all z > 0, where Φ denotes the standard

normal distribution function. However, this asymptotic confidence interval depends on the

density function fxy(λ
⋆
α(x, y)), which is difficult to estimate.6 The next result provides simple

6 For example, one might use a kernel density estimator, but this would introduce a nonparametric rate
(n1/5) of convergence. Moreover, standard kernel density estimators, without some modification, are biased
and inconsistent near support boundaries.
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and asymptotically valid confidence intervals for λ⋆
α(x, y) that do not depend on fxy(λ

⋆
α(x, y))

and that are easy to compute.

Proposition 3.6. Assume the conditions of Proposition 3.5. Define for any z > 0 the

interval

ISn(z) =
]
λ̂⋆
αn1

(x, y), λ̂⋆
αn2

(x, y)
[
, (3.35)

where αn1 = α− z(α(1− α)/n)1/2 and αn2 = α + z(α(1− α)/n)1/2. Then as n → ∞,

Pr [λ⋆
α(x, y) ∈ ISn(z)] → 2Φ(z)− 1 (3.36)

and
√
n |length (ISn(z))− length (IQn(z))|

a.s.−→ 0. (3.37)

Proof: The result follows after applying the asymptotic approach of Serfling (1980, Section

2.6.3, pp. 103–104) in conjunction with the identities IQn(z) =
]
F̂←xy (α)± z[α(1−α)]1/2√

nfxy(F←xy (α))

[
and

ISn(z) =
]
F̂←xy (αn1), F̂

←
xy (αn2)

[
.

Note that the interval ISn(z) does not require the value of the density function fxy at

λ⋆
α(x, y) to be known, and is asymptotically equivalent to IQn in the sense that their lengths

coincide asymptotically at the rate n−1/2. The value of z can be chosen by the researcher to

obtain confidence intervals of some specified coverage; for example, to obtain a 95-percent

confidence interval, z = Φ−1(0.975) ≈ 1.959964.

Next, we establish an analogous asymptotic representation for α = αn → 1 with n(1 −
αn) → ∞ as n → ∞.

Proposition 3.7. Suppose Fxy is twice differentiable in a left neighborhood of λ(x, y) with

f ′xy bounded, and lim
z↑λ(x,y)

fxy(z) exists and is positive. Let αn = 1− kn/n such that kn/n → 0

and kn/(log n)
3 → ∞. Then (3.32) holds for α = αn, where Rn = O

(
n−1k

1/4
n (logn)3/4

)
as

n → ∞ with probability one.

Proof: Given that λ⋆
α(x, y) = F←xy (α) and λ̂⋆

α(x, y) = F̂←xy (α), the proof for the case αn =

kn/n → 0 as n → ∞ can be found in Watts (1980, Theorem 1). It is not hard to verify that

the case αn = 1− kn/n is similar, so the proof is omitted here.

The next result establishes asymptotic normality of λ̂⋆
αn
(x, y) for αn → 1 at a suitable

rate, so that λ̂⋆
αn
(x, y) also converges to the FDH estimator λ̂(x, y). The proposition uses a

sufficient condition that is standard in extreme value theory, i.e., the von Mises condition.
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Proposition 3.8. If

lim
z↑λ(x,y)

λ(x, y)− z

1− Fxy(z)
fxy(z) = ρxy, (3.38)

for some ρxy > 0, then for αn = 1− kn/n with kn → ∞ and kn/n → 0 as n → ∞,

√
n√

αn(1− αn)
fxy(λ

⋆
αn
(x, y))

[
λ̂⋆
αn
(x, y)− λ⋆

αn
(x, y)

]
L−→ N (0, 1). (3.39)

Proof: This elegant result is due to Falk (1989), who proved under the von Mises condition

(3.38) that

n√
kn

fxy
(
F←xy (αn)

) [
F̂←xy (αn)− F←xy (αn)

]
L−→ N (0, 1) as n → ∞, (3.40)

from which the desired result follows immediately.

Proposition 3.8 indicates that the conclusion of Proposition 3.5 remains valid for α =

αn → 1 with n(1 − αn) → ∞ as n → ∞.

The last result in this section establishes an important connection between λ̂⋆
αn
(x, y) and

the true, full efficiency measure λ(x, y) as αn approaches 1. When αn = 1 − k/n with k

fixed, the estimator λ̂⋆
α(x, y) converges to the true efficiency λ(x, y), with the same scaling

as the FDH estimator but with a different limiting distribution.

Proposition 3.9. If b−1n (x, y)[λ̂(x, y)− λ(x, y)]
L−→ Gxy, then for αn = 1− k/n with k ≥ 0

being any fixed integer,

b−1n (x, y)[λ̂⋆
αn
(x, y)− λ(x, y)]

L−→ Hxy, (3.41)

where the distribution function

Hxy(z) = Gxy(z)

k∑

j=0

(
− logGxy(z)

)j

j!
. (3.42)

Proof: By van der Vaart (1998, Theorem 21.18, p. 313), if b−1n [Zxy
(n) − F←xy (1)]

L−→ Gxy, then

b−1n [Zxy
(n−k) − F←xy (1)]

L−→ Hxy for k ≥ 0.

3.5 Robustness and Tuning Parameter Selection

Here we first demonstrate the superiority of our benchmark statistic

λ̂⋆
αn
(x, y) = inf{z > 0|ĤXY (x, zy) ≤ 1− αn} := T αn

xy (ĤXY ) (3.43)
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over the conditional quantile-based version λ̂αn(x, y) from a robustness theory point of view.

Based on the information provided by the influence curve and the sample breakdown point,

we then introduce a diagnostic tool to facilitate choice between using as a benchmark either

(i) to favor the use of either the full support frontier (i.e. αn = 1), or (ii) a partial frontier of

order αn = 1− kn/n < 1 (with kn to be determined) for measuring production performance

via λ̂⋆
αn
.

Given that both λ⋆
αn
(x, y) and λ̂⋆

αn
(x, y) are represented as a functional T αn

xy of the

probability distributions HXY and ĤXY , respectively, the corresponding influence function

(x0, y0) 7→ IC((x0, y0);T
αn
xy , HXY ) is defined as the first Gâteaux derivative of T αn

xy at HXY ,

where the point (x0, y0) plays the role of the coordinate in the infinite-dimensional space of

probability distributions (see Hampel et al., 1986, Definition 1, p. 84). The IC describes on

one hand the effect of an infinitesimal contamination at the point (x0, y0) on the estimate,

standardized by the mass of the contamination, and allows on the other hand assessment

of the relative influence of individual observations (Xi, Yi) on the value of λ̂⋆
αn
(x, y). If

unbounded, an outlier can cause trouble.

Proposition 3.10. Suppose Fxy is differentiable at λ⋆
αn
(x, y) for a given αn, with derivative

fxy(λ
⋆
αn
(x, y)) > 0. Then, for any (x0, y0) ∈ R

p
+ × R

q
+,

IC((x0, y0);T
αn
xy , HXY ) =

αn − 1(Zxy(x0, y0) ≤ λ⋆
αn
(x, y))

fxy(λ⋆
αn
(x, y))

. (3.44)

Proof: By using the identities λ⋆
αn
(x, y) = F←xy (αn) := Sαn(Fxy) and λ̂⋆

αn
(x, y) = F̂←xy (αn) :=

Sαn(F̂xy), which implicitly define the functional Sαn , all of the quantitative robustness

characteristics of univariate sample quantiles carry over automatically to the theoretical

αn-quantile λ⋆
αn
(x, y) as well as its empirical version λ̂⋆

αn
(x, y). In particular, we have

IC((x0, y0);T
αn
xy , HXY ) = IC(Zxy(x0, y0);S

αn , Fxy), which establishes the result.

As the trimming order αn exceeds 1/2, the maximum absolute value

GES
(
λ̂⋆
αn
(x, y)

)
:= sup

(x0,y0)∈Rp+q
+

|IC((x0, y0);T
αn
xy , HXY )| =

αn

fxy(λ⋆
αn
(x, y))

(3.45)

defines the worst case scenario, termed the gross-error sensitivity. The influence of an outlier

(Xi, Yi) on the estimator λ̂⋆
αn
(x, y) cannot be unbounded if its gross-error sensitivity is finite.

This important robustness requirement, which corresponds to a finite GES, is known as
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B-robustness (Rousseeuw, 1981). Compared to the conditional variant λ̂αn(x, y) introduced

in Daouia and Simar (2007), it is not hard to check from Daouia and Ruiz-Gazen (2006,

Theorem 3.0.3) that

GES
(
λ̂αn(x, y)

)
=

αn

fxy(λαn(x, y))
(3.46)

for αn > 1/2. In particular, when αn > 1
2
∨ (1− FX(x)), we have λ⋆

αn
(x, y) = λβn(x, y) with

βn = 1− 1−αn

FX(x)
, and so GES

(
λ̂⋆
αn
(x, y)

)
= αn

βn
GES

(
λ̂βn(x, y)

)
. Thus

GES
(
λ̂⋆
αn
(x, y)

)
∼ GES

(
λ̂βn(x, y)

)
(3.47)

as αn → 1. Since βn < αn, the conditional βn-quantile λ̂βn(x, y) is more resistant than the

αn-quantile λ̂αn(x, y). Therefore λ̂
⋆
αn
(x, y) can be viewed as infinitesimally more robust than

λ̂αn(x, y) for αn large enough, in view of (3.47).

Note, however, that λ̂⋆
αn
(x, y) can be B-robust and yet still highly sensitive to small,

finite perturbations. To measure its global robustness, the richest quantitative information

is provided by the finite sample breakdown point as shown by Donoho and Huber (1983). It

measures the smallest fraction of contamination of an initial sample (X, Y )n = {(Xi, Yi)}ni=1

that can cause the estimator λ̂⋆
αn
(x, y) to take values arbitrarily far from its value at the

initial sample:

RB
(
λ̂⋆
αn
(x, y), (X, Y )n

)
= RB

(
T αn
xy , (X, Y )n

)

:= min

{
k

n
| k = 1, . . . , n, sup

(X,Y )nk

∣∣T αn
xy ((X, Y )nk)− T αn

xy ((X, Y )n)
∣∣ = ∞

}
,

(3.48)

where (X, Y )nk denotes the contaminated sample by replacing k points of (X, Y )n with arbi-

trary values.

Proposition 3.11. For (x, y) ∈ R
p+q
+ and αn ∈ (0, 1),

RB
(
λ̂⋆
αn
(x, y), (X, Y )n

)
=

{
(n(1− αn) + 1) /n if nαn = [nαn];

(n− [nαn]) /n otherwise,
(3.49)

where [nαn] denotes the integer part of nαn.

Proof: Our replacement breakdown value can be recovered immediately from the breakdown

point of univariate quantiles by using RB
(
T αn
xy , (X, Y )n

)
= RB(Sαn , (Zxy(X, Y ))n).
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Note that the conditional quantile-based version λ̂αn(x, y) achieves the sample breakdown

point

RB
(
λ̂αn(x, y), (X, Y )n

)
=

{
(nF̂X(x)(1− αn) + 1)/n if nF̂X(x)αn = [nF̂X(x)αn];

(nF̂X(x)− [nF̂X(x)αn])/n otherwise,

(3.50)

as can be seen from Daouia and Gijbels (2011, Theorem 2.2) and where F̂X denotes the

empirical marginal distribution function of X . In the limiting case, for an (intermediate)

sequence αn → 1 such that n(1−αn) → ∞, we have RB
(
λ̂⋆
αn
(x, y), (X, Y )n

)
∼ (1−αn) and

RB
(
λ̂αn(x, y), (X, Y )n

)
∼ (1 − αn)FX(x) with probability one, assuming the distribution

function FX(x) > 0. Thus, the fraction of bad outliers the efficiency score λ̂αn(x, y) can cope

with depends heavily on the input usage x, while the global robustness of our alternative

measure λ̂⋆
αn
(x, y) attains a higher breakdown value that only depends on the sample size n

and the trimming order αn.

Consequently, when considering the ‘robustified’ unconditional quantile-type efficiency

measure λ̂⋆
αn
(x, y), a common value for αn can be used for all production units (x, y). As

such, we suggest the heuristic statistic

Dn(α) := max
1≤i≤n

{
λ̂⋆
1(Xi, Yi)− λ̂⋆

α(Xi, Yi)
}

(3.51)

which measures the maximal distance between the non-robust FDH frontier related to

λ̂⋆
1(x, y) ≡ λ̂(x, y) and the resistant partial surface corresponding to λ̂⋆

α(x, y), uniformly

in (x, y). The idea is to look at the evolution of the distance Dn(α) as a function of

α := α(k) = 1 − k/n for k = 0, . . . , n − 1. In practical applications, it should be suf-

ficient to examine this diagnostic for values of k ranging from 0 up to perhaps 50–100 to

avoid excessive computational burden. In absence of anomalous data, the maximum distance

Dn(α(k)) should decrease smoothly as a ‘staircase’ function with the discrete order α(k).

In this case, it is most efficient to use the full efficiency scores related to the extreme order

αn = α(0) = 1. In contrast, if the distance curve exhibits a clearly severe jump at some large

value, say α(k0), this would indicate the presence of potential outliers and that the estimates

λ̂⋆
α(Xi, Yi) remain globally robust for orders α ≤ α(k0 + 1) before breaking down at α(k0).

In this case, it is prudent to seek robustness by choosing the limit value αn = α(k0 + 1) for

which λ̂⋆
αn
(·, ·) is sensitive to the magnitude of valuable extreme firms but, at the same time,
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remains resistant to the influence of isolated outliers.7

Returning to the example described in Section 3.3, panel (c) in Figures 2–3 show values

of the diagnostic in (3.51) plotted against values of k = 0, 1, . . . , 100. Both panels show a

jump between k = 1 and k = 2, but the jump is larger in Figure 3. There are other jumps

corresponding to larger values of k, but these are much smaller than the initial jump. With

n = 100 (or n = 102 with the outliers in Figure 3), k = 2 corresponds to α = 0.98 (or

α ≈ 0.9804, which gives the same results as α = 0.98 since in either case [αn] = 98). Panel

(d) in Figures 2–3 show the full frontier Ψ∂ as dotted lines, the true, unconditional order-α

quantile for α = 0.98 as dashed lines, the corresponding estimate of the quantile by the solid

curve, and the FDH estimate of Ψ∂ by the dash-dot-dash pattern.

Comparing panel (d) with panel (a) in Figure 2, we see that use of the diagnostic function

in (3.51) leads to estimation of a quantile closer to the full frontier than the arbitrary choice

of α = 0.95 in panel (a). Visual inspection in panel (d) suggests that the quantile estimate

tracks the true quantile closer than the FDH estimate tracks Ψ∂. Turning to panel (d) in

Figure 3 where the sample has been contaminated with two outliers, and comparing with

panel (d) in Figure 2, we see once again that the unconditional quantile estimator suffers

almost no effect from the outliers, unlike the conditional quantile estimator in panel (b). The

unconditional quantile estimator estimates a unique quantile, independent of the direction

chosen a priori, and appears more robust than the FDH estimator as well as the conditional

quantile estimator, while providing a monotonic estimate of the unconditional quantile, in

contrast to the conditional version in panel (b).

3.6 A multivariate example

Before turning to our empirical application involving U.S. credit unions, we give here another

brief example to illustrate the ideas that have been developed so far. Charnes et al. (1981,

Tables 1–4, pp. 680–682) list input and output data for 70 schools in an application where

they examine efficiency in educational production. These data serve to illustrate our new

methods in a multivariate framework with p = 5 inputs, q = 3 outputs, and n = 70

observations. In addition, the Charnes et al. data can be used by the interested reader

7 If one plots, in an application, Dn(α(k)) for say, k = 0, 1, . . . , 100 and finds a large jump near k = 100,
the range of values of k over which Dn(α(k)) is plotted might be increased.
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to replicate this example. Moreover, these data have been used by Wilson (1993) and Simar

(2003) to illustrate outlier-detection methods, and are known to contain several outliers.

Table 1 contains FDH efficiency estimates in the columns labeled λ̂(x, y) for the 70 schools

studied by Charnes et al.; the results are displayed in the same order as in the tables in their

paper. With 8 dimensions and only 70 observations, it is not surprising that all but 6 of these

estimates are equal to 1. Values of the diagnostic function defined in (3.51) corresponding

to k = i − 1 are shown in the columns labeled Dn(α) (note that the column labeled i in

Table 1 indexes observations in the case of the columns giving the FDH efficiency estimates,

but here it serves to define k in determining α = 1 − k
n
for purposes of computing Dn(α)).

Starting with k = 69 (i.e., i = 70) and working backward, the diagnostic is flat until k goes

from 19 to 18 (i.e., i goes from 20 to 19), suggesting that one should set α = 1− 19
70

≈ 0.7286.

The columns in Table 1 show the transformation in (3.1) applied to each observation

i = 1, . . . , n using the first observation as (x, y). In the columns labeled “Sorted,” these

values have been sorted by algebraic value. The largest value is 1.0000, giving the value

for λ̂(x, y) corresponding to i = 1 in the first row of the table. For α = 0.7286 we have

[αn] + 1 = 52, and hence λ̂⋆
α(x, y) = 0.4334, obtained from the row in Table 1 corresponding

to i = 52 and the column labeled “Sorted.” For the first observation in the Charnes et al.

data, this is an estimate of the output-oriented, unconditional quantile-efficiency of order

α = 0.7286 defined in Section 3.2. Of course, to obtain similar estimates for observations

2–70, one would have to recompute the transformed variable Zxy(X, Y ) for each observation.

In the next section, we apply our new estimator to examine the performance of U.S. credit

unions.

4 Efficiency among U.S. Credit Unions

4.1 The Credit Union Industry

Wheelock and Wilson (2011) used nonparametric, local polynomial regression methods to

estimate returns to scale among U.S. Credit Unions over the period 1989–2006, and found

strong evidence of increasing returns to scale throughout the size-distribution of credit

unions. Here, we analyze the technical efficiency of U.S. credit unions in 1989 and 2006

using the methods developed above.
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Credit unions are an important component of the financial services industry in the U.S.

A number of studies, including Smith (1984), Fried et al. (1993), Fried et al. (1999), Frame

and Coelli (2001), Frame et al. (2003), and Bauer (2008) have previously examined credit

unions’ technical efficiency; these studies have typically either employed fully parametric

(and consequently, perhaps misspecified) models, or have used non-parametric methods such

as DEA or FDH estimators which are extremely sensitive to outliers. Credit unions are

financial intermediaries, as are banks; excessive technical inefficiency among credit unions

would reflect wasted capital and would presumably reflect foregone economic growth or

productivity.

Over the past three decades, advances in information-processing and communications

technology (IT) and changes in regulation have had a profound impact on the environment

in which depository institutions operate. IT advances have enabled the development of new

bank services (from automated teller machines to internet banking), financial instruments

(such as various types of derivative securities), payments instruments (such as debit cards

and automated clearinghouse payments), and credit evaluation and monitoring platforms.8

The same period saw the deregulation of deposit interest rates and branch banking, the im-

position of risk-based capital requirements, and numerous other regulatory changes affecting

depository institutions.9

Most credit unions operate at small scale while specializing in “relationship” lending.

Credit unions are mutual organizations that provide deposit, lending, and other financial

services to members (i.e., depositors or borrowers) sharing a common occupational, fraternal

or other bond. A common bond is advantageous because it can reduce the cost of assessing

the credit-worthiness of potential borrowers, facilitating unsecured lending on reasonable

terms to the credit union’s members. However, as with other lenders, recent advances in

information processing and communications technology have reduced costs of acquiring in-

formation about potential borrowers, and consequently have reduced some of the advantages

of small scale and common bond that in the past enabled credit unions to provide financial

services at low cost to their memberships.

Over the last three decades, membership in credit unions has grown at a faster rate than

8 See Berger (2003) for details and analysis of the effects of new technology, including advances in IT, on
productivity growth in the banking industry and on the structure of the banking industry.

9 Spong (2000) provides a summary of current U.S. banking regulations.
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U.S. population. Wheelock and Wilson (2011) note that credit unions served 52 million

members in 1985, 80 million members in 2000, and 93 million members by October 2009.

The increases in credit union membership correspond to a rapid increase in credit unions’

share of total industry assets, which have increased from 3.3 percent in 1985 to 6.0 percent

in 2005. Wheelock and Wilson further note that much of this gain came at the expense of

savings and loan associations and savings banks, whose share of the industry’s assets declined

from 30.1 percent to 15.9 percent over the same period, while the share of industry assets

held by commercial banks rose from 66.1 percent to 78.1 percent.

In addition, credit unions appear to have gained market share as a result of the recent

financial crisis. For example, the share of home mortgages originated by credit unions rose

from 3.6 percent in 2007 to 6.2 percent in 2008. Credit unions now hold roughly 10 percent

of U.S. household savings deposits, 9 percent of all consumer loans, and 13.2 percent of

non-revolving consumer loans. Wheelock and Wilson (2011) observe that credit unions are

increasingly also a source of business loans, although current law caps credit unions’ business

loans at 12.25 percent of total assets (several attempts have been made in the U.S. Congress

to increase this limit).

Large credit unions have experienced faster growth in total assets, membership, and

earnings than small credit unions (Goddard et al., 2002). Wheelock andWilson (2011) report

that, after adjusting for inflation, the average credit union held 6.5 times more assets in 2006

than the average credit union in 1985.10 As with banks and savings institutions, the number

of credit unions has declined sharply due to consolidation within the industry. While a peak

of 23,866 credit unions operated in 1969, by 2006 only 8,662 credit unions were in operation.

Wheelock and Wilson (2011) note that the Credit Union Membership Access Act of 1998

facilitated this consolidation by weakening the common bond requirement, permitting credit

unions to accept members from unrelated groups. Since passage of this act, the number of

credit unions characterized by multiple common bonds has since increased rapidly.11

10 Average assets held by U.S. credit unions amounted to $84.6 million in 2006, ($50.6 million in constant
1985 dollars) as opposed to $7.8 million in 1985.

11 See Wheelock and Wilson (2011) and references cited therein for additional details on U.S. credit unions.
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4.2 Empirical Analysis

Credit unions use a number of inputs to produce a wide range of services. In order to

examine empirically the performance of credit unions, limited data and, in the case of non-

parametric approaches, limits on the number of dimensions that can reasonably be examined,

dictate use of simplified models. Our analysis is uses an input-output mapping similar to

that used by Wheelock and Wilson (2011), which in turn is similar that employed by Frame

et al. (2003) and Frame and Coelli (2001). Specifically, we model credit unions as service

providers serving as financial intermediaries that borrow from cash-rich members and lend

to cash-poor members, subject to constraints of the prevailing production technology.

We specify three output quantities (q = 3) (i) total loans (Y1); (ii) investments (Y2); (iii)

average interest rate on deposits (Y2); and (iv) the inverse of average interest rate on loans

(Y3). The first and second outputs reflect the lending function of credit unions, while the

third and fourth outputs serve to capture the “service” provided to credit union members in

terms of favorable rates on deposits and loans. In addition, we specify two inputs (p = 2):

(i) total shares and deposits, reflecting borrowing by credit unions (X1); and (ii) labor,

measured in full-time equivalents (X2). Further details, including credit union call-report

variables used to construct our inputs and outputs, can be found in Wheelock and Wilson

(2011, Table 1).12

Our input-output specification does not include a measure of risk. Consequently, our

results should be interpreted with some caution. For a given level of deposits, a credit union

that maximizes loans, investments, and the two price variables may find itself operating with

a very thin capital margin as well as spread between interest rates on loans and deposits.

12 Call report data for individual credit unions are available from the National Credit Union Administration
(www.ncua.gov).
In Y1, Y2, and X1, we use the (constant) dollar amounts of loans, investments, and shares and deposits.

Although one might wish to consider the number of credit union members that are served, data for the
number of loans, investments, shares, or deposits are not available in the call report data.
Our specification of credit unions’ inputs and outputs follows the lines of other studies such as Frame

and Coelli (2001), Frame et al. (2003), Wheelock and Wilson (2011, 2012), and others. In particular, our
input-output specification reflects the view that credit unions are similar to small community banks, with the
additional mandate to provide “service” in the form of favorable interest rates to depositors and borrowers.
We treat deposits as an input, as do the studies listed above, because credit unions necessarily must borrow
from depositors in order to lend to borrowers. We estimate technical efficiency in the output direction so
that our results can be interpreted as a measure of how well credit unions produce loans and other outputs
given their observed level of deposits and other inputs.
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Of course, this translates into risk. In our model, the “optimal” level of efficiency may be

short of operating on the full frontier. While it is difficult to quantify risk from the data

that are available to us, our results give an idea of the operating characteristics of the credit

union industry as a whole. Consequently, in the discussion that follows, we focus on the

distribution of estimated efficiencies, rather than on efficiencies of individual credit unions

in our sample.

Our data include 13,223 and 8,161 observations for (year-end) 1989 and 2006, respec-

tively.13 Summary statistics for the input and output variables are given in Table 2, where

the columns labeled “Q1,”, “Q2,” and “Q3” give the first, second (median), and third quar-

tiles of the distributions of each variable. Comparison of the summary statistics between

1989 and 2006 reveals that the distributions of the two inputs as well as that of the loan

and investment outputs shifted rightward during the period 1989–2006; the three quartiles

as well as the means are larger for each variable X1, X2, Y1, and Y2 in 2006 than in 1989.

This reflects the fact that credit unions have grown larger in terms of total assets over this

period, in part through consolidation via merger activity. Table 2 also indicates that rates

that credit unions paid on deposits (Y5) declined from 1989 to 2006, but loan rates also

declined as indicated by the increase in the quartiles for Y6. The prime bank lending rate at

the end of 1989 stood at 8.75 percent, compared to 8.25 percent at the end of 2006; 30-year

conventional mortgage rates fell from 10.65 percent to 6.14 percent over the same period.14

Figure 4 shows the diagnostic function Dn(α) given in (3.51) with k = 0, 1, . . . , 200.

For 1989, the first panel in Figure 4 shows several large jumps in the diagnostic Dn(α(k))

for small values of k, and a final jump when k is increased from 83 to 84. For 2006, moving

from right to left in the second panel of Figure 4, we see a shallow decrease in the diagnostic

function around k=150, and then a sharp decrease beginning when k goes from 40 to 39.

With 13,223 and 8,161 observations in 1989 and 2006, respectively, setting k = 84 and 40

gives α(k) = 1− k
n
= 0.9936 and 0.9951 for 1989 and 2006, respectively.15

13 We omitted observations where either loans or investments were negative, interest rates were outside
the range (0, 1), or where inputs were negative. Such observations reflect obviously incorrect values.

14 Interest rate data are from series MPRIME and MORTG, not seasonally adjusted, St. Louis Federal
Reserve Bank FRED database, http://www.research.stouisfed.org/fred2/.

15 Given the large sample sizes in both years, it is perhaps not surprising that the diagnostic Dn(α) would
lead to choosing large values for α. Note, however, that the diagnostic does not return α = 1, which would
lead to estimation of the full-frontier. Instead, the diagnostic indicates that a quantile lying perhaps “very
close” to the frontier should be the benchmark. To further examine the performance of the diagnostic in
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Table 3 shows results for estimation of (output-oriented) technical efficiency in both

1989 and 2006; the columns labeled “Q1,” “Q2,”, and “Q3” give the first, second, and

third quartiles of the estimated efficiency levels. The maximum among both the FDH and

DEA estimates for 1989 are implausibly large; it is difficult to imagine, from a practical

viewpoint, that there might be a credit union that could increase its output by a factor

of more than 7, or even 3, while holding input levels fixed. Similarly for 2006, both the

FDH and DEA estimates yield implausibly large values, though less so than for 1989. By

contrast, the quantile estimates are somewhat smaller, even with α = 0.999, where the

quantile is arguably very close to the full frontier. For each value of α in the table, the

median efficiency estimates are less than 1, indicating that more than half the observations

lie above the corresponding quantile, and suggesting that the data are very disperse over the

input-output space.

Comparing the unconditional quantile estimates across 1989 and 2006 (using α = 0.994

and α = 0.995, respectively in Table 3) suggests that median (Q2) efficiency decreased

slightly. The first quartiles are almost the same, but the third quartile and the maximum

values are somewhat smaller in 2006 than in 1989. This contrasts with the DEA estimates,

where the median is 1.683 for 1989 and 1.781 for 2006, which would suggest that median

inefficiency increased by about 0.098. Since the measures are multiplicative, this would

suggest that the median credit union was about 10 percent less efficient in 2006 than in

1989, though the differences are smaller than with the DEA estimates. The FDH estimates

also suggest that inefficiency may have increased between 1989 and 2006. By contrast, the

quantile estimates for corresponding values of α across the two years indicate a very slight

decrease in median efficiency over this period.

In order to gauge the precision of our estimates, we used the result in Proposition 3.6 to

estimate 95-percent confidence intervals for each credit union in 2006. Using α = 0.9951 as

suggested by the diagnostic function Dn(α) as detailed above, we obtain non-zero estimates

λ̂⋆(x, y) 8,110 cases among 8,161 observations (recall from (3.21) that estimates equal to

zero occur whenever α ≤ 1− F̂X(x)). Among the 8,110 observations with non-zero efficiency

(3.51), we repeated the exercise using the data for 2006, but with only the first 200, 500, 1,000, and then
2,000 observations. The corresponding values of α chosen by the diagnostic exercise were 0.9000, 0.9260,
0.9710, and 0.9755. This seems reasonable; in smaller samples, one is necessarily less certain than in larger
samples whether a particular extreme observation should be classified as an outlier. Our diagnostic procedure
reflects this, and chooses quantiles closer to the full frontier as the sample size becomes larger.
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estimates, the widths of our estimated 95-percent confidence intervals range from 0.0163 to

0.5436, with a median value of 0.0632. Ninety percent of these estimated confidence intervals

have width less than 0.0986, and 99-percent have width less than 0.1571. Of course, these

results are specific to the sample of credit unions we have used, and depend on the density

of the data over the production set. Nonetheless, given the wide variation in estimated

efficiencies in Table 3, and the tightness of most of our estimated confidence intervals, it is

apparent that our new estimator finds many significant differences in efficiency among the

credit unions in our sample.

5 Summary and Conclusions

The (unconditional) hyperbolic order-α quantile and its estimator introduced by Wheelock

and Wilson (2008) was motivated, in part, by the different (i.e., depending on a priori

chosen direction) conditional order-α quantiles introduced by Daouia and Simar (2007).

More recently, these ideas have been extended to directional measures by Simar and Vanhems

(2012), where the resulting order-α quantile is also independent of the chosen direction, and

is the same as in the hyperbolic case. The new quantile methods presented in this paper

reconcile the input and output oriented measures; as noted in Section 3.2, the unconditional

quantile frontier of order α is unique, and does not depend on on the chosen direction.

This differs from the conditional quantiles of order α discussed by Daouia and Simar, which

differ depending on whether an input or an output orientation is used. The new input-

and output-oriented estimators have been shown to yield estimates of order-α quantiles that

are monotonic. Estimates of the order-α quantiles for the hyperbolic and directional cases

based on the ideas of Wheelock and Wilson and Simar and Vanhems are also shown to be

monotonic.

In addition, this paper has established links to both extreme value theory and robust-

ness theory. The link with extreme value theory permits much simpler proofs of statistical

consistency, derivation of limiting distributions, and other important asymptotic results. In

particular, extensions to cases where the density f(x, y) approaches 0 at the frontier are

handled easily using the new theory. The links with robustness theory permit more careful

quantification of just how robust the estimators are than has apparently been possible in

the past, and thereby has provided new understanding. Our new estimators are shown to
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be more robust than the conditional order-α quantile estimators. In addition, the link with

robustness theory suggests a natural way to choose the quantile-order, using the diagnostic

given in (3.51).

Finally, we have used the new results to examine the technical efficiency of U.S. credit

unions in 1989 and 2006. The conclusions drawn form using the new methods are rather

different from what would have been concluded using only the more traditional DEA and

FDH full-envelopment estimators.
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Table 1: Example Using Charnes et al. (1981) Data

i λ̂(x, y) Dn(α) Zxy(X, Y ) Sorted i λ̂(x, y) Dn(α) Zxy(X, Y ) Sorted

1 1.0000 0.0000 1.0000 0.0000 36 1.0000 1.1456 0.2113 0.2639
2 1.0000 0.0000 0.4528 0.0000 37 1.0797 1.1456 0.2927 0.2740
3 1.0000 1.0000 0.6677 0.0000 38 1.0000 1.1456 0.1817 0.2778
4 1.0204 1.0000 0.2740 0.0000 39 1.0000 1.1456 0.5582 0.2881
5 1.0000 1.0000 0.1177 0.0000 40 1.0000 1.1456 0.4150 0.2927
6 1.0000 1.0000 0.2309 0.0000 41 1.0000 1.1456 0.4476 0.3163
7 1.0000 1.0000 0.2881 0.0000 42 1.0000 1.1456 0.3844 0.3343
8 1.0000 1.0000 0.0000 0.0000 43 1.0000 1.1456 0.4001 0.3416
9 1.0000 1.0000 0.4792 0.0000 44 1.0000 1.1456 0.0000 0.3558
10 1.0000 1.0000 0.0000 0.0000 45 1.0000 1.1456 0.1737 0.3580
11 1.0000 1.0000 0.6397 0.0000 46 1.0000 1.1456 0.0000 0.3611
12 1.0000 1.0000 0.6643 0.0000 47 1.0000 1.1456 0.5395 0.3844
13 1.0339 1.0797 0.4856 0.0000 48 1.0000 1.1456 0.1412 0.4001
14 1.0000 1.0797 0.1841 0.0000 49 1.0000 1.1456 0.2232 0.4150
15 1.0000 1.0797 0.2639 0.0000 50 1.0000 1.1456 0.0000 0.4190
16 1.0000 1.0797 0.0000 0.0842 51 1.0000 1.1456 0.1827 0.4285
17 1.0000 1.0797 0.3163 0.1177 52 1.0000 1.1456 0.8284 0.4334
18 1.0000 1.0797 0.5052 0.1190 53 1.0672 1.1456 0.3343 0.4438
19 1.0000 1.0797 0.0000 0.1204 54 1.0000 1.1456 0.0000 0.4476
20 1.0000 1.1456 0.5397 0.1342 55 1.0000 1.1456 0.4438 0.4528
21 1.0000 1.1456 0.6870 0.1412 56 1.0000 1.1456 0.2481 0.4792
22 1.0000 1.1456 0.3558 0.1670 57 1.0000 1.1456 0.0000 0.4856
23 1.0000 1.1456 0.0000 0.1737 58 1.0000 1.1456 0.3580 0.5052
24 1.0000 1.1456 0.4334 0.1817 59 1.0000 1.1456 0.0000 0.5395
25 1.0000 1.1456 0.4285 0.1827 60 1.0000 1.1456 0.2778 0.5397
26 1.0000 1.1456 0.5799 0.1841 61 1.0000 1.1456 0.1204 0.5582
27 1.0000 1.1456 0.5742 0.2113 62 1.0000 1.1456 0.1670 0.5742
28 1.0000 1.1456 0.3611 0.2135 63 1.0000 1.1456 0.2272 0.5799
29 1.0000 1.1456 0.1190 0.2206 64 1.0000 1.1456 0.3416 0.5938
30 1.0000 1.1456 0.2135 0.2232 65 1.0000 1.1456 0.2206 0.6397
31 1.1456 1.1456 0.2307 0.2272 66 1.0021 1.1456 0.0000 0.6643
32 1.0000 1.1456 0.0842 0.2307 67 1.0000 1.1456 0.0000 0.6677
33 1.0000 1.1456 0.0000 0.2309 68 1.0000 1.1456 0.4190 0.6870
34 1.0000 1.1456 0.5938 0.2406 69 1.0000 1.1456 0.1342 0.8284
35 1.0000 1.1456 0.0000 0.2481 70 1.0000 1.1456 0.2406 1.0000
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Table 2: Summary Statistics

Min Q1 Q2 Mean Q3 Max

1989

X1 5.000000 737.0000 2476.0000 13270.0000 8506.0000 3292000.0000
X2 0.500000 1.0000 2.5000 9.3660 6.5000 2160.0000
Y1 2.000000 604.0000 1965.0000 9684.0000 6401.0000 2959000.0000
Y2 0.000000 137.0000 567.0000 4208.0000 2362.0000 1232000.0000
Y3 0.000012 0.0548 0.0611 0.0605 0.0673 0.3333
Y4 1.667000 7.9890 8.6880 8.7290 9.3520 94.5500

2006

X1 47.000000 3470.0000 11340.0000 74090.0000 40310.0000 20710000.0000
X2 0.500000 2.5000 6.0000 27.6500 20.0000 5282.0000
Y1 2.000000 2382.0000 7814.0000 60790.0000 30050.0000 20580000.0000
Y2 0.000000 1095.0000 3754.0000 20580.0000 12270.0000 4900000.0000
Y3 0.000321 0.0151 0.0202 0.0205 0.0253 0.1190
Y4 2.000000 13.0700 14.7000 14.5200 16.1400 47.0000
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Table 3: Estimates of Output Efficiency for Credit Unions (p = 2, q = 4)

Min Q1 Q2 Mean Q3 Max

1989

DEA 1.000 1.433 1.581 1.644 1.766 8.183
FDH 1.000 1.000 1.004 1.042 1.062 3.214

α = 0.999 0.000 0.816 0.883 0.865 0.938 2.743
α = 0.998 0.000 0.762 0.841 0.816 0.900 2.571
α = 0.997 0.000 0.725 0.811 0.782 0.874 2.476
α = 0.996 0.000 0.694 0.787 0.755 0.853 2.327
α = 0.995 0.000 0.665 0.764 0.731 0.835 2.214
α = 0.994 0.000 0.641 0.745 0.711 0.820 2.071
α = 0.993 0.000 0.620 0.729 0.693 0.805 2.000
α = 0.992 0.000 0.600 0.713 0.677 0.793 1.929
α = 0.991 0.000 0.581 0.698 0.661 0.780 1.881
α = 0.990 0.000 0.564 0.685 0.647 0.769 1.738
α = 0.980 0.000 0.442 0.581 0.544 0.680 1.308

2006

DEA 1.000 1.449 1.673 1.685 1.902 3.291
FDH 1.000 1.000 1.000 1.049 1.069 1.874

α = 0.999 0.000 0.778 0.861 0.841 0.925 1.610
α = 0.998 0.000 0.719 0.811 0.786 0.879 1.540
α = 0.997 0.000 0.680 0.778 0.751 0.849 1.473
α = 0.996 0.000 0.648 0.752 0.723 0.825 1.426
α = 0.995 0.000 0.623 0.731 0.700 0.806 1.378
α = 0.994 0.000 0.602 0.713 0.680 0.790 1.358
α = 0.993 0.000 0.580 0.694 0.660 0.773 1.335
α = 0.992 0.000 0.562 0.679 0.644 0.759 1.322
α = 0.991 0.000 0.548 0.665 0.630 0.747 1.286
α = 0.990 0.000 0.532 0.653 0.617 0.736 1.279
α = 0.980 0.000 0.423 0.558 0.519 0.647 1.151
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Figure 1: Uniform Triangle Example (p = q = 1) — Truth
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Figure 2: Uniform Triangle Example (p = q = 1, n = 100)
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Figure 3: Uniform Triangle Example with Outliers (p = q = 1, n = 102)
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Figure 4: Diagnositc Functions Dn(α(k)) for Credit Unions (p = 2, q = 4)
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