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Further simulation results are discussed in Section A. The proofs of all theoretical results in the
main paper and additional technical results are provided in Section B.

A Additional simulations

The aim of this section is to explore some additional features that were briefly mentioned in Section 7.
We will illustrate the following points:

(A.1) Bias and MSE estimates.

(A.2) Forecast verification and validation.

(A.3) Quality of asymptotic approximations.

Let us first comment on some implementation details. We used in all our simulations the Hill
estimator of γ, the extreme level τ 1n “ 0.995 for n “ 100 and τ 1n “ 0.9994 for n “ 1000. The
corresponding true extreme expectiles ξτ 1n can be calculated by the existing function “etpτ 1n, dfq” in
the R package ‘expectreg’. In what concerns the intermediate levels τn involved in both estimators
rξ‹τ 1n ”

rξ‹τ 1npτnq and pξ‹τ 1n ”
pξ‹τ 1npτnq, we used the same considerations as in Ferreira et al. (2003). Namely,

they always considered τn “ 1 ´ k
n

with the range of intermediate integers k, say, from logpn1´εq to
n{ logpn1´εq, where ε “ 0.1 [this restriction allows to reject too small values or those very near n1´ε].
The value k can actually be viewed as the effective sample size for tail extrapolation. A larger k leads
to estimators with more bias, while smaller k results in higher variance.

A.1 Bias and MSE estimates

Figures 1 and 2 (respectively, Figures 3 and 4) give the root-MSE estimates computed over 10, 000
replications for samples of size 100 and 1000 simulated from the Student (respectively, positive Student)
t-models, while Figures 5 and 6 (respectively, Figures 7 and 8) give the bias estimates for the same
models. Each figure displays the evolution of the obtained Monte-Carlo results, for the two normalized
estimators rξ‹τ 1npkq{ξτ 1n and pξ‹τ 1npkq{ξτ 1n , as functions of the sample fraction k. Tables 1 and 2 report the
root-MSE and bias estimates obtained by using for each estimator the optimal value of k minimizing
its MSE.

As regards the Student distributions which correspond to real-valued profit-loss variables, our ten-
tative conclusion from Figures 1-2 and Figures 5-6 is that the indirect estimator pξ‹τ 1n has a harder time
with small samples, and this can be compensated by taking larger samples. Indeed, for n “ 100, the
direct estimator rξ‹τ 1n performs better than pξ‹τ 1n in terms of both MSE and bias, whatever the thickness of
the tails. Also, in contrast to the direct estimator’s plot, the indirect one exhibits more volatility. In
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Figure 1: Root MSE estimates of rξ‹τ 1npkq{ξτ 1n (solid line) and pξ‹τ 1npkq{ξτ 1n (dashed line), as functions of k,
for the t3, t5, t7 and t9-distributions, respectively, from top to bottom and from left to right. Results for
the sample size n “ 100.
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Figure 2: As before—Results for the sample size n “ 1000.
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Figure 3: Root MSE estimates of rξ‹τ 1npkq{ξτ 1n (solid line) and pξ‹τ 1npkq{ξτ 1n (dashed line), as functions of k,
for the positive Student t3, t5, t7 and t9-distributions, respectively, from top to bottom and from left to
right. Results for the sample size n “ 100.

4



0.5

1.0

1.5

2.0

40 80 120 160
k

RM
SE

0.2

0.4

0.6

0.8

1.0

40 80 120 160
k

RM
SE

0.25

0.50

0.75

1.00

40 80 120 160
k

RM
SE

0.25

0.50

0.75

1.00

40 80 120 160
k

RM
SE

Figure 4: As before—Results for the sample size n “ 1000.
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Figure 5: Bias estimates of rξ‹τ 1npkq{ξτ 1n (solid line) and pξ‹τ 1npkq{ξτ 1n (dashed line), as functions of k, for
the t3, t5, t7 and t9-distributions, respectively, from top to bottom and from left to right. Results for the
sample size n “ 100.
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Figure 6: As before—Results for the sample size n “ 1000.
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Figure 7: Bias estimates of rξ‹τ 1npkq{ξτ 1n (solid line) and pξ‹τ 1npkq{ξτ 1n (dashed line), as functions of k, for
the positive Student t3, t5, t7 and t9-distributions, respectively, from top to bottom and from left to right.
Results for the sample size n “ 100.
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Figure 8: As before—Results for the sample size n “ 1000.
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what concerns n “ 1000, it seems that pξ‹τ 1n is superior to rξ‹τ 1n only in terms of MSE for slightly heavy

tails (i.e. df “ 7, 9), whereas the accuracy of rξ‹τ 1n is more respectable for heavier tails (i.e. df “ 3, 5),

as can be seen from Table 1. It should be, however, clear that even in the favorable case to pξ‹τ 1n , where

n “ 1000 and df P t7, 9u, the estimator rξ‹τ 1n has actually almost overall a smaller MSE except for a very
small zone of values of k, as can be seen from Figure 2 (bottom panels). Due to the tightness of that

zone, the detection of the optimal k which minimizes the MSE of pξ‹τ 1n is hard to manage in practice.
By contrast, in the case of the positive Student distributions which correspond to non-negative loss

variables, it can be seen from Figures 3-4 and Figures 7-8 as well as Table 2 that the indirect estimator
pξ‹τ 1n is superior to the direct estimator rξ‹τ 1n in all scenarios except for the single case n “ 100 and df “ 3.

We repeated this kind of exercise with the Fréchet distribution F pyq “ e´y
´1{γ

, y ą 0, and Pareto
distribution F pyq “ 1´ y´1{γ, y ą 1, and arrived at the same tentative conclusion.

It may also be seen that most of the error is due to variance, the squared bias being much smaller in
all cases. It is interesting that in almost all cases the bias was positive. This may be explained by the
sensitivity of high expectiles to the magnitude of heavy tails, since they are based on “squared” error
loss minimization.

n “ 100
RMSE BIAS

df rξ‹
τ 1
n

pξ‹
τ 1
n

rξ‹
τ 1
n

pξ‹
τ 1
n

3 1.5010 47.9486 0.4888 1.7107
5 0.5963 2.9132 0.1253 0.4139
7 0.4385 0.8001 0.0797 0.2486
9 0.3753 0.6200 0.0579 0.1685

n “ 1000
RMSE BIAS

df rξ‹
τ 1
n

pξ‹
τ 1
n

rξ‹
τ 1
n

pξ‹
τ 1
n

3 0.4809 0.5403 0.2080 0.2599
5 0.2867 0.2981 0.0816 0.1088
7 0.2172 0.2119 0.0666 0.0629
9 0.1908 0.1781 0.0271 0.0440

Table 1: Monte-Carlo results obtained for the Student t3, t5, t7 and t9-distributions, using the optimal
sample fraction k minimizing the MSE of each estimator.

n “ 100
RMSE BIAS

df rξ‹
τ 1
n

pξ‹
τ 1
n

rξ‹
τ 1
n

pξ‹
τ 1
n

3 0.9848 1.0833 0.4923 0.4423
5 0.5762 0.5511 0.2098 0.1959
7 0.4122 0.3786 0.1392 0.0685
9 0.3509 0.3033 0.1181 0.0315

n “ 1000
RMSE BIAS

df rξ‹
τ 1
n

pξ‹
τ 1
n

rξ‹
τ 1
n

pξ‹
τ 1
n

3 0.5089 0.4023 0.2810 0.1932
5 0.3016 0.2297 0.1269 0.0697
7 0.2219 0.1639 0.0800 0.0280
9 0.1934 0.1393 0.0742 0.0107

Table 2: Monte-Carlo results obtained for the positive Student t3, t5, t7 and t9-distributions, using the
optimal sample fraction k minimizing the MSE of each estimator.

A.2 Forecast verification and validation

Another way of validating the presented estimation procedures for the extreme risk measure ξτ 1n on
historical data is by using the elicitability property of expectiles as pointed out in Section 1. Following
the ideas of Gneiting (2011), the competing estimates pξ‹τ 1n and rξ‹τ 1n can be compared from a forecasting
perspective by means of the consistent loss function

Lτ 1n : pξ, rq ÞÑ Lτ 1npξ, rq “ ητ 1npr ´ ξq
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which represents the penalty when the point forecast ξ P R is issued and the observation r P R
materializes, with ητ 1npyq “ |τ

1
n ´ Ity ď 0u|y2 being the expectile check function. For a given simulated

series of size N “ 1500, the estimates pξ‹τ 1npkq and rξ‹τ 1npkq are computed on rolling windows of length
n “ 1000, for each sample fraction k. This corresponds to T “ N ´ n “ 500 forecast cases with

corresponding point forecasts
´

ξ
pmq
1 pkq, . . . , ξ

pmq
T pkq

¯

m“1,2
and realizing observations pr1, . . . , rT q, where

ξ
p1q
t pkq “ pξ‹τ 1npkq and ξ

p2q
t pkq “ rξ‹τ 1npkq for each t “ 1, . . . , T . The two competing forecast procedures can

be ranked by computing their realized losses

Lpmqτ 1n
pkq “

1

T

T
ÿ

t“1

Lτ 1n

´

ξ
pmq
t pkq, rt

¯

,

for each m “ 1, 2, and each sample fraction k (the lower the better). Figures 9 and 10 display the
averages of the two realized losses computed over 200 simulated series from, respectively, the Student
and positive Student t3, t5, t7 and t9-distributions. In Figure 11 we considered 200 simulated series from
a Garch(1,1) model with Student t innovations [more sophisticated econometric models for expectiles
have been pursued in Taylor (2008), Kuan et al. (2009) and De Rossi and Harvey (2009)]. The

resulting average values of the realized loss seem to favor the direct forecaster rξ‹τ 1n in the case of Student

t-distributions (Figures 9 and 11), while they tend to prefer the rival indirect forecaster pξ‹τ 1n in the case
of positive Student t-distributions (Figure 10).

A.3 Quality of asymptotic approximations

We first investigate the normality of the estimators pξ‹τ 1n and rξ‹τ 1n . The asymptotic normality of pξ‹τ 1n{ξτ 1n in

Corollary 3 can be expressed as rn logppξ‹τ 1n{ξτ 1nq
d
ÝÑ Γ, with rn “

?
k

logrk{pnp1´τ 1nqqs
. Likewise, the asymptotic

normality of rξ‹τ 1n{ξτ 1n in Corollary 4 can be expressed as rn logprξ‹τ 1n{ξτ 1nq
d
ÝÑ Γ. The limit distribution

Γ of the Hill estimator is N pλ2{p1 ´ ρq, γ2q, as pointed out below Theorem 1. It can be shown that
the Student tν distributions satisfy the conditions of the two aforementioned corollaries, with γ “ 1{ν,
ρ “ ´2{ν and

Aptq „
ν ` 1

ν ` 2
pcνtq

´2{ν , cν “
2Γppν ` 1q{2qνpν´1q{2

?
νπΓpν{2q

.

Hence, we can compare the distributions of

xWn :“
”

rn logppξ‹τ 1n{ξτ 1nq ´ λ2{p1´ ρq
ı

{γ and ĂWn :“
”

rn logprξ‹τ 1n{ξτ 1nq ´ λ2{p1´ ρq
ı

{γ

with the limit distribution N p0, 1q, with λ2 “
?
kApn

k
q. The Q–Q-plots in Figures 12 and 13 present,

respectively, the sample quantiles of xWn and ĂWn, based on 10, 000 simulated samples of size n “ 1000,
versus the theoretical standard normal quantiles. For each estimator, we used the optimal value of k that
minimizes its MSE as in Table 1. It may be seen that the scatters for the Student tν distributions, with
ν “ 3, 5, 7, 9 displayed respectively from top to bottom and from left to right, are quite encouraging
especially for the LAWS estimator rξ‹τ 1n (Figure 13). Likewise, we conclude from the scatters for the
positive Student tν distributions, displayed in Figures 14 and 15, that the limit Theorem 3 and its
Corollaries 3 and 4 provide adequate approximations for finite sample sizes.
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Figure 9: The average values of the realized loss Lpmqτ 1n
pkq for both estimators pξ‹τ 1npkq in dashed line and

rξ‹τ 1npkq in solid line, as functions of k. From top to bottom and from left to right, the t3, t5, t7 and
t9-distributions, respectively.
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Figure 10: The average values of the realized loss Lpmqτ 1n
pkq for both estimators pξ‹τ 1npkq in dashed line and

rξ‹τ 1npkq in solid line, as functions of k. From top to bottom and from left to right, the positive Student
t3, t5, t7 and t9-distributions, respectively.
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Figure 11: The average values of the realized loss Lpmqτ 1n
pkq for both estimators pξ‹τ 1npkq in dashed line and

rξ‹τ 1npkq in solid line, as functions of k. From top to bottom and from left to right, Garch(1,1) models
with t3, t5, t7 and t9 innovations, respectively.
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Figure 12: Q–Q-plots on quality of asymptotic approximations. Each plot shows the sample quantiles of
xWn versus the theoretical standard normal quantiles, based on 10, 000 samples of size n “ 1000. Data
are simulated from the Student tν with ν “ 3, 5, 7, 9, respectively, from top to bottom and from left to
right.
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Figure 13: As before—Scatters for ĂWn.
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Figure 14: Q–Q-plots on quality of asymptotic approximations. Each plot shows the sample quantiles of
xWn versus the theoretical standard normal quantiles, based on 10, 000 samples of size n “ 1000. Data
are simulated from the positive Student tν with ν “ 3, 5, 7, 9, respectively, from top to bottom and from
left to right.
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Figure 15: As before—Scatters for ĂWn.
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Next, we investigate the normality of the estimators ČXMES
‹

pτ 1nq and {XMES
‹

pτ 1nq by comparing the
distributions of

ĂWn “

«

rn log

˜

ČXMES
‹

XMES
pτ 1nq

¸

´
λ2

p1´ ρXq

ff

{γX and xWn “

«

rn log

˜

{XMES
‹

XMES
pτ 1nq

¸

´
λ2

p1´ ρXq

ff

{γX

with the limit distribution N p0, 1q, where rn “
?
k{ logrk{pnp1 ´ τ 1nqqs and λ2 “

?
kAXpn{kq. The

scatters in Figures 16 and 17 present, respectively, the sample quantiles of xWn and ĂWn, based on
10, 000 simulated samples of size n “ 1000, versus the theoretical standard normal quantiles. For each
estimator, we used the optimal value of k that minimizes its MSE. The obtained Q–Q-plots for the
Student tν-distributions on p0,8q2, with ν “ 3, 5, 7, 9, indicate that the limit Theorems 4 and 5 provide

adequate approximations for finite sample sizes, with a slight advantage for the estimator {XMES
‹

pτ 1nq
in Figure 16.

B Proofs

For notational simplicity, let F “ F Y be the survival function of Y . It is a consequence of Theorem
2.3.9 in de Haan and Ferreira (2006, p.48) that condition C2pγ, ρ, Aq entails the following second-order
condition for the related survival function F :

@x ą 0, lim
tÑ8

1

Ap1{F ptqq

„

F ptxq

F ptq
´ x´1{γ



“ x´1{γ
xρ{γ ´ 1

γρ
. (B.1)

Proof of Proposition 1. We start by noticing that the equation

ξτ ´ EpY q “
2τ ´ 1

1´ τ
E rpY ´ ξτ q`s (B.2)

entails, for τ sufficiently large so that ξτ ą 0,

1´
EpY q
ξτ

“
2τ ´ 1

1´ τ
E
ˆ„

Y

ξτ
´ 1



1ItY {ξτ ě 1u

˙

. (B.3)

An integration by parts yields

E
ˆ„

Y

ξτ
´ 1



1ItY {ξτ ě 1u

˙

“

ż 8

1

F pξτxqdx

“F pξτ q

ˆ

γ

1´ γ
`

ż `8

1

„

F pξτxq

F pξτ q
´ x´1{γ



dx

˙

.

Recall that since Y has an infinite right endpoint, ξτ Ñ 8 as τ Ò 1; using together equation (B.1),
Theorem 2.3.9 in de Haan and Ferreira (2006) and a uniform inequality such as Theorem B.3.10 in de
Haan and Ferreira (2006) applied to the function F , we get after some easy computations

E
ˆ„

Y

ξτ
´ 1



1ItY {ξτ ě 1u

˙

“ F pξτ q

ˆ

γ

1´ γ
` A

ˆ

1

F pξτ q

˙

1` op1q

p1´ γqp1´ ρ´ γq

˙

. (B.4)
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Figure 16: Q–Q-plots of the sample quantiles of xWn versus the theoretical standard normal quantiles,
based on 10, 000 samples of size n “ 1000. Data are simulated from the Student tν-distribution on
p0,8q2 with ν “ 3, 5, 7, 9, respectively, from top to bottom and from left to right.

20



0

5

-2 0 2
theoretical

sa
m
pl
e

t(3) , LAWS , k= 50

-5.0

-2.5

0.0

2.5

5.0

7.5

-2 0 2
theoretical

sa
m
pl
e

t(5) , LAWS , k=15

-5

0

5

-2 0 2
theoretical

sa
m
pl
e

t(7) , LAWS , k=9

-5

0

5

10

-2 0 2
theoretical

sa
m
pl
e

t(9) , LAWS , k= 9

Figure 17: As before—Scatters for ĂWn.
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Plugging this equality into (B.3), we thus get

F pξτ q

1´ τ
“ pγ´1 ´ 1q

ˆ

1´
EpY q
ξτ

˙

1

2τ ´ 1

ˆ

1` A

ˆ

1

F pξτ q

˙

1

γp1´ ρ´ γq
p1` op1qq

˙´1

and therefore

F pξτ q

1´ τ
“ pγ´1 ´ 1q

ˆ

1´
EpY q
ξτ

p1` op1qq ` 2p1´ τqp1` op1qq

´A

ˆ

1

F pξτ q

˙

1

γp1´ ρ´ γq
p1` op1qq

˙

.

In particular, as noted in Bellini et al. (2014):

F pξτ q

1´ τ
Ñ pγ´1 ´ 1q and thus ξτ “

`

γ´1 ´ 1
˘´γ

qτ p1` op1qq (B.5)

as τ Ò 1. Because γ ă 1, a consequence of this is that p1´ τqξτ “ Opp1´ τqqτ q Ñ 0 as τ Ò 1 and so

F pξτ q

1´ τ
“ pγ´1 ´ 1q

ˆ

1´
pγ´1 ´ 1qγEpY q

qτ
p1` op1qq

´
pγ´1 ´ 1q´ρ

γp1´ ρ´ γq
App1´ τq´1qp1` op1qq

˙

where the regular variation property of |A| was used. This completes the proof.

The key element in the proof of Corollary 1 is to apply Proposition 1 in conjunction with the
following generic result.

Lemma 1. Assume that v, V are such that vpτq Ò 8 and V pτq Ó 0, as τ Ò 1, and there exists B ą 0
such that

V pτq

F pvpτqq
“ Bp1` epτqq

where epτq Ñ 0 as τ Ò 1. If condition C2pγ, ρ, Aq holds, with γ ą 0 and F strictly increasing, then

vpτq

Up1{V pτqq
“ Bγ

ˆ

1` γepτqp1` op1qq ` Ap1{V pτqq

„

Bρ ´ 1

ρ
` op1q

˙

as τ Ò 1.

Proof of Lemma 1. Apply the function U to get

vpτq

Up1{V pτqq
´Bγ

“
UpBr1` epτqs{V pτqq

Up1{V pτqq
´Bγ.

By Theorem 2.3.9 in de Haan and Ferreira (2006), we may find a function A0, equivalent to A at infinity,
such that for any ε ą 0, there is t0pεq ą 1 such that for t, tx ě t0pεq,

ˇ

ˇ

ˇ

ˇ

1

A0ptq

ˆ

Uptxq

Uptq
´ xγ

˙

´ xγ
xρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ď
ε

rp2Bqγ`ρ ` pB{2qγ`ρsrp2Bqε ` pB{2q´εs
xγ`ρ maxpxε, x´εq.
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Thus, for τ sufficiently close to 1, using this inequality with t “ 1{V pτq and x “ Br1` epτqs gives that

ˇ

ˇ

ˇ

ˇ

1

A0p1{V pτqq

ˆ

UpBr1` epτqs{V pτqq

Up1{V pτqq
´Bγ

p1` epτqqγ
˙

´ Bγ
p1` epτqqγ

Bρp1` epτqqρ ´ 1

ρ

ˇ

ˇ

ˇ

ˇ

ď ε

and therefore

1

A0p1{V pτqq

ˆ

UpBr1` epτqs{V pτqq

Up1{V pτqq
´Bγ

p1` epτqqγ
˙

Ñ BγB
ρ ´ 1

ρ
as τ Ò 1.

The desired result follows by a simple first-order Taylor expansion.

Proof of Corollary 1. We have in view of Proposition 1 that

1´ τ

F pξτ q
“ pγ´1 ´ 1q´1p1` epτqq

with

epτq “
pγ´1 ´ 1qγEpY q

qτ
p1` op1qq `

pγ´1 ´ 1q´ρ

γp1´ ρ´ γq
App1´ τq´1qp1` op1qq as τ Ò 1.

Using Lemma 1 and recalling that Up1{p1´ τqq “ qτ gives the result.

Proof of Theorem 1. The consistency statement is an immediate consequence of the convergence

Yn´tnp1´τnqu,n

qτn
“

Yn´tnp1´τnqu,n

Upp1´ τnq´1q
“

Yn´tnp1´τnqu,n

Upn{tnp1´ τnquq
p1` op1qq

P
ÝÑ 1

which follows from the regular variation of U and Corollary 2.2.2 in de Haan and Ferreira (2006, p.41).
The asymptotic distribution is obtained by writing

pξτn
ξτn

´ 1 “

ˆ

ppγ´1 ´ 1q´pγ

pγ´1 ´ 1q´γ
´ 1

˙

`

ˆ

pqτn
qτn

´ 1

˙

p1` oPp1qq ´ rpτnqp1` oPp1qq,

where
a

np1´ τnqrpτnq Ñ λ in view of Corollary 1. Since

@x P p0, 1q,
d

dx

`

px´1 ´ 1q´x
˘

“ px´1 ´ 1q´x
 

p1´ xq´1 ´ logpx´1 ´ 1q
(

,

the delta-method entails

a

np1´ τnq

ˆ

ppγ´1 ´ 1q´pγ

pγ´1 ´ 1q´γ
´ 1

˙

d
ÝÑ rp1´ γq´1 ´ logpγ´1 ´ 1qsΓ “ mpγqΓ, (B.6)

from which the result easily follows.
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Before moving to the proof of Theorem 2, we shall show a couple of useful preliminary results. The
next two lemmas are entirely based on non-probabilistic arguments. In the first one, we use the fact
that ητ pyq{2 is continuously differentiable with derivative

ϕτ pyq :“ |τ ´ 1Ity ď 0u|y.

Lemma 2. For all x, y P R and τ P p0, 1q,

1

2
pητ px´ yq ´ ητ pxqq “ ´yϕτ pxq ´

ż y

0

pϕτ px´ tq ´ ϕτ pxqqdt.

Proof of Lemma 2. The result is a simple consequence of the equality

1

2
pητ px´ yq ´ ητ pxqq “

ż x´y

x

ϕτ psqds “ ´

ż y

0

ϕτ px´ tqdt

obtained by the change of variables s “ x´ t.

The next result gives a Lipschitz property for the derivative ϕτ .

Lemma 3. For all x, h P R and τ P p0, 1q, we have

ϕτ px´ hq ´ ϕτ pxq “ ´h|τ ´ 1Itx ď 0u| ` p1´ 2τqpx´ hqp1Itx ď hu ´ 1Itx ď 0uq,

and in particular |ϕτ px´ hq ´ ϕτ pxq| ď |h|p1´ τ ` 21Itx ą minph, 0quq.

Proof of Lemma 3. Write

ϕτ px´ hq ´ ϕτ pxq “ ´h|τ ´ 1Itx ď 0u| ` px´ hqp|τ ´ 1Itx ď hu| ´ |τ ´ 1Itx ď 0u|q.

Besides,

|τ ´ 1Itx ď hu| ´ |τ ´ 1Itx ď 0u|

“ p1´ τqp1Itx ď hu ´ 1Itx ď 0uq ` τp1Itx ą hu ´ 1Itx ą 0uq

“ p1´ 2τqp1Itx ď hu ´ 1Itx ď 0uq,

from which the desired equality follows. The required bound on |ϕτ px ´ hq ´ ϕτ pxq| is then obtained
by noting that

|τ ´ 1Itx ď 0u| “ τ1Itx ą 0u ` p1´ τq1Itx ď 0u ď 1´ τ ` 1Itx ą 0u (B.7)

and
|x´ h||1Itx ď hu ´ 1Itx ď 0u| ď |h||1Itx ď hu ´ 1Itx ď 0u| ď |h|1Itx ą minph, 0qu. (B.8)

Combining (B.7) and (B.8) completes the proof.
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The last result will be useful to derive the limit distribution of the objective function ψnpuq described
in (8).

Lemma 4. Pick a ą 1 and assume that EpY ´a q and 0 ă γ ă 1{a. Then

Ep|ϕτ pY ´ ξτ q|aq “ aξaτ p1´ τqpγ
´1
´ 1qBpa, γ´1 ´ aqp1` op1qq as τ Ò 1,

where Bps, tq “
ş1

0
us´1p1´ uqt´1du is the Beta function evaluated at ps, tq.

Proof of Lemma 4. As a first step, write

Ep|ϕτ pY ´ ξτ q|aq “ p1´ τqaEprξτ ´ Y sa1ItY ď ξτuq ` τ
aEprY ´ ξτ sa1ItY ą ξτuq. (B.9)

Furthermore, for any x, y such that x ă y, py ´ xqa ď 2a´1p|x|a ` |y|aq by Hölder’s inequality, so that

Eprξτ ´ Y sa1ItY ď ξτuq ď 2a´1Epr|ξτ |a ` |Y |as1ItY ď ξτuq.

The condition γ ă 1{a ensures that E|Y |a ă 8. Recall that ξτ Ò 8 as τ Ò 1 and use the dominated
convergence theorem to get

Eprξτ ´ Y sa1ItY ď ξτuq “ Opξaτ q as τ Ò 1. (B.10)

Besides, an integration by parts and a change of variables entail

EprY ´ ξτ sa1ItY ą ξτuq “ aξa´1τ

ż 8

ξτ

ˆ

x

ξτ
´ 1

˙a´1

F pxqdx

“ aξaτF pξτ q

ż 8

1

pv ´ 1qa´1
F pξτvq

F pξτ q
dv.

Using a uniform convergence theorem such as Proposition B.1.10 in de Haan and Ferreira (2006, p.360)
gives

EprY ´ ξτ sa1ItY ą ξτuq “ aξaτF pξτ q

ż 8

1

pv ´ 1qa´1v´1{γdvp1` op1qq as τ Ò 1.

Combining this equality with (B.5) yields

EprY ´ ξτ sa1ItY ą ξτuq “ aξaτ p1´ τqpγ
´1
´ 1q

ż 8

1

pv ´ 1qa´1v´1{γdvp1` op1qq as τ Ò 1. (B.11)

Combining (B.9), (B.10), (B.11) and using the change of variables u “ 1´ v´1 gives the desired result.

Proof of Theorem 2. Use Lemma 2 to write, for any u,

ψnpuq “ ´uT1,n ` T2,npuq (B.12)

with T1,n :“
1

a

np1´ τnq

n
ÿ

i“1

1

ξτn
ϕτnpYi ´ ξτnq “:

n
ÿ

i“1

Sn,i

and T2,npuq :“ ´
1

ξ2τn

n
ÿ

i“1

ż uξτn{
?
np1´τnq

0

pϕτnpYi ´ ξτn ´ tq ´ ϕτnpYi ´ ξτnqqdt.
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The random variables Sn,i are independent, identically distributed, and centered since

ξτn “ argminuPREpητnpYi ´ uq ´ ητnpYiqq ñ EpϕτnpYi ´ ξτnqq “ 0

(where a differentiation under the expectation sign was used). We shall prove that

T1,n
a

VarpT1,nq

d
ÝÑ N p0, 1q (B.13)

for which it is sufficient to show that for some δ ą 0,

nE|Sn,1|2`δ

rnVarpSn,1qs1`δ{2
Ñ 0 as nÑ 8

and use Lyapunov’s criterion. Choose δ ą 0 small enough so that γ ă 1{p2` δq and apply Lemma 4 to
get

nE|Sn,1|2`δ

rnVarpSn,1qs1`δ{2
“ Oprnp1´ τnqs

´δ{2
q Ñ 0 as nÑ 8.

Convergence (B.13) follows and, especially, Lemma 4 entails

T1,n
d
ÝÑ N

ˆ

0,
2γ

1´ 2γ

˙

. (B.14)

We now turn to the control of the second term T2,npuq. Write

T2,npuq “ T3,npuq ´
n

ξ2τn

ż uξτn{
?
np1´τnq

0

rEpϕτnpY ´ ξτn ´ tqq ´ EpϕτnpY ´ ξτnqqsdt. (B.15)

The random term T3,npuq is a sum of independent, identically distributed and centered random variables,
which we shall examine after having controlled first the nonrandom term on the right-hand side of (B.15).
By Lemma 3, we obtain

EpϕτnpY ´ ξτn ´ tqq ´ EpϕτnpY ´ ξτnqq
“ p1´ 2τnqEppY ´ ξτn ´ tqp1ItY ď ξτn ` tu ´ 1ItY ď ξτnuqq

´ tEp|τn ´ 1ItY ď ξτnu|q. (B.16)

Clearly
Ep|τn ´ 1ItY ď ξτnu|q “ τnF pξτnq ` p1´ τnqF pξτnq.

It therefore follows from (B.5) that

Ep|τn ´ 1ItY ď ξτnu|q “ γ´1p1´ τnqp1` op1qq (B.17)

as nÑ 8. Let further ψptq :“ EppY ´ tq1ItY ą tuq and observe that

EppY ´ ξτn ´ tqp1ItY ď ξτn ` tu ´ 1ItY ď ξτnuqq

“ EppY ´ ξτn ´ tqp1ItY ą ξτnu ´ 1ItY ą ξτn ` tuqq

“ ψpξτnq ´ ψpξτn ` tq ´ tF pξτnq.
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Integrating by parts entails

ψpξτnq ´ ψpξτn ` tq “

ż ξτn`t

ξτn

F pxqdx “ ξτnF pξτnq

ż 1`t{ξτn

1

F pξτnvq

F pξτnq
dv

from which we deduce that

EppY ´ ξτn ´ tqp1ItY ď ξτn ` tu ´ 1ItY ď ξτnuqq

“ tF pξτnq

˜

ξτn
t

ż 1`t{ξτn

1

F pξτnvq

F pξτnq
dv ´ 1

¸

.

We now bound the term into brackets as follows: let Inpuq “ r0, |u|ξτn{
a

np1´ τnqs and write

sup
|t|PInpuq

ˇ

ˇ

ˇ

ˇ

ˇ

ξτn
t

ż 1`t{ξτn

1

F pξτnvq

F pξτnq
dv ´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
|t|PInpuq

ξτn
|t|

ˇ

ˇ

ˇ

ˇ

ˇ

ż 1`t{ξτn

1

„

F pξτnvq

F pξτnq
´ v´1{γ



dv

ˇ

ˇ

ˇ

ˇ

ˇ

` op1q

“ op1q

by the uniform convergence theorem for regularly varying functions [see Theorem 1.5.2 in Bingham et
al. (1987), p.22], the continuity of v ÞÑ v´1{γ at 1 and the convergence np1´τnq Ñ 8. As a consequence,
by (B.5), the equality

EppY ´ ξτn ´ tqp1ItY ď ξτn ` tu ´ 1ItY ď ξτnuqq “ tp1´ τnqrnptq (B.18)

holds with rnptq Ñ 0 uniformly in t such that |t| P Inpuq. Combine (B.15), (B.16), (B.17) and (B.18) to
get

T2,npuq “
u2

2γ
p1` op1qq ` T3,npuq, (B.19)

with T3,npuq :“ ´
1

ξ2τn

n
ÿ

i“1

ż uξτn{
?
np1´τnq

0

rSn,ipξτn ` tq ´ Sn,ipξτnqsdt

where the Sn,ipvq :“ ϕτnpYi ´ vq ´ EpϕτnpYi ´ vqq are independent copies of Snpvq :“ ϕτnpY ´ vq ´
EpϕτnpY ´ vqq. Thus

VarpT3,npuqq “
n

ξ4τn
Var

˜

ż uξτn{
?
np1´τnq

0

rSnpξτn ` tq ´ Snpξτnqsdt

¸

.

We now notice that for any v, Snpvq is centered and thus

VarpT3,npuqq“
n

ξ4τn

ż

r0, uξτn{
?
np1´τnqs2

EprSnpξτn ` sq ´ SnpξτnqsrSnpξτn ` tq ´ Snpξτnqsqds dt

27



(where the integrability properties of Y were used to switch integrals and expectation). By the Cauchy-
Schwarz inequality,

VarpT3,npuqq ď
n

ξ4τn

˜

ż uξτn{
?
np1´τnq

0

a

Ep|Snpξτn ` tq ´ Snpξτnq|2q dt

¸2

. (B.20)

Applying Lemma 3, we get for any t

|Snpξτn ` tq ´ Snpξτnq| ď 2|t|r1´ τn ` 1ItY ą ξτn `minpt, 0qu ` F pξτn `minpt, 0qqs.

Using the inequality |a` b` c|2 ď 3pa2 ` b2 ` c2q yields

Ep|Snpξτn ` tq ´ Snpξτnq|2q ď 12t2rp1´ τnq
2
` F pξτn `minpt, 0qqp1` F pξτn `minpt, 0qqqs. (B.21)

Finally, using again the regular variation property of F and the convergence np1´ τnq Ñ 8,

sup
|s|PInpuq

|F pξτn ` sq ´ F pξτnq| “ F pξτnq sup
|s|PInpuq

ˇ

ˇ

ˇ

ˇ

F pξτn ` sq

F pξτnq
´ 1

ˇ

ˇ

ˇ

ˇ

“ opF pξτnqq “ op1´ τnq (B.22)

in view of (B.5). Using (B.5) once again and combining (B.20), (B.21) and (B.22) yields

VarpT3,npuqq “ O

¨

˝

n

ξ4τn
p1´ τnq

ˇ

ˇ

ˇ

ˇ

ˇ

ż uξτn{
?
np1´τnq

0

|t| dt

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚“ O

ˆ

1

np1´ τnq

˙

Ñ 0

as nÑ 8. Whence the convergence T3,npuq
P
ÝÑ 0; combining (B.12), (B.14) and (B.19) entails

ψnpuq
d
ÝÑ ´uZ

c

2γ

1´ 2γ
`
u2

2γ
as nÑ 8

(with Z being standard Gaussian) in the sense of finite-dimensional convergence. As a function of u,
this limit is almost surely finite and defines a convex function which has a unique minimum at

u‹ “ γ

c

2γ

1´ 2γ
Z

d
“ N

ˆ

0, γ2
2γ

1´ 2γ

˙

.

Applying the convexity lemma of Geyer (1996) completes the proof.

Proof of Theorem 3. By the equalities (9) and (10), we have

log

˜

ξ
‹

τ 1n

ξτ 1n

¸

“ log

ˆ

pq‹τ 1n
qτ 1n

˙

` log

˜

ξτn
ξτn

¸

´ log

ˆ

pqτn
qτn

˙

` log

ˆ

ξτn
qτn

˙

´ log

ˆ

ξτ 1n
qτ 1n

˙

.
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Furthermore, the convergence logrp1´ τnq{p1´ τ
1
nqs Ñ 8 entails

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs
log

ˆ

pq‹τ 1n
qτ 1n

˙

d
ÝÑ Γ, (B.23)

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs
log

˜

ξτn
ξτn

¸

“ OP p1{ logrp1´ τnq{p1´ τ
1
nqsq

“ oPp1q, (B.24)

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs
log

ˆ

pqτn
qτn

˙

“ OP p1{ logrp1´ τnq{p1´ τ
1
nqsq

“ oPp1q, (B.25)

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

„

log

ˆ

ξτn
qτn

˙

´ log

ˆ

ξτ 1n
qτ 1n

˙

“ O

˜

a

np1´ τnqrrpτnq ` rpτ
1
nqs

logrp1´ τnq{p1´ τ 1nqs

¸

“ O

˜

a

np1´ τnqrpτnq

logrp1´ τnq{p1´ τ 1nqs

¸

“ op1q. (B.26)

Here, Theorem 4.3.8 in de Haan and Ferreira (2006, p.138) was used to show (B.23), while (B.24)
and (B.25) follow from the distributional convergence assumption on ξτn and from Theorem 2.4.1 in de
Haan and Ferreira (2006, p.50), respectively. Convergence (B.26) is a consequence of Corollary 1 and,
in what concerns the relationship rpτ 1nq “ Oprpτnqq, of the regular variation of s ÞÑ q1´s´1 and |A|. A
combination of these convergence results and a use of the delta-method give the desired conclusion.

Proof of Proposition 2. By Corollary 1,

XESpτq “
1

1´ τ

ż 1

τ

ξαdα “ pγ
´1
´ 1q´γ

"

1

1´ τ

ż 1

τ

qαp1` rpαqqdα

*

where rpαq Ñ 0 as αÑ 1. It is then clear that

XESpτq „ pγ´1 ´ 1q´γ
"

1

1´ τ

ż 1

τ

qαdα

*

“ pγ´1 ´ 1q´γQESpτq as τ Ñ 1.

This proves that
XESpτq

QESpτq
„ pγ´1 ´ 1q´γ „

ξτ
qτ

as τ Ñ 1,

by applying Corollary 1 again. Besides, the equality qα “ Upp1´αq´1q and a change of variables entail

QESpτq

qτ
“

1

1´ τ

ż 1

τ

qα
qτ
dα “

ż 8

1

y´1
Upp1´ τq´1yq

Upp1´ τq´1q

dy

y
.
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The condition γ ă 1 and a uniform convergence theorem such as Proposition B.1.10 in de Haan and
Ferreira (2006, p.360) entail

QESpτq

qτ
Ñ

ż 8

1

yγ´2dy “
1

1´ γ
as τ Ñ 1.

Consequently
XESpτq

ξτ
„

QESpτq

qτ
Ñ

1

1´ γ
as τ Ñ 1.

Let us now turn to the terms XTCEpτq{QTCEpτq and XTCEpτq{ξτ . On the one hand, we have

XTCEpτq “
E rY IpY ą ξτ qs

F pξτ q
“

E rpY ´ ξτ q`s
F pξτ q

` ξτ ,

where y` “ maxpy, 0q. On the other hand, it follows from the proof of Theorem 11 in Bellini et al.
(2014) that

E rpY ´ ξτ q`s
F pξτ q

„
ξτ

γ´1 ´ 1
as τ Ñ 1.

Therefore
XTCEpτq

ξτ
„

1

1´ γ
as τ Ñ 1. Likewise, we have

QTCEpτq “
E rY IpY ą qτ qs

F pqτ q
“

E rpY ´ qτ q`s
F pqτ q

` qτ ,

with
E rpY ´ qτ q`s

F pqτ q
„

qτ
γ´1 ´ 1

as τ Ñ 1.

Then
QTCEpτq

qτ
„

1

1´ γ
as τ Ñ 1. Whence

XTCEpτq

QTCEpτq
„
ξτ
qτ

as τ Ñ 1, which completes the proof.

Proof of Proposition 3. The starting point is Corollary 1, which yields

XESpτq “
1

1´ τ

ż 1

τ

ξαdα

“ pγ´1 ´ 1q´γ

˜

QESpτq ` γpγ´1 ´ 1qγEpY qp1` op1qq

`

"

pγ´1 ´ 1q´ρ

1´ ρ´ γ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

*

1

1´ τ

ż 1

τ

qαApp1´ αq
´1
qdα

¸

.

Use a change of variables to get

1

1´ τ

ż 1

τ

qαApp1´ αq
´1
qdα “ Upp1´ τq´1qApp1´ τq´1q

ż 8

1

y´1
Upp1´ τq´1yqApp1´ τq´1yq

Upp1´ τq´1qApp1´ τq´1q

dy

y
.
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This entails, using a uniform convergence theorem such as Proposition B.1.10 in de Haan and Ferreira
(2006, p.360), that

1

1´ τ

ż 1

τ

qαApp1´ αq
´1
qdα „ Upp1´ τq´1qApp1´ τq´1q

ż 8

1

yγ`ρ´2dy as τ Ñ 1

“
qτApp1´ τq

´1q

1´ ρ´ γ
.

Since QESpτq „ qτ{p1´ γq, our earlier expansion yields

XESpτq

QESpτq
“ pγ´1 ´ 1q´γ

˜

1`
γp1´ γqpγ´1 ´ 1qγEpY q

qτ
p1` op1qq

`

"

pγ´1 ´ 1q´ρ

1´ ρ´ γ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

*

1´ γ

1´ ρ´ γ
App1´ τq´1q

¸

. (B.27)

Furthermore, it is a consequence of a uniform inequality such as Theorem B.3.10 in de Haan and Ferreira
(2006) applied to the function U that

QESpτq

qτ
“

ż 8

1

y´1
Upp1´ τq´1yq

Upp1´ τq´1q

dy

y

“

ż 8

1

y´1
ˆ

yγ ` App1´ τq´1qyγ
yρ ´ 1

ρ
p1` op1qq

˙

dy

y

“

ż 8

1

yγ´2dy `
App1´ τq´1q

ρ

ż 8

1

`

yγ`ρ´2 ´ yγ´2
˘

dyp1` op1qq

“
1

1´ γ

ˆ

1`
1

1´ ρ´ γ
App1´ τq´1qp1` op1qq

˙

. (B.28)

Finally, Corollary 1 reads

qτ
ξτ

“ pγ´1 ´ 1qγ

˜

1´
γpγ´1 ´ 1qγEpY q

qτ
p1` op1qq

´

ˆ

pγ´1 ´ 1q´ρ

1´ ρ´ γ
`
pγ´1 ´ 1q´ρ ´ 1

ρ
` op1q

˙

App1´ τq´1q

¸

. (B.29)

A use of the identity
XESpτq

ξτ
“

XESpτq

QESpτq
ˆ

QESpτq

qτ
ˆ
qτ
ξτ

and a combination of (B.27), (B.28) and (B.29) complete the proof of the first part after some straight-
forward computations.

Let us now turn to the second part of the Proposition. The starting point is equation (B.2), which
is equivalent to

XTCEpτq

ξτ
“ 1`

1´ τ

F pξτ q

1

2τ ´ 1

ˆ

1´
EpY q
ξτ

˙

.
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We have by Proposition 1 and (B.5), with the notation therein, that

1´ τ

F pξτ q
“

γ

1´ γ
r1´ εpτqp1` op1qqs and

1

ξτ
“
pγ´1 ´ 1qγ

qτ
p1` op1qq,

where the op¨q terms have to be understood in the asymptotic sense as τ Ò 1. Using a Taylor expansion
thus yields:

XTCEpτq

ξτ
“

1

1´ γ
`

γ

1´ γ

„

2p1´ τqp1` op1qq ´ εpτqp1` op1qq

´
pγ´1 ´ 1qγEpY q

qτ
p1` op1qq



.

The condition γ ă 1 entails p1´ τqqτ Ñ 0 as τ Ò 1, so that

XTCEpτq

ξτ
“

1

1´ γ
´

γ

1´ γ

„

εpτqp1` op1qq `
pγ´1 ´ 1qγEpY q

qτ
p1` op1qq



.

Using once again Proposition 1 gives

εpτq `
pγ´1 ´ 1qγEpY q

qτ
“ ´

pγ´1 ´ 1q´ρ

γp1´ ρ´ γq
App1´ τq´1qp1` op1qq ` opq´1τ q,

whence
XTCEpτq

ξτ
“

1

1´ γ

„

1`
pγ´1 ´ 1q´ρ

1´ ρ´ γ
App1´ τq´1qp1` op1qq ` opq´1τ q



.

Proof of Proposition 4. As indicated in the main paper, the coherence of XESpτq is a straightforward
consequence of the coherence of the expectile-based VaR. Here, we focus on the translation invariance
and positive homogeneity of the Tail Conditional Expectation

XTCEpτ ;Xq :“ EpX|X ą ξτ pXqq

where ξτ pXq denotes the τ´th expectile of the random variable X. Recall that the expectile is itself a
coherent risk measure, and hence satisfies these properties.

1. To prove translation invariance, let c P R and write

XTCEpτ ;X ` cq “ EpX ` c|X ` c ą ξτ pX ` cqq “ EpX|X ` c ą ξτ pX ` cqq ` c

“ EpX|X ` c ą ξτ pXq ` cq ` c

“ EpX|X ą ξτ pXqq ` c

“ XTCEpτ ;Xq ` c.

2. Positive homogeneity is shown in the same way: for any a ě 0,

XTCEpτ ; aXq “ EpaX|aX ą ξτ paXqq “ aEpX|aX ą ξτ paXqq

“ aEpX|aX ą aξτ pXqq

“ aEpX|X ą ξτ pXqq

“ aXTCEpτ ;Xq.

This completes the proof of the proposition.
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Proof of Proposition 5. We shall actually prove the more general statement

lim
tÑ8

EpX|Y ą tq

UXp1{F Y ptqq
“

ż 8

0

Rpx´1{γX , 1qdx (B.30)

which contains both Proposition 1 in Cai et al. (2015) and our desired result, because ξY,τ Ñ 8 as
τ Ò 1. For any t ą 0,

EpX|Y ą tq

UXp1{F Y ptqq
“

1

UXp1{F Y ptqq

ż 8

0

PpX ą s, Y ą tq

F Y ptq
ds

“
1

UXp1{F Y ptqq

ż 8

0

PpFXpXq ď FXpsq, F Y pY q ď F Y ptqq

F Y ptq
ds

“

ż 8

0

PpFXpXq ď FXpUXp1{F Y ptqqxq, F Y pY q ď F Y ptqq

F Y ptq
dx. (B.31)

Note now that because X is heavy-tailed, FXpTxq „ x´1{γXFXpT q as T Ñ 8 and we have that:

@x ą 0, FXpUXp1{F Y ptqqxq „ x´1{γXF Y ptq as tÑ 8.

Thus, by condition J CpRq:

@x ą 0, lim
tÑ8

PpFXpXq ď FXpUXp1{F Y ptqqxq, F Y pY q ď F Y ptqq

F Y ptq
“ Rpx´1{γX , 1q. (B.32)

It only remains to show that the integral in (B.31) and the limit in (B.32) can be interchanged, and
this can be done exactly in the same way as in the proof of Proposition 1 of Cai et al. (2015), so we
omit the details.

To show the second convergence result (20), we apply (B.30) to t “ ξY,τ and t “ qY,τ in conjunction
with (4) to get

lim
τÒ1

XMESpτq

QMESpτq
“ lim

τÒ1

UXp1{F Y pξY,τ qq

UXp1{F Y pqY,τ qq
“ lim

τÒ1

ˆ

F Y pqY,τ q

F Y pξY,τ q

˙γX

“
`

γ´1Y ´ 1
˘´γX .

Proof of Theorem 4. We start by the case when X ą 0 almost surely. In this situation,

ČXMESpτnq “

řn
i“1XiItYi ą rξY,τnu
řn
i“1 ItYi ą rξY,τnu

.

Write then

log

˜

ČXMES
‹

pτ 1nq

XMESpτ 1nq

¸

“ log

˜

ČXMESpτnq

XMESpτnq

¸

` log

˜

XMESpτnq

XMESpτ 1nq

ˆ

1´ τ 1n
1´ τn

˙´γX
¸

` ppγX ´ γXq log

ˆ

1´ τn
1´ τ 1n

˙

.
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Using the delta-method, the proof shall then be complete provided that

a

np1´ τnq

˜

ČXMESpτnq

XMESpτnq
´ 1

¸

“ OPp1q (B.33)

and
a

np1´ τnq

˜

XMESpτnq

XMESpτ 1nq

ˆ

1´ τ 1n
1´ τn

˙´γX

´ 1

¸

“ Op1q. (B.34)

To show (B.33), write

ČXMESpτnq

XMESpτnq
“

EpItYąξY,τnuq
1
n

řn
i“1 ItYiąξY,τnu

1
n

řn
i“1XiItYiąξY,τnu

EpXItYąξY,τnuq

řn
i“1 ItYiąξY,τnu

řn
i“1 ItYiąrξY,τnu

řn
i“1XiItYiąrξY,τnu

řn
i“1XiItYiąξY,τnu

. (B.35)

Firstly,
a

np1´ τnq

ˆ 1
n

řn
i“1 ItYiąξY,τnu

EpItYąξY,τnuq
´ 1

˙

“ OPp1q (B.36)

because the variance of the term on the left-hand side is bounded in view of Proposition 1. Secondly,

Var

„

a

np1´ τnq

ˆ 1
n

řn
i“1XiItYiąξY,τnu

EpXItYąξY,τnuq
´ 1

˙

ď
p1´ τnqEpX2ItYąξY,τnuq
rEpXItYąξY,τnuqs2

“
p1´ τnq

PpY ą ξY,τnq

EpX2|Y ą ξY,τnq

rEpX|Y ą ξY,τnqs
2
.

Applying Proposition 1 and then Proposition 5,

Var

„

a

np1´ τnq

ˆ 1
n

řn
i“1XiItYiąξY,τnu

EpXItYąξY,τnuq
´ 1

˙

“ O

ˆ

EpX2|Y ą ξY,τnq

rUXp1{F Y pξY,τnqqs
2

˙

.

Notice then that condition J CpRq is equivalent, for all x and y which are not both infinite, to

lim
tÑ8

tPpX ě UXpt{xq, Y ě UY pt{yqq “ Rpx, yq.

Since pUXq
2 “ UX2 (because X ą 0), this entails

lim
tÑ8

tPpX2
ě UX2pt{xq, Y ě UY pt{yqq “ Rpx, yq.

Hence, pX2, Y q also satisfies condition J CpRq. Thus, by Proposition 5,

EpX2|Y ą ξY,τnq

rUXp1{F Y pξY,τnqqs
2
“

EpX2|Y ą ξY,τnq

UX2p1{F Y pξY,τnqq
“ Op1q

which entails

Var

„

a

np1´ τnq

ˆ 1
n

řn
i“1XiItYiąξY,τnu

EpXItYąξY,τnuq
´ 1

˙

“ Op1q
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and therefore
a

np1´ τnq

ˆ 1
n

řn
i“1XiItYiąξY,τnu

EpXItYąξY,τnuq
´ 1

˙

“ OPp1q. (B.37)

Thirdly, by Theorem 2, rξY,τn is
a

np1´ τnq-relatively consistent, so that for any ε ą 0, we may find
K ą 0 such that

ˇ

ˇ

ˇ

ˇ

ˇ

rξY,τn
ξY,τn

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
K

a

np1´ τnq

with probability larger than 1´ ε eventually. In what follows we assume that K is chosen so that this
is the case. With probability larger than 1´ ε eventually, we then have

ˇ

ˇ

ˇ

ˇ

ˇ

řn
i“1 ItYiąrξY,τnu

řn
i“1 ItYiąξY,τnu

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď max

˜
ˇ

ˇ

ˇ

ˇ

ˇ

řn
i“1 ItYiąξY,τn p1`K{

?
np1´τnqqu

řn
i“1 ItYiąξY,τnu

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

ˇ

řn
i“1 ItYiąξY,τn p1´K{

?
np1´τnqqu

řn
i“1 ItYiąξY,τnu

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

By straightforward variance calculations,

a

np1´ τnq

˜

řn
i“1 ItYiąξY,τn p1˘K{

?
np1´τnqqu

řn
i“1 ItYiąξY,τnu

´ 1

¸

“ OP

˜

a

np1´ τnq

ˇ

ˇ

ˇ

ˇ

ˇ

PpY ą ξY,τnp1˘K{
a

np1´ τnqqq

PpY ą ξY,τnq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

By a uniform inequality such as Theorem B.3.10 in de Haan and Ferreira (2006) applied to the function
F Y , we get

PpY ą ξY,τnp1˘K{
a

np1´ τnqqq

PpY ą ξY,τnq
´ 1 “ O

˜

1
a

np1´ τnq

¸

(B.38)

and therefore
a

np1´ τnq

˜
řn
i“1 ItYiąrξY,τnu

řn
i“1 ItYiąξY,τnu

´ 1

¸

“ OPp1q. (B.39)

Lastly, write with probability larger than 1´ ε eventually:
ˇ

ˇ

ˇ

ˇ

ˇ

řn
i“1XiItYiąrξY,τnu

řn
i“1XiItYiąξY,τnu

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď max

˜
ˇ

ˇ

ˇ

ˇ

ˇ

řn
i“1XiItYiąξY,τn p1`K{

?
np1´τnqqu

řn
i“1XiItYiąξY,τnu

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

ˇ

řn
i“1XiItYiąξY,τn p1´K{

?
np1´τnqqu

řn
i“1XiItYiąξY,τnu

´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

By a straightforward modification of (B.39),

a

np1´ τnq

˜

řn
i“1XiItYiąξY,τn p1˘K{

?
np1´τnqqu

řn
i“1XiItYiąξY,τnu

´ 1

¸

“ OP

˜

a

np1´ τnq

ˇ

ˇ

ˇ

ˇ

ˇ

EpXI
tYąξY,τn p1˘K{

?
np1´τnqqu

q

EpXItYąξY,τnuq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.
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Applying (B.38) and Proposition 5, we obtain

a

np1´ τnq

˜

řn
i“1XiItYiąξY,τn p1˘K{

?
np1´τnqqu

řn
i“1XiItYiąξY,τnu

´ 1

¸

“ OP

˜

a

np1´ τnq

ˇ

ˇ

ˇ

ˇ

ˇ

EpX|Y ą ξY,τnp1˘K{
a

np1´ τnqqq

EpX|Y ą ξY,τnq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

¸

“ OP

˜

a

np1´ τnq

ˇ

ˇ

ˇ

ˇ

ˇ

EpX|Y ą ξY,τnp1˘K{
a

np1´ τnqqq ´ EpX|Y ą ξY,τnq

UXp1{F Y pξY,τnqq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

.

It is therefore enough to show that

|EpX|Y ą ξY,τnp1˘K{
a

np1´ τnqqq ´ EpX|Y ą ξY,τnq|

UXp1{F Y pξY,τnqq
“ OP

˜

1
a

np1´ τnq

¸

.

Because expectiles and quantiles are asymptotically proportional in view of Corollary 1:

ξY,τn “ pγ
´1
Y ´ 1q´γY qY,τn

˜

1`O

˜

1
a

np1´ τnq

¸¸

,

this can be achieved by using condition J C2pR, β, κq in the same way followed by Cai et al. (2015)
to examine the convergence of the term J2 that they introduce in the proof of their Proposition 3, see
pp.438-439 therein. We then get

a

np1´ τnq

˜
řn
i“1XiItYiąrξY,τnu

řn
i“1XiItYiąξY,τnu

´ 1

¸

“ OPp1q. (B.40)

Combining (B.35), (B.36), (B.37), (B.39) and (B.40) concludes the proof of (B.33).

Now, to prove (B.34), notice first that

a

np1´ τnq

ˆ

XMESpτnq

UXp1{F Y pξY,τnqq
´

ż 8

0

Rpx´1{γX , 1qdx

˙

“ Op1q (B.41)

and
a

np1´ τnq

˜

XMESpτ 1nq

UXp1{F Y pξY,τ 1nqq
´

ż 8

0

Rpx´1{γX , 1qdx

¸

“ Op1q; (B.42)

this can be verified using condition J C2pR, β, κq along the lines of proof of Lemma 3 and (28) in Cai et
al. (2015), because expectiles and quantiles are asymptotically proportional. Besides, by Proposition 1,

a

np1´ τnq

ˆ

F Y pξY,τnq

1´ τn
´ pγ´1Y ´ 1q

˙

“ Op1q

and
a

np1´ τnq

˜

F Y pξY,τ 1nq

1´ τ 1n
´ pγ´1Y ´ 1q

¸

“ Op1q
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so that by condition C2pγX , ρX , AXq and convergence
a

np1´ τnqAXpp1´ τnq
´1q Ñ λ2 P R,

a

np1´ τnq

˜

UXp1{F Y pξY,τnqq

UXp1{F Y pξY,τ 1nqq

ˆ

1´ τ 1n
1´ τn

˙´γX

´ 1

¸

“ Op1q. (B.43)

Combining (B.41), (B.42) and (B.43) completes the proof of (B.34).

We now show how the condition that X ą 0 almost surely can be dropped in our framework. Define
X` “ maxpX, 0q and

XMES`pτ 1nq :“ EpX`|Y ą ξY,τ 1nq,

i.e. XMES` is the marginal expected shortfall of the positive part of X, and write

ČXMES
‹

pτ 1nq

XMESpτ 1nq
“

ČXMES
‹

pτ 1nq

XMES`pτ 1nq

XMES`pτ 1nq

XMESpτ 1nq
. (B.44)

The first part of the proof of Theorem 2 in Cai et al. (2015), see pp.440–441 and in particular condition
(35) there, shows that X` satisfies condition J C2pR, β, κq. As a consequence, we may apply the result
we have just shown to the random variable X` to get

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs

˜

ČXMES
‹

pτ 1nq

XMES`pτ 1nq
´ 1

¸

d
ÝÑ Γ. (B.45)

Let now X´ “ X ´X` so that

XMESpτ 1nq

XMES`pτ 1nq
“ 1`

EpX´|Y ą ξY,τ 1nq

XMES`pτ 1nq
. (B.46)

Since ξY,τ 1n Ò 8, we have for n large enough that

XMES`pτ 1nq

UXp1{F Y pξY,τ 1nqq
“

XMES`pτ 1nq

UX`p1{F Y pξY,τ 1nqq

so that
XMES`pτ 1nq

UXp1{F Y pξY,τ 1nqq
Ñ

ż 8

0

Rpx´1{γX , 1qdx

as nÑ 8 and therefore
XMESpτ 1nq

XMES`pτ 1nq
“ 1`O

˜

EpX´|Y ą ξY,τ 1nq

UXp1{F Y pξY,τ 1nqq

¸

. (B.47)

Since extreme expectiles and extreme quantiles are asymptotically proportional, we have as in Cai et
al. (2015) that

|EpX´|Y ą ξY,τ 1nq| “ O
`

p1´ τ 1nq
´1`p1´κqp1´γXq

˘

and
1

UXp1{F Y pξY,τ 1nqq
“ O pp1´ τ 1nq

γX q . (B.48)

Plugging this into (B.47) entails

XMESpτ 1nq

XMES`pτ 1nq
“ 1`O

`

p1´ τ 1nq
´κp1´γXq

˘

“ 1` o

˜

1
a

np1´ τnq

¸

. (B.49)

Plugging (B.49) and (B.45) into (B.44) concludes the proof.
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Proof of Theorem 5. Write

log

˜

{XMES
‹

pτ 1nq

XMESpτ 1nq

¸

“ log

˜

{QMES
‹

pτ 1nq

QMESpτ 1nq

¸

` log

ˆ

ppγ´1Y ´ 1q´pγX

pγ´1Y ´ 1q´γX

˙

´ log

ˆ

pγ´1Y ´ 1qγX
XMESpτ 1nq

QMESpτ 1nq

˙

.

Firstly, by Theorem 2 in Cai et al. (2015),

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs
log

˜

{QMES
‹

pτ 1nq

QMESpτ 1nq

¸

d
ÝÑ Γ. (B.50)

Secondly, writing

log

ˆ

ppγ´1Y ´ 1q´pγX

pγ´1Y ´ 1q´γX

˙

“ ´
“

ppγX ´ γXq logppγ´1Y ´ 1q ` γX
`

logppγ´1Y ´ 1q ´ logpγ´1Y ´ 1q
˘‰

we get
a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs
log

ˆ

ppγ´1Y ´ 1q´pγX

pγ´1Y ´ 1q´γX

˙

P
ÝÑ 0. (B.51)

Thirdly, by (B.42), which is

a

np1´ τnq

˜

XMES`pτ 1nq

UX`p1{F Y pξY,τ 1nqq
´

ż 8

0

Rpx´1{γX , 1qdx

¸

“ Op1q

together with (B.49) and the equality UX` “ UX in a neighborhood of infinity, we obtain

a

np1´ τnq

˜

XMESpτ 1nq

UXp1{F Y pξY,τ 1nqq
´

ż 8

0

Rpx´1{γX , 1qdx

¸

“ Op1q.

The similar relationship (Cai et al., 2015)

a

np1´ τnq

˜

QMESpτ 1nq

UXp1{F Y pqY,τ 1nqq
´

ż 8

0

Rpx´1{γX , 1qdx

¸

“ Op1q

then yields

log

ˆ

pγ´1Y ´ 1qγX
XMESpτ 1nq

QMESpτ 1nq

˙

“ log

˜

pγ´1Y ´ 1qγX
UXp1{F Y pξY,τ 1nqq

UXp1{F Y pqY,τ 1nqq

¸

`O

˜

1
a

np1´ τnq

¸

. (B.52)

Now, by Proposition 1,
a

np1´ τnq

˜

F Y pξY,τ 1nq

1´ τ 1n
´ pγ´1Y ´ 1q

¸

“ Op1q

and F Y pqY,τ 1nq “ 1 ´ τ 1n by continuity of FY , so that by condition C2pγX , ρX , AXq and convergence
a

np1´ τnqAXpp1´ τnq
´1q Ñ 0,

a

np1´ τnq

˜

pγ´1Y ´ 1qγX
UXp1{F Y pξY,τ 1nqq

UXp1{F Y pqY,τ 1nqq
´ 1

¸

“ Op1q.
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In conjunction with (B.52), this entails

a

np1´ τnq

logrp1´ τnq{p1´ τ 1nqs
log

ˆ

pγ´1Y ´ 1qγX
XMESpτ 1nq

QMESpτ 1nq

˙

Ñ 0. (B.53)

A combination of (B.50), (B.51), (B.53) and the delta-method completes the proof.

Proof of Proposition 6. We start by obtaining an equivalent for the numerator of 1´ τ 1npαnq, which
is equal to

qαnE
ˆ„

Y

qαn
´ 1



1ItY {qαn ą 1u

˙

.

Just as in the proof of Proposition 1, we integrate by parts to obtain

E
ˆ„

Y

qαn
´ 1



1ItY {qαn ą 1u

˙

“ F pqαnq

ˆ

γ

1´ γ
`

ż `8

1

„

F pqαnxq

F pqαnq
´ x´1{γ



dx

˙

.

Since qαn Ñ 8 as n Ñ 8, we can apply Proposition B.1.10 in de Haan and Ferreira (2006) to the
function F to get

E
ˆ„

Y

qαn
´ 1



1ItY {qαn ą 1u

˙

“ F pqαnq

ˆ

γ

1´ γ
` op1q

˙

“ p1´ αnq
γ

1´ γ
p1` op1qq.

To obtain an equivalent of the denominator, we note that

E |Y ´ qαn | “ qαnE
ˇ

ˇ

ˇ

ˇ

Y

qαn
´ 1

ˇ

ˇ

ˇ

ˇ

“ qαnp1` op1qq

where we used the dominated convergence theorem together with the fact that qαn Ñ 8. Wrapping
up, we obtain

E p|Y ´ qαn | 1ItY ą qαnuq

E |Y ´ qαn |
“ p1´ αnq

γ

1´ γ
p1` op1qq

which is the desired result.

Proof of Theorem 6. Our first goal is to show that

1´ pτ 1npαnq

1´ τ 1npαnq
´ 1 “ OPp1q. (B.54)

To this end, we write

1´ pτ 1npαnq

1´ τ 1npαnq
´ 1 “

pγ

γ
ˆ

1´ γ

1´ pγ
ˆ

p1´ αnq
γ

1´ γ

1´ τ 1npαnq
´ 1. (B.55)

The delta-method yields
a

np1´ τnq

ˆ

γ

pγ
ˆ

1´ pγ

1´ γ
´ 1

˙

“ OPp1q. (B.56)
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Recall now (B.4) in the proof of Proposition 1 which here translates into

p1´ αnq
γ

1´ γ

E
„
ˇ

ˇ

ˇ

ˇ

Y

qαn
´ 1

ˇ

ˇ

ˇ

ˇ

1ItYąqαnu

 ´ 1 “ OrAp1{F pqαnqqs “ OrApp1´ αnq
´1
qs

“ Op1{
a

np1´ τnqq, (B.57)

because qαn “ ξτ 1npαnq and using the regular variation property of A. Write further

E
ˇ

ˇ

ˇ

ˇ

Y

qαn
´ 1

ˇ

ˇ

ˇ

ˇ

´ 1 “ E
„
ˇ

ˇ

ˇ

ˇ

Y

qαn
´ 1

ˇ

ˇ

ˇ

ˇ

1ItYąqαnu



` E
„ˆ

1´
Y

qαn

˙

1ItYďqαnu



´ 1

“ E
„
ˇ

ˇ

ˇ

ˇ

Y

qαn
´ 1

ˇ

ˇ

ˇ

ˇ

1ItYąqαnu



´
EpY 1ItYďqαnuq

qαn
´ F pqαnq

“ O pmax t1´ αn, 1{qαnuq “ O p1{qαnq “ op1{
a

np1´ τnqq (B.58)

where we successively used (B.57), the dominated convergence theorem, the relationship 1 ´ αn “
op1{qαnq valid because 0 ă γ ă 1, and the regular variation property of t ÞÑ q1´t´1 . Combining (B.55),
(B.56), (B.57) and (B.58) with the definition

1´ τ 1npαnq “
E t|Y ´ qαn | 1I pY ą qαnqu

E |Y ´ qαn |

results in (B.54).

The idea to prove (i) is now to write

pξ‹
pτ 1npαnq

“

ˆ

1´ pτ 1npαnq

1´ τn

˙´pγ

pξτn “

ˆ

1´ pτ 1npαnq

1´ τ 1npαnq

˙´pγ

ˆ

#

ˆ

1´ τ 1npαnq

1´ τn

˙´pγ

pξτn

+

. (B.59)

We have
ˆ

1´ pτ 1npαnq

1´ τ 1npαnq

˙´pγ

“ exp

ˆ

´pγ log

„

1´ pτ 1npαnq

1´ τ 1npαnq

˙

“ exp

˜

´

«

γ `OP

˜

1
a

np1´ τnq

¸ff

ˆOP

˜

1
a

np1´ τnq

¸¸

“ 1`OP

˜

1
a

np1´ τnq

¸

(B.60)

by a Taylor expansion. Furthermore

ˆ

1´ τ 1npαnq

1´ τn

˙´pγ

pξτn “ pξ‹τ 1npαnq
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by definition of the class of estimators pξ‹. From Proposition 6, we conclude that the conditions of
Corollary 3 are satisfied if the parameter τ 1n there is replaced by τ 1npαnq. By Corollary 3 then:

a

np1´ τnq

logrp1´ τnq{p1´ τ 1npαnqqs

˜

pξ‹τ 1npαnq
ξτ 1npαnq

´ 1

¸

d
ÝÑ Γ.

Finally

log

„

1´ τn
1´ τ 1npαnq



“ log

„

1´ τn
1´ αn



` log

„

1´ αn
1´ τ 1npαnq



and the first term above tends to infinity, while the second term converges to a finite constant in view
of Proposition 6. Consequently

log

„

1´ τn
1´ τ 1npαnq



“ log

„

1´ τn
1´ αn



p1` op1qq.

Together with the equality ξτ 1npαnq “ qαn which is true by definition of τ 1npαnq, this entails

a

np1´ τnq

logrp1´ τnq{p1´ αnqs

˜

pξ‹τ 1npαnq
qαn

´ 1

¸

d
ÝÑ Γ. (B.61)

Combining (B.59), (B.60) and (B.61) completes the proof of (i). The proof of (ii) is similar (just apply
Corollary 4 instead of Corollary 3 when needed) and is therefore omitted.

Proof of Theorem 8. Again, we only show how to prove (i), the proof of (ii) being similar. Write

ČXMES
‹

ppτ 1npαnqq “

ˆ

1´ pτ 1npαnq

1´ τn

˙´pγ

ČXMESpτnq

“

ˆ

1´ pτ 1npαnq

1´ τ 1npαnq

˙´pγ

ˆ

#

ˆ

1´ τ 1npαnq

1´ τn

˙´pγ

ČXMESpτnq

+

.

The first term is controlled by using (B.54), and the second one is handled by arguing just as in the proof

of Theorem 6, with pξ replaced by ČXMES throughout and by applying Theorem 4 instead of Corollary 3.
We omit the details.
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