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Méthodes variationnelles

appliquées en biologie et en
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qu’il m’ait été donné de rencontrer. Je me souviens de ce sujet dont il
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Clément Sire était le second membre non-mathématicien de mon jury.
Certains des résultats que j’ai obtenus ont été inspirés par ses travaux
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lorsque je défends la démarche des économistes alors qu’il se plaint que rien
n’est fait pour prendre en compte la fin de l’ère de l’énergie peu chère et la
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nous avons découvert la connexion entre le transport optimal et les questions
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Introduction

T
his “habilitation à diriger des recherches” (HDR) thesis is interested
in understanding emergence behaviours in biology and social sciences.

Emergence properties have always intrigued philosophers and scientists, dat-
ing back to Aristotle in Metaphysics, where he defines these properties as
”the totality is not, as it were, a mere heap, but the whole is something
besides the parts”: an emergent property of a system is one that is not a
property of any component of that system, but is a feature of the system
as a whole. The concept of emergence is a subject of considerable contro-
versy within the field of philosophy, and interest in the question has devel-
oped across many other disciplines, ranging from chemistry to psychology
through biology into economics and others, often with applications merg-
ing together across disciplines. A precise definition is thus still lacking and
the distinction between weak and strong emergence remains unclear: weak
emergence describes the property of a system that can be deduced from the
dynamics of its parties, whereas strong emergence describes phenomena in
which there is more causal links in the emergent structure than between its
parties. In [147], Bedau and Humphreys observe:

Although strong emergence is logically possible, it is uncomfort-
ably like magic. How does an irreducible but supervenient down-
ward causal power arise, since by definition it cannot be due
to the aggregation of the micro-level potentialities? Such causal
powers would be quite unlike anything within our scientific ken.
This not only indicates how they will discomfort reasonable forms
of materialism. Their mysteriousness will only heighten the tra-
ditional worry that emergence entails illegitimately getting some-
thing from nothing.

The very existence of strong emergences is still not a consensus. One
could argue that the characterisation of strong emergence phenomena could
be the result of the Human wisdom limits. After all, the properties of
crystal, tension, pressure or even temperature first appeared to be emergent
properties before being deduced from microscopic quantities. Indeed, most
of the laws of physics themselves appear to have emerged during the course
of time, making emergence the most fundamental principle in the universe,
and raising the question of what might be the most fundamental law of
physics from which all others emerged. To a leader in the field of materials
science, who urged the participants at a meeting dedicated to “fundamental
problems in condensed matter physics” to accept that “nothing was left but
extensive science”, in [6] the Nobel prize of physics Anderson answers

The behavior of large and complex aggregates of elementary par-
ticles, it turns out, is not to be understood in terms of a simple
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extrapolation of the properties of a few particles. Instead, at each
level of complexity entirely new properties appear, and the under-
standing of the new behaviors requires research which I think is
as fundamental in its nature as any other.

As a matter of fact, properties like the emergence of life on Earth or the
consciousness in Human beings cannot be deduced from molecule interac-
tions.

Evolution of life is the process describing the emergence of complex living
beings. In [80], Corning observes:

[In] evolutionary processes, causation is iterative; effects are also
causes. And this is equally true of the synergistic effects produced
by emergent systems. In other words, emergence itself... has been
the underlying cause of the evolution of emergent phenomena
in biological evolution; it is the synergies produced by organized
systems that are the key.

Emergent structures are a common strategy elected during the evolution of
many animal groups: colonies of ants, mounds built by termites, swarms
of bees, schools of fish, flocks of birds, and herds of mammals. As will
be described here, the Keller-Segel system is a very simple model which
serves as a first step towards understanding, in evolution, how a uni-cellular
organism can form a multi-cellular organism with emergent properties.

Systems with emergent structures may appear to defy entropic principles
and the second law of thermodynamics, because they form and increase order
despite the lack of command and central control. Having a large number of
interactions is not enough by itself to guarantee emergent behaviour; many
of the interactions may be negligible or irrelevant, or may cancel each other
out, as is the case when the law of large numbers applies. In some cases,
a large number of interactions can in fact work against the emergence of
interesting behaviour, by creating a lot of noise to drown out any emerging
signal; the emergent behaviour may need to reach enough critical mass to
be self-supporting, as is the case in the Keller-Segel system we will present
here.

However, groups of human beings tend to produce spontaneous order,
rather than the meaningless chaos often feared. Indeed, whenever you have
a multitude of individuals interacting with one another, there often comes
a moment when disorder gives way to order and something new emerges:
a pattern, a decision, a structure, or a change in direction. According to
the economist and philosopher F. von Hayek, see [112], spontaneous or-
der arises when multiple actors spontaneously adopt a set of actions that
provides them with a competitive advantage, and this behaviour creates a
pattern that is self-sustaining, attracting more actors and consolidating the
pattern. Hayek dismisses philosophies that do not adequately recognise the
emergent nature of society, and which describe it as the conscious creation
of a rational agent (be it God, the Sovereign, or any kind of personified
body politic, such as Hobbes’ Leviathan). The idea of laws and markets
as emergent phenomena comes fairly naturally to an economist, and was
indeed present in the works of early economists such as Bernard Mandev-
ille, David Hume, and Adam Smith. As a famous example, the “invisible
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hand” of the market is a metaphor conceived by Adam Smith to describe
the self-regulating behaviour of the marketplace:

By preferring the support of domestic to that of foreign industry,
he intends only his own security; and by directing that industry
in such a manner as its produce may be of the greatest value, he
intends only his own gain, and he is in this, as in many other
cases, led by an invisible hand to promote an end which was no
part of his intention. Nor is it always the worse for the society
that it was not part of it.

Emergent self-organisation appears frequently in cities where no plan-
ning predetermines the layout of the city, see [136]. Some urban plan-
ners believe that city planning is a problem of organised complexity that
should be approached by observing the behaviour of individuals, instead
of trying to control a single variable useful in mathematical formulae, see
http://emergenturbanism.com/. Urban emergence has also been linked to
theories of urban complexity, see [17] and urban evolution, see [150]. The
last part of this HDR is dedicated to the idea that the individual minimisa-
tion of a utility by each agent can actually be seen as the optimisation of a
functional at the population level. So that the Nash equilibrium associated
with this game is actually seen at the level of the population, see below.

This Habilitation à diriger des recherches thesis is devoted to variational
methods applied to models exhibiting emerging properties coming from bi-
ology and economics. Using theories from parabolic PDE, functional in-
equalities, optimal transport, kinetics, homogenisation, etc. we address di-
verse questions raised by the fields of application. Such an analysis requires
to extend and develop new tools from nonlinear analysis in these different
theories. Where possible, these results are published in journals of other
disciplines, and constant dialogue between the mathematics community and
the fields of application ensures the pertinence of the models studied. We
give here a summary of the models which will be detailed in the forthcoming
parts and chapters.

Applications to biology

Part I, dedicated to the applications in biology, is made up of two chapters.

The Keller-Segel systems

Chemo-taxis is defined as a move of an organism along a chemical con-
centration gradient. Bacterias can produce this chemo-attractant them-
selves, creating thus a long-range non-local interaction between them. We
are interested in a very simplified model of aggregation at the scale of cells
by chemo-taxis: myxamoebaes or bacterias experience a random walk to
spread in the space and find food. But in starvation conditions, they emit a
chemical signal: the cyclic adenosine monophosphate (cAMP). They move
towards a higher concentration of cAMP. Their behaviour is thus the re-
sult of a competition between a random walk-based diffusion process and
a chemo-taxis-based attraction. It was noticed experimentally that if there
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are enough bacteria they aggregate whereas if they are not enough they go
on spreading in a chemo-tactically inert environment, e.g. [51]. The typical
time scale for the spreading of bacteria on a Petri dish is around one day,
and a few minutes for the concentration. This concentration phenomenon
is the first step for uni-cellular organisms to come together with others and
form a multi-cellular organism. It can be seen as a hint on how, during
the evolution of species, the passage from uni-cellular organisms to more
complex structure was achieved. It is also a paradigm model for pattern
formation of cells for meiose, embryo-genesis or angio-genesis.

In nature the dictyostelium discoideum spread on the soil and then come
together to form a motile pseudoplasmodium. This slug creeps to a few
centimetres below the soil surface where it forms a fruiting body with spores
and a stalk. The spores are then blown away by the wind to colonise a new
place. Around 20% of the cells which are in the stalk altruistically sacrifice
themselves to allow the species to survive. They are an excellent example
of social behaviour with outstanding coordination and sense of sacrifice for
the benefit of the species. See Figure 1.

Figure 1 – Dictyostelium discoideum cycle (source: Wikipedia).

The general form of such models is a drift-diffusion equation given by

{
∂tρ = div [∇ρm − χρ∇φ] ,

τ∂tφ = ∆φ − α φ + ρ ,
(t, x) ∈ (0, ∞)× R

d ,

where m ∈ (0, 1) and d ≥ 2. They exhibit a critical mass phenomenon in
the sense that for diverse choices of m, τ and α, we are able to prove that
there exists a critical mass under which all the solution are global-in-time.

The diffusion and the potential drift in general do not scale the same in
the mass-invariant scaling. They actually exactly balance in the case where
m = md where

m = md =: 2

(
1− 1

d

)
∈ (1, 2) .

In the case m > md the diffusion is stronger and one can prove that all
the solutions are global-in-time whereas when m < md, the drift term is
predominant. These two cases are not studied in this thesis. The work
presented here is devoted to the critical case m = md.
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The most studied model in the case m = md and τ = α = 0 when d = 2
and called the (classical) parabolic-elliptic Keller-Segel system in dimension
2. Such a model has attracted a lot of attention since [39]. The behaviour
of the solutions is now better understood at least in the sub-critical regime.
There actually exists a critical mass such that all the solutions are global-in-
time if the mass is below this critical mass and above which all the solutions
blowup in finite time. The convergence toward a self-similar profile was
initiated in [39] and it was proved recently that such a convergence holds
with rate for any mass below the critical mass [60]. Above the critical
mass the situation is less clear, for a more detailed display see [96]. Let us
however mention that researchers from the nonlinear Schödinger community
have started to tackle such a problem with apparent success [173]. In the
case of critical mass, the solution converges to the unique profile which is at
finite Wasserstein distance. In particular, if the 2-moment is bounded then
the solutions converge to a Dirac mass in infinite time whereas they do not
blowup is they have a fat tail of the form

M

π

λ

(λ + |x|2)2
.

If we consider the case parabolic-elliptic Keller-Segel system in highers
dimensions corresponding to m = md and τ = α = 0 when d ≥ 3, the
situation is less clear. Indeed in such a model there also exists a critical
mass under which all the solutions exist globally-in-time but we cannot
prove that all the solutions with super-critical mass blowup in finite time.
The main tractable questions are opened in this model.

The situation is even less clear for the cases when τ 6= 0, i.e for the
parabolic-parabolic Keller-Segel system in highers dimensions. In the case
of nonlinear diffusion in higher dimensions we prove that all the solutions
are global-in-time below a sub-critical case. The situation of super-critical
case is far from being understood and it was even proved that there exists
global-in-time solution with super-critical mass, see [26].

All these results are proved using entropy methods in connection with
functional inequalities and the theory of optimal transport.

Stochastic Stokes’ drift

Molecular motors are biological molecular machines that are the essential
agents of movement in living organisms. In general terms, a motor may
be defined as a device that consumes energy in one form and converts it
into motion or mechanical work; for example, many protein-based molecular
motors harness the chemical free energy released by the hydrolysis of ATP
in order to perform mechanical work. In terms of energy efficiency, this
type of motor can be superior to currently available man-made motors. One
important difference between molecular motors and macroscopic motors is
that molecular motors operate in the thermal bath, an environment in which
the fluctuations due to thermal noise are significant. It first appeared to
allow a mecanism which would create mechanical work without consuming
energy by M. Smoluchowski: The simple machine, consisting of a tiny paddle
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wheel and a ratchet, appears to be an example of a Maxwell’s demon, able to
extract useful work from random fluctuations (heat) in a system at thermal
equilibrium in violation of the second law of thermodynamics, see Figure 2.
Detailed analysis by Feynman and others showed why it cannot actually do
this.

Figure 2 – Ratchet mechanisms proposed by M. Smoluchowski. Source: D. Astu-
mian.

The stochastic Stokes’ drift, see [23], is a simple model describing the
diffusion of particles in the presence of a periodic, wave-like potential. Par-
ticles suspended in a liquid and subject to diffusion experience a net drift
due to the wave travelling through the liquid. See Figure 3.

Figure 3 – Stokes’ drift. Source: Wikipedia

It can also be seen as a simple model of Brownian ratchet. When there is
no diffusion, the net drift of particles is proportional to ω when ω is small,
but decays to 0 when ω is large. In the presence of a diffusion the situation
is different since, due to the Brownian motion, some particles will move in
the direction opposite to the wave train. Our goal is to study the net drift,
or to be precise, the speed of the centre of mass, the formation of the front
and its diffusion, when there are no spatial limitation for the solution, and
to measure the efficiency in terms of coherent transport.

In Chapter 2, we study the simplest version of the stochastic Stokes’
drift model, describing a density f (t, x) of particles obeying the equation

ft = ∆ f +∇ ·
[
∇ψ(x− ω t e) f

]
, x ∈ R

d , t > 0 .

where ψ(y+ k) = ψ(y) for any (y, k) ∈ Rd × Zd, and we will simply write
ψ as a function of y ∈ Td ≈ [0, 1)d. Furthermore, ω ∈ R is a constant
and e ∈ Rd is a fixed vector, such that |e| = 1 . With these notations,
ψ(x − ω t e) represents a periodic potential in Rd moving with a constant
speed ω in the direction of the vector e , that is a travelling potential.

The asymptotic speed of the centre of mass is decreased by the diffusion.
The effective diffusion of the particles is also changed by the travelling wave.
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Surprisingly, it can be decreased or increased, depending on ω , an effect
which is apparently not mentioned in physics literature. This last statement
is perhaps less obvious although similar effects are already known in the
context of homogenisation theory, see e.g., [106, 203]. To address the mutual
influence of transport and diffusion in the stochastic Stokes’ drift, we will
analyse the large time asymptotic profiles of solutions of (2.1.1). A first
step will be to characterise the speed of the travelling front and to show
that it is asymptotically the same as the speed of the centre of mass of the
solution. Then, in the reference frame attached to the centre of mass, a
time rescaling transforms the travelling potential into an oscillating term
whose influence on the large time behaviour can be understood using the
tools of homogenisation theory. Moreover, several length scales have to be
taken into account. The position of the centre of mass is of the order of t ,
while the typical size of the front grows like

√
t . Typical relaxation rates are

exponential at small scale, but of the order of 1/
√
t when measured globally

in L1.
A key tool for the understanding of the stochastic Stokes’ drift rewritten

in self-similar variables attached to the centre of mass, is the logarithmic
Sobolev inequality for a Gaussian measure perturbed by a bounded oscil-
lating potential, namely dµe(x) := Z−1

e e−φ(x/e)−|x|2/2 dx . The main effort
in this chapter is directed towards the study of the homogenised limit of
a family of functional inequalities, which interpolate between Poincaré and
logarithmic Sobolev inequalities, and govern the rate of convergence to equi-
librium and the variance of the solution for large time.

Entropy methods and functional inequalities

Part II is dedicated to the development of entropy methods for standard
linear equations: heat and fast-diffusion equations.

Asymptotics of the fast diffusion equation

In Chapter 3, we consider non-negative solutions of the fast diffusion equa-
tion {

∂τu = ∆um

u(0, ·) = u0 ,

with m ∈ (0, 1), in the Euclidean space Rd, d ≥ 3.
During the last few years, asymptotic rates of convergence for the so-

lutions of nonlinear diffusion equations have attracted lots of attention,
usually in connection with time-dependent scalings and entropy methods.
This has been first done in the range of exponents corresponding to the
porous medium equation, with 1 < m < 2, and in the range where stan-
dard Gagliardo-Nirenberg inequalities apply, 1 − 1/d =: m1 ≤ m < 1,
see [87, 66, 69]. The class of non-negative, finite mass solutions has to be
narrowed to the smaller set of functions with finite free energy, or to be pre-
cise, with finite entropy and finite potential energy. In the rescaled variables,
asymptotic stabilisation to the Barenblatt profiles holds at an exponential
rate, while in the original time variable τ, the convergence of the difference
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with the Barenblatt solutions holds at a power-law rate, which is shown to
be optimal.

The next question was to understand what happens for m < m1. After
the linearised analysis of [68], the proof of convergence with rates was done
in [72] in the range 1− 2/d := mc < m < m1 for which global existence of
finite mass solutions still holds. The basin of attraction is narrowed to the
class of solutions with finite relative entropy with respect to some Barenblatt
solution.

A dramatic change occurs for m < mc, since a large class of solutions
vanish in finite time. As a consequence, mass is not conserved, and a key
estimate for higher values of m is lost. It is however natural to investigate
the basin of attraction of the pseudo-Barenblatt solutions for m ≤ mc using
relative entropy techniques and to study the convergence rates. This can
be done in a weighted space using functional inequalities, which can still be
related to some spectral properties of a differential operator obtained by an
appropriate linearisation.

To capture the asymptotic profile of extensions it is convenient to rescale
the solutions and replace the study of intermediate asymptotics by the study
of the convergence to stationary solutions in rescaled variables,

t := log

(
R(τ)

R(0)

)
and x :=

y

R(τ)
,

with

R(τ) :=
[
d (mc −m) (T − τ)

]− 1
d (mc−m) .

where T denotes the extinction time. In these new variables, if u is a solution
to the fast-diffusion equation, the function

v(t, x) := R(τ)d u(τ, y)

solves a nonlinear Fokker-Planck type equation,

{
∂tv(t, x) = ∆vm(t, x) +∇ · (x v(t, x)) (t, x) ∈ (0,+∞)× Rd ,

v(0, x) = v0(x) x ∈ Rd .

We study the asymptotic stabilisation towards self-similar asymptotic
solutions known as Barenblatt:

UD,T(τ, y) :=
1

R(τ)d

(
D+

1−m

2m

∣∣∣∣
y

R(τ)

∣∣∣∣
2
)− 1

1−m

which are transformed in the self-similar variable into stationary solutions
given by

VD(x) :=

(
D+

1−m

2m
|x|2

)− 1
1−m

where 0 < m < 1 and D > 0 is a free parameter.
Using the free energy functional defined by

E [v] :=
∫

Rd

[
ϕ(v) +

1

2
|x|2 v

]
dx where ϕ(v) :=

vm

m− 1
,
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the entropy method allows to determine the large time asymptotics of the
solution in the range 1− 1/d =: m1 ≤ m < 1 and 1 < m < 2. Below this
exponent m1 the functional fails to be displacement convex and the standard
methods cannot be extended. Linearisation techniques allows to go beyond
this exponent but not beyond mc.

We push-forward this analysis by considering the relative entropy
E [v|VD ] := E [v] − E [VD]. Such a quantity actually makes sense for all
ranges of 0 < m < 1 at least for a large class of initial data. It allows to de-
termine the asymptotics of the fast-diffusion equation for any m ∈ (0,m1).
We also prove that asymptotically the solutions converge with a rate.

The main idea of the method is to linearise the free energy and prove an
inequality linking the linearised relative entropy to its derivative. Such an
inequality is of Hardy-Poincaré type and was not available in the literature.
For time large enough it is possible to relate the linear analysis to the analysis
of the non-linear fast-diffusion equation and obtain the desired result.

Similar methods can be used for the doubly nonlinear equation.

Improved asymptotics for the heat equation

In Chapter 4, we determine suitable assumptions on the initial data in order
to improve the rate of convergence of the solution to the standard heat
equation:

∂u

∂t
= ∆u t > 0 , x ∈ R

d

Various attempts have been made by fixing the centre of mass. In this
chapter we prove that

Such an orthogonality condition actually allows to improve on various
Poincaré and logarithmic Sobolev inequalities in the spirit of the previous
chapter.

Applications to economics

The last part is consecrated to a series of work on models in economics.
The first is a social interaction model in the literature of urban region, the
second is in economics theory.

Since [150], it is known that both market and non-market forces play
an important role in shaping the distribution of economic activities across
space. The new economic geography literature has reemphasised the role of
localised pecuniary externalities mediated by the market in a general equilib-
rium framework, see [136]. Social interactions through face-to-face contacts
also contribute to the gathering of individuals in villages, agglomerations,
or cities, see [105]. In [18], the urban structure emerges from the interplay
between a spatial communication externality and the land market.

When studying the role of agglomeration forces on the urban struc-
ture, the existing literature traditionally relies on specific functional forms
regarding utility functions or transportation costs. New economic geogra-
phy models make a wide use of Dixit-Stiglitz or quadratic preferences over
manufacturing varieties and of ’icerberg’ transport costs, see [103, 166]. In
Beckmann’s spatial model of social interactions, the preference for land is
logarithmic and the cost of accessing agents is linear, see [104].
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Despite these various efforts in extending models addressing agglomera-
tion forces mediated by the market mechanism, little effort has been made to
extend further spatial models where agglomeration externalities are driven
by non-market forces. The aim of this paper is to fill up this gap by address-
ing the existence and uniqueness of equilibrium for general spatial economies
involving social interactions. In order to do so, we generalise Beckmann’s
spatial model of social interactions to the case of a two dimensional spatial
economy, a large class of preferences for land, a general accessing cost, and
space-dependent amenities.

Mathematically, we consider non-cooperative, anonymous non-atomic
games with a continuum of players. Given a space of players types X en-
dowed with a probability measure µ ∈ M(X) which gives the exogenous
distribution of the type of the agents, an action space Y and a cost Γ:
X × Y × M(Y) → R. The θ-type agents taking action x pay the cost
Γ(θ, x, λ) where λ is the distribution of the players’ actions. Such a problem
seen from an individualistic point of view is very difficult to tackle. We are
interested in the Nash equilibrium which is the situation in which no player
has any incentive to relocate. We restrict ourselves to the case of poten-
tial games in which the externalities derive from a potential. In both these
situations we prove that the equilibrium can be seen as the minimiser of a
functional in the usual sense and in the sense of optimal transport. Actually
we prove that a distribution is an equilibrium if and only if it is a minimiser
of

Jµ[ν] := αWc(µ, ν) + E [ν]
where Wc(µ, ν) is the Wasserstein distance between µ and ν for the cost c
and E has the typical form

E [ν] :=
∫

K
V[ν(x)] dy+

∫

K
A(y)λ(y) dy+

1

2

∫∫

K×K
φ(y− z)λ(y)λ(z) dy dz

and α is zero when we consider that the utility of the agents does not depend
on their type, whereas α = 1 when c measures the cost for an agent of type
x to take action y. The study of the decentralised equilibrium emerges from
the analysis of the minimiser of a functional. Standard optimal transport
results can be applied and allow to deduce existence and uniqueness results
together with a characterisation of the equilibrium in terms of a Monge-
Ampère equation. We can even determine and numerically compute the
taxes to restore the efficiency.
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1On the Keller-Segel

system in dimension 2 and

higher

T
his chapter is dedicated to recent results on the parabolic-elliptic Keller-
Segel model in dimension 2, and its generalisation with nonlinear diffu-

sion in higher dimensions. These models have a critical mass Mc such that
the solutions exist globally in time if the mass is less than Mc and above
which there are solutions which blowup in finite time. The main tools, in
particular the free energy, and the idea of the methods are set out. A num-
ber of open questions are also stated. Part of this chapter was published
in [29].
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• A. Blanchet, On the parabolic-elliptic Patlak-Keller-Segel system in
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• A. Blanchet, V. Calvez, and J. A. Carrillo, Convergence of
the mass-transport steepest descent scheme for the subcritical Patlak-
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• A. Blanchet, E. Carlen, and J. A. Carrillo, Functional in-
equalities, thick tails and asymptotics for the critical mass Patlak-
Keller-Segel model, J. Funct. Anal., 262 (2012), pp. 2142–2230.

• A. Blanchet, J. A. Carrillo, and P. Laurençot, Critical mass
for a Patlak-Keller-Segel model with degenerate diffusion in higher di-
mensions, Calc. Var. Partial Differential Equations, 35 (2009),

• A. Blanchet, J. A. Carrillo, and N. Masmoudi, Infinite time
aggregation for the critical Patlak-Keller-Segel model in R2, Comm.
Pure Appl. Math., 61 (2008), pp. 1449–1481.

• A. Blanchet, J. Dolbeault, M. Escobedo, and J. Fernandez,
Asymptotic behaviour for small mass in the two-dimensional parabolic-
elliptic Keller-Segel model, Journal of Mathematical Analysis and Ap-
plications, 361 (2010), pp. 533–542.

• A. Blanchet and P. Laurençot, Finite mass self-similar blowing-
up solutions of a chemotaxis system with non-linear diffusion, Com-
munications on Pure and Applied Analysis, 11 (2011), pp. 47–,60.
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• , The parabolic-parabolic Keller-Segel system with critical diffu-
sion as a gradient flow in d, d ≥ 3, To appear in Com. Par. Dif. Eq.,
2012.
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1.1 The 2d parabolic-elliptic Keller-Segel system

1.1.1 The model

This chapter is dedicated to the Keller-Segel type model. Such a model
describes a chemo-taxis phenomenon in which organisms emit a chemical
signal which attracts all its fellow organisms. It was seen experimentally
that if the cells are numerous enough they aggregate to form a multi-cellular
body, whereas if they are too few they spread in their environment. It is
precisely the evolution of such models, as the result of a competition between
diffusion and drift driven by the chemical signal, that we propose to study.
Such a model serves as a test to understand the migration of cells, and is
used as a building block for more complex biological phenomenon such as
polarisation, Balo disease or angio-genesis, etc. Such models are also known
in physics as Smulochowski-Poisson systems.

The first mathematical attempt to model this aggregation phenomenon
is often granted to E. F. Keller and L. A. Segel in [127] but this model
was earlier described by C. S. Patlak in [169]. We consider the following
simplified version given by [121]:





∂ρ

∂t
= ∆ρ −∇ · (ρ∇c) x ∈ R2, t > 0 ,

−∆c = ρ x ∈ R2, t > 0 ,

ρ(·, t = 0) = ρ0 ≥ 0 x ∈ R2 .

(1.1.1)

Here ρ represents the cell density and c the concentration of chemo-
attractant.

As the solution to the Poisson equation −∆c = ρ is given up to a har-
monic function, we choose the one given by c = G ∗ ρ where

G(|x|) := − 1

2π
log |x| .

The Patlak-Keller-Segel system (1.1.1) can thus be written as a non-local
parabolic equation:

∂ρ

∂t
= ∆ρ − div(ρ∇G ∗ ρ) in (0,+∞)× R

2 .

Also note that the mass is conserved
∫

R2
ρ(t, x) dx =

∫

R2
ρ0(x) dx =: M .

S. Childress, J. Percus and V. Nanjundiah conjectured in [78, 164] that
this system displays the existence of a critical mass above which the cells
aggregate and below which they do not. For a complete review of the early
literature, the interested reader could beneficially consult [117, 116]. For a
more recent references see [171, 115, 75].

Except when it is clearly indicated, in this article we will assume that
the initial condition ρ0 satisfies:

(1+ |x|2) ρ0 ∈ L1
+(R

2) and ρ0 log ρ0 ∈ L1(R2) .
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1.1.2 Blowup

Consider a smooth solution to the Patlak-Keller-Segel system (1.1.1), we
formally compute a virial identity

d

dt

∫

R2
|x|2ρ(t, x) dx = 4M

(
1− M

8π

)
. (1.1.2)

So that all the solutions with mass bigger than 8π and finite 2-moment
cannot be global in time:

Theorem 1.1.1 (Blowup) Let ρ be a solution to the Patlak-Keller-Segel system (1.1.1) and
[0, T∗) its maximal interval of existence. If M > 8π, then

T∗ ≤ 2π

M(M− 8π)

∫

R2
|x|2ρ0(x) dx ,

and ρ(t, ·) converges, up to extraction of a sub-sequence, as t → T∗ to a
measure which is not in L1(R2).

This method, known as the virial method, was already used in the dis-
persive equations community. This kind of method is non-constructive and
gives no hint on the nature of the blowup. Another non-constructive proof
of this non global-in-time existence will be given in Remark 1.1.10 and will
give similar results even in the case when the solutions are of 2-moment
infinite.

The first proof that the solutions of super-critical mass develop singu-
larities are due to [27, 162, 77, 121]. Such a solution develops Dirac peaks
of mass exactly equal to 8π, see [163, 113]. Very recently, [173] proves the
universality and the stability for small perturbations of the blowup around
the minimiser Q of the HLS inequality: the solution admits for all times
t ∈ [0, T) a decomposition

u(t, x) =
1

λ2(t)
(Q+ ε)

(
t,

x

λ(t)

)

and the universal blowup speed:

λ(t) =
√
T − t exp (log(T − t)/2+O(1))

as t goes to the blowup time T. Such a method was developed for different
dispersive partial differential equations in [157].
Open question: We can hope that a similar method should also gives such
blowup results for the parabolic-parabolic Keller-Segel system.

Concerning the continuation of the solution after blowup, the usual idea
is to define a sequence of approximate problems containing a small parameter
ε > 0 which have global-in-time solutions and approach the original problem
when ε goes to 0. The behaviour of the solution to the approximate model
has to be close to the one of the Patlak-Keller-Segel system (1.1.1), except
close to the singularities. The blowup indicates that the approximate prob-
lem is no longer valid close to the singularity. In [202, 201], using matched
asymptotic expansions J. Velázquez describes in a rather detailed manner
the formation and motion of some regions where the mass concentrates. He
also proves local existence of the solution as long as there is no formation
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of another Dirac mass and no collision of Dirac masses. The approximate
problem is

∂ρ

∂t
= ∆ρ −∇ · (Φε(ρ)∇G ∗ ρ) x ∈ R

2, t > 0 ,

where Φε(ρ) := ε−1Φ(ερ) with ε a small parameter and Φ an increasing
bounded function satisfying

Φ(s) = s− αs2 + · · · as s → 0 and Φ(s) ∼ A as s → ∞ ,

where A > 0 is a given number. This model prevents overcrowding as the
chemo-tactic function Φε(ρ) saturates at the constant value A.

In [96], J. Dolbeault and C. Schmeiser define measure valued densities
to give a sense to generalised global-in-time solutions for any mass. This
extends the solution concept after blowup. They also show that the choice
of a solution concept after blowup is not unique and depends on the type of
regularisation. The regularised problem they consider is different from the
one chosen above:

∂ρ

∂t
= ∆ρ −∇ · (ρ∇Gε ∗ ρ) x ∈ R

2, t > 0 , (1.1.3)

where Gε(x) := − log(|x|+ ε)/2π.

Theorem 1.1.2 (Generalised solution, [96]) For every T > 0, as ε → 0, a sub-sequence
of solutions ρε to (1.1.3) converges tightly and uniformly in time to a time
dependent measure ρ(t). There exists ν(t) such that (ν, ρ) is a generalised
solution in the distributional sense of

∂ρ

∂t
+ div(j[ρ, ν] −∇ρ) = 0 (1.1.4)

where the convective flux j[ρ, ν] is supported in the support of ν and is given
by

∫ T

0

∫

R2
ϕ(t, x)j[ρ, ν](t, x) dx dt = − 1

4π

∫ T

0

∫

R2
ν(t, x)∇ϕ(t, x) dx dt

− 1

4π

∫ T

0

∫

R4
(ϕ(t, x)− ϕ(t, y)) K(x− y)ρ(t, x)ρ(t, y) dx dy dt

for any ϕ ∈ C1
b ((0, T)× R2) with





x

|x|2 for x 6= 0

0 for x = 0 .

If ρ does not charge points then the additional default measure ν van-
ishes and j[ρ, 0] = ρ∇G ∗ ρ, so that (1.1.4) is generalisation of the Patlak-
Keller-Segel system (1.1.1). They also obtain a strong formulation when the
generalised solution is assumed to be the sum of a regular part and of Dirac
masses:
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Theorem 1.1.3 (Strong formulation, [96]) Assume that the generalised solution to (1.1.4)
has the form

ρ(t, x) = ∑
j∈N

Mj(t)δ(x− xj(t)) + ρreg(t, x) . (1.1.5)

Then

∂ρreg

∂t
= ∆ρreg−∇

(
ρreg∇G ∗ ρreg −

1

2π
∇ρreg ∑

jinN

Mj(t)
x− xj(t)

|x− xj(t)|2
∇ρreg

)

with
Ṁi(t) = Mi(t)ρreg(t, xi(t))

and

ẋi(t) = ∇G ∗ ρreg(t, xi(t))−
1

2π ∑
j∈N,i 6=j

Mj(t)
x− xj(t)

|x− xj(t)|2
.

A similar result was formally obtained in [202], with the last equation
replaced by

ẋi(t) = Γ(Mi(t))

(
− 1

2π ∑
j∈N,i 6=j

Mj(t)
x− xj(t)

|x− xj(t)|2
+∇G ∗ ρreg(t, xi(t))

)

where Γ(M) is a mean value of the derivative Φ is such that 0 < Γ(M) < 1,
Γ(8π) = 1 and Γ(∞) = 0 and can be explicitly described, see [202, Equation
(3.45)].

In [74], the authors prove that when t is large enough the solution is
made of a Dirac peak of mass M0(t) surrounded by a dilute halo containing
the remaining mass whose dynamical evolution is described by a Fokker-
Planck equation. Therefore, they neglect the self-gravity of the halo and
prove that the mass of the Dirac peak saturates to M algebraically rapidly
as

1− M0(t)

M
∼ t−a with a =

M

4π
.

Open question: Actually the assumption (1.1.5) is valid only between two
blowup events or between two collisions of Dirac masses. We expect that in
the end the solution is made of one Dirac mass with all the mass but we are
still missing such a rigorous theory.

1.1.3 Global existence

A priori estimates

The natural idea is to regularise the Green kernel and to pass to the limit.
The solutions have mass M so that the loss of compactness can come ei-
ther from concentration or vanishing. By (1.1.2), the second moment re-
mains bounded so that the main problem is to control the concentration of
mass. W. Jäger and S. Luckhaus tried to obtain a bound on the entropy∫

R2 ρ log ρ dx by differentiating it and using an integration by parts and the
equation for c, we obtain:

d

dt

∫

R2
ρ log ρ dx = −4

∫

R2
|∇√

ρ|2 dx+
∫

R2
ρ2 dx .
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Applying the Gagliardo-Nirenberg-Sobolev inequality:

∫

R2
|u|4 dx ≤ CGNS

∫

R2
|∇u|2 dx

∫

R2
|u|2 dx ∀ u ∈ H1(R2) , (1.1.6)

to u =
√

ρ, we have

d

dt

∫

R2
ρ log ρ dx ≤ [−4+ MCGNS]

∫

R2
|∇√

ρ|2 dx .

So that the entropy is non-increasing if M ≤ 4/CGNS ≈ 1.862... × 4π <

8π. They hence obtained global-in-time existence in this case together with
important propagation of the Lp-estimates.

We can indeed improve this result by using the following free energy:

FPKS[ρ] :=
∫

R2
ρ log ρ dx− 1

2

∫

R2
ρc dx .

A simple formal calculation shows that for all u ∈ C∞
c (R

2) with zero mean,

lim
ǫ→0

1

ǫ
(FPKS[ρ + ǫu]−FPKS[ρ]) =

∫

R2

δFPKS[ρ]

δρ
(x) u(x) dx

where
δFPKS[ρ]

δρ
(x) := log ρ(x)− G ∗ ρ(x) .

It is then easy to see that the Patlak-Keller-Segel system (1.1.1) can be
rewritten as

∂ρ

∂t
(t, x) = div

(
ρ(t, x)∇

[
δFPKS[ρ(t)]

δρ
(x)

])
. (1.1.7)

It follows that at least along well-behaved solutions to the Patlak-Keller-
Segel system (1.1.1),

d

dt
FPKS[ρ(t)] = −

∫

R2
ρ(t, x)

∣∣∣∣∇
[

δFPKS[ρ(t)]

δρ
(x)

]∣∣∣∣
2

dx .

Or equivalently

d

dt
FPKS[ρ(t)] = −

∫

R2
ρ(t, x) |∇ (log ρ(t, x)− c(t, x))|2 dx .

In particular, along such solutions, t 7→ FPKS[ρ(t)] is monotone non-
increasing.

The gap between the 4/CGNS and 8π was not filled before [95] when the
link with the logarithmic Hardy-Littlewood-Sobolev inequality was made: Let
f be a non-negative function in L1(R2) such that f log f and f log(1+ |x|2)
belong to L1(R2). If

∫
R2 f dx = M, then

∫

R2
f log f dx+

2

M

∫∫

R2×R2
f (x) f (y) log |x− y| dx dy ≥ − C(M) ,

(1.1.8)
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with C(M) := M(1+ logπ − logM). Moreover the minimisers of the Log-
arithmic Hardy-Littlewood-Sobolev inequality (1.1.8) are the translations
of

¯̺λ(x) :=
M

π

λ

(λ + |x|2)2
.

Using the monotonicity of FPKS[ρ] and the Logarithmic Hardy-
Littlewood-Sobolev inequality (1.1.8) it is easy to see that

FPKS[ρ] =

M

8π

(∫

R2
ρ(x) log ρ(x) dx+

2

M

∫∫

R2×R2
ρ(x) log |x− y|ρ(y) dx dy

)

+

(
1− M

8π

) ∫

R2
ρ(x) log ρ(x) dx

≥ − M

8π
C(M) +

(
1− M

8π

) ∫

R2
ρ(x) log ρ(x) dx . (1.1.9)

It follows that for solutions ρ of the Patlak-Keller-Segel system (1.1.1),

∫

R2
ρ(t, x) log ρ(t, x) dx ≤ 8πFPKS[ρ0]− MC(M)

8π − M
. (1.1.10)

Therefore, for M < 8π, the entropy stays bounded uniformly in time. This
precludes the collapse of mass into a point mass for such initial data.

Coming back to the super-critical mass case, it is worth noticing that
for a given ρ, if we set ρλ(x) = λ−2ρ(λ−1x) then

FPKS[ρλ] = FPKS[ρ]− 2M

(
1− M

8π

)
logλ . (1.1.11)

So that as a function of λ, FPKS[ρλ] is bounded from below if M < 8π, and
not bounded from below if M > 8π.

As an alternative to the regularisation/passing to the limit procedure,
another conceited but smart way to prove the global existence is to use the
gradient flow interpretation in the Wasserstein metric. For this purpose we
need to introduce a few elements of optimal transport for more details see
the Annexe.

Using this metric, we can see the Patlak-Keller-Segel system (1.1.1) as
a gradient flow of the free energy in the Wasserstein metric:

ρt = −∇WFPKS[ρ(t)] .

In the sense that we can construct a solution using the minimising scheme,
often known as the minimising Jordan-Kinderlehrer-Otto (JKO) scheme:
given a time step τ, we define the solution by

ρk+1
τ ∈ argminρ∈K

[
W2

2 (ρ, ρkτ)

2τ
+FPKS[ρ]

]
,

where

K := {ρ :
∫

R2
ρ = M,

∫

R2
ρ(x) log ρ(x) dx < ∞ and

∫

R2
|x|2ρ(x) dx < ∞} .
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For the analogy, note that if the metric was Euclidean, the Euler-
Lagrange equation associated to

ρk+1
τ ∈ argmin

[ |ρ − ρkτ |2
2τ

+FPKS[ρ]

]
, (1.1.12)

would be
ρk+1

τ − ρkτ
τ

+FPKS[ρ
k+1
τ ] = 0 ,

which is nothing but the implicit Euler scheme associated to

ρt = −∇FPKS[ρ(t)] .

At this point it is convenient to emphasise that the functional FPKS is not
convex, so even the existence of a minimiser is not clear. When the functional
is convex, or even displacement convex, general results from [204, 5] can be
applied.

We interpolate between the terms of the sequence {ρkτ}k∈N to produce a
function from [0, ∞) to L1(R2): For each positive integer k, let ∇ϕk be the
optimal transportation plan with ∇ϕk#ρkτ = ρk−1

τ . Then for (k− 1)τ ≤ t ≤
kτ we define

ρτ(t) =

(
t− (k− 1)τ

τ
id+

kτ − t

τ
∇ϕk

)
#ρkτ .

Theorem 1.1.4 (Convergence of the scheme as τ → 0, [32]) If M < 8π then the family (ρτ)τ>0

admits a sub-sequence converging weakly in L1(R2) to a weak solution to the
Patlak-Keller-Segel system.

In this proof the perturbation of the minimiser has to be done in the
optimal transport way: Let ζ be a smooth vector field with compact support,
we introduce Tε := id+ εζ. We define ρε the push-forward perturbation of
ρn+1

τ by Tε:
ρε = Tε#ρn+1

τ .

Let ∇ϕn be the unique transport map such that ∇ϕn#ρn+1
τ = ρnτ. Standard

computations give

∫

R2
ζ(x)

x −∇ϕn(x)

τ
ρn+1

τ (x) dx

=
∫

R2

[
divζ(x)− 1

4π

∫

R2

[ζ(x) − ζ(y)] · (x− y)

|x− y|2 ρn+1
τ (y) dy

]
ρn+1

τ (x) dx ,

which is the weak form of the Euler-Lagrange equation:

id−∇ϕn

τ
ρn+1

τ = −∇ρn+1
τ + ρn+1

τ ∇cn+1
τ . (1.1.13)

Using the Taylor’s expansion ζ(x) − ζ [∇ϕn(x)] = [x−∇ϕn(x)] · ∇ζ(x) +

O
[
|x−∇ϕn(x)|2

]
, we obtain for all t2 > t1 ≥ 0,

∫

R2
ζ(x) [ρτ(t2, x)− ρτ(t1, x)] dx =

∫ t2

t1

∫

R2
∆ζ(x) ρτ (s, x) dx ds+O(τ1/2)

− 1

4π

∫ t2

t1

∫∫

R2×R2
ρτ(s, x) ρτ(s, y)

(x− y) · (∇ζ(x)−∇ζ(y))

|x− y|2 dy dx .

(1.1.14)



24 Chapter 1. on the KS system

To pass to the limit, the scheme provides some a priori bounds: Taking ρn+1
τ

as a test function in (1.1.12) we have:

FPKS[ρ
n+1
τ ] +

1

2 τ
W2

2 (ρ
n
τ , ρn+1

τ ) ≤ FPKS[ρ
n
τ ] . (1.1.15)

As a consequence we obtain an energy estimate

sup
n∈N

FPKS[ρ
n
τ ] ≤ FPKS[ρ

0
τ ],

which together with (1.1.9) forbids the concentration, and a total square
estimate

1

2 τ ∑
n∈N

W2
2 (ρ

n
τ , ρn+1

τ ) ≤ FPKS[ρ
0
τ ]− inf

n∈N

FPKS[ρ
n
τ ] ,

which rules out vanishing. These two estimates allow to pass to the limit in
τ in (1.1.14), to obtain:

∫

R2
ζ(x) [ρ(t2, x)− ρ(t1, x)] dx =

∫ t2

t1

∫

R2
∆ζ(x) ρ(s, x) dx ds

− 1

4π

∫ t2

t1

∫∫

R2×R2
ρτ(s, x) ρ(s, y)

(x− y) · (∇ζ(x)−∇ζ(y))

|x− y|2 dy dx .

Which is the definition of a weak solution. Note that the last term of (1.1.14)
converges because ρτ(s) converges weakly in L1(R2) and the other term is
bounded in L∞(R2).

By proving the hyper-contractivity of the Patlak-Keller-Segel sys-
tem (1.1.1), we can actually obtain:

Theorem 1.1.5 (Existence of solution is the subcritical case, [39]) If M < 8π, then the Patlak-
Keller-Segel system (1.1.1) has a global weak non-negative solution ρ with
initial data ρ0 such that

(1+ |x|2 + | log ρ|)ρ ∈ L∞
loc(R

+, L1(R2)) ,

∫ t

0

∫

R2
ρ|∇ log ρ −∇c|2 dx dt < ∞ ,

∫

R2
|x|2ρ(t, x) dx =

∫

R2
|x|2ρ0(x) dx+ 4M

(
1− M

8π

)
t

for t > 0. Moreover ρ ∈ L∞
loc((ε, ∞), Lp(R2)) for any p ∈ (1, ∞) and any

ε > 0, and the following inequality holds for any t > 0:

FPKS[ρ(·, t)] +
∫ t

0

∫

R2
ρ |∇ (log ρ − c)|2 dx ds ≤ FPKS[ρ0] .

Similar results were first proved in [162] for radially symmetric solutions
in a bounded domain with Neumann boundary conditions.

This notion of free energy solution allows to study the large time be-
haviour, intermediate asymptotics and convergence to asymptotically self-
similar profiles: let (u∞, v∞) be the unique solution to the Gelfand equation

u∞ = M
ev∞−|x|2/2

∫
R2 ev∞−|x|2/2 dx

= −∆v∞ , with v∞ = G ∗ u∞ . (1.1.16)
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Using the comparison principle in the radial variable, it has been proven
in [28] that the radial, non-negative smooth solution to this problem is
unique. In the original variables, the self-similar solutions of (1.1.1) take
the expression:

ρ∞(t, x) :=
1

1+ 2t
u∞

(
log(

√
1+ 2t), x/

√
1+ 2t

)
, (1.1.17)

c∞(t, x) := v∞

(
log(

√
1+ 2t), x/

√
1+ 2t

)
. (1.1.18)

Theorem 1.1.6 (Large time behaviour, [39]) Under the assumptions in Theorem 1.1.5,

lim
t→∞

‖ρ(·, t) − ρ∞(·, t)‖L1(R2) = 0 and lim
t→∞

‖∇c(·, t) −∇c∞(·, t)‖L2(R2) = 0 .

The proof follows the usual entropy/entropy production method in self-
similar variables: We define the rescaled functions u and v by

ρ(t, x) =
1

R2(t)
u

(
x

R(t)
, τ(t)

)
and c(t, x) = v

(
x

R(t)
, τ(t)

)

with R(t) =
√
1+ 2t and τ(t) = logR(t). The rescaled system is





∂u

∂t
= ∆u−∇ · (u(x+∇v)) x ∈ R2 , t > 0 ,

v = G ∗ u x ∈ R2 , t > 0 ,

u(·, t = 0) = ρ0 x ∈ R2 ,

(1.1.19)

and the associated free energy takes the form

FR
PKS[u] :=

∫

R2
u log u dx− 1

2

∫

R2
uv dx+

1

2

∫

R2
|x|2u dx . (1.1.20)

If (u, v) is a smooth solution of the rescaled Patlak-Keller-Segel sys-
tem (1.1.19) which decays sufficiently at infinity, then

d

dt
FR

PKS[u(t, ·)] = −
∫

R2
u

∣∣∣∣∇
(
log u− v+

|x|2
2

)∣∣∣∣
2

dx .

If we keep in mind the gradient flow interpretation (which is true also for the
rescaled equation), we can imagine that the limit when t goes to infinity of a
solution to the rescaled Patlak-Keller-Segel system (1.1.19) cancels the free
energy dissipation (1.1.20). So that the limit solution satisfies the Gelfand
equation (1.1.16).

The question of the speed of convergence has been very recently under-
stood

Theorem 1.1.7 (Rate of convergence, [60]) Assume that n0 ∈ L2
+(n

−1
∞ dx), M < 8π and

there exists ε ∈ (0, 8π − M) such that
∫ s

0
n0,∗(σ) dσ ≤

∫

B(0,
√
s/π)

n∞,M+ε(x) dx ∀s ≥ 0

then any solution to the Patlak-Keller-Segel system (1.1.1) with initial datum
n0 is such that

∫

R2
|n(t, x)− n∞(x)|2n−1

∞ dx ≤ Ce−2t ∀t ≥ 0

for some positive constant C.
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The proof relies on the linearisation of the problem around n∞ which
was already performed in [37]: Consider indeed f and g defined for any
(t, x) ∈ R+ × R2 by

n(t, x) = n∞(x)(1+ f (t, x)) and c(t, x) = c∞(x)(1+ g(t, x)) .

Then ( f , g) is a solution to the nonlinear problem





ft −L f = − 1

n∞

∇ · [ f n∞∇(gc∞)]

−∆(gc∞) = f n∞

where the linearised operator is

L f =
1

n∞

∇ · [n∞∇( f − gc∞)]

Such an analysis allowed to prove convergence with rate for solution with
small initial data, see [37]: there are two positive constants, C and δ , such
that ∫

R2
|u(t, x)− u∞(x)|2

dx

u∞(x)
≤ C e− δ t ∀ t > 0 .

As a function of M , δ is such that limM→0+ δ(M) = 1 .
Using a decreasing rearrangement method due to J.I. Diaz, T. Nagai,

and J.-M. Rakotoson, [60] improves this result by proving that such a result
is valid in any Lp for n and any Lq for v where p ∈ [1, ∞] and q ∈ [2, ∞].

The authors of [60] then perform a precise study of the spectral gap
of the linearised operator in an appropriate functional setting to prove the
stated result.

1.1.4 Critical case

In the case M = 8π, the free energy FPKS is the same as the func-
tional which appears in the logarithmic Hardy-Littlewood-Sobolev inequal-
ity (1.1.8). The remainder entropy which was controlled in (1.1.9) is
thus entirely “eaten” by the logarithmic Hardy-Littlewood-Sobolev inequal-
ity (1.1.8). In [36], we use a three-steps procedure:

How would it blowup the space is split into balls and annulus. Using
the diffusion it is possible to prove that in a ball the mass is less than
8π and to control the influence of the interactions outside the ball.
So that only when all the mass is concentrated in a point, we cannot
extend the solution to a bigger interval. If the solution blows up then
it blows up as a Dirac mass concentrated in the centre of mass.

When would it blowup in this case M = 8π, by the virial computa-
tion (1.1.2), the 2-moment remains constant. A De la Vallée-Poussin’s
type argument, shows that the concentration cannot occur in finite
time. If the solution blows up then it blows up as a Dirac peak con-
centrated in the centre of mass at infinite time.

Does it blowup Keeping in mind the gradient flow structure described in
the previous section, we can imagine that the solutions converge to
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the minimisers of the logarithmic Hardy-Littlewood-Sobolev inequal-
ity (1.1.8). But as the second-moment is constant thanks to the virial
computation (1.1.2), the solutions converge to the only minimiser ¯̺λ

of the logarithmic Hardy-Littlewood-Sobolev inequality (1.1.8) which
is of finite moment: the Dirac mass.

As a consequence, we prove

Theorem 1.1.8 (Infinite Time Aggregation, [36]) If the 2-moment is bounded, there is a
global in time non-negative free-energy solution of the Patlak-Keller-Segel
system (1.1.1) with initial data ρ0. Moreover if {tp}p∈N → ∞ as p → ∞,
then tp 7→ ρ(tp, x) converges to a Dirac peak of mass 8π concentrated at
the centre of mass of the initial data weakly-* in the sense of measure as
p → ∞.

In the radial and bounded case with a Dirichlet boundary conditions, the
blowup rate and refined asymptotics estimates are given in the following

Theorem 1.1.9 (Blowup profile, [126]) In the radial case, in the ball, consider a solution to
the Patlak-Keller-Segel system (1.1.1) with ∂ρ/∂ν = ρ∂c/∂ν and c = 0 on
the boundary. Then when t goes to ∞,

ρ(t, 0) = 8e5/2+2
√
2t
(
1+O

(
t−1/2 log(4t)

))
.

In [186], C. Sire and P.-H. Chavanis predicted this result by a formal
argument considering only the first order correction terms. In [126], N.
Kavallaris and P. Souplet study the Patlak-Keller-Segel system (1.1.1). They
make successive appropriate change of variables and of functions to reduce
the system in radial coordinates to a degenerate parabolic problem. The
precise results are difficult to translate back to the original Patlak-Keller-
Segel system (1.1.1). In particular, they prove that the solution is the sum
of a quasi-stationary profile and of a correction term which is significant
only for x bounded away from 0.

The extension of Theorem 1.1.8 to the case when the second moment
is not finite allows the solution to converge to the other minimisers of the
logarithmic Hardy-Littlewood-Sobolev inequality (1.1.8). For this purpose
we need to introduce another free energy functional which still has to be
fully understood. Let us first recall the Fokker-Planck version of the fast
diffusion equation corresponding to the fast diffusion equation

∂u

∂t
= ∆

√
u

by a self-similar change of variable:





∂u

∂t
(t, x) = ∆

√
u(t, x) + 2

√
π

λM
div(x u(t, x)) t > 0 , x ∈ R2 ,

u(0, x) = u0(x) ≥ 0 x ∈ R2 .

(1.1.21)
This equation can also be written in a form analogous to (1.1.7): follow-
ing [141] for λ > 0, define the relative entropy of the fast diffusion equation
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with respect to the stationary solution ¯̺λ by

Hλ[u] :=
∫

R2

∣∣∣
√

u(x)−
√

¯̺λ(x)
∣∣∣
2

√
¯̺λ(x)

dx .

Equation (1.1.21) can be rewritten as

∂u

∂t
(t, x) = div

(
u(t, x)∇δHλ[u(t)]

δu
(x)

)
,

with
δHλ[u]

δu
=

1√
¯̺λ

− 1√
u

.

The connection with the Patlak-Keller-Segel system (1.1.1) can be seen
through the minimisers of Hλ which are the same as those of the logarith-
mic Hardy-Littlewood-Sobolev inequality (1.1.8). The functional Hλ is a
weighted distance between the solution and its unique minimiser ¯̺λ. It is
tempting to compute the dissipation of Hλ along the flow of solutions to the
Patlak-Keller-Segel system (1.1.1): Let ρ be a sufficiently smooth solution
of the Patlak-Keller-Segel system (1.1.1). Then we compute

d

dt
Hλ[ρ(t)] = −1

2

∫

R2

|∇ρ(t)|2
ρ(t)3/2

dx+
∫

R2
ρ(t)3/2 dx+ 4

√
M π

λ

(
1− M

8π

)
.

(1.1.22)
In the critical case M = 8π the dissipation of the Hλ free energy along the
flow of the Patlak-Keller-Segel system (1.1.1) is

D[ρ] :=
1

2

∫

R2

|∇ρ|2
ρ3/2

dx−
∫

R2
ρ3/2 dx .

We use the following Gagliardo-Nirenberg-Sobolev inequality due to J. Dol-
beault and M. Del Pino, see [87]: For all functions f in R2 with a square
integrable distributional gradient ∇ f ,

π
∫

R2
| f |6 dx ≤

∫

R2
|∇ f |2 dx

∫

R2
| f |4 dx ,

and there is equality if and only if f is a multiple of a translate of ¯̺1/4λ for
some λ > 0.

As a consequence, taking f = ρ1/4 so that
∫

R2 f
4(x) dx = 8π, we obtain

D[ρ] ≥ 0, and moreover, D[ρ] = 0 if and only ρ is a translate of ¯̺λ for some
λ > 0.

Remark 1.1.10. This free energy Hλ[ρ] gives another proof of non exis-
tence of global-in-time solutions in the super-critical case M > 8π. Indeed,
by (1.1.22) and as D[ρ] is non-negative,

0 ≤ Hλ[ρ(t)] ≤ 4

√
M π

λ

(
1− M

8π

)
t .

So that in the case M > 8π, there cannot be global-in-time solutions even
with infinite 2-moment as long as

∫ √
ρ
0
is bounded.
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Based on this free energy Hλ[ρ], the main results of [33] in the critical
case can be summarised in the following:

Theorem 1.1.11 (Existence of global solutions, [33]) Let ρ0 be any density in R2 with mass
8π, such that FPKS[ρ0] < ∞, and for some λ > 0, Hλ[ρ0] < ∞. Then there
exists a global free energy solution of the Patlak-Keller-Segel equation (1.2.1)
with initial data ρ0. Moreover,

lim
t→∞

FPKS[ρ(t)] = FPKS[ ¯̺λ] and lim
t→∞

‖ρ(t)− ¯̺λ‖1 = 0 .

We even prove further regularity using the propagation of the Lp-
estimates and the hypercontractivity property of the equation. This the-
orem can be translated in terms of the Wasserstein distance of the initial
data to ¯̺λ thanks to the Talagrand inequality:

W2(ρ, ¯̺λ) ≤
√√√√

2Hλ[ρ]

2
√

π
M λ

.

Remember that the minimisers ¯̺λ of the logarithmic Hardy-Littlewood-
Sobolev inequality (1.1.8) are of infinite 2-moment so that the condition
Hλ[ρ0] < ∞ implies that ρ0 is of infinite 2-moment. If we keep in mind that
the 2-moment can be seen as the Wasserstein distance between the solution
and the Dirac mass, we see that Theorem 1.1.11 completes the picture which
emerged from Theorem 1.1.8 which states the convergence to the Dirac mass
if the solution is initially at finite Wasserstein distance of the Dirac mass.
As soon as we start at a finite distance from one of the minimisers ¯̺λ we
can construct a solution which converges towards it. Note that this result is
true for the solution that we construct as we do not have uniqueness of the
solution to the Patlak-Keller-Segel system, even if we strongly believe that
this is the case. Also observe that the equilibrium solutions ¯̺λ are infinitely
far apart: let ϕ(x) =

√
λ/µ|x|2/2, one has ∇ϕ#̺µ = ¯̺λ. Thus,

W2
2 (̺µ, ¯̺λ) =

1

2

∫

R2

∣∣∣∣∣

√
λ

µ
x− x

∣∣∣∣∣

2

̺µ(x) dx = +∞

since the equilibrium densities ¯̺λ all have infinite second moments. In par-
ticular, Hλ[̺µ] = +∞ for µ 6= λ. There may still be initial data out of these
basins of attraction.

Concerning the proof of Theorem 1.1.11, we expect the propagation of
the bounds on FPKS[ρ] and D[ρ] to give compactness. Unfortunately, D[ρ]
is a difference of two functionals of ρ that can each be arbitrarily large even
when D[ρ] is very close to zero. Indeed, for M = 8π and each λ > 0,
D[ ¯̺λ] = 0 while

lim
λ→0

‖ ¯̺λ‖3/2 = ∞ , lim
λ→0

‖∇ ¯̺1/4λ ‖2 = ∞ and lim
λ→0

¯̺λ = 8πδ0 .

Likewise, an upper bound on FPKS[ρ] provides no upper bound on the en-
tropy

∫
R2 ρ log ρ. Indeed, FPKS[ρ] takes its minimum value for ρ = ¯̺λ for

each λ > 0, while

lim
λ→0

∫
¯̺λ log ¯̺λ = ∞ .
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Fortunately, an upper bound on both Hλ[ρ] and FPKS[ρ] does provide an
upper bound on

∫
ρ log ρ:

Theorem 1.1.12 (Concentration control for FPKS, [33]) Let ρ be any density with mass M =
8π such that Hλ[ρ] < ∞ for some λ > 0. Then there exist γ1 > 0 and an
explicit C > 0 depending only on λ and Hλ[ρ] such that

γ1

∫

R2
ρ log ρ dx ≤ FPKS[ρ] + C .

Here we also prove that since Hλ controls concentration, a uniform
bound on both Hλ and D does indeed provide compactness:

Theorem 1.1.13 (Concentration control for D, [33]) Let ρ be any density in L3/2(R2) with
mass 8π such that FPKS[ρ] is finite, and Hλ[ρ] is finite for some λ > 0.
Then there exist constants γ1 > 0 and an explicit C > 0 depending only on
λ, Hλ[ρ] and FPKS[ρ] such that

γ2

∫

R2
|∇ρ1/4|2 dx ≤ πD[ρ] + C .

The proofs of this two theorems lead on the following lemma:
∫

R2

√
λ + |x|2 ρ(x) dx ≤ 2

√
λ M+ 2M3/4(λ/π)1/4

√
Hλ[ρ] . (1.1.23)

As explained at the beginning of the section, in [36] we managed to find
a ball in which the mass was smaller than 8π. Here, (1.1.23) gives a vertical
cut to prove Theorem 1.1.12. Indeed, we split the function ρ in two parts:
given β > 0, define ρβ(x) = min{ρ(x) , β}. By (1.1.23), for β large enough,
ρ − ρβ is such that:

∫

R2

(
ρ − ρβ

)
≤ C1

β
+ C2

√
Hλ[ρ] ≤

C1

β
+

8π − ε0
2

< 8π − ε0 .

We then apply the logarithmic Hardy-Littlewood-Sobolev inequality method
as in (1.1.10) to the function ρ − ρβ whose mass is less than 8π.

The same idea works for the Gagliardo-Nirenberg-Sobolev inequality to
prove Theorem 1.1.13: Let f := ρ1/4, we split f in two parts by defin-
ing fβ := min{ f , β1/4} and hβ := f − fβ. We use (1.1.23) and apply the
Gagliardo-Nirenberg-Sobolev inequality to control hβ.

Idea of the proof of Theorem 1.1.11: It follows the line of the con-
vergence of the JKO minimising scheme (1.1.12) exposed in the previous
section to obtain the Euler-Lagrange equation (1.1.13). Dividing the Euler-

Lagrange equation (1.1.13) by
√

ρn+1
τ we obtain:

2∇
√

ρn+1
τ =

(
∇cn+1

τ − x−∇ϕn
τ

τ

)√
ρn+1

τ , (1.1.24)

where ∇ϕn
τ#ρn+1

τ = ρnτ . Integrating (1.1.24) we obtain

∫

R2

∣∣∣∣
√

ρn+1
τ ∇cn+1

τ − 2∇
√

ρn+1
τ

∣∣∣∣
2

dx =
∫

R2

∣∣∣∣
x−∇ϕn

τ

τ

∣∣∣∣
2

ρn+1
τ dx

= W2(ρ
n
τ , ρn+1

τ )
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which is bounded thanks to (1.1.15). But the left hand side is a sum of two
terms so that we cannot conclude any compactness on each of them.

A powerful technique is developed in [152]: the idea is to perturb the
minimiser by moving it along the gradient flow SV generated by another
functional V which is displacement convex. To present the idea let us first
consider the two ordinary differential equations describing gradient flow:

ẋ(t) = −∇Φ[x(t)] and ẏ(t) = −∇Ψ[y(t)]

Then of course Φ[x(t)] and Ψ[y(t)] are monotone decreasing. Differentiate
each function along the other’s flow:

d

dt
Φ[y(t)] = −〈∇Φ[y(t)],∇Ψ[y(t)]〉

d

dt
Ψ[x(t)] = −〈∇Ψ[x(t)],∇Φ[x(t)]〉

Thus, Φ is decreasing along the gradient flow of Ψ for any initial data if and
only if Ψ is decreasing along the gradient flow of Φ for any initial data.

Let us consider the following variational problem:

Find uh,n which minimises u 7→ 1

2h
W2

2 (u, uh,n−1) + G[u].

Imagine now that we can find a displacement convex functional V such
that the dissipation of G along the flow SV :

DVG[µ] := lim sup
t→0

G[µ]−G[SVt µ]

t
.

is non-negative. By the previous remark

DVG[uh,n] = lim sup
t→0

V [uh,n−1]− V [uh,n]

t

And as V is displacement convex, the above the tangent formulation gives:

DVG[uh,n] ≤
V [uh,n−1]− V [uh,n]

h
.

So that the differential estimate of G is converted into a discrete estimate
for the approximation scheme.

Indeed, by definition of the minimising scheme, for any u ∈ K

1

2h
W2

2 (uh,n, uh,n−1) + G[uh,n] ≤
1

2h
W2

2 (u, uh,n−1) + G[u] (1.1.25)

Choosing u = SVt (uh,n) in (1.1.25) we obtain

G[uh,n]−G[SVt uh,n] ≤
1

2h

(
W2

2 (S
V
t uh,n, uh,n−1)−W2

2 (uh,n, uh,n−1)
)

Dividing by t and letting t → 0, (1.1.26) with u = uh,n and v = uh,n−1 yields

DVG[uh,n] ≤
V [uh,n−1]− V [uh,n]

h
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Because V is displacement convex and SV is the associated semi-group means

1

2

d+

dt
W2

2 (S
V
t u, v) ≤ V [v]− V [SVt u] (1.1.26)

And as V is displacement convex: So that the differential estimate of G is
converted into a discrete estimate for the approximation scheme.

Here, as already discussed the functional FPKS is not displacement con-
vex but the flow constructed from this functional is also non-increasing along
the flow of Hλ. Moreover, the displacement convexity of Hλ is formally ob-
vious from the fact that

Hλ[u] =
∫

R2

(
−2
√

u(x) +

√
1

2λ

|x|2
2

u(x)

)
dx+ C .

where −
√

u(x) and |x|2u(x) are displacement convex. So that at each step,
we can use the convexity estimate of the type

Hλ[ρ0]−Hλ[ρ1] ≥ lim sup
t→0

Hλ[ρt]−Hλ[ρ0]

t
,

which gives in this optimal transport framework the above the tangent for-
mulation:

Hλ[ρ
n+1
τ ]−Hλ[ρ

n
τ ] ≥

1

2

∫

R2

[√
1

2λ
x+

∇ρnτ

(ρnτ)
3/2

]
· (∇ϕ(x)− x) ρnτ dx .

where ∇ϕ is such that ∇ϕ#ρn+1
τ = ρnτ. Inferring the Euler-Lagrange equa-

tion (1.1.13): −∇ρn+1
τ + ρn+1

τ ∇cn+1
τ = (id−∇ϕ) ρn+1

τ /τ, we obtain a dis-
crete version of the entropy/entropy dissipation inequality

Hλ[ρ
n+1
τ ]−Hλ[ρ

n
τ ] ≤ −τ D[ρnτ ] . (1.1.27)

This inequality is a skeleton version of the crucial estimate which allows to
apply the standard entropy/entropy dissipation method to study the asymp-
totics. There are main technical difficulties and the methods to turn around
them are interesting by themselves but we do not present them in details
here.

Very recently, in [62], E. Carlen and A. Figalli use a argument of Bianchi-
Egnell’s type to obtain a quantitative stability for the logarithmic Hardy-
Littlewood-Sobolev inequality (1.1.8) and prove:

‖ρ(t) − ¯̺λ‖L1(R2) ≤
C√

log(e+ t)
.

Before closing this section let us mention that in the original system as
studied by Nagai, the Poisson equation is replaced by a Bessel equation:





∂ρ

∂t
(t, x) = div [∇ρ(t, x) − ρ(t, x)∇φ(t, x)] t > 0 , x ∈ R2 ,

−∆φ(t, x) + φ(t, x) = ρ(t, x) , t > 0 , x ∈ R2 ,
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Open question: For such a system, the kernel is weaker than the Poisson
kernel and the existence results should still be valid. The blowup solution
with super-critical mass which are initially concentrated enough comes from
a argument similar to the one presented in the next section. The main open
question is the behaviour of the solution at infinite time for a solution of
critical mass. Indeed, in such a case there is no stationary solution and it is
not clear to determine if the solution spreads or concentrates. The existence
of solution for super-critical mass cannot be excluded and the method of [26]
could probably be adapted here.

1.2 The non-linear parabolic-elliptic Keller-Segel

system

1.2.1 The model

In higher dimensions the critical quantity is no longer the mass but the
Ld/2-norm, see [81]. We can however replace the linear diffusion with a
homogeneous non-linear diffusion:




∂ρ

∂t
(t, x) = div [∇ρm(t, x)− ρ(t, x)∇φ(t, x)] t > 0 , x ∈ Rd ,

−∆φ(t, x) = ρ(t, x) , t > 0 , x ∈ Rd ,
(1.2.1)

where m ∈ (0, 1) and d ≥ 3. In physics, this system models the motion of
the mean field of many self-gravitating Brownian particles. This system is
then known as the generalised Smulochowski-Poisson system, see [75, 74].

Define

K(x) = cd
1

|x|d−2
and cd :=

1

(d− 2)σd

where σd := 2πd/2/Γ(d/2) is the surface area of the sphere Sd−1 in Rd.
Up to a harmonic function φ = K ∗ ρ, so that the system (1.2.1) can be
rewritten as a non-local parabolic equation, for all t > 0 and x ∈ Rd:

∂ρ

∂t
(t, x) = div [∇ρm(t, x)− ρ(t, x)∇(K ∗ ρ)(t, x)] . (1.2.2)

In this case too the mass is preserved and will be denoted M.
Let ρλ(x) := λdρ(λ x) with λ > 0, the diffusion term scales

like λd m+2∆(ρmλ )(λ x) whereas the interaction term scales like
λ2 ddiv (ρλ∇(K ∗ ρλ)) (λ x). Hence the mass-invariant scaling of the diffu-
sion term balances the potential drift in (1.2.2) if

m = md =: 2

(
1− 1

d

)
∈ (1, 2) . (1.2.3)

This difference of balance was studied to obtain

Theorem 1.2.1 (First criticality, [189, 190]) Let md be as defined in (1.2.3).

• if m > md then the solutions to (1.2.1) exist globally in time,

• if m < md then solutions to (1.2.1) with sufficiently large initial data
blowup in finite time,
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• if m = md there exist two constants M1 > 0 and M2 > M1 such that

– if M < M1 then the solutions to (1.2.1) exist globally in time,

– if M > M2 there exist initial conditions such that the correspond-
ing solution blows up in finite time.

In dimension 2, these results were obtained by [134, 57]. We will concen-
trate on the critical diffusion case m = md. When no confusion is possible,
the index d in md will be omitted and the critical exponent will be denoted
m in the sequel of this article. The proof of the last point of Theorem 1.2.1
relies on the Gagliardo-Nirenberg-Sobolev inequality and is not sharp as we
will see in Theorem 1.2.2 below.

The analogous of the free energy used in the previous section is:

G[ρ(t)] :=
∫

Rd

ρm(t, x)

m− 1
− 1

2

∫∫

Rd×Rd
K(x− y) ρ(t, x) ρ(t, y) dx dy

which is related to its time derivative along the flow of (1.2.2) by

d

dt
G[ρ(t)] = −

∫

Rd
ρ(t, x)

∣∣∣∣∇
(

m

m− 1
ρm−1(t, x)− φ(t, x)

)∣∣∣∣
2

dx .

1.2.2 The sub-critical case

In [35], the functional inequality used is a variant to the Hardy-Littlewood-
Sobolev (VHLS) inequality: for all h ∈ L1(Rd) ∩ Lm(Rd), there exists an
optimal constant C∗ such that

C∗ = sup
h 6=0

{
‖h‖−m

m ‖h‖−2/d
1

∫∫

Rd×Rd

h(x) h(y)

|x− y|d−2
dx dy

}
. (1.2.4)

We define the critical mass by

Mc :=

[
2

(m− 1)C∗cd

]
.

Theorem 1.2.2 (Global-in-time existence, [35, 193]) If u0 is of mass M < Mc then there
exists a global weak solution with initial condition u0. Moreover, this solution
satisfies the free energy/free energy dissipation inequality.

The proof of existence follows the lines of the 2d Patlak-Keller-Segel
system. Indeed, as a direct consequence of the VHLS inequality, for any
solution ρ to the nonlinear Patlak-Keller-Segel system (1.2.2)

C∗ cd
2

(
M2/d

c − M2/d
)
‖ρ(t)‖mm ≤ G[ρ(t)] ≤ G[ρ0] < ∞ .

In the case M < Mc, it gives the concentration controlled analogous to the
entropy a priori estimate (1.1.10) of the previous section. It should not be
difficult to prove the existence of global-in-time solutions using the JKO
minimising scheme.

Open question: The convergence to the self-similar solution in the sub-
critical case has been analysed in [187] but a mathematical study is still
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missing. By doing the porous medium scaling, we can prove, see [35, Theo-
rem 5.2], that for any given mass M < Mc there exists a unique minimiser
WM to the rescaled free energy. Moreover this minimiser is non-negative,
radially symmetric and compactly supported. We expect this minimiser to
attract all the solutions but have not been able to prove it. Such a result has
been recently proved for radially symmetric solutions in [210].

1.2.3 The critical case

The balance in the mass-invariant scaling of diffusion and potential drift can
also be seen in the free energy: If hλ(x) := λdh(λ x) then

G[hλ] = λ(m−1)d
∫

Rd

hm(x)

m− 1
− λd−2 cd

2

∫∫

Rd×Rd

1

|x− y|d−2
h(x) h(y) dx dy .

The diffusion and interaction term balance if m = md. And in this case

G[hλ] = λd−2G[h] . (1.2.5)

This scaling has to be compared to the case d = 2, see (1.1.11). In the
case of the 2d Patlak-Keller-Segel model (1.1.1), the authors were not able
to apply a concentration compactness argument due to the rigidity in the
scaling of the free energy. Indeed, the scaling which preserves the mass also
preserves the free energy. Here, as will be shown below, it is possible to
follow the line of P.-L. Lions’s concentration-compactness.

The minimisers of G of mass Mc are such that there are R > 0 and
z ∈ Rd with

V(x) =





1

Rd

[
ζ

(
x− z

R

)]d/(d−2)

if x ∈ B(z, R),

0 if x ∈ Rd \ B(z, R)

(1.2.6)

where ζ is the unique positive radial classical solution to

∆ζ +
m− 1

m
ζ1/(m−1) = 0 in B(0, 1) with ζ = 0 on ∂B(0, 1) .

Open question: On the contrary to the 2d Patlak-Keller-Segel system, this
proves that there exist compactly supported stationary solutions not blowing-
up at infinite time. We were however not able to prove that they attract
some solutions. Such a result was recently announced in [20].

Here, thanks to (1.2.5) we can adapt the concentration-compactness
method to prove

Proposition 1.2.3 (How would it blowup, [35]) Let T ∈ (0, ∞] and a sequence (tk)k converg-
ing to T. If

lim
k→∞

‖ρ(tk)‖m = ∞ .

then there are a sub-sequence (tk j)j and a sequence (xj)j in Rd such that

lim
j→∞

∥∥∥∥∥ρ(tk j , x+ xj)−
1

λd
k j

V

(
x

λk j

)∥∥∥∥∥
L1

= 0 ,

where λk := ‖ρ(tk)‖−m/(d−2)
m and V is the minimiser of G of the form (1.2.6)

with ‖V‖m = 1.
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The main ingredient of the proof is the following: we set vk(x) :=
λd
k ρ(tk , λk x) so that ‖vk‖m = 1. By the concentration compactness principle

there exists a sub-sequence satisfying compactness, vanishing or dichotomy.
As already discussed, contrary to the 2d Keller-Segel system, here

lim
k→∞

G[vk] = lim
k→∞

‖ρ(tk)‖−m
m G[ρ(tk)] = 0 .

As a consequence

lim
k→∞

∫∫

Rd×Rd

vk(t, x) vk(t, y)

|x− y|d−2
= lim

k→∞

2

cd

(
1

m− 1
‖vk‖mm − G[vk]

)
> 0 .

Whereas this quantity goes to zero if vanishing or dichotomy should occur.
Open question: Except in the radially symmetric case, we are not able to
say if the blowup occurs at the centre of mass or if the blowup escapes at in-
finity. We could not even rule out the possibility that a sub-sequence diverges
whereas the other does not. In the radially symmetric case, a comparison
principle is available and [21] prove that all the solutions are global-in-time
and converge to the stationary solution.

1.2.4 The super-critical case

The answer was clear for the super-critical case for the 2d Patlak-Keller-
Segel thanks to the constant sign of the derivative of the 2-moment. Here
for any ρ solution to (1.2.1) the virial identity is

d

dt

∫

Rd
|x|2 ρ(t, x) dx = 2 (d− 2) G[ρ(t)] . (1.2.7)

Theorem 1.2.4 (Blowup, [189, 190, 35, 193]) If M > Mc, there exist initial data of mass M
such that the Lm-norm of the corresponding solution blows up in finite time.

In [35], the proof relies on a procedure directly adapted from [209]: let
ρ̃ be a minimiser of the form (1.2.6) and consider

ρ0 =
M

Mc
ρ̃ .

Then,

G[ρ0] =
1

m− 1

(
M

Mc

)m
[
1−

(
M

Mc

)2−m
]
‖ρ̃‖mm

is negative if M ≥ Mc. This result combined with (1.2.7) gives the expected
result.
Open question: We cannot exclude the possibility that solutions with pos-
itive free energy exist globally in time. In [21, Corollary 1], the authors
prove, using the comparison principle in radial coordinates, that there are
radially symmetric blowing-up solution of positive energy.

In [40] a more precise answer is proven: the blowup time T being given,
we can look for solution to (1.2.1) of the form

ρ(t, x) =
1

s(t)d
Ψ

(
x

s(t)

)
and c(t, x) =

1

s(t)d−2
Φ

(
x

s(t)

)

where s(t) := [d(T − t)]1/d.
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Theorem 1.2.5 (Self-similar blowing-up solutions, [40]) There exists M̃c ∈ (Mc, ∞) such
that for any M ∈ (Mc, M̃c], there exists a self-similar blowing-up solution
with a radially symmetric, compactly supported and non-increasing profile
Ψ, satisfying ‖ρ(t)‖1 = ‖Ψ‖1 = M for t ∈ [0, T) and ‖ρ(t)‖∞ going to ∞

as t goes to T.

The method relies on the study of a boundary value problem for the
following non-linear ordinary differential equation:





u′′(r, a) +
d− 1

r
u′(r, a) + |u(r, a)|p−1 u(r, a)− 1 = 0 , r ∈ [0, rmax(a)) ,

u(0, a) = a , u′(0, a) = 0 ,

with rmax(a) ∈ (0, ∞] and p = d/(d − 2). We prove that there are global
solutions to this problem and that the solutions oscillate around the station-
ary solution 1, see Figure 1.1. The solution of Theorem 1.2.5 corresponds
to that which vanishes and the support corresponds to its first zero. The
proofs rely on ordinary differential equation tools. For recent results in this
direction, where asymptotic expansions are performed for a → ∞, see [191].
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Figure 1.1 – Behaviour of u(., a) for a > ac, a = ac and a < ac, where here ac ∼ 5.4.

Open question: If a > ac is large enough, u(a, ·) may have several zeros,
see Figures 1.2 and each hump corresponds to a solution. It is possible to
construct self-similar blowing-up solutions of any mass?
Open question: The stability of blowing-up solutions is also of interest but
seems yet unclear according to numerical simulations performed in [187].
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Figure 1.2 – Positivity set of u(., a) with three connected components when a = 90
(d = 3).

1.3 The non-linear parabolic-parabolic Keller-

Segel system

1.3.1 The model

We consider now the following parabolic-parabolic version of the Keller-Segel
system:

{
∂tρ = div [∇ρm − χρ∇φ] ,

τ∂tφ = ∆φ − α φ + ρ ,
(t, x) ∈ (0, ∞)× R

d , (1.3.1)

where m ∈ (0, 1) and d ≥ 3.
For the case d = 2, global-in-time existence for a mass less that Mc was

proved in [58]. But there are also global-in-time self-similar solutions for
larger masses [26]. The question of the eventuality of blowups of solutions
to this system remains opened. We were however able to extend the global-
in-time existence results of dimension 2 to higher dimensions in the following:

Theorem 1.3.1 (Global existence, [41]) Let τ > 0, α ≥ 0, u0 be a non-negative function
in L1(Rd, (1+ |x|2) dx) ∩ Lm(Rd) satisfying ‖u0‖1 = 1 and v0 ∈ H1(Rd).
If χ < χc then there exists a weak solution (u, v) to the parabolic-parabolic
Keller-Segel system (1.3.1), that is, for all t > 0 and ξ ∈ C∞

0 (Rd),

• u ∈ L∞(0, t; L1(Rd, (1 + |x|2) dx) ∩ Lm(Rd)), um/2 ∈
L2(0, t;H1(Rd)),

• u(t) ≥ 0, ‖u(t)‖1 = 1,

• v ∈ L∞(0, t;H1(Rd)) ∩ L2(0, t;H2(Rd)) ∩W1,2(0, t; L2(Rd)), v(0) =
v0,

and
∫

Rd
ξ (u(t)− u0) dx +

∫ t
0

∫
Rd (∇(um)− χ u ∇v) · ∇ξ dx ds = 0 ,

τ ∂tv− ∆v+ α v = u a.e. in (0, t)× Rd .
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1.3.2 Idea of the proof

The main difficulty stems from the fact that, unlike the parabolic-elliptic
Keller-Segel system, the Cauchy problem (1.3.1) cannot be reduced to a
single equation with a nonlinear term involving a convolution with a time
independent kernel. The main difficulty here is that the system cannot
easily be reduced to a single non-local parabolic equation. Actually the
corresponding free energy has the two quantities ρ and φ:

Kα[ρ, φ] :=
∫

Rd

{ |ρ(x)|m
χ(m− 1)

− ρ(x) φ(x) +
1

2
|∇φ(x)|2 + α

2
φ(x)2

}
dx .

(1.3.2)
The minimising scheme has thus to be replaced by a gradient flow of this
energy in P2(Rd) × L2(Rd) endowed with the Monge-Kantorovich metric
for the first component and the usual L2-norm for the second component.
Such a strategy has already been developed to prove existence of the thin
film approximation of the Muskat problem [139].

The minimising scheme is as follows: given an initial condition (ρ0, φ0) ∈
K and a time step h > 0, we define a sequence (ρh,n, φh,n)n≥0 in K by





(ρh,0, φh,0) = (ρ0, φ0) ,

(ρh,n+1, φh,n+1) ∈ Argmin(ρ,φ)∈KFh,n[ρ, φ] , n ≥ 0 ,
(1.3.3)

where

Fh,n[ρ, φ] :=
1

2h

[W2
2 (ρ, ρh,n)

χ
+ τ ‖φ − φh,n‖22

]
+Kα[ρ, φ] ,

and W2 is the Monge-Kantorovich distance on P2(Rd).
Several difficulties arise in the proof of the well-posedness and conver-

gence of the previous minimising scheme. First, as the energy Kα is not dis-
placement convex, standard results from [204, 5] do not apply and even the
existence of a minimiser is not clear. Nevertheless, the assumption χ < χc

and a further development of the modified Hardy-Littlewood-Sobolev in-
equality (1.2.4) allow us to obtain an (L1 ∩ Lm)(Rd) ×H1(Rd) bound on
minimising sequences which permits in particular to pass to the limit in
the term in Kα[ρ, φ] involving the product ρφ, and prove the existence of a
minimiser. To obtain the Euler-Lagrange equation satisfied by a minimiser
(ρ̄, φ̄) of Fh,n in K, the parameters h and n being fixed, we consider an
“optimal transport” perturbation for ρ̄ and a L2-perturbation for φ̄ defined
for δ ∈ (0, 1) by

ρδ = (id+ δ ζ)#ρ̄ , φδ := φ̄ + δ w ,

where ζ ∈ K∞
0 (R

d;Rd) and w ∈ K∞
0 (R

d) are two smooth test functions.
Identifying the Euler-Lagrange equation requires to pass to the limit as
δ → 0 in

W2
2 (uδ, uh,n)−W2

2 (ρ̄, ρh,n)

2δ
and

‖ρδ‖mm − ‖ρ̄‖mm
δ

,
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which can be performed by standard arguments [204, 5], but also in

1

δ

∫

Rd
(ρ̄ φ̄ − uδ φδ)(x) dx

=
∫

Rd
ρ̄(x)

[
φ̄(x)− φ̄(x+ δζ(x))

δ
−w(x+ δζ(x))

]
dx .

This is where the main difficulty lies: indeed, since v̄ ∈ H1(Rd), we only
have

v̄◦(id+ δζ)− v̄

δ
⇀ ζ · ∇v̄ in L2(Rd),

while ū is only in (L1 ∩ Lm)(Rd) with m < 2. So even the product ūζ · ∇v̄
which is the candidate for the limit is not well defined and the regularity of
(ū, v̄) has to be improved. To this end, a powerful technique is developed
in [152]. The main idea was already presented above in Section 1.1.4: it
is to find a functional G (different from the energy Kα) with the following
properties: it is displacement convex and the energy Kα is a Liapunov func-
tional (up to lower order terms) for the gradient flow associated to G. If such
a functional G exists, the associated displacement convexity inequality can
be converted into additional estimates on the minimisers of Kα. Of course,
the cornerstone of this method is the availability of the functional G and
the simplest situation is the case where the flow has a displacement convex
Liapunov functional which is different from the energy. Unfortunately, there
does not seem to be a natural choice of such a functional G here. A first try
is to choose G as the displacement convex part of Kα, that is,

G[u, v] :=
∫

Rd

( |u(x)|m
χ(m− 1)

+
1

2
|∇v(x)|2 + α

2
|v(x)|2

)
dx .

The associated gradient flow is the solution (U,V) to

∂sU − ∆Um = 0 in (0, ∞)× Rd, U(0) = ū ,

and
∂sV − ∆V + αV = 0 in (0, ∞)× Rd, V(0) = v̄ .

Computing dKα[U(s),V(s)]/ ds leads to the sum of a negative term and a
remainder but the remainder terms cannot be controlled. Despite this failed
attempt, it turns out that, somehow unexpectedly, the following functional

G[u, v] :=
∫

Rd

(
u(x) log (u(x)) +

1

2
|∇v(x)|2 + α

2
|v(x)|2

)
dx

provide the right information. Indeed, its associated gradient flow is the
solutions U and V to the initial value problems

∂sU − ∆U = 0 in (0, ∞)× Rd, U(0) = ū ,

and
∂sV − ∆V + αV = 0 in (0, ∞)× Rd, V(0) = v̄ ,

and, as we shall see below, dKα[U(s),V(s)]/ ds is in that case the sum of a
negative term and a remainder which we are able to control. This regularity
allows us to pass to the limit in the Euler-Lagrange equation.
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The kernel which appears in Kα, α ≥ 0 is the Bessel kernel, Yα, defined
for α ≥ 0 by:

Yα(x) :=
∫ ∞

0

1

(4πs)d/2
exp

(
−|x|2

4s
− αs

)
ds , x ∈ R

d ,

the case α = 0 corresponding to the already defined Poisson kernel. For
u ∈ L1(Rd), Sα(u) := Yα ∗ u solves

− ∆Sα(u) + αSα(u) = u in Rd (1.3.4)

in the sense of distributions, see [143, Theorem 6.23]. The Bessel kernel is
also referred to as the screened Poisson or Yukawa potential in the litera-
ture. The crucial inequality is thus a modified Hardy-Littlewood-Sobolev
inequality is valid for the Bessel kernel Yα for α > 0:

Lemma 1.3.2 (Hardy-Littlewood-Sobolev inequality for the Bessel kernel) For α > 0,

sup





∫

Rd
h(x) (Yα ∗ h)(x) dx

‖h‖mm ‖h‖2/d1

: h ∈ (L1 ∩ Lm)(Rd), h 6= 0





= CHLS ,

(1.3.5)
where CHLS is defined in (1.2.4).

Note that the constant is the exact same as for the case α = 0 so that
the critical mass below which all the solutions exist globally-in-time is the
same as for the parabolic-elliptic version.

1.4 Concluding remarks

The Keller-Segel models have attracted much attention these last years. The
literature is vast and drastically increasing. There exist many variants of
the presented models with prevention of overcrowding [114, 53] or with non-
linear chemo-sensitivity [22, 145], etc. The Keller-Segel model has recently
been used as a basis for more complete models [59]. This chapter is dedicated
to the Keller-Segel models and tries to describe the progress made through
energy and functional inequalities methods in the idea of [204, 5]. For more
complete reviews see [117, 116, 171, 115].

From the author’s point of view, the most challenging question is the
understanding of the blowup. And in this direction progress is still to be
made. We are now at a point where we need to develop new methods to
address those questions. The answer could come from interaction with the
non-linear Schrödinger equation (NLS) and the unstable thin-film equation
(UTF). Indeed, the Patlak-Keller-Segel, the NLS and the UTF equation
have two levels of criticality. The first level is given by the homogeneity of
the “attractive” and “repulsive” terms in each problem. In our particular
case, this refers to the aggregation versus diffusion mechanisms. In NLS it
is the balance between dispersion and nonlinear attraction. As seen above,
the balance happens precisely for our chosen exponent m = md. In the
NLS equation this happens for the so-called pseudo-conformal non-linearity,
see [192] or [73, Chapter 6]. In the UTF equation this happens in the
so-called marginal case, see [24, 25]. In theses three equations, a second
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level of critically occurs when the attractive and repulsive are balanced. In
that particular case, and for the three models, there exists a critical value
Mc of the mass which is the maximum value of the mass below which the
solutions exist globally in time, see [73, 209, 156] for the pseudo-conformal
NLS equation and [25, 188] for the marginal UTF equation. Note that mass
refers to the total number of particles for the NLS equation and the L1-norm
for (1.2.2) and the UTF equation.

Let us also point out that in all these three problems, the virial method
is an elegant way to prove that there are solutions which blowup above
the critical mass, but it does not give any hint on the mechanism of the
blowup. However, in [156], for the NLS equation, the result goes further and
clarifies the blowup for super-critical masses close to critical. The techniques
used by [156, 157] describes the manifold where the blowup occurs for the
Schrodinger operator. For the Keller-Segel system, we can expect that such
a study would lead to a set defined by M ≥ 8π. There is here a whole
programme to extend these results to non-radial solutions, to others Keller-
Segel models -and in particular to the parabolic-parabolic models where
even the occurence of blowup is not proved yet.



2On the Stochastic Stokes’

drifts

W
e study the large time properties of the solution of a simple model of
stochastic Stokes’ drift. The analysis also applies to Brownian ratchets

and molecular motors in biology. We first establish a transport phenomenon.
Asymptotically, the center of mass of the solution moves with a constant
velocity, which is determined by a doubly periodic problem. In the traveling
frame, the macroscopic profile obeys to an isotropic diffusion. Compared
with the original diffusion, diffusion is enhanced or reduced, depending on
the regime. At least in the limit cases, the rate of convergence to the effective
profile is always decreased. All these considerations allow us to define a
notion of efficiency for coherent transport, characterized by a dimensionless
number, which is illustrated on two simple examples of traveling potentials
with a sinusoidal shape in the first case, and a sawtooth shape in the second
case.

The proof relies on an entropy estimate based on homogenized logarith-
mic Sobolev inequalities. A periodic perturbation of a Gaussian measure
modifies the sharp constants in Poincaré and logarithmic Sobolev inequal-
ities in the homogenization limit, that is, when the period of a periodic
perturbation converges to zero. We use variational techniques to determine
the homogenized constants and get optimal convergence rates towards equi-
librium of the solutions of the perturbed diffusion equations.

Most of this chapter in inspired form [38] and presents the works:
• A. Blanchet, J. Dolbeault, and M. Kowalczyk, Travelling

fronts in stochastic Stokes’ drifts, Physica A: Statistical Mechanics
and its Applications, 387 (2008), pp. 5741–5751.

• , Stochastic Stokes’ drift, homogenized functional inequalities, and
large time behaviour of Brownian ratchets, SIAM Journal of Mathe-
matical Analysis, 41 (2009), pp. 46–76.

43
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2.1 Model

The literature on the stochastic Stokes’ drift and Brownian ratchets is huge.
We first refer to [122]: the drift velocity is computed in the case of a sinu-
soidal traveling potential (also see [149, 91]) and the diffuse traveling front
is exhibited on the basis of numerical results. Brownian ratchets generically
refer to drift-diffusion models in which a time periodic forcing coupled to
some asymmetry induces a transport at large scale. The notion of traveling
potential is explored in [48, 109]. We refer to [177] and references therein for
the notion of tilted Smoluchowski-Feynman ratchet, which makes an explicit
connection between the stochastic Stokes’ drift and ratchet mechanisms. As
we shall see later, a change of variables indeed reduces the model to a simple
tilted Brownian ratchet, with no more explicit time-dependence. An histor-
ical perspective of the physics of ratchets and useful definitions are given in
[109, 178, 148]. Many important issues, like effects due to the asymmetry
of the potential, the geometry of the domain in higher dimensional models,
see for instance [176], or applications of molecular motors in biology, see for
instance [4, 123, 168], will not be addressed here.

In [179, 180], the effective diffusion constant is computed by a method
which differs from ours, based on statistical fluctuations. Also see [82] for
some earlier considerations. The ratio kB Θ of the diffusion constant κω

to the differential mobility µω is in general not equal to the temperature
of the environment (multiplied by Boltzmann’s constant kB). The physical
meaning of Θ far from equilibrium is analyzed in [111] and interpreted as
an effective temperature in the large scale description of the system so that
the relation κω = µω kB Θ can be interpreted as an extension of Einstein’s
relation. An interesting experiment for measuring the violation of Einstein’s
relation can be found in [110].

Experimental measurements of the drift velocity corresponding to the
diffusion of colloidal particles in presence of optical traps and a detailed
explanation of the method can be found in [99], with abundant theoretical
justifications. Some of the qualitative features were at least partially known
before, see, e.g., [144]. In [142, 43, 98], the analysis of [99] is refined and
emphasis is put not only on the computation of the drift velocity, but also on
the effective diffusion constant. Interestingly, the authors of [175] favorably
evaluate the possibility of using tilted ratchet mechanisms to implement
separation of two types of filaments of DNA.

This phenomenon is also related to Parrondo’s paradox in game theory.
Let us consider the following coin-tossing example: Let Ct be the player’s
capital at time t and ǫ > 0.

• Winning a game earns us 1e and losing requires us to surrender 1e.

• In Game A, we toss a biased coin, Coin 1, with a probability of winning
P1 = 1/2− ǫ.

• In Game B, we first determine if Ct is a multiple of 3.

– If it is, we toss a biased coin, Coin 2, with a probability of winning
P2 = 1/10− ǫ.
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– If it is not, we toss another biased coin, Coin 3, with a probability
of winning P3 = 3/4− ǫ.

As can be seen in Figure 2.1 both games are losing games. However, counter
to common intuition, it is possible to mix two losing games into a winning
combination, see Figure 2.1.

Figure 2.1 – Average over 50.000 runs of switching between games A and B. The
simulation was performed by playing game A a times, then game B b times, game
A a times, and so on with e = 0.005 and averaged over 50,000 runs. The notation
v = [a, b] is used for each combination. Source: S. Sinha

The simplest version of the stochastic Stokes’ drift model describes a
density f (t, x) of particles obeying to the equation

ft = ∆ f +∇ ·
[
∇ψ(x− ω t e) f

]
, x ∈ R

d , t > 0 . (2.1.1)

where ψ(y + k) = ψ(y) for any (y, k) ∈ Rd × Zd, and will simply write
ψ as a function of y ∈ Td ≈ [0, 1)d. Furthermore ω ∈ R is a constant
and e ∈ Rd is a fixed vector, such that |e| = 1 . With these notations,
ψ(x − ω t e) represents a periodic potential in Rd moving with a constant
speed ω in the direction of the vector e , that is a traveling potential. At
t = 0, f (0, ·) = f0 is a given smooth probability distribution, so that, by
conservation of mass,

∫
R
f (t, x) dx = 1 for any t ≥ 0. The question we

investigate in this paper is the behavior of f for large values of t.

2.2 Transport phenomenon

A first case, which is particularly simple, is the case ω = 0 . Let R(t) :=√
1+ 2 t . The function u defined by the change of coordinates

f (t, x) =
1

Rd(t)
u

(
log R(t),

x

R(t)

)
,

is a solution of




ut = ∆u+∇ · (x u) + R∇ · (u∇ψ(R x)) , x ∈ Rd , t > 0 ,

u(t = 0, x) = f0(x) , x ∈ Rd ,
(2.2.1)
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where, in the new variables,

R(t) = et ∀ t > 0 .

For large values of t , we can formally regard e = 1/R(t) as a small param-
eter and it is reasonable to expect that the behavior of the solution is well
described by (2.2.1) with φ = ψ in the limit e → 0+ .

When ω > 0 , Equation (2.2.1) is also going to play a role in the large
time behavior of the solutions of (2.1.1), but the description is not as simple
as above. The combination of the drift, which is time-periodic, and of the
diffusion induces a motion of the center of mass. The speed of displacement
is known as the ballistic velocity, or drift velocity,. On large time scales, the
constant drift term, ω f̃x, is responsible for a displacement of the center of
mass, but the solution is also spreading on a large number of periods of ψ.
It is therefore natural to expect that the speed of the center of mass is de-
termined by the flux of mass through one cell of period ℓ = 1, supplemented
with periodic conditions. This can be made rigorous by the following folding
transformation as follows.





gt = ∆g+∇ ·
(
g∇ψ(x− ω t e)

)
, x ∈ Td , t > 0 ,

g(t = 0, x) = g0(x) = ∑
k∈Z

f0(x+ k), x ∈ Td ,
(2.2.2)

for which, by linearity of the equations, we obtain

g(t, x) = ∑
k∈Zd

f (t, x+ k) ∀ (t, x) ∈ R
+ × T

d .

Consider now a solution f of (2.1.1). Assume for simplicity that
∫

Rd f0 dx =
1 . Then

∫
Rd f (t, ·) dx = 1 for any t ≥ 0 and we can define the position of

the center of mass by

x̄(t) :=
∫

Rd
x f (t, x) dx .

An integration by parts shows that

dx̄

dt
=
∫

Rd
x ft dx = −d

∫

Rd
∇ψ(x− ω t e) f (t, x) dx

= −d ∑
k∈Z

∫

Td
∇ψ(x− ω t e) f (t, x + k) dx

= −d
∫

Td
∇ψ(x− ω t e) g(t, x) dx

∼
t→∞

−d
∫

Td
∇ψ(x− ω t e) g∞(t, x) dx .

If we define

cω = −d
∫ 1

0
dt
∫

Td
∇ψ(x− ω t e) g∞(t, x) dx , (2.2.3)

then a more careful analysis of (2.2.2) shows that dx̄
dt − cω converges to 0 at

an exponential rate. Hence

x̄(t) ∼ cω t as t → ∞ ,
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and it makes sense to introduce the change of coordinates

f (t, x) =
1

Rd
u

(
log R,

x− cω t e

R

)
, (2.2.4)

with R(t) =
√
1+ 2 t as above, in order to understand the large time be-

havior of f . In the new variables, the equation is

ut = ∆u+∇ (x u) + R ∇ ·
[
u
(
cω e+∇ψ

(
R x+ 1

2 (R
2 − 1) (cω − ω) e

)) ]
.

At this point, we shall assume that d = 1 to simplify the discussion. The
higher dimensional case is similar. The time-periodic solution g∞ can also
be written as a function of x− ω t (here e = 1) since the solution is unique
and can be obtained as follows. The function g∞(t, x) = gω(x− ω t) solves
the equation

(gω)xx +
(
(ω + ψ′) gω

)
x
= 0 , (2.2.5)

with periodic boundary conditions. If we take a primitive of (2.2.5), we get
that

x 7→ (gω)x + (ω + ψ′) gω =: A(ω) (2.2.6)

is constant. By taking one more integral of (2.2.6), using the normalization

condition
∫ 1
0 gω(x) dx = 1 and the definition of cω = cω(ω) given by (2.2.3),

we get that

ω − cω(ω) = ω
∫ 1

0
gω dx+

∫ 1

0
ψ′ gω dx = A(ω) .

Some elementary but tedious computations show that cω(ω) < ω ,
limω→0+ cω(ω)/ω > 0 , cω(ω) is positive for large values of ω , and
limω→∞ cω(ω) = 0. We will now illustrate our results in the case of
ψ(x) = sin(2πx) (sinusoidal case) and of an asymmetric smooth sawtooth
potential, see Fig. 2.2. Notice that in the tilted ratchet point of view, the cur-
rent is A(ω). It is actually very interesting to compare cω with the asymp-
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Figure 2.2 – Plots of the potential ψ in the sinusoidal case (left) and in the asym-
metric smooth sawtooth potential (right), which is computed here as a truncated
Fourier series of x 7→ x/x0 if x < x0 and x 7→ (1− x)/(1− x0) if x > x0, with
x0 = 0.2.

totic drift velocity c0ω when there is no diffusion. See [132] for similar consid-
erations. The solutions of ft =

(
ψ′(x− ω t) f

)
x
are easily solved by consid-

ering the equations of the characteristics, dx
dt = −ψ′(x(t)−ω t). Let y(t) :=

x(t) − ω t and consider the corresponding equation
dy
dt = −ψ′(y)− ω. For

ω > 0, there are two main regimes:
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(i) Case 0 < ω < max[0,1] ψ′: any solution t 7→ y(t) converges to a local
minimum of the function y 7→ ω y− ψ(y), and so

c0ω := lim
t→∞

x(t)

t
= ω .

(ii) Case ω > max[0,1] ψ′: we observe that τ(ω) :=
∫ y(t)+1

y(t)
dx

ω+ψ′(x) does

not depend on t, and so y(t) ∼ −t/τ(ω) as t → ∞. It follows that

τ(ω) =
∫ 1

0

dx

ω + ψ′(x)
and c0ω := lim

t→∞

x(t)

t
= ω − 1

τ(ω)
.

A characteristic property of the curve ω 7→ c0ω is the critical tilt: the dis-
continuity of the derivative separates the two regimes. The curve ω 7→ cω

is a smoothed version of ω 7→ c0ω. When ψ is not symmetric, asymmetry
effects are present when ω is replaced by −ω, as shown in the case of the
asymmetric smooth sawtooth potential. See Fig. 2.3.
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Figure 2.3 – Plots of cω and c0ω as functions of ω in the sinusoidal case (left) and
in the case of the asymmetric smooth sawtooth potential (right, in logarithmic
coordinates: ω 7→ log(1+ cω) for ω > 0). In the sinusoidal case, the symmetry
is reflected by the fact that c−ω = −cω (values corresponding to ω < 0 are not
represented). This is not true in the sawtooth case.

Theorem 2.2.1 (Main results on cω) For any ω > 0, we have cω < ω,

lim
ωց0

cω

ω
= 1− 1

∫ 1
0 eψ dz

∫ 1
0 e−ψ dz

and lim
ωր∞

cω = 0 .

2.3 The diffusive traveling front

After rescaling, the equation for u is

ut = uxx + (x u)x + R
[(

ψ′(R x− 1
2 (R

2 − 1) A(ω)
)
+ cω(ω)

)
u
]
x

(2.3.1)

with R(t) = et.
Let us continue our heuristic approach by introducing a two-scale func-

tion U. Since f in (2.2.4) only depends on x− cω t e, only one variable, z, is
needed at small scale. Let

u(t, x) = U(t, x; z) with z := R x− 1
2 (R

2 − 1) A(ω) ,
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in the large R = et limit. Using the chain rule, we see that U should be
solution of

Ut = R2
(
Uzz + AUz +

[(
ψ′(z) + cω

)
U
]
z

)
+ R

(
2Uz +

(
ψ′(z) + cω

)
U

)

x

+
(
Uxx + (xU)x

)
.

Introduce the two-scale function U such that

u(t, x) = U(t, x; z)

and make the ansatz

U = U0 + R−1
U1 + R−2

U2

The equation of U can be written R2 L0 U+ R L1 U+ L2 U = 0 where

L0 U := Uzz +
(
(ω + ψ′(z))U

)
z

L1 U :=
(
2Uz + (ψ′(z) + cω)U

)

x

L2 U := Uxx +
(
xU
)
x
− Ut

• At order R2: we find L0 U0 = 0 that is solved by U0(t, x; z) =
gω(z) h(t, x), where recall that gω is the unique 1-mean valued, 1-periodic
solution of

(gω)xx +
(
(ω + ψ′) gω

)
x
= 0 .

• At order R1: L0 U1 + L1 U0 = 0 gives U1(t, x; z) = g
(1)
ω (z) hx(t, x),

where g
(1)
ω is a solution of

(g
(1)
ω )zz +

((
ω + ψ′) g(1)ω

)
z
= −2 (gω)z −

(
ψ′ + cω

)
gω .

For the solvability condition we recover the definition of cω.

• At order R0: we obtain L0 U2 + L1 U1 + L2 U0 + R−1 (L1 U2 + L2 U1) +
R−2 L2 U2 = 0.
And the solvability condition is:

∫ 1
0 (L1 U1 + L2 U0) dz = 0 which leads to

ht = κω hxx + (x h)x where κω := 1+
∫ 1

0
ψ′(z) g(1)ω (z) dz > 0 .

Remind that by classic entropy method, if
∫

R
h(0, x) dx = 1, then h

converges exponentially fast to

h∞(x) :=
e−|x|2/(2κω)

√
2πκω

Summarising, we have formally found that

u(t, x) = U(t, x; z) =

(
gω(z)−

x

κω R
g
(1)
ω (z)

)
h∞(x)

(
1+ o(1)

)
.
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By undoing the change of variables, we obtain

f (t, x) =

[
gω(x− ω t)− x− c(ω) t

κω

√
1+ 2 t

g
(1)
ω (x− ω t)

] h∞

(
x−c(ω) t√

1+2 t

)

√
2π (1+ 2 t)

(
1+ o(1)

)

Define

u∞(x, t) := gω(z)
e−

|x|2
2κω√

2πκω

where gω is the unique 1-mean valued, 1-periodic solution of

(gω)zz +
(
(ω + ψ′) gω

)
z
= 0 .

The function u∞ therefore describes the asymptotic regime of u, in
self-similar, traveling variables. In the original variables, f∞(t, x) =
1
R u∞

(
log R, x−cω t

R

)
with R(t) :=

√
1+ 2t describes the intermediate asymp-

totics of the solution of (2.1.1). It is highly oscillatory, with an effective

profile given by F∞(t, x) := 1
R(t)

h∞

(
x−cω t
R(t)

)
, which is the diffuse, traveling

front. See Fig.reffig3.
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Figure 2.4 – In the sinusoidal case, the limiting function u∞ is shown on the left,
in self-similar-variables, while on the right, the diffuse, traveling front F∞ is plotted
in the original variables for t = 0, 1, . . . 20. Here we take ω = 5 and (left) u∞(t, x)
is shown as a function of x for t = 2.

The effective diffusion coefficient κω is a global, macroscopic quantity,
which should not be confused with the local effective diffusion constant
which appears in some papers, see [137, 146]. It plays two roles:

(1) The effective diffusion coefficient κω determines the variance of the
Gaussian function h∞ and therefore controls the size of the traveling font.
A pure diffusion ft = fxx would give rise to a self-similar Gaussian function

(4πt)−1/2 e−|x|2/(4t), and so κω has to be compared with 1. When κω < 1,
the front is more peaked than what we would get from a pure diffusion, while
on the opposite, κω > 1 corresponds to a front which is diffusing faster.

(2) In (2.3.2), the functional inequality:

∫

R

v log

(
v

u∞

)
dx ≤ C(t)

∫

R

∣∣∣∣
vx
v

− (u∞)x
u∞

∣∣∣∣
2

v dx ,

holds for any function v, for some C(t) > 0 such that limt→∞ C(t) = τ/2.
We conjecture that the optimal possible value of τ is τ = 2κω/κ0, at least
for a large class of potentials ψ, but the question is still mathematically
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open. Now, if κω/κ0 ≥ 1, then τ = 2κω/κ0 governs the rate of convergence
in (2.3.2). If κω/κ0 < 1, other terms of order e−t, which means O(1/

√
t) in

the original variables, would eventually dominate the convergence process.
This last case is never observed numerically.

Theorem 2.3.1 (Main results on κω) We have

lim
ω→0

κω = κ0 =

(∫ 1

0
eψ dz

∫ 1

0
e−ψ dz

)−1

< 1

and
lim

ω→∞
κω = 1+ .

As a consequence, ω 7→ κω has a maximum, which is strictly bigger than 1,
see Fig. 2.5.
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Figure 2.5 – Plot of the diffusion coefficient κω as a function of ω in the sinusoidal
case (left) and in the smooth sawtooth potential case (right).

We will able to prove by entropy methods that

Theorem 2.3.2 (Convergence with rate) For any δ > 0, there is Cδ = Cδ(ψ, f0) > 0, such
that ∫

R

|u(t, x)− u∞(t, x)| dx ≤ Cδ e
−t/τ , ∀t ≥ 0

where
τ ≥ 2κω/κ0 + δ ,

and κ0 =
(∫ 1

0 eψ dz
∫ 1
0 e−ψ dz

)−1
.

Before discussing the entropy method and the associated homogeneised
inequality let us discuss the physical parameters.

2.3.1 Measuring the efficiency of coherent transport

Measuring the efficiency of Brownian motors is a tricky issue. It requires
specific tools. We may refer for instance to [133] for a recent reference
in this direction, with some numerical simulations. Also see [122, Fig. 2]
for an early result in the context of the stochastic Stokes’ drift, [208] for
recent simulations corresponding to a simple model, and [100] for detailed
considerations on transport coherence and values of the Péclet number. In
the very simple model considered in this paper, there are only few available
parameters. As explained in [100, 208], the Péclet number Pe describes the
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competition between the directional drift and the stochastic diffusion of the
particle. It is defined, with our notations, by

Pe :=
cω ℓ

κω

where ℓ is a typical length scale. One can easily check that this is a dimen-
sionless number. Larger Pe number means that the drift predominates over
diffusion and there is high transport coherence. In other words, the effective
distribution is transported far away from the original data and stays peaked
around its maximum value, at least when the variance is measured in the
same units as the displacement of the center of mass.

In [100, 208], the typical length scale is the period of the potential ψ,
that is ℓ = 1 in our notations, and it is suggested that a criterion for efficient
transport, preserving simultaneously the coherence of the distribution and
optimizing its displacement, is Pe > 2. This criterion does not make much
sense for a study of the large time behavior, as the variance of the distribu-
tion, which is of diffusive nature and grows like

√
κω t, is always dominated

by the displacement, which is linear and of the order of cω t, when t is large.
To remedy this, we can suggest the following analysis. We may first use the
Péclet number to define a characteristic length scale

L :=
ℓ

Pe
.

Recall that with our notations, ℓ = 1. The value of L corresponds to the
displacement of the center of mass for which this displacement is equal to the
variance of the effective distribution. If the effective distribution is originally
centered at zero and evolves according to

ht = κω hxx + (x h)x , (2.3.2)

up to a translation at constant velocity cω, this occurs for t = T such
that

√
κω T = cω T = L, and at that time, the percentage of the initial

distribution which is still in the x < 0 region is given by
∫ 0
−∞

exp
[
− |x−

L|2/(2κωT)
]
dx = 1

2Erf(1/
√
2) ≈ 16%. See Fig 2.6.

Figure 2.6 – Definition of L and T can be understood as follow. If one starts with a
Gaussian distribution centered at x = 0 and evolve it according to (2.3.2), T is the
time for which the solution (centered at L in the above plot) has a variance equal
to L. The grey area represents 16% of the area below the solution at time t = T.

Now we may observe that in the above discussion, we have also intro-
duced a characteristic time scale T = κω/c

2
ω which is related with the Péclet



54 Chapter 2. On the Stochastic Stokes’ drifts

number by the formula

T =
ℓ

cω Pe
.

It turns out that the stochastic Stokes’ drift has a natural time scale, which
is the time period of the potential T0 := ℓ/ω. Hence it is meaningful to
consider

N :=
T

T0
=

ω κω

ℓ c2ω
=

ω

cω Pe
,

which measures the time in takes to achieve the equality
√

κω T = cω T in
natural units, and to define the efficiency of the transport by

E :=
1

N
=

ℓ c2ω
ω κω

= Pe
cω

ω
.
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Figure 2.7 – Plot of the efficiency E as a function of ω in the sinusoidal case (left)
and in the smooth sawtooth potential case (right). We observe that in both cases,
the maximum is extremely well defined. Dots (left) correspond (ω, E(ω)) taking
the values (1, 0.210), (3, 0.385), (25, 0.021) and will be reused in Fig. 2.8.
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Figure 2.8 – The effective profile F∞ is represented for ω taking the values 1, 3 and
25, which correspond to the dots in Fig. 2.7 (left). Curves are plotted for ω = 1
(left), 3 (center), 25 (right) for t = 0, 5, 10, etc, as long as cω t ≤ 70. The curve
corresponding to ω = 3 (center) is the most efficient, in the sense that cω t ≈ 70 is
reached for a smaller value of t than for the other curves and the solution is kept
more peaked. Computations are done in the case of the sinusoidal potential.

The strength of our approach is that by our asymptotic expansion, we
have been able to identify κω and we have a formula which allows us to plot
it precisely, see Fig. 2.5. The shapes of the curves ω 7→ cω and ω 7→ κω

combine well to define an optimum of the efficiency, characterized by the
dimensionless number E, which reflects the idea of coherent transport.

2.3.2 Mobility and Einstein’s relation

In the tilted ratchet picture, ω is proportional to the applied force F:

ω =
1

η
F
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where η is the viscous friction coefficient, has the dimension of the inverse
of a time, and takes value 1 in our units. The mobility is defined by

µω :=
cω

F
=

cω

η ω

so we can write
E = Pe

cω

ω
= η µω Pe .

It has been argued that Einstein’s relation

κω

µω
= kB Θ

defines a notion of effective temperature Θ. Here kB is Boltzmann’s constant.
As can be seen on Fig. 2.9, Θ is not constant in terms of ω.
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Figure 2.9 – Plot of the mobility µω (left) and the effective temperature Θ (mea-
sured in units of 1/kB) of the tilted Brownian ratchet for values of ω ranging
between 0 and 30 in the sinusoidal case.

2.4 Homogeneisation of functional inequalities

In Rd ∋ x, define

µ0(x) := Z−1
0 e−|x|2/2 where Z0 = (2π)d/2

and, for any ε > 0,

µε(x) := Z−1
ε e−ψ(x/ε) µ0(x) where Zε =

∫

Rd
e−ψ(x/ε) µ0(x) dx .

For any ε ≥ 0, to the measures (µε)ε≥0, we associate the optimal Poincaré
constant

C(2)
ε := inf∫

Rd u dµε = 0
0 6= u ∈ H1( dµε)

∫
Rd |∇u|2 dµε∫

Rd |u|2 dµε
.

We can also define the optimal constant in the logarithmic Sobolev inequality
by

C(1)
ε := inf

∇u 6= 0 dµε a.e.
u ∈ H1( dµε)

∫
Rd |∇u|2 dµε

∫
Rd |u|2 log

(
|u|2∫

Rd |u|2 dµε

)
dµε
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and the optimal constant in a family of generalised Poincaré inequalities

C(p)
ε := (p− 1) inf

∇u 6= 0 dµε a.e.

u ∈ H1( dµε)

∫
Rd |∇u|2 dµε∫

Rd |u|2 dµε −
(∫

Rd |u|2/p dµε

)p

where p ∈ (1, 2) is a parameter. Then we prove

Theorem 2.4.1 (Constants in the homogenisation limit) Assume that ψ is a C2 function in
Td := [0, 1)d

∀p ∈ (1, 2], lim
ε→0+

C(p)
ε = K C(p)

0 and lim
ε→0+

C(1)
ε ∈ [k C(1)

0 ,K C(1)
0 ]

where
k := exp

(
−‖ψ‖

LL∞ (Td)(Rd)

)

and

K :=
1∫

Td eψ(y) dy
∫

Td e−ψ(y) dy
≤ 1 .

2.5 Idea of the proof

The main tools of our approach are variational. We perform a detailed
analysis of minimizing sequences. The difficulty comes from the fact that
equality cases are sometimes achieved only by trivial functions, e.g. constant
functions in the case of a Gaussian weight. E. Carlen and M. Loss proved in
[63] that equality in the Euclidean logarithmic Sobolev inequalities, that is
for Lebesgue’s measure on Rd, occurs for and only for Gaussian functions,
which make simultaneously the entropy and the energy terms equal to zero.
In some cases, this can also be seen as a consequence of the Bakry-Emery
method, see [195], but this is not the case in the present framework. Hence,
one has to carry a detailed analysis of the convergence and handle possible
lacks of compactness.

Although not surprising from the point of view of homogenization theory,
our estimates differ by several aspects of standard problems which have been
abundantly treated in the literature. For instance, we deal with non compact
domains, in functional spaces with oscillatory measures and determine sharp
constants even in cases where there is no nontrivial solution of the Euler-
Lagrange equations associated to the corresponding variational problem. As
far as we know, tools of homogenization theory have not been used much
in the framework of logarithmic Sobolev inequalities and semi-group theory.
We think that this is an extremely interesting field with applications of large
interest.

2.5.1 The entropy method

For any p ∈ (1, 2], introduce the entropy functional

E
(p)
ε [u] :=

1

p− 1

∫

Rd

[(
u

uε
∞

)p

− 1− p

(
u

uε
∞

− 1

)]
uε

∞dx
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and the entropy production:

I
(p)
ε [u] := p

∫

Rd

(
u

uε
∞

)p−2 ∣∣∣∣∇
(

u

uε
∞

)∣∣∣∣
2

uε
∞dx

If uε is a solution then

d

dt
E
(p)
e [uε(t, ·)] = − I

(p)
ε [uε(t, ·)] .

Recall the Csiszár-Kullback inequality: there exists a constant C > 0
such that

‖uε(t, ·)− uε
∞‖Lp(Rd ,(uε

∞)
1−pdx) ≤ C E

(p)
ε [uε(t, ·)]

Lemma 2.5.1 (Entropy/entropy production inequality) If we assume that M = 1 then

4

p
C(p)

ε E
(p)
ε [u] ≤ I

(p)
ε [u]

Upper estimate Define ue(x) = x · e with e ∈ Sd−1.

lim
ε→0

∫

Rd
|ue |2 dµε = lim

ε→0

∫

Rd
|∇ue |2 dµε = 1 ,

lim
ε→0

∫

Rd
|ue |2/p dµε =

21/p√
π

Γ

(
1

2
+

1

p

)
,

lim
ε→0

∫

Rd
|ue |2 log |ue |2 dµε = log 2− 2+ γ ≈ −0.729637

where γ ≈ 0.577216 is Euler’s constant. The function

κ(p) :=
p− 1

1− 21/p√
π

Γ
(
1
2 +

1
p

) , p ∈ (1, 2) ,

is an increasing function on (1, 2) such that limp→1+ 1/κ(p) = − log 2+

2− γ ≈ 1.37054 and 1/κ(2) = 1−
√
2/π ≈ 4.94767.

Lemma 2.5.2 (Upper estimate) Assume that ψ ∈ L∞(Td). For any p ∈ [1, 2]

lim
ε→0

C(p)
ε ≤ κ(p) .

Lower estimate Assume that for some probability measure dµ, the fol-
lowing convex Sobolev inequality holds
∫ [

ϕ(u)− ϕ(ū)− ϕ′(ū)(u− ū)
]
dµ ≤ Cϕ

∫
ϕ′′(u)|∇u|2 dµ ∀ u ∈ H1(dµ) .

Here ū :=
∫
u dµ. Assume that dµ̃ there exist constants a, b ∈ R such that

e−b dµ ≤ dµ̃ ≤ e−a dµ µ a.e.

Lemma 2.5.3 (Holley-Stroock, 1987) If ϕ is a strictly convex C3 function, then for all
u ∈ H1(dµ)

∫ [
ϕ(u)− ϕ(ũ)− ϕ′(ũ)(u− ũ)

]
dµ̃ ≤ eb−a Cϕ

∫
ϕ′′(u) |∇u|2 dµ̃ .

where ũ :=
∫
u dµ̃/

∫
dµ̃.
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Applied to the case ϕ(u) = up−1−p(u−1)
p−1 .

Corollary 2.5.4 (Lower estimate) With the above notations, if ψ is bounded on Td, then
for any p ∈ [1, 2],

C(p)
ε ≥ p

2
e
−‖ψ‖

L∞(Rd) .

The Poincaré inequality We first need to remind two standard results
of homogeneisation:

Proposition 2.5.5 (Two-scale convergence (L2-case)) Let Ω be an open set in Rd. If (uε)ε>0

is a bounded sequence in L2(Ω), then there exists a sub-sequence of (uε)ε>0,
still denoted by (uε)ε>0, and a function u0 ∈ L2(Ω × Td) such that

lim
ε→0

∫

Ω
uε(x) ϕ

(
x,

x

ε

)
dx =

∫ ∫

Ω×Td
u0(x, y) ϕ(x, y) dx dy ,

for all smooth ϕ which is periodic in y. We say that uε two-scale converges
to u0. Moreover, (uε)ε>0 weakly converges in L2(Ω) to

u∗(x) :=
∫

Td
u0(x, y) dy .

Proposition 2.5.6 (Two-scale convergence (H1-case)) Let Ω be an open set in Rd and con-
sider a sequence (uε)ε>0 which weakly converges to u∗ in H1(Ω). Then there
exist a sub-sequence of (uε)ε>0, still denoted (uε)ε>0, which two-scale con-
verges to u∗. Moreover, there exists a function u1 ∈ L2

(
Ω,H1(Td)

)
such

that (∇uε)ε>0 two-scale converges to (x, y) 7→ ∇xu∗(x) +∇yu1(x, y).

Now we can prove the Poincaré inequality.

For any ε > 0, let uε be a non-trivial minimiser to C(2)
ε such that∫

Rd uε dµε = 0,
∫

Rd |uε|2 dµε = 1 and

−∇ ·
(
e−

1
2 |x|2−ψ(x/ε)∇uε(x)

)
= C(2)

ε uε(x) e
− 1

2 |x|2−ψ(x/ε) .

Let ϕ ∈ D(Rd) and ϕ1 ∈ D(Rd,C∞(Td)). We have

∫

Rd
∇xuε

[
∇xϕ(x) + ε∇xϕ1

(
x,

x

ε

)
+∇yϕ1

(
x,

x

ε

)]
dµε

= C(2)
ε

∫

Rd
uε

[
ϕ(x) + ε ϕ1

(
x,

x

ε

)]
dµε

Taking the limit ε → 0+, we obtain a two-scale homogenised equation:

∫ ∫

Rd×Td

[
∇xu∗(x)+∇yu1(x, y)

][
∇xϕ(x)+∇yϕ1 (x, y)

]
e−

1
2 |x|2−ψ(y) dx dy

= K(2)
0

∫ ∫

Rd×Td
u∗(x) ϕ(x) e−

1
2 |x|2−ψ(y) dx dy .

where K(2)
0 := limε→0+ C

(2)
ε .

We test the above equation with ϕ = 0:

∇y ·
[
e−ψ(y)

(
∇yu1(x, y) +∇xu∗(x)

) ]
= 0 ,



2.6. Convergence with rate 59

Exactly as in the introduction, this amounts to write that

u1(x, y) = ∇xu∗(x) · w(y)

where w = (wj)
d
j=1 is the solution to the cell equation, i.e.

∇yu1(x, y) =

[
eψ

∫
Td eψ(y) dy

− 1

]
∇xu∗(x) .

We test now the above equation with ϕ = u∗:

∫

Rd

|∇xu∗|2∫
Td eψ(y) dy

dµ0 = K(2)
0

∫

Rd
|u∗(x)|2 dµ0 .

Observe that
∫

Rd u∗ dµ0 = limε→0+

∫
Rd uε dµε = 0.

Altogether this proves that

K(2)
0 ≥ C(2)

0∫
Td eψ(y) dy

= K C(2)
0 .

If we use ũε(x) := ue(x) + ε∇xue(x)w
(
x
ε

)
we find that

K(2)
0 ≤ lim

ε→0+

∫
Rd |∇ũε|2 dµε∫

Rd |ũε|2 dµε −
(∫

Rd ũε dµε

)2 = K C(2)
0 .

2.5.2 Generalised Poincaré inequalities

Using similar arguments we can prove

Proposition 2.5.7 Let ψ be a continuous function on Td and take p ∈ (1, 2), ε > 0. Then,

with the above notations, either C(p)
ε ≤ p

2 C
(2)
ε is achieved by some non trivial

function, or C(p)
ε = p

2 C
(2)
ε is not achieved by any non trivial function.

2.6 Convergence with rate

Let us now come back to our analysis. Let

U(t, x; z) :=

1

Z(t)

[
gω(z) h(t, x) +

1

R
g
(1)
ω (z) hx(t, x) +

1

R2
V
(
1
2 (R

2 − 1), R x; z
)]

where gω , g
(1)
ω and h are defined as above. The coefficient Z(t) is deter-

mined in such a way that, for any t > 0,
∫

R

U(t, x; R x− 1
2 (R

2 − 1) A(ω)) dx = 1

and V is a solution which cancels the R2-term

Vt = Vxx + Vzz + ω Vz +
(
ψ′

V
)
z
+
(
2Vz +

(
ψ′ + cω

)
V

)

x

+
[
(1− κω) gω + 2 (g

(1)
ω )z +

(
ψ′ + cω

)
g
(1)
ω

]
hxx .
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Denoting by F the error we find

−R2 L0U − R L1U − L2U =: − Ż

Z
U+

1

Z
F .

Let us define

u∞(t, x) := U
(
t, x; et x− 1

2 (e
2t − 1) A(ω)

)

and f(t, x) := F
(
t, x; et x− 1

2 (e
2t − 1) A(ω)

)
.

Let u be a solution of (2.3.1). Then

d

dt

∫

R

u log

(
u

u∞

)
dx = −

∫

R

∣∣∣∣
(
log

(
u

u∞

))

x

∣∣∣∣
2

u dx+
Ż

Z
+ e−t

∫

R

f
u

u∞

dx

Proposition 2.6.1 (Logarithmic Sobolev inequality) There exists a function t 7→ C(t), with
limt→∞ C(t) = k/2, which is positive, finite for any t > 0, such that, for
any u ∈ L1(R) ,

∫

R

u log

(
u

u∞

)
dx ≤ C(t)

∫

R

∣∣∣∣
(
log
( u

u∞

))

x

∣∣∣∣
2

u dx .

where κω/K ≤ k ≤ κω max[0,1] gω ·
(
min[0,1] gω

)−1
where K−1 =

∫ 1
0 gω dz

∫ 1
0 g−1

ω dz, and limω→0K/κω = 1 .

We compute

lim sup
t→+∞

Ż(t)

Z(t)
< C e−t .

Next we obtain the result if we assume that u is a solution of (2.3.1)

lim sup
t→+∞

∫

R

|x|4u(t, x) dx < ∞ .

Such a restriction was shnown not to be necessary in a recent work [83].

2.7 Concluding remarks

Our results are based on a very simple model, but show how to compute
analytically and numerically various quantities which are not easy to ob-
tain by direct Monte-Carlo simulations. The main difficulty comes from the
oscillatory behavior of the potential, which is very clear in self-similar vari-
ables, and results in highly non-trivial attractors. Mathematically, this can
be handled with the tools of homogenization theory, which provide an equa-
tion for the macroscopic profile and formulae for the two main parameters,
the speed cω of the center of mass (or drift velocity) and the effective dif-
fusion coefficient κω. This should not hide a major mathematical difficulty:
the time t is not independent of the small parameter in the homogenization
approach, namely 1/

√
t, in the original variables. Moreover, several length

scales have to be taken into account. The position of the center of mass is
of the order of t, while the typical size of the front grows like

√
t. Typical

relaxation rates are exponential at small scale, but of the order of t−1/τ or
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1/
√
t when measured globally. Hence asymptotic expansions are not at all

easy to handle even at a formal level and quite hard to justify. The way
out for such difficulties is the homogenized logarithmic Sobolev inequality,
with its own difficulties. The inequality anyway has the very nice feature
of connecting the rates of convergence with κω , something which definitely
should be further investigated from a numerical point of view.

However, knowing cω and κω accurately is a major step in the under-
standing of the asymptotic behavior of the solutions of the stochastic Stokes’
drift. It gives solid grounds to a notion of effective diffusion. A striking
consequence is that it gives a new criterion for measuring the efficiency of
coherent transport using the number E.

We hope that our contribution will contribute to more realistic models
from a theoretical point of view and will be used for benchmarking the
numerous simulations that are being performed mostly with Monte-Carlo
approaches.

Concerning the functional inequalities, the case p = 1 corresponding to
the logarithmic Sobolev inequality is not completely understood. As far as

we know, it is an open question to determine whether lime→0+ C
(1)
e = K C(1)

0

or not.
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3Asymptotics of the fast

diffusion equation

W
e consider non-negative solutions of the fast diffusion equation ut =

∆um with m ∈ (0, 1), in the Euclidean space Rd, d ≥ 3, and study
the asymptotic behaviour of a natural class of solutions, in the limit cor-
responding to t → ∞ for m ≥ mc = (d − 2)/d, or as t approaches the
extinction time when m < mc. For a class of initial data we prove that the
solution converges with a polynomial rate to a self-similar solutions, for t
large enough if m ≥ mc, or close enough to the extinction time if m < mc.
Such results are new in the range m ≤ mc where previous approaches fail.
In the range mc < m < 1 we improve on known results.

The proof relies on a systematic study of weighted Poincaré type inequal-
ities which are closely connected with Hardy type inequalities and establish
the form of the optimal constants in some cases. Such inequalities are then
used to relate entropy with entropy production.

This chapter is a summary of:
• M. Agueh, A. Blanchet, and J. A. Carrillo, Large time asymp-

totics of the doubly nonlinear equation in the non-displacement con-
vexity regime, Journal of Evolution Equations, 10 (2010), pp. 59–84.

• A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, and J.-

L. Vázquez, Hardy-Poincaré inequalities and applications to nonlin-
ear diffusions, C. R. Math. Acad. Sci. Paris, 344 (2007), pp. 431–436.

• , Asymptotics of the fast diffusion equation via entropy estimates,
Archive for Rational Mechanics and Analysis, 191 (2009), pp. 347–385.
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3.1 Introduction

We study the Cauchy problem for the fast diffusion equation posed in the
whole Euclidean space, that is, we consider the solutions u(τ, y) of

{
∂τu = ∆um

u(0, ·) = u0 ,
(3.1.1)

where m ∈ (0, 1) (which means fast diffusion) and (τ, y) ∈ (0, T)× Rd for
some T > 0. We consider non-negative initial data and solutions. Existence
and uniqueness of weak solutions of this problem with initial data in L1

loc(R
d)

was first proved by M.A. Herrero and M. Pierre in [115]. In the whole space,
the behaviour of the solutions is quite different in the parameter ranges
mc < m < 1 and 0 < m < mc, the critical exponent being defined as

mc :=
d− 2

d
.

Note that mc > 0 only if d ≥ 3, so that the lower range does not exist
for d = 1, 2. For m > mc the mass

∫
Rd u(y, t) dy is preserved in time if

the initial datum u0 is integrable in Rd. Besides, non-negative solutions are
positive and smooth for all x ∈ Rd and t > 0. On the contrary, solutions
may extinguish in finite time in the lower range m < mc, for instance when
the initial data is in Lp∗(Rd) with p∗ = d (1 − m)/2: then there exists a
time T > 0 such that

lim
τրT

u(τ, y) = 0 .

Many computations are however similar in both ranges, from an algebraic
point of view. We refer to the monograph [198] for a detailed discussion
of the existence theory and references to the subject. The extension to
exponents m ≤ 0 is also treated, and it is natural but it will not be the
focus of this paper.

In the last two decades, special attention has been given to the study
of large time asymptotics of these equations, starting with the pioneering
work of A. Friedman and S. Kamin [101] and completed in [197], when m
is in the range (mc, ∞). In those studies the class of non-negative, finite
mass solutions are considered. Asymptotic stabilisation towards self-similar
asymptotic solutions known as Barenblatt solutions is shown. For mc <

m < 1, such solutions take the form:

UD,T(τ, y) :=
1

R(τ)d

(
D+

1−m

2m

∣∣∣∣
y

R(τ)

∣∣∣∣
2
)− 1

1−m

(3.1.2)

with R(τ) :=
[
d (m −mc) (τ + T)

] 1
d (m−mc) . Here D, T ≥ 0 are free parame-

ters. While the second parameter means a time displacement and does not
play much role in the asymptotic behaviour, the first does and can be com-
puted from the mass of the solution. The value mc is the critical exponent
below which the Barenblatt solutions cease to exist in this standard form.

Here, we are mainly interested in addressing the question of the asymp-
totic behaviour of (3.1.1) when 0 < m < mc. We consider a wide class of
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solutions which vanish in finite time T and describe their behaviour as τ
goes to T. We point out that our methods allow to treat simultaneously
the ranges 0 < m < mc and mc ≤ m < 1, in which one is interested in
the behaviour of the solutions as τ goes to infinity. For this purpose, we
extend the Barenblatt solutions to the range 0 < m < mc with the same
expression (3.1.2), but a different form for R, that is

R(τ) :=
[
d (mc −m) (T − τ)

]− 1
d (mc−m) .

The parameter T now denotes the extinction time. Following [198], we shall
call such solutions the pseudo-Barenblatt solutions. Notice that Barenblatt
and pseudo-Barenblatt solutions UD,T, with D, T > 0, are such that U

p
D,T

is integrable if and only if p > p∗ (p∗ is defined above, and p∗ > 1 means
m < mc). Consistently with the above choices, for m = mc, one has to
choose R(τ) := eτ+T with free parameter T, see [198], in order to obtain
pseudo-Barenblatt solutions; then, p∗ = 1.

The family of Barenblatt (respectively pseudo-Barenblatt) solutions rep-
resents the asymptotic patterns to which many other solutions converge for
large times if m > mc (respectively as t goes to T if 0 < m < mc). We are
interested in the class of solutions for which such a convergence takes place
and in the rates of convergence. Both questions strongly depend on m. Let
us emphasise for instance that the Barenblatt solution UD,T is integrable
in y for m > mc, while the pseudo-Barenblatt solution corresponding to
m ≤ mc is not integrable. Since much is known in the case m > mc, see for
instance [72, 87] and [47, 66, 68, 71, 94, 141, 197] for more complete results,
the main novelty of our paper is concerned with the lower range m ≤ mc,
which has several interesting new features. For instance, in the analysis in
high space dimensions, that is d > 4, another critical exponent appears,

m∗ :=
d− 4

d− 2
< mc .

A key property of m∗ is that the difference of two pseudo-Barenblatt solu-
tions is integrable for m ∈ (m∗,mc), while it is not integrable for m ∈ (0,m∗].

The convergence towards Barenblatt and pseudo-Barenblatt solutions
is subtle since the solutions converge to zero everywhere. To capture the
asymptotic profiles, it is therefore convenient to rescale the solutions and re-
place the study of intermediate asymptotics by the study of the convergence
to stationary solutions in rescaled variables,

t := log

(
R(τ)

R(0)

)
and x :=

y

R(τ)
, (3.1.3)

with R as above. In these new variables, if u is a solution to (3.1.1), the
function

v(t, x) := R(τ)d u(τ, y)

solves a nonlinear Fokker-Planck type equation,

{
∂tv(t, x) = ∆vm(t, x) +∇ · (x v(t, x)) (t, x) ∈ (0,+∞)× Rd ,

v(0, x) = v0(x) x ∈ Rd .
(3.1.4)
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The initial data for (3.1.1) and for the rescaled equation (3.1.4) are related
by

u0(y) = R(0)−d v0(y/R(0)) ,

where R(0) =
[
d |m − mc| T

] 1
d (m−mc) only depends on T. In this formula-

tion, the Barenblatt and pseudo-Barenblatt solutions are transformed into
stationary solutions given by

VD(x) :=

(
D+

1−m

2m
|x|2

)− 1
1−m

(3.1.5)

where 0 < m < 1 and D > 0 is a free parameter. With a straightforward
abuse of language, we say that VD is a Barenblatt profile, including the case
m ≤ mc. The value D = 0 can also be admitted as a limit case, but the
corresponding solution is singular at x = 0. See [198] for more details. The
parameter T has disappeared from the new problem, but it enters in the
change of variables. Note that in all cases, t runs from 0 to infinity in these
rescaled variables.

3.2 Motivation

The generalised entropy functional, or free energy functional, is defined as

E [v] :=
∫

Rd

[
ϕ(v) +

1

2
|x|2 v

]
dx where ϕ(v) :=

vm

m− 1
.

It is then observed that the free energy of the Barenblatt profiles, cf. [69, 87],
becomes infinite if m ≤ m0, where m0 := d/(d+ 2) ∈ (mc,m1). In order to
avoid this difficulty, it is convenient to work with the relative entropy of v
with respect to VD defined as follows:

E [v|VD ] :=
∫

Rd

[
ϕ(v)− ϕ(VD)− ϕ′(VD) (v−VD)

]
dx .

The relative entropy is the key tool of our analysis. It is such that E [v|VD ] :=
E [v] − E [VD ] if m ∈ (m0, 1) and

∫
Rd v dx =

∫
Rd VD dx, that is for D = D∗.

The functional E [v|VD∗ ] can also be defined for m ≤ m0. By homogeneity
of ϕ, we can indeed rewrite it as

E [v|VD∗ ] :=
∫

Rd

[
ϕ(w)− ϕ(1)− ϕ′(1) (w− 1)

]
Vm
D∗ dx with w =

v

VD∗
.

This makes clear why it is well defined at least for w close enough to 1 as
|x| → ∞. The functional v 7→ E [v|VD∗ ] is convex and achieves its minimum,
0, for v = VD∗. If v is a solution of (3.1.4), the entropy production term
takes the form

− d

dt
E [v(t)|VD∗ ] = I [v(t)|VD∗ ] ,

where the functional

v 7→ I [v|VD ] :=
∫

Rd
v
∣∣∣∇ϕ′(v)−∇ϕ′(VD)

∣∣∣
2
dx

will be called the relative Fisher information. For any m ∈ [m1, 1),
E [v|VD∗ ] ≤ 1

2 I [v|VD∗ ] holds for any smooth function v and the inequality
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is nothing else than the optimal Gagliardo-Nirenberg inequality, for which
equality is achieved precisely by the Barenblatt profiles, see [87]. In such a
case,

E [v(t)|VD∗ ] ≤ E [v0|VD∗ ] e
− 2 t ∀ t ≥ 0 .

The limit case m = m1 corresponds to the critical Sobolev inequality whose
optimal form was established by T. Aubin and G. Talenti in [10, 194], while
in the limit m → 1 one recovers Gross’ logarithmic Sobolev inequality,
see [108, 87]. For m ∈ [m1, 1), F. Otto in [167] noticed that (3.1.4) can
be interpreted as the gradient flow of the free energy with respect to the
Wasserstein distance. The exponent m = m1 is the limit case for which the
displacement convexity property holds true.

Pushing the method to the case 0 < m < m1 requires the use of the
relative entropy in place of the free energy. The method applies only to a
class of initial data which have a finite relative entropy with respect to some
Barenblatt profile VD∗ and satisfy convenient bounds. Mass can be finite
in the case m ∈ (mc,m1), which was the framework of some earlier studies,
see [68, 72], or infinite if m ∈ (0,mc). Two Barenblatt profiles VD0

and VD1

have finite relative entropy, i.e. E [VD1
|VD0

] < ∞ if and only if either d ≤ 4,
or d ≥ 5 and m > m∗, m∗ = (d− 4)/(d− 2). Hence, for d ≥ 5, m = m∗ is
a threshold not only for defining the relative mass of two pseudo-Barenblatt
solutions, but also for defining their relative entropies or for the integrability
of V2−m

D∗
. Note that m∗ < mc for all d ≥ 5. The proof amounts to prove

that the relative entropy E [v|VD∗ ] decays in time and converges to 0 at an
exponential rate when t → ∞. For m > min{0,m∗}, E [v|VD∗ ] is well defined
under condition (H1’). For m < m∗, an additional restriction is required,
which is precisely the purpose of (H2’).

Our approach of course covers the case m ≥ mc and we recover some of
the results found in [68, 72]. Some of our results can also be extended to the
range m < 0, but additional technical complications arise, which are still
to be studied. In this paper, we leave apart several interesting questions,
like the precise study of the case of m = m∗ or the equation ut = ∆ log u in
dimension d ≥ 2, see e.g. [84, 85, 182, 200], which is the natural limiting
equation to study in the limit m → 0. Also see [118, 119, 120] for results
which seem closely related to ours, and [90] in the case m = (d− 2)/(d+
2). In particular we do not use the Bakry-Emery method introduced in
[12], on which the results of [69, 66, 141, 68, 72] are based. We prove
a conservation of relative mass, which allows us to remove the limitation
m > mc. Neither mass transportation techniques nor Wasserstein distance
are needed, although the approach of is not unrelated, see [44, 13, 14, 158].

3.3 Main results

For 0 < m < mc, assume that u extinguish in finite time T. The analysis of
the large time behaviour is better seen in self-similar variables: Define the
rescaled function v by

v(t, x) := Rd(τ) u(τ, y) where t := log

(
R(τ)

R(0)

)
and x :=

y

R(τ)
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with




R(τ) :=
[
d (m−mc) (T + τ)

] 1
d (m−mc) if mc < m < 1,

R(τ) := eT+τ if mc = m ,

R(τ) :=
[
d (mc −m) (T − τ)

]− 1
d (mc−m) if 0 < m < mc.

The function v is solution to the non-linear Fokker-Planck equation:




∂v

∂t
= ∇ · [∇(vm) + x v] in (0,+∞)× Rd,

v(0, ·) = v0 = R(0)du0(· R(0)) in Rd ,

(NLFP)

Remark: T disappeared from the equation but is still in the change of
variable.
Remark: The stationary solution is the (pseudo)-Barenblatt solution:

VD(x) :=

(
D+

1−m

2m
|x|2

)− 1
1−m

where D is a free parameter.
On these solutions we assume the following:

Assumption 3.3.1. (H1) v0 is a non-negative function in L1
loc(R

d) and
there exist positive constants D0 > D1 such that

VD0
(x) ≤ v0(x) ≤ VD1

(x) ∀ x ∈ R
d .

(H2) Let m∗ := (d− 4)/(d− 2). If m ∈ (0,m∗], there exist D∗ ∈ [D1,D0]
and f ∈ L1(Rd) such that

v0(x) = VD∗(x) + f (x) ∀ x ∈ R
d .

We can now state the convergence of v(t) towards a unique Barenblatt
profile:

Theorem 3.3.2 (Convergence without rate) Consider v the solution of (3.1.4) with initial
data satisfying (H1)-(H2).

lim
t→∞

‖v(t)−VD∗‖Lp(Rd) = 0 for any p ∈ (1, ∞] .

Moreover,

lim
t→∞

∥∥∥∥
v(t)

VD∗
− 1

∥∥∥∥
Lq(Rd)

= 0 for any q ∈
(
d

2
, ∞

]
.

This convergence occurs with a rate if t is large enough:

Theorem 3.3.3 (Convergence with rate) Under the assumptions of Theorem 3.3.2, if m 6=
m∗, there exists t0 ≥ 0 such that there exists a positive constant C such that

‖v(t)−VD∗‖L2(Rd) ≤ C e−λm,d t ∀ t ≥ t0 .

where λm,d is the eigen-value in the Hardy-Poincaré inequality.
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These two results can be translated back to the original problem in the
following:

Corollary 3.3.4 (Intermediate asymptotics) Under the assumptions of Theorem 3.3.2, if
m 6= m∗ and if T− τ > 0 is small, when m < mc (resp. τ large if m ≥ mc),
then there exists a positive constant C such that

‖u(τ)−UD∗ ,T(τ)‖L2(Rd) ≤ C R(τ)−λm,d− d
2

where

UD,T(τ, y) :=
1

R(τ)d

(
D+

1−m

2m

∣∣∣∣
y

R(τ)

∣∣∣∣
2
)− 1

1−m

.

As we will sketch below, these results are proved using entropy methods.
The corresponding functional inequality is:

Theorem 3.3.5 (Hardy-Poincaré inequality) Let d ≥ 1 and D > 0. If m ∈ (0, 1) and
1 ≤ d ≤ 4, or m ∈ (m∗, 1) and d ≥ 5. Define the measures

dµ := V2−m
D dx and dν := VD dx ,

where VD(x) =
(
D+ 1−m

2m |x|2
)−1/(1−m)

. To a function g ∈ L1( dµ), we
associate its average g =

∫
Rd g(x) dµ. Then there exists a positive constant

Cm,d, which does not depend on D, such that
∫

Rd
|g− g|2 dµ ≤ Cm,d

∫

Rd
|∇g|2 dν ∀ g ∈ D(Rd) , g =

∫

Rd
g dµ .

(3.3.1)
In case d ≥ 5 and m ∈ (0,m∗), we have

∫

Rd
g2 dµ ≤ Cm,d

∫

Rd
|∇g|2 dν ∀ g ∈ D(Rd) (3.3.2)

and Cm,d =
8m (1−m)

[(d−2) (m−m∗)]2
is optimal.

3.4 Idea of the proof

3.4.1 Entropy method

Let D∗ be chosen to satisfy the relative conservation of mass. To study the
convergence we introduce

w(t, x) :=
v(t, x)

VD∗(x)
∀ (t, x) ∈ (0, ∞)× R

d . (3.4.1)

Next, we rewrite Problem (3.1.4) in terms of w:




wt =
1

VD∗
∇ ·
[
wVD∗∇

(
m

m− 1
(wm−1 − 1)Vm−1

D∗

)]
in (0,+∞)× Rd ,

w(0, ·) = w0 :=
v0
VD∗

in Rd .

(3.4.2)
Remark: Under assumption (H1)-(H2), the equation is non-singular and
non-degenerate. Standard parabolic theory implies that w is bounded in
L∞(0, T; Ck(Rd)), for all k. In this framework the derivative of the relative
entropy translates into:



3.4. Idea of the proof 73

Proposition 3.4.1 (Relative entropy/entropy production) If v is solution to (3.1.4) and w =
v/vD∗ then

d

dt
F [w] = −J [w] .

Convergence to the Barenblatt The convergence is obtained by stan-
dard entropy methods that we sketch here for the convenience of the reader:
Define wτ(t, x) := w(t + τ, x). By uniform Ck(Rd)-estimates and Ascoli-
Arzelá’s theorem, (wτn)n converges to a function w∞ > 0 locally uniformly
in (t, x) as well as all the derivatives.

Under assumption (H1)-(H2), the relative entropy is bounded.

∞ > F [w(τn)]−F [w(τn + 1)] =
∫ τn+1

τn
J [w(s)] ds =

∫ 1

0
J [w(s+ τn)] ds .

Hence J [wτn ] is integrable on [0, 1] and converges to zero as n → ∞:

lim
n→∞

∫ 1

0

∫

Rd

∣∣∣∇
[(

wm−1
τn (t, x)− 1

)
Vm−1
D∗

(x)
]∣∣∣

2
wτn(t, x)VD∗(x) dx dt = 0 .

By Fatou’s lemma, w∞ satisfies

∇
[(

wm−1
∞ − 1

)
Vm−1
D∗

]
= 0 a.e. in (0, 1)× Rd

As a consequence of the conservation of relative mass w∞ = 1. By unique-
ness of the limit the whole sequence converges.

By the Lebesgue dominated convergence theorem and

|v(t)−VD∗ | ≤ max{|VD0
−VD∗ |; |VD1

−VD∗ |}

the Lp-convergence holds for any p such that the difference between two
Barenblatt solutions belongs to Lp.

Linearisation In order to better understand the asymptotic behaviour of
the solutions of (3.4.2), we linearise the equation around the equilibrium,
introducing a convenient weight. Let g be such that

w(t, x) = 1+ ε
g(t, x)

Vm−1
D∗

(x)
∀ t > 0 , ∀ x ∈ R

d , (3.4.3)

for some ε > 0, small. Substituting this expression in Equation (3.4.2) and
letting ε → 0, we formally obtain a linear equation for g,

gt = Am g where Am g := mVm−2
D∗

(x)∇ · [VD∗ ∇g] . (3.4.4)

The linear operator Am : L2(Rd,V2−m
D∗

dx) → L2(Rd,V2−m
D∗

dx) is the pos-
itive self-adjoint operator associated to the closure of the quadratic form
defined for φ ∈ C∞

c (R
d) by

I[φ] := m
∫

Rd
|∇g|2 VD∗ dx . (3.4.5)

See [86, Theorem 2.6] for more details.
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With the same heuristics, we linearise the relative entropy F and the
relative Fisher information J , which provides the functionals F and I, where
I is given by (3.4.5) and F is defined by

F[g] :=
1

2

∫

Rd
|g|2 V2−m

D∗
dx . (3.4.6)

Note that F[g] is the L2(Rd,V2−m
D∗

dx)-norm up to a factor 1/2. If g is a
solution of (3.4.4), then

d

dt
F[g(t)] = − I[g(t)] . (3.4.7)

Still at a formal level, the conservation of relative mass amounts to require

∫

Rd
(v0 −VD∗) dx =

∫

Rd
(w− 1)VD∗ dx = ε

∫

Rd
gV2−m

D∗
dx

in the limit ε → 0. Hence, it makes sense to require that
∫

Rd gV
2−m
D∗

dx = 0
and use the spectral gap estimate, see Theorem 3.3.5. With Cm,d = m/λm,d,
we obtain

2F[g] ≤ Cm,d

m
I[g] , (3.4.8)

which gives, for the solution of (3.4.3), an exponential decay of the relative
entropy,

F[g(t)] ≤ e− 2λm,d t F[g(0)] ∀ t ≥ 0 .

The connection with the Fokker-Planck equation is easy to understand
at the level of the linearised problem. In the limit m → 1, we observe that

lim
m→1−

D
1/(1−m)
∗ VD∗ = (2π D∗)d/2 µ with µ(x) =

e−
|x|2
2D∗

(2π D∗)d/2
.

Equation (3.4.4) formally converges to the Ornstein-Uhlenbeck equation,

gt = µ−1∇ ·
(

µ∇g
)
.

The spectral gap inequality (3.4.8) corresponds in such a limit to the well-
known Poincaré inequality with Gaussian weight,

∫

Rd
|φ|2 dµ ≤

∫

Rd
|∇φ|2 dµ ∀ φ ∈ C∞(Rd) such that

∫

Rd
φ dµ = 0 ,

where dµ := µ dx. Note that in the Gaussian case, a logarithmic Sobolev
inequality holds, see [108],

∫

Rd
|φ|2 log

(
|φ|2∫

Rd |φ|2 dµ

)
dµ ≤ 2

∫

Rd
|∇φ|2 dµ ,

which is stronger than the Gaussian Poincaré inequality. This is not the
case with the measure VD∗ dx. Although the spectral gap inequality (3.4.8)
holds true, there is no corresponding logarithmic Sobolev inequality.
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Comparison linear/non-linear Remains now to relate the results ob-
tained at the linear level to the non-linear problem. The main tool is to
notice that if w is close enough to 1, then there exists C0, C1, β1 and β2

such that
C0 F[g] ≤ F [w] ≤ C1 F[g]

and
I[g] ≤ β1 J [w] + β2 F[g]

with g := (w− 1)Vm−1
D∗

.

Using the Hardy-Poincaré inequality

2F[g] ≤ 1

λm,d
I[g] ≤ 1

λm,d
(β1 J [w] + β2 F[g]) ,

from which we deduce that

2λm,d − β2

β1
F[g] ≤ J [w] .

As F [w] ≤ C1 F[g], there exists

γ := C1
2λm,d − β2

β1

such that
γF [w] ≤ J [w] .

And so by Gronwall’s estimate

F [w(t)] ≤ F [w0] e
−γ t .

Note that γ is positive for w close enough to 1.
Finally,

‖v−VD∗‖2L2 ≤
∥∥∥V2−m

D∗

∥∥∥
L∞

∫
|v−VD∗ |2 Vm−2

D∗
dx = C F[v−VD∗ ]

≤ C
1

C0
F [w] ≤ C̃ e−γ t .

We can improve this convergence by redoing the computations by re-
placing W0 and W1 by 1− σ eγt and 1+ σ eγt in the Lemma “comparison
linear/non-linear” we improve the rate on convergence up to γ = λm,d.

3.4.2 Hardy-Poincaré inequalities

The cornerstone of this proof is the Hardy-Poincaré inequality which we
prove here. We observe that as |x| → ∞, dµ ∼ dν/|x|2. Hence, if
m ∈ (0,m∗), Inequality (3.3.2) is of Hardy type. Otherwise, if m ∈ (m∗, 1),
Inequality (3.3.1) involves an average and is rather of Poincaré type. In
such a case, we shall also say that it is a weighted Poincaré inequality, or
that there is a spectral gap, since for the associated operator, the lowest
eigenvalue, 0, is achieved by the constant functions, and the second eigen-
value corresponds to λm,d = m/Cm,d where Cm,d is the best constant in the
inequality.

For the case m ∈ (0,m∗), “completing the square method” gives
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Proposition 3.4.2 (Weighted Hardy inequality) With the above notations, for any α ∈ R,
α 6= α∗,

∫

Rd

|g|2
|x|2 |x|2α dx ≤ κα

∫

Rd
|∇g|2 |x|2α dx ∀ g ∈ D(Rd) ,

with the additional requirement that g is supported in Rd \ {0} if α < α∗,
and κα is optimal.

For the other range, our result relies on an abstract spectral argument
involving Persson’s characterisation of the continuous spectrum of an oper-
ator, [170].

3.5 Asymptotics of the doubly nonlinear equation

Such a method is robust and can be extended for the doubly nonlinear
diffusion equation (t, x) ∈ (0, ∞)× Rn by





∂ρ

∂t
= ∆p(ρ

m) := div
[
|∇ρm|p−2∇ (ρm)

]
, (x ∈ Rn, t > 0)

ρ(t = 0) = ρ0 ≥ 0 , (x ∈ Rn)

(3.5.1)

with 1 < p < ∞, 0 < m and n ≥ 3. This class of equations contains the
linear diffusion equation, (p = 2, m = 1), commonly known as the heat
equation, ∂tρ = ∆ρ ; the nonlinear diffusion equation ∂tρ = ∆ρm, known as
the porous medium equation (p = 2, m > 1), or the fast diffusion equation
(p = 2, m < 1), and the gradient-dependent diffusion equation, ∂tρ =
div(|∇ρ|p−2∇ρ) := ∆pρ, that is, the p-Laplacian equation, (p 6= 2, m = 1).
When p 6= 2 and m 6= 1, Eq. (3.5.1) is called the doubly nonlinear diffusion
equation, due to the fact that its diffusion term depends non-linearly on
both the unknown density ρ, and its gradient ∇ρ.

Furthermore for n ≥ 3, there exists a critical exponent,

mc(p) :=
n− p

n(p− 1)
,

such that if m > mc(p), then the mass of the solution is conserved,∫
Rn ρ(t) dx =

∫
Rn ρ0 dx, while if m < mc(p), the solution vanishes in

finite time, see [76, 199] and the references therein. In particular, for the
p-Laplacian equation, this corresponds to the critical p-exponent,

pc :=
2n

n+ 1
,

above which the mass of the solution is conserved, while the solution disap-
pears in finite time if p < pc. Therefore, up to renormalising the mass of ρ0
to unity, we can assume without loss of generality that, under the condition
m > mc(p), the solution ρ(t) of (3.5.1) is a density in Rn, for all times t ≥ 0.

By similarity and scaling, it can be shown that, above the critical expo-
nent mc(p), Eq.(3.5.1) has a unique self-similar solution ρD∗ , whose initial
value is the Dirac mass at the origin, that is, the fundamental solution of
Eq.(3.5.1). In fact, among all the radially symmetric solutions of (3.5.1),
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this solution is the most concentrated whose initial data have the same mass
as ρ0. It is called the Barenblatt solution, and it is precisely:

ρD∗(t, x) =
1

(δpt)
n/δp

uD∗

(
x

(δpt)
1/δp

)
, (3.5.2)

where
δp := n(p− 1)(m−mc(p)) > 0,

and

uD∗(y) =





1

σ
exp

(
−|p− 1|2

p
|y|p/(p−1)

)
if m =

1

p− 1
(
D∗ −

m(p− 1)− 1

mp
|y|p/(p−1)

) p−1
m(p−1)−1

+

if m 6= 1

p− 1
,

with σ and D∗ are uniquely determined by the mass conservation:
‖uD∗‖L1(Rn) = ‖ρD∗(t)‖L1(Rn) = ‖ρ0‖L1(Rn).

When p = 2 and m > 1 − 2/n, the existence and uniqueness of the
Barenblatt solution was proved by Friedmann and Kamin in [101]. More-
over, they showed that the solution ρ(t) of the Cauchy problem converges
to ρD∗(t) w.r.t. the L1(Rn)-norm, as t → ∞, with no rates. Rates of
convergence were computed by Carrillo and Toscani [70] if m > 1, indepen-
dently by Del Pino and Dolbeault [87], and Otto [167] if m ≥ 1 − 1/n.
The rates found in this range were generically optimal. In the range
1− 2/n < m < 1− 1/n, there were studies of the linearised problem by
Carrillo, Lederman, Markowich and Toscani [67], and Denzler and McCann
[93]. These linearisations were useful to obtain rates of decay for the nonlin-
ear fast diffusion equation by Carrillo and Vázquez [72] and later Kim and
McCann [130]. The decay rates obtained by using the linearisations are in
general non optimal and is optimal in some sub-range, see [130].

When p 6= 2 and m = 1, Kamin and Vázquez [125] proved existence
and uniqueness of the Barenblatt solution ρD∗ for the p-Laplacian equation
when p > pc, along with an L1-convergence of the solution ρ(t) of the
Cauchy problem to ρD∗(t), with no rates. Their proof extends to the doubly
nonlinear equation as long as m > mc(p), see [199]. Rates of convergence
were computed by Del Pino and Dolbeault [88] when pc + 1/(n+ 1) ≤ p <

n for the p-Laplacian equation, but their rates are not optimal; see also
a similar result for the doubly nonlinear equation in [89]. In [2], Agueh
generalises previous results by deriving optimal rates for the convergence of
the solution of the Cauchy problem (3.5.1) to ρD∗(t), for all m ≥ mc(p) +
1/(n(p− 1)) = (n− p+ 1)/(n(p− 1)) and p > 1. For instance, when
p = 2, this condition coincides with the case m ≥ 1− 1/n, while for the p-
Laplacian equation (p 6= 2, m = 1), it corresponds to p ≥ pc + 1/(n+ 1) =
(2n+ 1)/(n+ 1), and therefore covers the range p ≥ n left in [88], but
not the remaining exponent interval 2n/(n+ 1) < p < (2n+ 1)/(n+ 1).
Similarly, for the doubly nonlinear diffusion equation, the rate of convergence
remains unknown in the range

mc(p) < m < mc(p) +
1

n(p− 1)
=

n− p+ 1

n(p− 1)
. (3.5.3)
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Indeed, the proof of [1] is based on optimal transportation inequalities, which
follows from the displacement convexity [154] of the energy functional asso-
ciated with (3.5.1), that is, HF(ρ) =

∫
Rn F[ρ] dx, where

F(x) =





1

p− 1
x ln x if m =

1

p− 1

mxγ

γ(γ − 1)
if m 6= 1

p− 1
,

and

γ := m+
p− 2

p− 1
. (3.5.4)

This energy functional is displacement convex if and only if γ ≥ 1− 1
n , or

equivalently m ≥ (n− p+ 1)/(n(p− 1)). This explains why the method of
[2] does not extend to the interval (3.5.3).

The goal of this work is then precisely to derive a rate of convergence
w.r.t the L1(Rn)-norm, of the non-negative solution ρ of the Cauchy prob-
lem (3.5.1), to the Barenblatt solution ρD∗(t), as t → ∞, provided that m
belongs to the remaining exponent interval (3.5.3), that is,

n− p

n(p− 1)
< m <

n− p+ 1

n(p− 1)
⇔ 1− q

n
< γ < 1− 1

n
. (3.5.5)

For convenience we rewrite the Cauchy problem (3.5.1) as:




∂ρ

∂t
= div

{
ρ∇c∗

[
∇
(
F′◦ρ

)] }
, (x ∈ Rn, t > 0)

ρ(t = 0) = ρ0, (x ∈ Rn),

(3.5.6)

where c∗(x) = |x|p/p is the Legendre transform of the convex function

c(x) =
|x|q
q

,
1

p
+

1

q
= 1.

By rescaling in time and space ρ as follows:

ρ(t, x) =
1

R(t)n
u (τ, y) , (3.5.7)

where τ = lnR(t), y = x/R(t) with

R(t) = (1+ δpt)
1/δp , and δp = (p− 1)(nm+ 1) + 1− n, (3.5.8)

it is easy to show that ρ solves (3.5.6) if and only if u solves the rescaled
convection-diffusion equation





∂u

∂τ
= div

{
u∇c∗

[
∇
(
F′◦u

)]
+ uy

}
(y ∈ Rn, τ > 0)

u(τ = 0) = ρ0 (y ∈ Rn).

(3.5.9)

Moreover, by conservation of mass there exists a unique D∗ such that the
Barenblatt profile uD∗ is the equilibrium solution of (3.5.9). Remark that
in the considered range of exponents (3.5.5), m(p− 1)− 1 < 0, and then

F(x) =
mxγ

γ(γ − 1)
, γ := m+

p− 2

p− 1
. (3.5.10)
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Therefore, the Barenblatt profile is simply given by

uD∗(y) =

(
D∗ +

1− γ

m
c(y)

) 1
γ−1

. (3.5.11)

In fact, uD∗ is the unique density function of same mass as u0 which satisfies
on its support,

∇
(
F′◦uD∗

)
= −∇c. (3.5.12)

The main result is the following:

Theorem 3.5.1 (Rates of convergence, [3]) Let m, p be in the range (3.5.5), and let u0 be a
density such that there exist positive constants D0 > D1 for which

uD0
(x) ≤ ρ0(x) = u0(x) ≤ uD1

(x) ∀ x ∈ R
n . (H1)

Consider u a solution to (3.5.9) with initial data u0, there exists a unique D∗
such that u(τ) converges to the Barenblatt profile uD∗ in L1(Rn). Moreover,
there exist a time τ0 and two positive constants λ and M = M(m, n, p, u0, τ0)
such that, for any time τ > τ0

‖u(τ)− uD∗‖L1(Rn) ≤ M e−
λ
2 τ . (3.5.13)

As a consequence, for a time large enough the corresponding solution
ρ(t) of (3.5.1) converges to the Barenblatt solution ρD∗(t), algebraically fast
in the L1-norm, at the rate λ/(2δp): there exist a time t0 and a constant
C = C(m, n, p, ρ0, t0) such that, for any time t > t0

‖ρ(t) − ρD∗(t)‖L1(Rn) ≤ C t−λ/(2δp), (3.5.14)

where δp = (p− 1)(nm+ 1) + 1− n.
The main tool is the following relative free energy with respect to the

Barenblatt solution uD∗ defined by

G[u|uD∗ ] :=
∫

Rn

[
F◦u(y)− F◦uD∗(y)− F′◦uD∗(y)(u(x)− uD∗(y))

]
dy

(3.5.15)
for any given u ∈ L1

+(R
n). Its derivative along the flow of (3.5.6) is formally

given by

− d

dτ
G[u(τ)|uD∗ ] = I [u(τ)|uD∗ ]

where

I [u(τ)|uD∗ ] :=∫

Rn
u(τ, y)∇

(
F′◦u(τ, y) + c(y)

)
·
(
∇c∗◦∇F′◦u(τ, y) + y

)
dy .

In this chapter, we prove that the relative entropy decays exponentially fast
in the form

G[u(τ)|uD∗ ] ≤ e−β τG[u0|uD∗ ], (3.5.16)

for some β > 0. This is obtained in two steps. First, we linearise (3.5.9)
at the equilibrium solution uD∗ by using the linear perturbation u(τ) =
uD∗ + ǫv(τ), and we show that the linearised version of the relative energy
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converges to 0 exponentially fast, as in [67]. For that, we use the Hardy-
Poincaré inequality recently established by Blanchet, Bonforte, Dolbeault,
Grillo and Vázquez in [30]. Next, following the strategy exposed above, we
try to compare the relative energy and the dissipation of the relative energy
–that is, the Fisher information– for both linearised and nonlinear equations,
to deduce the exponential decay (3.5.16) for the nonlinear equation. The
main differences with respect to the previous section lie in the fact that a
direct relation between the linearised and the nonlinear Fisher information
is not clear due to the singular characters at the origin of the weights when
1 < p < 2. Therefore, we are forced to use a sort of regularised linearised
Fisher information instead. Moreover, the control of the additional terms
appearing in the regularised entropy dissipation of the linearised problem
and in the relation between the entropy dissipations is more involved in our
case.

We note that, based on our computations, the Bakry-Emery approach
used in [67], which consists of differentiation twice the relative energy
F[[]v(τ)] to estimate the spectral gap at the eigenvalue 0, does not yield
a positive result for our equation when 1 < p < 2, and thus, a similar pro-
cedure to [72] for the doubly nonlinear equations is not feasible. Moreover,
the Hardy-Poincaré inequality used here to establish the linear stability is
actually valid on a larger interval, m∗(p) < m < mc(p) +

1
n(p−1)

, which in-

cludes our interval mc(p) < m < mc(p) +
1

n(p−1) , as m∗(p) < mc(p), where

m∗(p) :=
n−2q
n−q + 2−p

p−1 . Therefore, our linearisation result extends naturally

to the interval m∗ < m ≤ mc(p) where mass conservation for the nonlinear
equation fails. In this range, one needs to carefully define the right class
of initial data and a substitute of the Barenblatt solution, as done in the
previous section when p = 2. Here, we will not follow this path and we will
restrict ourselves to the case mc(p) < m < mc(p) +

1
n(p−1) where mass is

conserved to concentrate in the main new difficulties.

3.6 Concluding remarks

The interplay between entropy methods and functional inequalities gives in
these series of work pertinent result on the long-time asymptotics of the
fast-diffusion equation for a large value of the diffusion.

The analysis of the spectrum of the linearised operator has been carried
out in [46] and very recently in [92].

In connexion with [33, 61], the method was also used in [60] to obtain
various connexion between functional inequalities.



4Improved asymptotics for

the heat equation

T
his chapter is devoted to results on intermediate asymptotics for the
heat equation. We study the convergence towards a stationary solu-

tion in self-similar variables. By assuming the equality of some moments
of the initial data and of the stationary solution, we get improved conver-
gence rates using entropy / entropy-production methods. We establish the
equivalence of the exponential decay of the entropies with new, improved
functional inequalities in restricted classes of functions. This letter is the
counterpart in a linear framework of a recent work on fast diffusion equa-
tions, see [46]. Results extend to the case of a Fokker-Planck equation with
a general confining potential.

Most of this chapter in inspired from [15]:
• J.-P. Bartier, A. Blanchet, J. Dolbeault, and M. Escobedo,

Improved intermediate asymptotics for the heat equation, Applied
Mathematics Letters, 24 (2011), pp. 76–81.
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4.1 The standard entropy method

Consider the heat equation in the euclidean space,

∂u

∂t
= ∆u t > 0 , x ∈ R

d (4.1.1)

with an initial condition u0 ∈ L1(Rd). By writing u = u+ − u− where u+
and u− are respectively the positive and negative parts of u and solving
(4.1.1) with initial data (u0)+ and (u0)−, we may reduce the problem to
the case of a non-negative function, corresponding to a non-negative initial
condition u0, without restriction. The heat equation being linear, we can
assume without loss of generality that u0 is a probability measure so that
in the sequel of this note

∫
Rd u0 dx = 1 =

∫
Rd u(t, x) dx for any t ≥ 0.

Getting decay rates and even an asymptotic expansion for large values of
t is completely standard, see for instance [97]. However, a few details and
some notations will be useful for later purpose.

First of all, as a straightforward consequence of the expression of the

Green function, G(t, x, y) := (4πt)−d/2 e−
|x−y|2

4t , any solution u of (4.1.1)
can be written as u(t, x) =

∫
Rd u0(y)G(t, x, y) dy and therefore uniformly

decays like O(t−d/2) since, as t → ∞, u(t, x) ∼ G(t, x, 0). It is also clas-
sical to estimate the decay of u(t, ·) − G(t, ·, 0) in various Lp(Rd) norms.
Such estimates are called intermediate asymptotics estimates. The point
is to determine the first term of an asymptotic expansion of the solution
as t → ∞. For instance, as we shall see below, it can be proved that
‖u(t, ·) − G(t, ·, 0)‖L1(Rd) = O(t−1/2) as t → ∞.

The entropy method can be used among various other approaches to
obtain such an estimate. It relies on the logarithmic Sobolev inequality and
goes as follows. First consider the time-dependent rescaling

u(t, x) = R−d v (logR, x/R)

with R = R(t) :=
√
1+ 2 t , t > 0 , x ∈ R

d . (4.1.2)

If u is a solution of (4.1.1), then v solves the Fokker-Planck equation

∂v

∂t
= ∆v+∇ · (x v) (4.1.3)

with same initial condition v(t = 0, ·) = u0. Let v∞(x) := (2π)−d/2 e−|x|2/2

be the unique stationary solution of (4.1.3) with mass 1, and define
dµ := v∞ dx as the Gaussian measure. We denote by Lp(Rd) and
Lp(Rd, dµ) the Lebesgue spaces corresponding respectively to Lebesgue’s
measure and to the Gaussian measure. Understanding the intermedi-
ate asymptotics for u amounts to study the convergence of v to vs∞, as
t → ∞. Define the entropy by E1[w] :=

∫
Rd w logw dµ. Let v be a solu-

tion of (4.1.3) and define w(t, ·) := v(t, ·)/v∞ , w0 := w(t = 0, ·). Then
d
dt E1[w(t, ·)] = −I1[w(t, ·)] where I1 is the Fisher information defined by
I1[w] :=

∫
Rd w |∇ logw|2 dµ. Gross’ logarithmic Sobolev inequality exactly

amounts to E1[v/v∞ ] ≤ 1
2 I1[v/v∞ ] and so, it follows that

E1[w(t, ·)] ≤ E1[w0] e
−2 t ∀ t ≥ 0 .
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By the Csiszár-Kullback inequality, see for instance [196], we get
‖v(t, ·) − v∞‖2L1(Rd)

≤ 1
4 E1[w(t, ·)] and deduce that

‖v(t, ·) − v∞‖L1(Rd) ≤
1

2

√
E1[w0] e

−t ∀ t ≥ 0 .

Undoing the change of variables (4.1.2) and observing that u∞(t, x) :=
R(t)−d v∞ (x/R(t)) = G(t+ 1/2, ·, 0), we finally get

‖u(t, ·) − u∞(t, ·)‖L1(Rd) ≤
1

2

√
E1[w0]

1+ 2 t
∀ t ≥ 0 ,

which establishes the claimed estimate, namely:

‖u(t, ·)− G(t, x, 0)‖L1(Rd) ≤ O
(
t−1/2

)

as t → ∞. Such an estimate is quite classical. The above method is known
as the Bakry-Emery method or entropy / entropy-production method and
also provides a proof of the logarithmic Sobolev inequality. See [195, 9] for
some references on this topic, in the context of partial differential equations.

By combining L1(Rd) and L∞(Rd) estimates using Hölder’s inequality,
we get that

‖u(t, ·)− G(t, ·, 0)‖Lp(Rd) ≤ O
(
t
− 1

2 p (1+(p−1) d)
)

as t → ∞ .

In a L2(Rd) framework, a much more detailed description can be achieved
using a spectral decomposition. If v is a solution of (4.1.3), then w = v/v∞

is a solution of the Ornstein-Uhlenbeck equation

∂w

∂t
= ∆w− x · ∇w (4.1.4)

with initial data w0 = u0/v∞. Notice that
∫

Rd w0 dµ=1 and, as a conse-
quence,

∫
Rd w(t, ·) dµ=1 for all t ≥ 0.

4.2 Improved inequalities

Define by (Hk)k∈Nd the sequence of Hermite type polynomials acting on

x = (x1, x2 . . . xd) ∈ Rd, such that Hk(x) := ∏
d
j=1 hk j(xj) where hn(y) :=

(−1)n (n!)−1/2 ey
2/2 dn

dyn

(
e−y2/2

)
, y ∈ R and k = (k1, ..., kd) ∈ Nd. These

functions provide an orthonormal family of eigenfunctions in L2(Rd, dµ)
which spans the eigenspaces of the Ornstein-Uhlenbeck operator, that is
− (∆Hk − x · ∇Hk) = |k|Hk, where |k| := ∑

d
j=1 kj. Up to a scaling, (hn)n∈N

is the usual family of Hermite polynomials on R.
If w0 satisfies the orthogonality condition

∫

Rd
w0 Hk dµ=0 ∀ k ∈ N

d such that 0 < |k| < n , (4.2.1)

then an improved rate of convergence follows, in the sense that

‖w(t, ·)− 1‖L2(Rd , dµ) ≤ e−n t ‖w0 − 1‖L2(Rd , dµ) ∀ t ≥ 0 .
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If (4.2.1) initially holds, we indeed have
∫

Rd w(t, ·)Hk dµ = 0 for

any t ≥ 0 and any k ∈ Ndsuch that 0 < |k| < n. Then, since
d
dt‖w(t, ·)− 1‖2

L2(Rd, dµ)
= −2

∫
Rd |∇w(t, ·)|2 dµ, the conclusion holds us-

ing the following result.

Proposition 4.2.1 (Improved Poincaré inequality) Assume that w ∈ L2(Rd) is such that∫
Rd w dµ=1 and the condition

∫
Rd wHk dµ=0 holds for any k ∈ Nd such

that 0 < |k| < n. Then the following inequality holds, with optimal constant:

‖w− 1‖2L2(Rd, dµ) ≤
1

n
‖∇w‖2L2(Rd, dµ) .

The proof is no more than a straightforward rewriting of the Rayleigh
quotient ‖∇w‖2

L2(Rd , dµ)
/‖w− 1‖2

L2(Rd, dµ)
under the appropriate orthogo-

nality condition. Notice that polynomials Hk are of degree |k| so that
the Condition (4.2.1) can be rephrased in terms of moment conditions.
See [97, 129] for further results in this direction.

It is natural to search for improved estimates of convergence also in
Lp(Rd) with p ∈ [1, 2) by looking for improved functional inequalities when-
ever condition (4.2.1) is fulfilled. We may for instance quote [8] in which
improvements on the constant, but not on the rates, have been achieved for
p = 1.

For any p ∈ (1, 2], consider the generalised entropy

Ep[w] :=
∫

Rd

wp − 1

p− 1
dµ .

This definition is consistent with the definition of E1 because, under the
condition

∫
Rdw dµ=1, Ep[w] =

∫
Rd

wp−w
p−1 dµ→E1[w] as p → 1. The func-

tional Ep controls the convergence in Lp(Rd, dµ) using a generalised Csiszár-
Kullback inequality. In [54, 16], it has been proved that ‖w− 1‖2

Lp(Rd , dµ)
≤

1
p 2

2/p max
{
‖w‖2−p

Lp(Rd , dµ)
, 1
}
Ep[w], for any p ∈ [1, 2]. Since ‖w‖L1(Rd , dµ) =

1, we have 1 ≤ ‖w‖p
Lp(Rd , dµ)

= 1+ (p− 1) Ep[w], and so

‖w− 1‖Lp(Rd, dµ) ≤ Ap

(
Ep[w]

)

with Ap(s) :=
21/p√

p

[
1+ (p− 1) s

]1−p/2√
s . (4.2.2)

Next, assume that
∫

Rd wHk dµ=0 for any k ∈ Nd such that 0 < |k| < n
and consider the generalised Poincaré inequalities, with p ∈ [1, 2], namely

Ep[w] ≤ Bn,p

∫

Rd

∣∣∣∇wp/2
∣∣∣
2
dµ ∀ w ∈ H1(Rd, dµ) . (4.2.3)

Such inequalities have been established for n = 1 by W. Beckner in [19]
with optimal constant B1,p = 2/p for the Gaussian measure. By the same
method, it has been shown in [7] that for a larger class of measures dµ, if
(4.2.3) holds for p = 1 and p = 2, for some positive constants Bn,1 and Bn,2

respectively, then it also holds for any p ∈ (1, 2) with

Bn,p =
1

p−1

[
1− ((2− p)/p) Bn,1/(2Bn,2)

]
Bn,2 . (4.2.4)
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By the logarithmic Sobolev inequality and the improved Poincaré inequality,
see Proposition 4.2.1, we know that Bn,1 ≤ 2 and Bn,2 = 1/n. Hence it
follows that Bn,p ≤ 1

p−1

[
1− ((2− p)/p)n

]
1
n . On the other hand, as in [9],

if w is a solution of (4.1.4), then

d

dt
Ep[w(t, ·)] = − 4

p

∫

Rd

∣∣∇w p/2
∣∣2 dµ . (4.2.5)

If (4.2.1) is satisfied, we conclude using (4.2.3) and (4.2.2) that any solution
of (4.1.4) with initial data w0 satisfies

Ep[w(t, ·)] ≤ Ep[w0] e
−2 λ(n,p) t

and ‖w(t, ·)− 1‖Lp(Rd, dµ) ≤ Ap

(
Ep[w0]

)
e−λ(n,p) t ∀ t ≥ 0 ,

with λ(n, p) := 2
p n (p− 1)

[
1− ((2− p)/p)n

]−1
. The last estimate holds

because, for any t ≥ 0,

‖w(t, ·) − 1‖Lp(Rd , dµ) ≤ Ap

(
Ep[w(t, ·)]

)
≤ Ap

(
Ep[w0] e

−2 λ(n,p) t
)

≤ Ap

(
Ep[w0]

)
e−λ(n,p) t

Notice that λ(1, p) = 1 and λ(n, 2) = n. Nothing is gained as p → 1, since
limp→1 λ(n, p) = 1 is independent of n.

On the other hand, by Hölder’s inequality, we have for free that
‖w− 1‖Lp(Rd, dµ) ≤ ‖w− 1‖L2(Rd , dµ). Hence, if w is a solution

of (4.1.4) with initial data w0, we know that ‖w(t, ·)− 1‖Lp(Rd , dµ) ≤
e−n t ‖w0 − 1‖L2(Rd, dµ) as t → ∞, for any p ∈ [1, 2], if (4.2.1) is satisfied.
By interpolation, we recover the rates of [97, 129]. However, this is not
satisfactory since neither ‖w0−1‖Lp(Rd, dµ) nor Ep[w0] are involved in the
right hand side of the above estimate.

Consider first the case p = 1. An alternative approach is suggested
by the method of [30, 31], which applies to the fast diffusion equation
∂u
∂t = ∆um for m < 1. By assuming some uniform bound on the ini-
tial data, which is preserved along the evolution, it is possible to relate
the asymptotic rate for intermediate asymptotics with the spectrum of
the linearised operator. We can indeed observe that ‖w0 − 1‖2

L2(Rd, dµ)
≤

‖w0 − 1‖L1(Rd, dµ) ‖w0 − 1‖L∞(Rd , dµ) ≤ 1
2

√
E1[w0] ‖w0 − 1‖L∞(Rd , dµ) using

Hölder’s inequality and the Csiszár-Kullback inequality. This proves that

‖w(t, ·) − 1‖2L1(Rd , dµ) ≤ 1
2 ‖w0 − 1‖L∞(Rd, dµ)

√
E1[w0] e

−n t as t → ∞

if (4.2.1) is satisfied initially. Still, this provides neither an estimate of∫
Rd w(t, ·) logw(t, ·) dµ nor a functional inequality which improves upon

the logarithmic Sobolev inequality. To prove such an inequality, we keep
following the strategy of [31]. A simple but key idea is to observe that the
functions defined for any p ∈ [1, 2] by hp(0) = 1, hp(1) = p/2 and, for
any s ∈ (0, 1) ∪ (1, ∞) by hp(s) := [sp − 1− p (s− 1)]/[(p − 1) |s − 1|2] if
p > 1, h1(s) := [s log s− (s− 1)]/|s− 1|2, are continuous, non-negative,
decreasing on R+ and achieve their maximum at 0. Define on L∞(Rd) the
functional

Hp[w] := ‖w‖2−p

L∞(Rd)
sup
x∈Rd

hp(w(x)) = ‖w‖2−p

L∞(Rd)
hp

(
inf
x∈Rd

w(x)

)
.
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Theorem 4.2.2 (Improved logarithmic Sobolev inequality) Assume that w ∈ L∞
+(R

d) is such
that

∫
Rd w dµ=1 and satisfies the condition

∫
Rd wHk dµ=0 for any k ∈ Nd

such that 0 < |k| < n. Then the following inequality holds, with optimal
constant: ∫

Rd
w logw dµ≤

H1[w]

n

∫

Rd

|∇w|2
w

dµ .

Proof. We may indeed observe that by the Poincaré inequality and using
the definition of H1, we get

∫

Rd

|∇w|2
w

dµ ≥ 1

‖w‖L∞(Rd)

∫

Rd
|∇w|2 dµ ≥ n

‖w‖L∞(Rd)

∫

Rd
|w− 1|2 dµ

≥ n

H1[w]

∫

Rd
w logw dµ .

The optimality of the constant can be checked by a lengthy but elementary
computation using the functions wk

ε := Hk(x) χ
(
x ε1/(2n)

)
+ Ck

ε for some
smooth truncation function χ such that 0 ≤ χ ≤ 1, χ ≡ 1 on B(0, 1) and
χ ≡ 0 in Rd \ B(0, 2). Here for k ∈ Nd is such that |k| = n and the constant
Ck

ε is chosen so that
∫

Rd w
k
ε dµ=1.

As a consequence of the Maximum Principle applied to the heat equa-
tion (4.1.1) and the fact that to u0 = v∞ corresponds a self-similar solution
of (4.1.1), namely u(t, x) = G(t+ 1

2 , x, 0), we have the estimate

H1[w(t, ·)] ≤ H1[w0] ∀ t ≥ 0 .

By applying Theorem 4.2.2, we obtain a new result of decay for E1[w(t, ·)]
with a constant which is exactly E1[w0], to the price of a rate which is less
than 2 n.

Corollary 4.2.3 (Improved decay rate of the entropy) Let w be a solution of (4.1.4) with a
non-negative bounded initial data w0 ∈ L1(Rd, dµ) such that

∫
Rd w0 dµ=1

and (4.2.1) is satisfied. Then

E1[w(t, ·)] ≤ E1[w0] e
−n t/H1[w0] ∀ t ≥ 0 .

This result is actually equivalent to Theorem 4.2.2, as follows by dif-
ferentiating the above inequality at t = 0 (for which equality is trivially
satisfied) and using the fact that −

∫
Rd |∇w0|2/w0 dµ=

d
dt E1[w(t, ·)]|t=0 ≤

E1[w0]
d
dt e

−n t/H1[w0] |t=0. What we have achieved is a global, improved
exponential decay of the entropy E1 in a restricted class of func-
tions. To simplify even further, for any ε ∈ (0, 1) and n ∈ N∗,
consider the set X n

ε := {w ∈ L1(Rd, dµ) : 1 − ε ≤ w ≤ 1 +
ε a.e. and

∫
Rd wHk dµ=0 holds for any k ∈ Nd such that 0 < |k| < n },

which is appropriate to handle the optimality case corresponding to
ε → 0+. The best constant in Theorem 4.2.2 is indeed asymptotically
equivalent to the sharp rate of convergence in Corollary 4.2.3, in the sense
that limε→0+ infw∈X n

ε
n/H1[w] = limε→0+ n/[(1+ ε) h(1− ε)] = 2 n.

For simplicity, we have considered only the case p = 1, but the method
also applies to any p ∈ (1, 2). We obtain an improved version of (4.2.3)
under the restriction that w ∈ L1(Rd, dµ) is bounded non-negative and the
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condition
∫

Rd wHk dµ=0 holds for any k ∈ Nd such that 0 < |k| < n. With
Bn,1 = 4H1[w]/n and Bn,2 = 1/n, we get Bn,p ≤ K[n, p,w] := (n (p −
1))−1

[
1− ((2− p)/p)2H1[w]

]
by (4.2.4). Using the entropy / entropy-

production identity (4.2.5), the fact that K[n, p,w(t, ·)] ≤ K[n, p,w0] and
the generalised Csiszár-Kullback inequality (4.2.2), we obtain

Ep[w(t, ·)] ≤ Ep[w0] e
− 4 t

pK[n,p,w0]

and

∫

Rd
w− 1p dµ ≤ Ap

(
Ep[w0]

)
e
− 2 t

pK[n,p,w0] ∀ t ≥ 0 . (4.2.6)

Alternatively, an elementary computation as in the proof of Theo-
rem 4.2.2 gives a similar result:

4

p2

∫

Rd

∣∣∇wp/2
∣∣2 dµ =

∫

Rd
wp−2 |∇w|2 dµ

≥ 1

‖w‖2−p

L∞(Rd)

∫

Rd
|∇w|2 dµ ≥ n

‖w‖2−p

L∞(Rd)

∫

Rd
|w− 1|2 dµ ≥ n

Hp[w]
Ep[w]

if
∫

Rd w dµ=1 and the condition
∫

Rd wHk dµ=0 holds for any k ∈ Nd such
that 0 < |k| < n. This proves that

Ep[w] ≤
4

p2
Hp[w]

n

∫

Rd

∣∣∇wp/2
∣∣2 dµ .

Using (4.2.5) and (4.2.2), this proves that any solution of (4.1.4) with initial
data in w0 ∈ L1 ∩ L∞(Rd, dµ) satisfies

Ep[w(t, ·)] ≤ Ep[w0] e
−n p t/Hp[w0]

and ‖w− 1‖Lp(Rd , dµ) ≤ Ap

(
Ep[w0]

)
e−n p t/(2Hp[w0]) ∀ t ≥ 0 . (4.2.7)

Comparing the rates of (4.2.6) and (4.2.7) is a natural question. In the
limit ε → 0, infw∈X n

ε
Hp[w] ∼ supw∈X n

ε
Hp[w] → p/2 and it follows that

limε→0
4

pK[n,p,w0]
= 4

p n (p − 1)/[1 − ((2− p)/p)p] < 2 n = limε→0
n p t

Hp[w0]
.

Hence, at least in the regime ε → 0, (4.2.7) is a better estimate in terms of
rates than (4.2.6). Undoing the change of variables (4.1.2), we have achieved
a detailed result on improved u0.

Corollary 4.2.4 (Improved intermediate asymptotics for the heat equation) Let p ∈ [1, 2] and
assume that u0 is a probability measure such that w0 = u0/v∞ is bounded
and satisfies the condition

∫
Rd u0 Hk dx = 0 for any k ∈ Nd such that

0 < |k| < n. If u is the solution of (4.1.1) with initial condition u0, then

‖u(t, ·) − u∞(t, ·)‖Lp(Rd)

≤ (2π)−
d
2 (1− 1

p ) Ap

(
Ep[w0]

)
(1+ 2 t)

− n p
4Hp [w0]

− d
2 (1− 1

p ) ∀ t ≥ 0 .

The proof relies on the remark that ‖u(t, ·)− u∞(t, ·)‖Lp(Rd) ≤

‖u∞(t, ·)‖
1− 1

p

L∞(Rd)
‖w(t, ·)− 1‖Lp(Rd, dµ) where u∞(t, ·) := G(t + 1/2, ·, 0).

The conclusion holds using ‖u∞(t, ·)‖L∞(Rd) = (2π R2)−d/2 with R =√
1+ 2 t.
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Up to now, we have considered the simple case of the harmonic potential,
V(x) = 1

2 |x|2. As in [7], the previous results can be extended to more

general potentials as follows. Consider V ∈ W1,2
loc ∩W2,2

loc (R
d) such that∫

Rd e
−V(x)dx = 1, and define the probability measure dµ(x) := e−V(x)dx

in Rd, which generalises the Gaussian measure. Under the above conditions
on V, the logarithmic Sobolev inequality holds (resp. (4.2.3) for p = 1)
for some positive constant (resp. for B1,1 > 0). The Ornstein-Uhlenbeck
operator N := −∆ +∇V · ∇ is essentially self-adjoint on L2(dµ), has a non-
degenerate eigenvalue λ0 = 0 and a spectral gap λ1 > 0. According to [207,
Theorem 2.1], N has a pure point spectrum without accumulation points.
Since limk→∞ λk = ∞, then by [174, Theorem XIII.64], the eigenfunctions
of N form a complete basis of L2(Rd, dµ). We shall denote the eigenvalues
by λk, k ∈ N, and by Ek the corresponding eigenspaces.

Theorem 4.2.2 adapts without changes. Assume that w ∈ L∞
+(R

d) is
such that

∫
Rd w dµ = 1. Then

∫

Rd
w logw dµ =≤ H1[w]

λn

∫

Rd

|∇w|2
w

dµ

under the orthogonality condition: w ∈
(⋃n−1

k=1 Ek

)⊥
, that is

∫
Rd w fk dµ = 0

for any fk ∈ Ek, k = 1, 2,. . . n − 1. Next, consider the solution w of the
Ornstein-Uhlenbeck equation

∂w

∂t
= −Nw = ∆w−∇V · ∇w , (4.2.8)

with initial condition w0 ∈
(⋃n−1

k=1 Ek

)⊥
∩ L∞(Rd) is such that

∫
Rd w0 dµ =

1. With the same definition as above for Ep, for any solution of (4.2.8) with
initial data w0, (4.2.7) is now replaced by

Ep[w(t, ·)] ≤ Ep[w0] e
−λn p t/Hp[w0]

and ‖w− 1‖Lp(Rd , dµ) ≤ Ap

(
Ep[w0]

)
e−λn p t/ (2Hp[w0]) ∀ t ≥ 0 .

4.3 Discussion

Let us conclude this part by some comments and open questions. It is stan-
dard in entropy / entropy-production methods that determining sharp rates
of convergence in an evolution equation is equivalent to finding sharp con-
stants in functional inequalities, as we have seen in the case of the heat equa-
tion: the rate of convergence in L2(Rd, dµ) is given by the Poincaré inequal-
ity, while the rate of convergence in entropy, which controls the L1(Rd, dµ)
norm, is related with the logarithmic Sobolev inequality. This is also true
for nonlinear diffusion equations, see for instance [87]. In this case, a break-
through came from the observation that uniform norms can also be used, see
[65, 30, 31], to the price of a restricted functional framework. This allows
to relate nonlinear quantities of entropy type with spectral properties of the
linearised problem, in an appropriate functional space and, again, to relate
sharp rates with best constants, see [46]. As long as nonlinear evolution
problems are concerned, only a few invariant quantities are usually avail-
able: the mass and the position of the centre of mass of the solution, for
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instance. In linear evolution problems, we can impose an arbitrary number
of orthogonality conditions, which are preserved along the evolution. Im-
proved rates of convergence are then expected, even when measured with
nonlinear quantities like the entropy. Various attempts have been done, see
for instance [8], but the question has been left open for many years. Such
ideas have been partially explored by R.J. McCann, including in the linear
case (see [79]), based on considerations on an appropriate Hessian matrix.
Our approach provides a simpler and elementary answer under restrictions
which are natural in view of [31]. It also raises a number of questions con-
cerning the optimality of the new functional inequalities from a variational
point of view, the convergence of minimising sequences and the symmetry
of the eventual minimisers.
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5Optimal transport applied

to game theory

W
e study a class of games with a continuum of players for which Nash
equilibria can be obtained by the minimisation of some cost, related to

optimal transport. This cost is not convex in the usual sense in general but it
turns out to have hidden strict convexity properties in many relevant cases.
This enables us to obtain new uniqueness results. In a first section, we apply
this method to social interaction in the framework of urban equilibria. In
a second section we push-forward this analysis for a general Cournot-Nash
equilibria analysis and give a characterisation of equilibria in terms of some
partial differential equations, a simple numerical scheme in dimension one
as well as an analysis of the inefficiency of equilibria.

This chapter presents part of:
• A. Blanchet and G. Carlier, Optimal transport and Cournot-

Nash equilibria. Pre-print http://arxiv.org/abs/1206.6571, 2012.

• A. Blanchet, P. Mossay, and F. Santambrogio, Existence and
uniqueness of equilibrium for a spatial model of social interactions.
Pre-print http://w3-gremaq.univ-tlse1.fr/blanchet/publication/BMS.pdf,
2012.
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5.1 Introduction

This section does not aim to provide an introduction to game theory but to
introduce lineage of the results of the next sections. Classical monographs
on game theory includes [102, 206, 161, 181].

In decision making, game theory studies “mathematical models of con-
flict and cooperation between intelligent rational decision-makers”. A game
consists of

• a set of players,

• a set of strategies available to those players,

• a specification of payoffs for each combination of strategies.

Mathematically, we can define a game in the following

Definition 5.1.1 (Strategic game). A strategic game is a triplet G =
(I, (At)t∈I , (g

t)t∈I) where:

• I is a non-empty set called the set of players,

• For each player t ∈ I, At is a non-empty set called the set of actions
(or strategies) for player t,

• For each player t ∈ I, gt is a mapping from the distribution of the
actions of all the players to R called the payoff function of the player
t.

Game theory has been used to study a wide variety of human and animal
behaviours. It was initially developed in economics to understand a large
collection of economic behaviours, including behaviours of firms, markets,
and consumers. The use of game theory in the social sciences has expanded,
and game theory has been applied to political, sociological, and psychological
behaviours as well. Eight game-theorists have won the Nobel Memorial Prize
in Economic Sciences.

5.1.1 Finite games

In a game with a finite number of players we define

A = Πt∈IA
t .

An element of A is called an action profile. For a = (at)t∈I ∈ A, we denote
the action profile of all the players except for player t: a−t := (as)s∈T\t ∈
A−t.

The easiest example of such games are non-cooperative games defined
in [165] as:

game based on the absence of coalitions in that it is assumed
that each participant acts independently, without collaboration
and communication from any of the others.
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Such games can be described by using the normal forms: there are 2 players
i.e. I = {1, 2}, player 1 chooses either top or bottom i.e. A1 = {T, B} and
player 2 chooses either left or right i.e. A2 = {L, R}. The payoff can be
represented in a matrix in the following

[
(1, 1) (3, 0)
(0, 3) (0, 0)

]

where the first component of each element of the matrix represents the
player’s 1 payoff and the second player’s 2 payoff. Both players plays simul-
taneously.

Another interesting example of such game is the matching pennies where
the matrix of payoff is given by

[
(1,−1) (−1, 1)
(−1, 1) (1,−1)

]
(5.1.1)

Nash notion of equilibria describes a situation in which no player can
benefit by changing her strategy while the other players keep theirs un-
changed:

Definition 5.1.2 (Nash equilibrium). Let a ∈ A. The action profile a is a
Nash equilibirum if

∀t ∈ I, ∀bt ∈ At, gt(at , a−t) ≥ gt(bt, a−t) .

In the matching pennies example (5.1.1), no such equilibrium seems to
exist. However, the notion of strategy profile can be divided in two main
categories which will play a crucial role in the sequel:

• A pure strategy fully specifies all actions in a game. In particular, it
determines the move a player will make for any situation she could
face. A player’s strategy set is the set of pure strategies available to
that player.

• A mixed strategy is an assignment of a probability to each pure strat-
egy. This allows for a player to randomly select a pure strategy.

Formally the notion of mixed strategies is the following

Definition 5.1.3 (Mixed strategies). Let I be a finite set of cardinal n ∈ N.
Denote ∆(I) the set of probabilities over I and x = (x(t))t∈I a probability
over I. The mixed extension of a finite game G = (I, (At)t∈I , (g

t)t∈I) is the
strategic game (I, ∆((At)t∈I), (g̃

t)t∈I) where for each player t ∈ I the payoff
function g̃t is defined by

g̃t(x1, . . . , xn) = ∑
(a1 ,...,an)∈A

Πn
i=1x

i(ai)gi(a1, . . . , an)

Nash famous result reads as follows:

Theorem 5.1.4 (Nash’s theorem) In a finite game, there exists a Nash equilibrium in mixed
strategies.
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5.1.2 Game with a continuum of players

There are two main type of non-cooperative games

• conflicts among a small group of agents each of whom can make uni-
lateral decisions which may significantly affect the welfare of the others
as well as his own welfare (ex.: Card games, battles between opposing
generals, etc.).

• the individualistic but not deliberately adversary behaviour of a large
number of agents, none of whom alone is able to affect the circum-
stances of anyone except himself but whose actions in the aggregate
determine the environment in which all must live (ex.: competitive
markets).

In individualistic game it is often relevant to consider that only the distribu-
tion of the actions of the players matters rather than specifying the actions
of each single individual. Such games are called anonymous.

Nash’s result provides an existence result for all these games but such
equilibria are more and more difficult to describe when the number of agents
increases, see [107]:

Microeconomics is full of elegant and persuasive arguments
about the behaviour of representative firms and representative
consumers in competitive markets in general, but in contrast it
requires a great deal of elaborate computation to show that even
a simple model of non-cooperative exchange yields competitive
outcomes when there are many traders.

However, as was noticed by [185] when we deal with individualistics-type
non-cooperative games:

Institutions having a large number of competing participants are
common in political and economic life (...) game theory has not
yet been able so far to produce much in the way of fundamental
principles of mass competition that might help to explain how
they operate in practice. (...) it might be worth while to spend a
little effort looking at the behaviour of existing n-person solution
concepts, as n becomes very large.

Such phenomenon is perfectly known in the physics literature and was al-
ready pointed out in [206] in very explicit terms:

An almost exact theory of a gas, containing about 1025 freely
moving particles, is incomparably easier than that of the solar
system, made up of 9 major bodies. (...)

It is a well known phenomenon in many branches of the exact
and physical sciences that very great numbers are often easier
to handle than those of medium size. This is of course due to
the excellent possibility of applying the laws of statistics and
probabilities in the first case. (...)

When the number of participants becomes really great, some
hope emerges that the influence of every particular participant
will become negligible, and that the above difficulties may recede
and a more conventional theory become possible
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Such a notion of games with a continuum of players was formalised in [11]
as

The most natural model for this purpose contains a continuum
of participants, similar to the continuum of points on a line or
the continuum of particles in a fluid. (...)

The continuum can be considered an approximation to the“true”
situation in which there is a large but finite number of parti-
cles.(...)

The purpose of adopting the continuous approximation is to
make available the powerful and elegant methods of a branch
of mathematics called ’analysis’ in a situation where treatment
by finite methods would be much more difficult or hopeless.

Aumann even points that

The choice of the unit interval as a model for the set of traders
is of no particular significance. In technical terms, T can be any
measure space without atoms. The condition that T have no
atoms is precisely what is needed to ensure that each individual
trader have no influence.

First results for this kind of game were obtained for non-atomic games
described in [184] by

Non-atomic games enable us to analyse a conflict situation where
the single player has no influence on the situation but the ag-
gregative behaviour of ”large” sets of players can change the pay-
offs. The examples are numerous: Elections, many small buyers
from a few competing firms, drivers that can choose among sev-
eral roads, and so on.

[184] proves the existence of an equilibria in a non-atomic game with an
arbitrary finite number of pure strategies when the payoff of the player only
depend on the mean of distribution of all the payers actions. Note that
such a result is wrong for a finite number of players as can be seen in the
matching penny example. See [128] for more references.

Mathematically, we use here the formalism of [151]: given a space of
players types X endowed with a probability measure µ ∈ M(X) (which
gives the exogenous distribution of the type of the agents), an action space
Y and a cost Γ: X × Y ×M(Y) → R. The θ-type agents taking action x
pay the cost Γ(θ, x, ν) where ν is the distribution of the players’ actions.
A Cournot-Nash equilibrium is a joint probability measure γ ∈ M(X × Y)
with first marginal µ such that

γ({(θ, x) ∈ X ×Y : Γ(θ, x, ν) = min
z∈Y

Γ(θ, z, ν)}) = 1

where ν represents γ’s second marginal.
Concerning the externalities exerted by the action of all the players we

will consider two types

• Rivalry/Congestion: The utility of the agent decreases when the num-
ber of players who choose the same action increases. Examples:
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– Consumption of the same public good (motorway game),

– Food supply in an habitat decreases with the number of its users
(ex. Sticklebacks),

– More populated areas lead to higher competition for land.

• Social interactions The utility of the agents increases because some
other agents play a similar action. Examples:

– Location to go spend holidays,

– Quality of a product in a differentiated industry (technological
choice),

– The agents benefit from social interactions but there is a cost to
access to distant agents,

The results of [184, 151] and extensions see [124] assume that ν 7→
Γ(·, ·, ν) is, in some sense, continuous. However this continuity assumption
excludes the case of a purely local dependence which is relevant to capture
congestion effects.

5.2 Equilibrium for a spatial model of social inter-

actions

5.2.1 The equilibrium model

We consider a closed spatial economy E extending along the geographical
space K ⊂ Rd. We consider a game in which a continuum of agents have
to choose an allocation in the space K. A feasible allocation consist in a
distribution ν : K → R+ of agents with

∫
K ν(x) dx = 1. We introduce the

set M(K) of spatial absolutely continuous probabilities in K and such that∫
K |x|2ν(x) dx < ∞ if K is unbounded.

Agents benefit from social contacts with other agents. The social utility
S(x) that an agent in location x ∈ K derives from interacting with other
agents is given by

S(x) = B−
∫

K
φ(x− y)ν(y) dy (5.2.1)

where the constant B denotes the total benefit from interacting with other
agents and φ : Rd → R ∪ {+∞} the cost of accessing them.

Agents in location x ∈ K consume a composite good z and some land
space s. As they also benefit from social contacts with other agents, their
utility U is given by

U(s, z, x) = z+ u(s) + S(x) + A(x)

where S is the social utility defined in Relation (5.2.1), u : R+ → R ∪ {−∞}
the utility of land consumption, and A : Rd → R ∪ {−∞} the spatial
distribution of amenities. The budget constraint faced by agents is

z+ R(x) s = Y
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where Y is the income of agents (e.g., the endowment of the composite good)
and R(x) the land rent in location x.

As is usual in the urban economics literature, we assume the presence of
an absentee landlord who collects the rent paid by agents. Also, we assume
that land has no alternate use other than residence. The agent’s bid rent
function in location x is defined as the maximum rent that an agent is willing
to pay for residing in that location,

ψ(x, Ū) = max
s,z

Y − z

s
such that U(s, z, x) = Ū .

Lemma 5.2.1 (Spatial indirect function) Assume the utility of land consumption u ∈
C1(R+) is concave. The spatial indirect function V is given by

V [ν](y) := S− v [ν(y)]−
∫

K
φ(|y− z|)ν(z) dz+ A(y) . (5.2.2)

where S = Y+ B and the residence cost v defined by

v(ν) =
1

ν
u′
(
1

ν

)
− u

(
1

ν

)

is an increasing function of ν.

Following [165], a distribution of agents ν constitutes a spatial equilib-
rium of the economy E if no agent has an incentive to relocate:

Definition 5.2.2 (Spatial equilibrium). A feasible allocation ν constitutes
a spatial equilibrium of the economy E if there exists V̄ such that

{
V [ν](y) ≤ V̄ for almost every y ∈ K,

V [ν](y) = V̄ for almost every y ∈ K such that ν(x) > 0.
(5.2.3)

5.2.2 Existence of equilibria

Let V : R+ → R+ be a primitive of v. We build the following functional
F : M(K) → R ∪ {+∞}

F [ν] = V [ν] +W [ν] +A[ν] (5.2.4)

where ν denotes a spatial probability density in M(K) and the terms V , A
and W are defined by

V [ν] :=
∫

K
V[ν(x)] dx , A[ν] := −

∫

K
A(x)ν(x) dx

and W [ν] :=
1

2

∫∫

K×K
φ(x− y)ν(x)ν(y) dx dy

Assumption 5.2.3 (Spatial symmetry, [42]). Assume that

• K is symmetric i.e. for all z ∈ R2, (z ∈ K ⇒ −z ∈ K),

• φ is even i.e. for all z ∈ K, φ(z) = φ(−z).

We now consider the minimisation of F on M(K).
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Lemma 5.2.4 (Necessary condition of existence, [42]) Under Assumption 5.2.3. If the agent
spatial distribution ν minimises the potential functional F in the set M(K),
then it is a spatial equilibrium of E .

The proof of this result consists in deriving the optimality condition for
the minimisation problem of functional F . The main idea is that the spatial
indirect function U is a differential of F in the sense that for every (ρ, ν)
admissible densities on K, we have

lim
ε→0+

F [ν + ε(ρ − ν)]−F [ν]

ε
=
∫

Y
U(x, ν)(ρ(x)− ν(x)) dx.

It is clear for the first two term whereas the last term gives

lim
ε→0

E [ν + ε(ρ − ν)]− E [ν]
ε

=
1

2

∫∫
φ(y, z)[dν(y) d(ρ − ν)(z) + dν(z) d(ρ − ν)(y)]

=
1

2

∫∫
[φ(y, z) + φ(z, y)] dν(y) d(ρ − ν)(z) .

So that

δE
δν

(y) =
∫

Y
φsym(y, z) dν(z) : φsym(y, z) =

φ(y, z) + φ(z, y)

2

Hence V is the differential of E on P(Y) as soon as φ is symmetric i.e.
φ(y, z) = φ(z, y)

Once we have realised that the first-order condition to the optimisation
problem minν F [ν] corresponds to the spatial equilibrium condition (5.2.3).
Very mild assumptions are needed to guarantee the existence of minimisers
and so of equilibrium:

Assumption 5.2.5. Assume

• The utility of land consumption u ∈ C1(R+), is concave, and
lims→0+ u(s) = −∞,

• The accessing cost φ is continuous on K,

• The amenity function A is continuous on K and bounded from above,

• If K is unbounded, and either lim|x|→∞ A(x) = −∞ or A is constant
and lim|z|→∞ φ(z) = +∞.

Theorem 5.2.6 (Existence of equilibrium, [42]) Under Assumptions 5.2.3 and 5.2.5, the
spatial economy E admits a spatial equilibrium.

The convexity of the potential functional F would ensure the critical
points of F to be minimisers of F , and therefore spatial equilibria of E .
Moreover, if the potential functional F were strictly convex, then it would
not have more than one minimiser. This would provide the uniqueness of
spatial equilibrium. Unfortunately, the potential functional F fails to be
convex because of the bi-linear form of the aggregate accessing cost W .
This term corresponds to the spatial externality associated with the social
interactions between agents located at different locations.
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5.2.3 Uniqueness of equilibrium

In this Section, in order to overcome the lack of convexity of the potential
F , we rely on the notion of displacement convexity introduced by [154]. We
will show that the functional F is displacement convex under mild assump-
tions on the primitives of the spatial economy E (i.e., the spatial domain
K, the utility function u, the accessing cost φ, and the space-dependent
amenities A). As a consequence, for a wide class of spatial economies, there
is an equivalence between the critical points of F and the minimisers of F .
This will provide a variational characterisation of the spatial equilibria of
E . Moreover, if F is strictly displacement convex, the uniqueness of min-
imiser is ensured, and therefore that of equilibrium as well. Furthermore,
spatial symmetry of the equilibrium will also be obtained depending on the
geometry of the spatial domain K.

In all the sequel, we assume that K = Ω where Ω is some open bounded
convex subset of R2. We first introduce some basic concepts of the theory
of optimal transportation, for a detailed exposition of this subject, we refer
the interested reader to [204], [5, 205], or [172].

McCann provided some assumptions ensuring the displacement convex-
ity of the functional F defined in (5.2.4).

Assumption 5.2.7 (Displacement convexity). Let K = Ω where Ω is some
open bounded convex subset of R2 and assume

• V(0) = 0 and r 7→ r2V(r−2) is convex non-increasing in (0,+∞),

• The accessing cost φ is convex,

• The amenity function A is concave.

Theorem 5.2.8 (Variational characterization, [42]) Under Assumption 5.2.7, the agent dis-
tribution ν is a spatial equilibrium of the economy E if and only if it is a
minimiser of F in the set M(K).

To ensure the uniqueness of minimiser, [154] provides criteria so as to
obtain the strict displacement convexity of F : under Assumption 5.2.7, if φ
is strictly convex or if A is strictly concave, then the functional F is strictly
displacement convex.

Theorem 5.2.9 (Uniqueness of the equilibrium, [42]) Under Assumption 5.2.7, if A is strictly
concave (resp. φ is strictly convex), then any spatial equilibrium ν of the
spatial economy E is unique (resp. unique up to translation).

And as a direct consequence:

Assumption 5.2.10 (Even symmetry). Suppose that Assumption 5.2.3
holds. Moreover, the spatial distribution of amenities A is also even: for all
x ∈ K, A(x) = A(−x).

Assumption 5.2.11 (Radial symmetry). Let K be R2 or a centred ball
in R2. The function W and the spatial distribution of amenities A are
radially symmetric: A(x) = A(x′) and W(x) = W(x′) for all x, x′ ∈ K with
|x| = |x′|.
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Corollary 5.2.12 (Spatial symmetry of equilibria, [42]) Under Assumption 5.2.10 (resp. As-
sumption 5.2.11), any spatial equilibrium ν is even (resp. radially symmet-
ric).

5.2.4 A circular economy: a non-convex example

In this Section, we revisit the model by [160] along the unit circle K = C =
[0, 2π]. In the light of Assumption 5.2.7 and Theorem 5.2.9, the emergence
of multiple spatial equilibria can be explained by a lack of convexity of the
spatial domain. As the problem along the circle is not convex, Theorem 5.2.8
does not apply. This is the reason why the model exhibits multiple equilibria
along the circle while it admits a unique spatial equilibrium along the real
line.

Studying spatial economies extending along a circle has a long tradition
in economics, ranging from the circular Hotelling model in the industrial
organisation literature to the more recent racetrack economy used in the New
Economic Geography literature. However, here, the circular model of spatial
interactions cannot be interpreted as a simple variant of the corresponding
model along the real line. As the spatial equilibria arising along the circle
may involve disconnected cities, we find it useful to introduce the following
Definition.

Definition 5.2.13 (City, city-centre and multiple cities). Let λ be a spatial
density of agents. A city is defined as a connected component of the support
of λ, and a city-centre (or centre) of a city as any point x which is a strict
local maximum of λ. The spatial economy is said to be a multiple-city
economy if it consists of disjoint cities.

Following [160], we consider a linear utility function, u(r) = βr where β
denotes the preference for land, and a linear accessing cost W(z) equal to
τz, for z ∈ [0, π], and to τ(2π − z), for z ∈ [π, 2π], where τ is the accessing
cost.

Mossay and Picard used a constructive method to solve the model, mak-
ing conjectures about candidates for equilibrium and, only then, determin-
ing which of these candidates do actually satisfy the equilibrium condi-
tion (5.2.3). In contrast to their, we propose a direct method which allows
to determine all the spatial equilibria of the economy as solutions to a dif-
ferential equation.

By spatial periodicity, we impose that λ(x + 2π) = λ(x). Also, the
point opposite to x along C is denoted by x̄. Any spatial equilibrium λ
satisfies

λ(x) =
1

β

(
Y + B−U −

∫ 2π

0
W(x− y)λ(y) dy

)

+

.

We make the following change of functions by defining the auxiliary
function φ

φ(x) :=
1

τ

∫ 2π

0
W(x− y)λ(y) dy− π

2
. (5.2.5)

This allows to rewrite the spatial distribution λ as

λ(x) =
1

2

(
C− δ2φ(x)

)
+

(5.2.6)
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where δ2 = 2τ/β and C = 2[Y + B−U − τπ/2]/β.
We now derive an equation for function φ.

Proposition 5.2.14 (Differential equation for φ) If λ is a spatial equilibrium along the geo-
graphical space C, then the function φ defined in Expression (5.2.5) belongs
to C2(C) and satisfies the following ordinary differential equation

φ′′ = (C− δ2φ)+ − (C+ δ2φ)+ (5.2.7)

with the periodic condition

φ(x) = −φ(x± π), ∀x ∈ [0, π) (5.2.8)

Proof. By using relation (5.2.5), function φ can be rewritten as

φ(x) :=
∫ x

x−π
(x− y)λ(y) dy+

∫ x+π

x
(2π − x+ y)λ(y) dy− π .

By inspection of this expression, φ is differentiable. Its derivative is given
by

φ′(x) =
∫ x

x−π
λ(y) dy−

∫ x+π

x
λ(y) dy.

As φ is differentiable and thus continuous, λ is also continuous given Rela-
tion (5.2.6). The fundamental theorem of calculus allows to differentiate φ′.
This leads to

φ′′(x) = λ(x)− λ(x− π)− λ(x+ π) + λ(x) = 2[λ(x)− λ(x̄)] .

This implies that function φ ∈ C2(C). By using Relation (5.2.6), we get
φ′′(x) = (C− δ2φ(x))+ − (C− δ2φ(x̄))+. We also have

φ(x) + φ(x) = 1/τ
∫

W(x− y)λ(y) dy− π

2
+ 1/τ

∫
W(x− y)λ(y) dy− π

2

= 1/τ
∫

[W(x− y) +W(x− y)] λ(y) dy− π = 0

given the relation W(x − y) +W(x − y) = τπ and the total population
constraint

∫
C λ(y) dy = 1. Finally, we get φ′′(x) = (C− δ2φ(x))+ − (C+

δ2φ(x))+.

Our resolution method consists in determining the solutions φ to Equa-
tion (5.2.7) with the periodic condition (5.2.8). Only then, the spatial equi-
libria λ will be obtained by Relation (5.2.6). Mossay and Picard identified
spatial equilibria involving cities distributed according to a cosine function
given by cos(δx). In what follows, these equilibria are referred to as one-
frequency (δ) equilibria, as opposed to other solutions derived in this paper
involving two frequencies (δ and

√
2δ). We summarize them in the following

Proposition.

Proposition 5.2.15 (Spatial equilibria along the circle) The spatial equilibria arising in the
circular economy C can be described as follows. Of course, the uniform
spatial distribution is always an equilibrium. If

√
2δ happens to be an odd

number, there exists a spatial equilibrium with full support exhibiting
√
2δ

centres, see the illustration in Figure 5.1. When
√
2δ is not an odd number,

for any odd number J such that J ≤ δ (resp. such that δ < J ≤
√
2δ), there

is a one-frequency (resp. two-frequency) spatial equilibrium with J identical
and evenly spaced cities, see the illustration in Figure 5.2 (resp. Figure 5.3).
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Figure 5.1 – Spatial equilibria with full support involving an odd number of centres.
In the left panel, the spatial economy displays one centre for δ =

√
2/2. In the

right panel, the spatial economy displays three centres for δ = 3
√
2/2.

Figure 5.2 – One-frequency spatial equilibria involving an odd number of cities. In
the left panel, the spatial economy displays J = 1 city for δ = 3. In the right panel,
the spatial economy displays J = 3 cities for δ = 4.

Figure 5.3 – Two-frequency spatial equilibria involving an odd number of cities. In
the left panel, for δ = 3/4, the equilibrium displays J = 1 city where the frequency
is

√
2δ for the portion of the curve above the line and δ for the portion of the curve

below that line. In the right panel, for δ = 2.8, the equilibrium displays J = 3 cities.

Our direct resolution method has allowed us to determine all the spatial
equilibria of the circular economy. This completes the analysis initiated by
Mossay and Picard and reemphasizes the emergence of multiple equilibria,
which has been interpreted here as a lack of convexity arising in the circular
model.
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5.3 Cournot-Nash equilibria

In the previous problem the utility function V given by

V : Y×P(Y) → R

(y, ν) 7→ V(y, ν)

is the same for all the agents. We now consider that agents have a type
x ∈ X and that the cost depend on the type:

V : X× Y×P(Y) → R

(x, y, ν) 7→ V(x, y, ν)

However in order to develop our optimal transport approach it seems nec-
essary to assume that the costs V is on the additive separable form

V(x, y, ν) := c(x, y) + V [ν](y) .

5.3.1 The equilibrium model

For simplicity we consider X and Y to be compact metric spaces but un-
bounded domains could be considered too. To give a sense to the local
congestion term we take m0 be a reference probability measure. The defini-
tion of equilibrium reads:

Definition 5.3.1 (Cournot-Nash equilibrium). Let µ be a Borel probability
measure on X giving the exogenous distribution of the type of the agents.
A Cournot-Nash equilibrium is a joint probability measure γ ∈ P(X × Y)
such that

• γ ∈ Π(µ, ν) := {γ ∈ P(X ×Y) : πX#γ = µ, πY#γ = ν}

• and there exists ϕ ∈ K(X) such that for all x ∈ X and a.e. y

{
c(x, y) + V [ν](y) ≥ ϕ(x)

c(x, y) + V [ν](y) = ϕ(x) for γ-a.e. (x, y).
(5.3.1)

To fix the idea let us give two examples where such equilibria arise:

Holiday choice

Let us consider a population of agents whose location is distributed accord-
ing to some probability distribution µ ∈ P(X) where X is some compact
subset of R2 (say). These agents have to choose their holidays destination
(possibly in mixed strategy). The set of possible holiday destinations is some
compact subset of the plane Y (it can be X, a finite set, ...). The commuting
cost from x to y is c(x, y). In addition to the commuting cost, agents incur
costs resulting from interactions with other agents, this is captured by a
map ν 7→ V [ν] that can be modelled as follows. A natural effect that has to
be taken into account is congestion, i.e. the fact that more crowded location
results in more disutility for the agents. Congestion thus requires to consider
local effects and actually imposes that ν is not too concentrated; a way to
capture this is to impose that ν is absolutely continuous with respect to some
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reference probability measure m0. Still denoting by ν the Radon-Nikodym
derivative of ν, a natural congestion cost is of the form y 7→ f (ν(y)) with
f non-decreasing. In addition to the negative externality due to congestion
effect, there may be a positive externality effect due to the positive social
interactions between agents which can be captured through a non-local term
of the form y 7→

∫
Y φ(y, z) dν(z) where for instance φ(y, .) is minimal for

z = y so that the previous term represents a cost for being far from the rest
of the population. Finally, the presence of purely geographical factors (e.g.
distance to the sea) can be reflected by a term of the form y 7→ v(y). The
total externality cost generated by the distribution ν combines the three
effects of congestion, positive interactions and geographical factors and can
then be taken of the form

V [ν](y) = f (ν(y)) +
∫

Y
φ(y, z) dν(z) + v(y).

Technological choice

Consider now a simple model of technological choice in the presence of ex-
ternalities. There is a set of consumers indexed by a type x ∈ X drawn
according to the probability µ, and a set of technologies Y for a certain
good (cell-phone, computer, tablet...). On the supply side, assume there is
a single profit maximising profit firm with convex production cost F(y, .)
producing technology y, the supply (equals demand at equilibrium) of this
firm is thus determined by the marginal pricing rule p(y) = ∂νF(y, ν(y)).
Agents aim to minimise with respect to y a total cost which is the sum of
their individual purchasing cost c(x, y) + p(y) = c(x, y) + ∂νF(y, ν(y)) and
an additional usage/maintenance or accessibility cost which is positively af-
fected by the number of consumers having purchased similar technologies
i.e. a term of the form

∫
Y φ(y, z) dν(z) where φ is increasing in the distance

between technologies y and z.

5.3.2 Connexion with optimal transport

Let Wc be the value of the Monge-Kantorovich optimal transport problem:

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫∫

X×Y
c(x, y) dγ(x, y)

and let us also denote by Πo(µ, ν) the set of optimal transport plans i.e.

Πo(µ, ν) := {γ ∈ Π(µ, ν) :
∫∫

X×Y
c(x, y) dγ(x, y) = Wc(µ, ν)}.

Proposition 5.3.2 (Connexion with optimal transport) If γ is a Cournot-Nash equilibrium
and ν denotes its second marginal then γ ∈ Πo(µ, ν).

Proof. Indeed, let ϕ ∈ K(X) be such that (5.3.1) holds and let η ∈ Π(µ, ν)
then we have
∫∫

X×Y
c(x, y) dη(x, y) ≥

∫∫

X×Y
(ϕ(x)−V[ν](y)) dη(x, y)

=
∫

X
ϕ(x) dµ(x)−

∫

Y
V[ν](y) dν(y) =

∫∫

X×Y
c(x, y) dγ(x, y)

so that γ ∈ Πo(µ, ν).
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In an euclidean setting, there are well-known conditions on c and µ which
guarantee that such an optimal γ necessarily is pure whatever ν is. It is the
case for instance if µ is absolutely continuous with respect to the Lebesgue
measure, c(x, y) is a smooth and strictly convex function of x− y (see [155]
who extended the seminal results of [49] in the quadratic cost case), or more
generally, when it satisfies a generalised Spence-Mirrlees condition (see [64]
for details):

Proposition 5.3.3 (Purification of equilibria) Assume that X = Ω where Ω is some open
connected bounded subset of Rd with negligible boundary, that µ is absolutely
continuous with respect to the Lebesgue measure, that c is differentiable with
respect to its first argument, that ∇xc is continuous on Rd × Y and that it
satisfies the generalised Spence-Mirrlees condition:

for every x ∈ X, the map y ∈ Y 7→ ∇xc(x, y) is injective,

then for every ν ∈ P(Y), Πo(µ, ν) consists of a single element and the latter
is of the form γ = (id, T)#µ hence every Cournot-Nash equilibrium is pure.

5.3.3 Variational approach

In this section, we will see that in many relevant cases, one may obtain
equilibria by the minimisation of some functional over a set of probability
measures1. The main assumption for this variational approach to be valid
is that the interaction map V [ν] has the structure of a differential i.e. that
V [ν] can be seen as the first variation of some function ν 7→ E [ν]. In this
case, the variational approach is based on the observation that the equilib-
rium condition is the first-order optimality condition for the minimisation
of Wc(µ, ν) + E [ν].

Let D be defined by

D := {ν ∈ L1(m0) : V[ν] ∈ L1(ν)} = {ν ∈ L1(m0) :
∫

Y
|V[ν]| dν < +∞}.

Assume a(να − 1) ≤ f (y, ν) ≤ b(να + 1), for α ≥ 0 and that φ is symmetric.

V [ν](y) := f (ν(y)) +
∫

Y
φ(y, z) dν(z) + v(y) .

is the differential of E in D := P(Y) ∩ Lα+1 where

E [ν] =
∫

Y
F(ν(y)) dy+

1

2

∫∫

Y×Y
φ(y, z) dν(y) dν(z) +

∫

Y
v(y) dν(y) ,

with F′ = f .
Define the variational problem:

inf
ν∈D

Jµ[ν] where Jµ[ν] := Wc(µ, ν) + E [ν]. (5.3.2)

Proposition 5.3.4 (Existence of equilibria, [34]) If

• ν solves (5.3.2),

1Note the analogy with the variational approach of [159] for potential games, i.e. games
for which theequilibria can be obtained by minimising some potential function.
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• and γ is an optimal transport between µ and ν

then γ is a Cournot-Nash equilibrium.
Moreover, (5.3.2) admits minimisers in P(Y)∩Lα+1 so that there exists

Cournot-Nash equilibria.

The proof of this result uses a usual vertical perturbation of the func-
tional. Let us mention that the optimality condition for (5.3.2) is the fol-
lowing: there is a constant M such that

{
ϕc + V [ν] ≥ M

ϕc + V [ν] = M ν-a.e. ,
(5.3.3)

where ϕc is the c-transform of ϕ.

5.3.4 Hidden convexity and further uniqueness results

So far, our variational approach has enabled us to prove the existence of
equilibria by the minimisation problem (5.3.2). However, the previous re-
sults are not totally satisfying since in general there might exist equilibria
that are not minimisers and even if we are only interested in the special
equilibria obtained by minimisation, optimality conditions:

ν(y) = f−1

(
M− ϕc(y)−

∫

Y
φ(y, z) dν(z)

)
. (5.3.4)

are not tractable enough to provide a full characterisation. In the case where

E [ν] =
∫

Y
F(y, ν(y)) dm0(y) +

1

2

∫∫

Y×Y
φ(y, z) dν(y) dν(z)

there is a competition between the convexity of the congestion term that
favours dispersion and the non-convexity of the interaction term so that in
general nothing can be said about the convexity of E in the usual sense.
However, for people familiar with optimal transport there is an hidden con-
vexity due to R. McCann [153] which would restore the equivalence between
being a minimiser and being an equilibrium. It would also give new unique-
ness and characterisation results.

Throughout this section, we will assume the following:

• X = Y = Ω where Ω is some open bounded convex subset of Rd,

• µ is absolutely continuous with respect to the Lebesgue measure (that
will be the reference measure m0 from now on) and has a positive
density on Ω,

• c is quadratic i.e.

c(x, y) :=
1

2
|x− y|2, (x, y) ∈ R

d × R
d,

• V again takes the form

V [ν](y) = f (ν(y)) + v(y) +
∫

Y
φ(y, z) dν(z)

where v is convex, f satisfies the Inada condition and φ ∈ C(Rd ×Rd)

is symmetric and K1,1
loc (i.e. K1 with a locally Lipschitz gradient).
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The variational problem (5.3.2) then takes the form

inf
ν∈P(Ω)

Jµ[ν] where Jµ[ν] :=
1

2
W2

2 (µ, ν) + E [ν] (5.3.5)

with W2
2 (µ, ν) is the squared-2-Wasserstein distance between µ and ν i.e.:

W2
2 (µ, ν) := inf

γ∈Π(µ,ν)

∫

X2
|x− y|2 dγ(x, y).

Two more structural assumptions are needed to guarantee the strict
convexity of Jµ along generalised geodesics with base µ, namely McCann’s
condition:

ν 7→ νdF(ν−d) is convex non-increasing on (0,+∞) (5.3.6)

and that φ is convex. Note that McCann’s condition is satisfied for standard
utility function as the power functions νm with an exponent larger than 1
as well as by the entropy log(ν).

Proposition 5.3.5 (Uniqueness of the equilibrium, [34]) Under the above assumptions there
is a unique equilibrium (which is actually pure).

A partial differential equation

For computational simplicity, we take v = 0 and f (ν) = log(ν) but any

convex, K1,1
loc, symmetric v and any increasing f satisfying McCann’s con-

dition would lead to a similar partial differential equation. The optimality
condition (5.3.3) reads

ν(y) = f−1

(
M− ϕc(y)−

∫

Y
φ(y, z) dν(z)

)
.

It can be rephrased using the Brenier map ∇u which satisfies the Monge-
Ampère equation:

µ(x) = det(D2u(x)) ν(∇u(x)), ∀x ∈ Ω

supplemented with the natural sort of boundary condition ∇u(Ω) = Ω. As

ϕ(x) =
1

2
|x|2 − u(x), ϕc(y) =

1

2
|y|2 − v(y), ∀(x, y) ∈ Ω × Ω .

The equilibrium problem is therefore equivalent to a non-local and nonlinear
partial differential equation:

µ(x) = det(D2u(x)) exp

(
−1

2
|∇u(x)|2 + x · ∇u(x)− u(x)

)
×

exp

(
−
∫

Ω
φ(∇u(y),∇u(z)) dµ(z)

)
. (5.3.7)

This kind of partial differential equation is rather complicated. However,
in dimension 1, i.e. when Ω is an open interval, which we can assume to
be (0, 1), the boundary condition is u′(0) = 0, u′(1) = 1 and the Monge-
Ampère equation (5.3.7) simplifies to

µ(x) =

u′′(x) exp
(
−1

2
u′(x)2 + x · u′(x)− u(x)−

∫

(0,1)
φ(u′(x), u′(z)) dµ(z)

)
.
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Numerical simulation in dimension 1

Looking for ν amounts to look for its rearrangement:

G(x) := inf{ν : ν([0, ν]) ≥ x}, ∀x ∈ (0, 1).

We also denote by H the quantile of µ.
Then

W2
2 (µ, ν) =

∫ 1

0
|G(x)− H(x)|2 dx.

So that the variational problem reduces to minimise the strictly convex
functional

Proposition 5.3.6 One dimensional scheme

1

2

∫ 1

0
|G−H|2−

∫ 1

0
log(G′(x)) dx+

1

m+ 1

∫

[0,1]m+1
φ(G(x0),G(x1)) dx0 dx1
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Figure 5.4 – The distribution µ of the agents is dash line and the solution ν in the
case f (x) = x8, φ(z) = 10−4|z|2 and v = (x− 10)4.

5.4 Extension to utility which are not differentials

The methods used previously need the utility function to be a differential.
When φ is not symmetric, such a property is no longer satisfied.

As is customary in economics, one may look for equilibria by a fixed-point
argument. This can be done where V [ν] is a continuous function for every
ν and ν 7→ V [ν] is a continuous map from (P(Y),w− ∗) to (C(Y), ‖ · ‖∞).
This is an extremely strong assumption that rules out the case of a local
dependence of the type

V [ν](y) := f (y, ν(y)), (5.4.1)

But it enables us to treat a non-local dependence of the form

V [ν](y) :=
∫

Ym
φ(y, z1, . . . , zm) dν(z1) · · · dν(zm) (5.4.2)

where φ is a continuous function on Ym+1 but is not assumed to be symmet-
ric. The following existence result is a simple corollary of [151, Theorem 1],
and can be easily proved by using Kakutani’s fixed point theorem

Theorem 5.4.1 (Existence of equilibria in the regular case) Let µ ∈ P(Y) be given. Assume
that X and Y are compact metric spaces, c is continuous on X × Y and
ν 7→ V [ν] is a continuous map from (P(Y),w− ∗) to (C(Y), ‖ · ‖∞), then
there exists an equilibrium.
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5.4.1 Uniqueness under monotonicity

In the framework of mean-field games, [138] established that some simple
monotonicity property of ν 7→ V [ν] is enough to guarantee uniqueness of the
equilibrium. A simple adaptation of their argument gives the elementary
uniqueness result:

Theorem 5.4.2 (Uniqueness of the equilibrium) Let µ ∈ P(X) be given. If ν 7→ V [ν] is
strictly monotone in the sense that for every ν1 and ν2 in P(Y)

∫

Y
(V [ν1]− V [ν2]) d(ν1 − ν2) ≥ 0

and the inequality is strict whenever ν1 6= ν2 then all equilibria have the
same second marginal.

5.4.2 Equilibria by best-reply iteration

In this section, we adopt a more direct approach when c is quadratic and
V [ν] satisfies some suitable convexity condition which makes solving type
x agents program minz∈Y{c(x, z) + V [ν](z)}, given ν, more explicit by a
first-order condition.

Throughout this section, we will assume that

• X = Ω, Y = U, where Ω and U are some open bounded convex
subsets of Rd,

• the cost is quadratic:

c(x, y) :=
1

2
|x− y|2, ∀(x, y) ∈ R

d × R
d ,

• µ is absolutely continuous with respect to the Lebesgue measure on X
and has a bounded density still denoted µ,

• V [ν] is a smooth and convex function for every ν ∈ P(Y) (which is
the case if V [ν] has the form (5.4.2) with φ smooth and convex with
respect to its first argument),

• for every ν ∈ P(Y) and every x ∈ X, the solution of

inf
y∈Y

{
1

2
|x− y|2 + V [ν](y)

}
(5.4.3)

belongs to U (which is the case as soon as V [ν] fulfils some coercivity
assumption and U is chosen large enough).

Convergence to the unique equilibrium

The solution of (5.4.3) is obtained by a first-order condition which gives

y = (id+∇V [ν])−1(x).

The resolvent operator (id+∇V [ν])−1 is a very natural operator in convex
analysis where it is known as the proximal operator of V [ν]. If agents have
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a prior ν on the other agents actions, their cost-minimising behaviour leads
to another a posteriori measure on the action space Y, namely

Tν := (id+∇V [ν])−1
# µ. (5.4.4)

One easily checks that (γ, ν) is an equilibrium if and only if ν = Tν and
γ = (id, (id+∇V [ν])−1)#µ is the optimal transport plan between µ and ν
for the quadratic cost. Finding an equilibrium thus amounts to finding a
fixed point of T and we shall see some additional conditions that ensure that
T is a contraction of P(Y) endowed with the 1-Wasserstein distance W1:

W1(ν1, ν2) := inf
η∈Π(ν1,ν2)

∫∫

Y×Y
|y1 − y2| dη(y1, y2) .

Since (P(Y),W1) is a complete metric space, these conditions will there-
fore imply the existence and the uniqueness of an equilibrium (and more
importantly, from a numerical point, this equilibrium can be approximated
by the iterates of T applied to any ν0 ∈ P(Y)). Our additional assump-
tions read as : there exists λ > 0, C ≥ 0 and M > 0 such that for every
(ν1, ν2) ∈ P(Y)×P(Y) the following inequalities hold

D2V [ν1] ≥ λId on X (5.4.5)

det(Id + D2V [ν1]) ≤ M on X (5.4.6)
∫

Y
|∇V [ν1](y)−∇V [ν2](y)| dy ≤ CW1(ν1, ν2) (5.4.7)

Using a series of estimates we prove

Theorem 5.4.3 (Convergence of the best-reply iteration scheme) Under the assumptions of
this section, if (5.4.5), (5.4.6) and (5.4.7) hold and if

MC‖µ‖L∞ < 1+ λ (5.4.8)

then the map T defined by (5.4.4) is contraction of (P(Y),W1). Therefore
there exists a unique equilibrium (γ, ν) where

γ = (id, (id+∇V [ν])−1)#µ and ν = (id+∇V [ν])−1
# µ .

Moreover, for every ν0 ∈ P(Y), the sequence Tnν0 converges to ν in the
distance W1 and hence for the weak-∗ topology.

It may seem difficult at first glance to check the assumptions of Theo-
rem 5.4.3 but we give now a class of examples. Namely, we consider the case
where

V [ν](y) = V0(y) + ε
∫

Y
φ(y, z) dν(z) (5.4.9)

where ε > 0 is a scalar parameter capturing the strength of interaction, V0

is a smooth and convex function such that D2V0 ≥ λ0Id on Y with λ0 > 0
and φ is K2(Rd × Rd).

Corollary 5.4.4 Assume that ν 7→ V [ν] has the form (5.4.9) and that the previous as-
sumptions are satisfied, then for ε small enough, the map T defined by (5.4.4)
satisfies (5.4.5)- (5.4.6)- (5.4.7)- (5.4.8) and so there is a unique equilibrium.
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Best-reply numerical scheme

Theorem 5.4.3 gives a natural numerical scheme which converges to the
equilibrium. Let µ be the distribution of agents and ν0 be their prior. The
best-reply iteration consist, at each step, starting from a distribution of
action νk in determining

νk+1 = (id+∇V [νk])−1
# µ .

By definition of the push-forward and the change of variable formula, it can
be rewritten for all φ ∈ K(Y)

∫

X
φ((id+∇V [νk])−1(x)) dµ(x) =

∫

Y
φ(y) dνk+1(y)

⇔
∫

Y
φ(y)det(Id + D2V [νk])(y) dµ(id+∇V [νk])(y) =

∫

Y
φ(y) dνk+1(y) .

So that at each step we have to solve

νk+1 = µ(id+∇V [νk])det(Id + D2V [νk])(y) .

In the application of the corollary, as the externalities (5.4.9) is just
a perturbation of V0, in one iteration the best-reply is very close to the
equilibrium and then converges toward it, see Figure 5.5.
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Figure 5.5 – Convergence to the equilibrium in the case ε = 10−4, V0(y) = (x −
5/2)4/10, φ(z) = z4 with a prior which is equal to µ := (1l[1,2] + 1l[3,4])/2 (where
1lB is the characteristic function of B). The evolution of the density on the left and
a zoom at the top of the left pic showing the convergence on the right.

The equilibrium computed as the limit of the numerical scheme does not
depend on the prior, see Figure 5.6.

When µ is made of two gaussians with different means, the convergence
toward the equilibrium is shown in Figure 5.7.

5.5 Discussions

Welfare analysis

It would be tempting to interpret the above results as a kind of welfare
theorem. If a planner would decide where to allocate the players, he would
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Figure 5.6 – Prior and equilibrium in the case ε = 10−4, V0(y) = (x − 2.8)4/10,
φ(z) = z4 with µ := (1l[1,2] + 1l[3,4])/2, when the prior is equal to µ on the left and

when it is 2 exp(−y2/2))/
√
2π 1lR+ on the right.

0 2 4 6 8 10 12 14 16
0.00

0.05

0.10

0.15

0.20

0.25

4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8 6.0
0.10

0.15

0.20

0.25

0.30

Figure 5.7 – Convergence to the equilibrium in the case ε = 10−6, V0(y) = (x −
10)4.10−3, φ(z) = z4 with a prior which is equal to µ := (exp(−(y − 4)2/2) +

exp(−(y− 12)2/2))/(2
√
2π). The evolution of the density on the left and a zoom

at the top of the left pic showing the convergence on the right.

do it in order to maximise the total social cost SC[ν] defined by

SC[ν] =
∫

X×Y
(c(x, y) + V [ν](y)) dγ(x, y)

=
∫∫

X×Y
c(x, y) dγ(x, y) +

∫

Y
V [ν](y) dν(y)

=
1

2
W2

2 (µ, ν) +
∫

Y
V [ν](y) dν(y)

=
1

2
W2

2 (µ, ν) +
∫

Y
f (ν(y)) dν(y) +

∫

Y
V dν +

∫

Y
φ dν,

However such a program leads to a result which differs from the equilibrium
described above. Indeed, the second term f (ν)ν is replaced in the functional
minimised by the players by F(ν) (with F′ = f ) and the interaction term
is divided by 2. This individual minimisation has of course no reason to
correctly estimate the marginal effect of individual behaviour on the total
social cost. In other words, there is some gap between the equilibrium and
the efficient (social-cost minimising) configurations, and, since we are deal-
ing with a situation with externalities, this is actually not surprising. The
computation of the equilibrium and the optimum can be done numerically
in dimension 1 by using the same kind of numerical computations, see Fig-
ure 5.8. The natural way to restore efficiency of the equilibrium is the design
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Figure 5.8 – The optimum in continuous line and the equilibrium in dash line on
the left. The corresponding taxes on the right.

by some social planner of a proper system of tax/subsidies which, added to
V [ν], will implement the efficient configuration (or at least a stationary point
of the social cost). Thanks to our variational approach, a tax system that
restores the efficiency is easy to compute (up to an additive constant):

Tax[ν](y) = f (ν(y)) ν(y) − F(ν(y)) +
∫

Y
φ(y, z) dν(z).

The two terms in Tax[ν] represent respectively a correction to the individual
estimation of congestion cost and to the individual estimation of interaction
cost.

Dynamical perspective

Instead of minimising Jµ directly, we may think that agents start with some
distribution of strategies (that is not an equilibrium) and adjust it with
time by a sort of gradient descent dynamics to decrease their individual cost
dynamically.

The agents start with some distribution of strategies (that is not an
equilibrium) and adjust it with time by choosing

νk+1 ∈ argminν

{
1

2τ
W2

2 (νk, ν) + Jµ[ν]

}
. (5.5.1)

and converges in some sense to the continuous evolution equation





∂tν + div

(
−ν∇

(
δJµ

δν

))
= 0,

νt=0 = ν0

Extension to scalar conservation laws

Existence and uniqueness of the solutions to gradient systems in the proba-
bility space equipped with the Wasserstein metric has been studied in details
in [5]. We are currently working with G. Carlier to extend the previous strat-
egy to prove existence and uniqueness results via minimising scheme for a
class of problems of the form

ρt = −∇ · (ρV[ρ]) .
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Figure 5.9 – Convergence and stabilisation toward the equilibrium in the case of a
logarithmic congestion, cubic interaction, and a potential V(x) := (x − 5)3 with
1l[0,1] as initial guess on the left and made of two bumps on the right.

The extension of the previous results requires to adapt the theory of mono-
tone operator, see [52], to the probability space equipped with the Wasser-
stein metric. Such a programme would provide a natural tool to model
biological and economical emergence phenomena.

5.6 Idea of the proof

A minimiser is an equilibrium

Let ν maximise F in P ac(K). We consider some admissible density ν̃ and a
family of perturbations indexed by 0 ≤ ε ≤ 1,

νε = (1− ε)ν + εν̃ .

Given that ν maximises F , we have

0 ≥ d

dε
F [νε]|ε=0 =

d

dε
U [νε ]|ε=0 +

d

dε
V [νε]|ε=0 +

d

dε
W [νε]|ε=0 (5.6.1)

As U′ = u, the derivative of the internal energy is given by

d

dε
U [νε ]|ε=0 = −

∫
U′(ν(x))

d

dε
νε(x) dx|ε=0

= −
∫

u(ν(x))[ν̃(x)− ν(x)] dx .

The potential energy is easy to compute and its derivative is given by

d

dε
V [νε]|ε=0 = −

∫
v(x)(ν̃(x)− ν(x)) dx.

By using the symmetry of φ, the derivative of the interaction energy is
given by

d

dε
W [νε]|ε=0

= −1

2

∫∫
φ(x− y) (ν(x)[ν̃(y)− ν(y)] + [ν̃(x)− ν(x)]ν(y))

= −
∫∫

φ(x− y)ν(y)[ν̃(x)− ν(x)] dx dy

= −
∫

φ∗ν(x)(ν̃(x)− ν(x)) dx .
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By plugging the expressions into (5.6.1) we obtain

∫
[u(ν(x)) + v(x) + φ∗ν(x)] ν̃(x) dx

≥
∫

[u(ν(x) + v(x) + φ∗ν(x)] ν(x) dx .

As this inequality holds for any admissible density ν̃, this implies that the
density ν is concentrated on the set where the function u(ν) + φ∗ν + v
realises its minimal value.

Equivalence between equilibrium and minimiser

Assume now that ν is a solution to (5.3.5). Let ν̃ be some admissible density
and ∇ψ the optimal transport from ν to ν̃. Consider ψε(x) := (1− ε)x2/2+
εψ and the family of perturbations defined for 0 ≤ ε ≤ 1 by νε := ∇ψε#ν.The
Monge-Ampère equation (A.1.5): ν(x) = νε(∇ψε(x))det(D2ψε(x)) is equiv-
alent to

νε(y) =
ν(∇ψ−1

ε (y))

det(D2ψε(∇ψ−1
ε (y))

. (5.6.2)

We will give an idea of the proof in the case when E is of the form

E [ν] =
∫

Y
F(ν) dy+

1

m+ 1

∫

Ym+1
φ dν⊗(m+1)

but a generalisation to any sum of symmetric interaction terms of different
orders m is straightforward.

As ν is a minimiser, the derivative of Jµ[νε] in ε is 0. Let us compute

d

dε |ε=0
Jµ[νε ] =

1

2

d

dε |ε=0
W2

2 (µ, νε) +
d

dε |ε=0

∫

Y
F(νε) dy

+
1

m+ 1

d

dε |ε=0

∫

Ym+1
φ dν

⊗(m+1)
ε .

• By (5.6.2) and the change of variable x = ∇ψ−1
ε (y), the differential of the

second term formally gives

d

dε |ε=0

∫

Y
F(νε) dm0 =

d

dε |ε=0

∫

Y
F

(
ν(∇ψ−1

ε (y))

det(D2ψε(∇ψ−1
ε (y)))

)
dy

=
d

dε |ε=0

∫

Y
F

(
ν(y)

det(D2ψε(y))

)
det(D2ψε(y)) dy

= −
∫

Y
ν [∆ψ − d] F′(ν) dy+

∫

Y
F(ν) [∆ψ − d] dy

=
∫

Y

[
F(ν)− νF′(ν)

]
[∆ψ − d] dy . (5.6.3)

Where, as det(I + H) = 1+ tr(H) + o(‖H‖), we have used

d

dε |ε=0
det(D2ψε(y)) =

d

dε |ε=0
det(I + ε(D2ψ − I)) = ∆ψ − d .
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By integrating by parts (5.6.3) we obtain

d

dε |ε=0

∫

Y
F(νε) dy = −

∫

Y
∇
[
F(ν)− νF′(ν)

]
[∇ψ − id] dy

+
∫

∂Y

[
F(ν)− νF′(ν)

]
[∇ψ − id] · n dσ .

By convexity of Y, (T − id) · n ≤ 0. By convexity of F, x 7→ F(x)− xF′(x)
is non-increasing from F(0) = 0. So that the boundary term is non-positive
and

d

dε |ε=0

∫

Y
F(νε) dm0 ≤ −

∫

Y
∇
[
F(ν)− νF′(ν)

]
[∇ψ − id] dy .

As ∇ [F(ν)− νF′(ν)] = −ν∇ [F′(ν)] = ν∇ [ f (ν)], we have

d

dε |ε=0

∫

Y
F(νε) dy ≤ −

∫

Y
ν∇ [ f (ν)] [∇ψ − id] dy .

• By symmetry of φ and definition of the push-forward, the last term for-
mally gives

d

dε |ε=0

∫

Ym+1
φ(y, z1, . . . , zm) dνε(y) dνε(z1) · · · dνε(zm)

=
d

dε |ε=0

∫

Ym+1
φ(∇ψε(y),∇ψε(z1), . . . ,∇ψε(zm)) dν⊗(m+1)

= (m+ 1)
∫

Ym+1
∇φ(y, z1, . . . , zm)(∇ψ(y)− y) dν⊗(m+1)

• By the horizontal differentiability of the Monge-Kantorovich distance, see
Proposition A.1.8 with v = ∇ψ − id, the differential of the first term is

1

2

d

dε
W2

2 [µ, νε]|ε=0 =
∫

Y
〈y−∇ϕ∗(y),∇ψ − id〉 dν(y) .

• Collecting the above computations we obtain

0 =
d

dε |ε=0
Jµ[νε] ≤

∫

Y
ν ∇

[
− f (ν) +

∫

Ym
φν⊗m + y−∇ϕ∗

]
[∇ψ − id] dy .

So that, on the support of ν, there exists a constant M such that

− f (ν) +
∫

Ym
φ dν⊗m + id−∇ϕ∗ = M m0-a.e. .

This is exactly the optimality condition (5.3.3) as

∇ϕc(y) = ∇
( |y|2

2
− ϕ∗

)
= y−∇ϕ∗(y) .

In case ∇ϕε is not regular enough div is the distributional divergence
and a rigorous justification of this computation can be found in [204, The-
orem 5.30] and [5, Theorem 10.4.13].
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A.1 An optimal transport toolbox

The variational approach used in these two works presents strong similarities
with the famous potential games of [159] and our framework is very close
to that of [131] or [140] in the case of a finite number of players. However
we are not aware of any extension of the analysis of [159] to the case of a
continuum of players.

Once we look at this problem from a variational point of view the optimal
transport theory plays a crucial role in the proven results.

We just give some basic results from optimal transport theory that we
use in the proof, for a detailed exposition of this rich and rapidly developing
subject, we refer the interested reader to the very accessible textbook [204]
or [5, 205] or, the more probability-oriented textbook [172].

A.1.1 Kantorovich duality

Let X and Y be two compact spaces equipped respectively with the Borel
probability measures µ ∈ P(X) and ν ∈ P(Y). For µ ∈ P(X) and T, Borel:
X → Y, T#µ denotes the push forward (or image measure) of µ through T
which is defined by T#µ(B) = µ(T−1(B)) for every Borel subset B of Y or
equivalently by the change of variables formula

∫

Y
ϕ dT#µ =

∫

X
ϕ(T(x)) dµ(x), ∀ϕ ∈ K(X). (A.1.1)

A transport map between µ and ν is a Borel map such that T#µ = ν.
Now, let c ∈ K(X×Y) be some transport cost function, the Monge optimal
transport problem for the cost c consists in finding a transport T between
µ and ν that minimises the total transport cost

∫
X c(x, T(x)) dµ(x). A

minimiser is then called an optimal transport. Monge problem is in general
difficult to solve (it may even be the case that there is no transport map,
for instance it is impossible to transport one Dirac mass to a sum of distinct
Dirac masses), this is why Kantorovich relaxed Monge’s formulation as

Wc(µ, ν) := inf
γ∈Π(µ,ν)

∫

X×Y
c(x, y) dγ(x, y) (A.1.2)

where Π(µ, ν) is the set of transport plans between µ and ν i.e. Borel
probability measures on X ×Y having µ and ν as marginals. Since Π(µ, ν)
is weakly ∗ compact and c is continuous, it is easy to see that the infimum
of the linear program defining Wc(µ, ν) is attained at some γ, such optimal
γ’s are called optimal transport plans (for the cost c) between µ and ν. If
there is an optimal γ which is induced by a transport map i.e. is of the form
γ = (id, T)#µ for some transport map T then T is obviously an optimal
solution to Monge’s problem. Another advantage of the linear relaxation
is that it possesses a dual formulation that can be very useful. This dual
formulation consists in maximising the linear form

∫
X ϕ dµ+

∫
Y ψ dν among

all pairs (ϕ, ψ) ∈ K(X)×K(Y) such that ϕ(x) + ψ(y) ≤ c(x, y), it is easy
to see that this can be reformulated as a maximisation over ϕ only:

Wc(µ, ν) := sup
ϕ∈K(X)

{ ∫

X
ϕ dµ +

∫

Y
ϕc dν

}
(A.1.3)
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where ϕc is the c-concave transform of ϕ i.e.

ϕc(y) := min
x∈X

{c(x, y) − ϕ(x)}, ∀y ∈ Y.

Formula (A.1.3) is usually called Kantorovich duality formula and a max-
imiser ϕ in (A.1.3) is called a Kantorovich potential between µ and ν for the
cost c. The existence of Kantorovich potentials under our assumptions is
well-known (see [204, 205, 172]).

When X = Y and denoting by d the distance on Y, for p ∈ [1,+∞[, the
p-Wasserstein distance between µ ∈ P(X) and ν ∈ P(X) is by definition

Wp(µ, ν) :=
(

inf
γ∈Π(µ,ν)

{ ∫

X×Y
d(x, y)p dγ(x, y)

})1/p
(A.1.4)

The Wasserstein distances are indeed distances and they metrise the weak
∗ topology of P(Y).

Of particular interest is also the quadratic case p = 2 in an euclidean
setting for which a brief summary of the main results used in the paper is
given in the next paragraphs.

A.1.2 The quadratic case and Monge-Ampère equation

We now restrict ourselves to the quadratic case, the solution of the quadratic
optimal transport problem is due to Yann Brenier whose path-breaking pa-
per [49] totally renewed the field of optimal transport and was the starting
point of an extremely active stream of research since the 90’s.

Theorem A.1.1 (Brenier’s theorem) Let µ ∈ P(Rd) be absolutely continuous with respect to
the Lebesgue measure and compactly supported and ν ∈ P(Rd) be compactly
supported, then the quadratic optimal transport problem

W2
2 (µ, ν) := inf

γ∈Π(µ,ν)

∫∫

Rd×Rd
|x− y|2 dγ(x, y)

possesses a unique solution γ which is in fact a Monge solution γ =
(id, T)#µ. Moreover T = ∇u µ-a.e. for some convex function u and ∇u is
the unique (up to µ-a.e. equivalence) gradient of a convex function trans-
porting µ to ν; T = ∇u is called the Brenier map between µ and ν.

When we have additional regularity, i.e. when µ and ν have regular
densities (still denoted µ and ν) and ∇u is a diffeomorphism between the
support of µ and that of ν, thanks to the change of variables formula, we
find that u solves the Monge-Ampère partial differential equation:

µ = ν(∇u)det(D2u). (A.1.5)

A deep regularity theory due to Luis Caffarelli: [56, 55] implies that the
Brenier map is a smooth diffeomorphism when in addition µ and ν are
smooth, bounded away from 0 and have convex supports, in particular the
Monge-Ampère equation is satisfied in this case.
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A.1.3 Convexity along generalised geodesics

A functional F : X → R ∪ {+∞} defined on a vector space X is said to be
convex if

F((1− t)x+ ty) ≥ (1− t)F(x) + tF(y)

for t ∈ [0, 1] and x, y ∈ X. The points (1− t)x+ ty form a segment joining x
to y which is the shortest path connecting these two points. In order to gen-
eralise the notion of convexity to the case of a metric space X, we substitute
segments with geodesics. Consider some metric space (X, d) where for every
pair (x, y), there exists a curve σ : [0, 1] → X, with σ(0) = x, σ(1) = y,
such that the length of σ equals d(x, y) (which is the minimal possible length
of a curve connecting these two points). Because it can reparametrised in
time t, this curve σ is not unique. In what follows, we will consider constant
speed curves realising the minimal length, which are referred to as constant
speed geodesics and satisfy d(σ(t), σ(s)) = |t − s|d(x, y). The functional
F : X → ∪ {+∞} is said to be geodesically convex if

F(σ(t)) ≥ (1− t)F(x) + tF(y)

for every x, y ∈ X and every constant speed geodesic σ connecting x to y.
The notion of geodesic convexity on general metric spaces is useful when

dealing with probability measures. To fix the ideas, it is enough to think
of probability densities. We consider the case of a convex domain K ⊂ Rd

and the space X = P(K) of probability densities over K. This space can be
considered as a subset of a vector space and endowed with a distance based
on the norm of the difference µ − ν, µ and ν being two generic elements of
X. However, it is often useful to consider a different distance, based on the
minimal displacement which is needed to pass from µ to ν.

Distances can be defined between probability measures by considering
transport maps using precisely the Wasserstein distance between µ and ν.
The space of probability measures is now a metric space when equipped
with the 2-Wasserstein metric.1 This space has its own geodesics, which are
curves of measures, and we are interested in the notion of convexity with
respect to these geodesics.

First, we need to understand how geodesics look like. For any two prob-
abilities ρ0 and ρ1, we consider the optimal transport map T sending ρ0 to
ρ1 and define

ρt := [(1− t)id+ tT]#ρ0 for t ∈ [0, 1]

Note that ρt|t=0 = ρ0 and ρt|t=1 = ρ1. This curve ρt of measures is actually
the unique constant speed geodesic connecting ρ0 to ρ1 under the metric
W2: for any (t, s) ∈ [0, 1]2

W2(ρt , ρs) = |t− s|W2(ρ0, ρ1) .

Geodesic convexity in this space has been studied first by McCann and
is referred to as displacement convexity, see [154].

Definition A.1.2. The functional G is said to be displacement convex (or
geodesically convex ) in P(K), if for all ρ0 and ρ1 in P(K),

G[ρt] ≥ (1− t)G[ρ0] + tG[ρ1].
1As was shown by Otto in [167], it may be seen as a “Riemannian manifold” but here

we will not consider this perspective.
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McCann provided some assumptions ensuring the displacement concav-
ity of the functional F defined in (5.2.4).

Proposition A.1.3 (Criteria of geodesic convexity, see [154]) Under the following conditions

• if U(0) = 0 and r 7→ rdU(r−d) is convex non-decreasing in (0,+∞)
then U is geodesically concave,

• v is convex then V is geodesically concave,

• φ is convex then W is geodesically concave.

The functional F as given by expression (5.2.4) is geodesically concave
as soon as these properties are satisfied.

Remark A.1.4. The two most famous examples of functions U satisfying the
geodesic concavity condition are U(r) = rγ, γ > 1, and U(r) = r log r− r.

In the Cournot-Nash equilibria model, the Wasserstein distance appears
in the minimising problem. The Wasserstein distance in not convex along
these geodesics. This is precisely why we need to introduce another notion
of convexity due to [5]: Let T0 be the Brenier map between µ and ν and let
T1 be the Brenier’s map between µ and ρ. The generalised geodesic with
base µ between ν and ρ is the curve of measure

t ∈ [0, 1] 7→ νt := ((1− t)T0 + tT1)#µ .

Definition A.1.5 (Convexity along generalised geodesic). The functional
E : P(X) → R ∪ {+∞} is called convex along generalised geodesics with
base µ if for every pair of disjoint endpoints ν and ρ in P(X) and for every
t ∈ [0, 1], one has

E [νt ] ≤ (1− t)E [ν] + tE [ρ].
If, in addition, the previous inequality is strict for t ∈ (0, 1) and ρ 6= ν, E is
called strictly convex along generalised geodesics with base µ.

We just observe that since (id, (1− t)T0 + tT1)#µ has marginals µ and
νt then the convexity of the squared norm gives:

W2
2 (µ, νt) ≤

∫

X
|x− (1− t)T0(x)− tT1(x)|2 dµ(x)

≤ (1− t)
∫

X
|x− T0(x)|2 dµ(x) + t

∫

X
|x− T1(x)|2 dµ(x)

= (1− t)W2
2 (µ, ν) + tW2

2 (µ, ρ)

with a strict inequality for t ∈ (0, 1) and ρ 6= ν.

A.1.4 Differentiability of the Wasserstein distances

We need two kind of differentiability of the Wasserstein distance: the so-
called vertical and horizontal differentiability.

Lemma A.1.6 (Vertical differentiability of the Wasserstein distance) ssume that X = Ω where
Ω is some open bounded connected subset of Rd with negligible boundary, that
µ is equivalent to the Lebesgue measure on X (that is both measures have
the same negligible sets) and that for every y ∈ Y, c(., y) is differentiable
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with ∇xc bounded on X × Y and ν ∈ P(Y). Let ϕ be the unique (up to an
additive constant) Kantorovich potential between µ and ν. Then for every
ρ ∈ P(Y) one has

lim
ε→0+

Wc(µ, ν + ε(ρ − ν))−Wc(µ, ν)

ε
=
∫

Y
ϕc d(ρ − ν).

In the proof of Theorem 5.3.5 we will rather use the horizontal differen-
tiability of the Wasserstein distance. For this purpose we need first to recall
the following classical characteristics method, see [204, Theorem 5.34] [5,
Theorem 8.3.1]:

Proposition A.1.7 (Characteristics method for linear transport equation) Let (Tt)t∈[0,T∗] be a
family of diffeomorphism locally Lipschitz with T0 = id and let v be the
associated velocity field i.e. Ṫt(x) = v(t, Tt(x)). Consider ν ∈ P(Y).
Then νt = Tt#ν is a solution to the following linear transport equation in
K(0, T∗;P(Y)):





∂νt
∂t

+∇ · (v νt) = 0 , ∀t ∈ [0, T∗]

ν0 = ν .

The idea of the proof is formally as follows: Let φ be any test function.
By the definition of the push-forward and using Ṫt(x) = v(t, Tt(x)) we
obtain

d

dt

∫

Y
φ(y) dνt(y) =

d

dt

∫

Y
φ(Tt(x)) dν(y)

=
∫

Y
∇φ(Tt(x)) Ṫt(x) dν(y)

=
∫

Y
∇φ(Tt(x)) v(Tt(x)) dν(y)

=
∫

Y
∇φ(y) v(y) dνt(y) .

Which gives the desire result. Actually it can be proven that νt is the only
solution to the linear transport equation.

Proposition A.1.8 (Horizontal differentiability of the Monge-Kantorovich distance) Let µ ∈
P(Rd) and ν ∈ P(Rd) be given. Let (Tt)t∈[0,T∗] be a family of K1(Y) func-

tion with T0 = id and let v be the associated velocity field i.e. Ṫt(x) =
v(t, Tt(x)). Consider ν ∈ P(Y) and νt = Tt#ν. Then we have

1

2

d

dt
W2

2 (µ, νt) =
∫
〈y−∇ϕ∗, v(y)〉 dν(y) .

where ∇ϕ∗ is the Legendre transform of ∇ϕ the optimal map between µ and
ν.

Once again we do not aim to give a rigorous proof of this proposition
and will refer the interested reader to [204, Theorem 8.13] and [5, Corol-
lary 10.2.7]. We however give a formal idea of the proof:

The map Tt◦∇ϕ pushes forward µ onto νt. We do not know if it the
optimal map but by definition of the Monge-Kantorovich distance we have

1

2
W2

2 (µ, νt) ≤
∫

X
|x− Tt[∇ϕ(x)]|2 dµ(x) .
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As a consequence, for any t ≥ 0, using A2 − B2 = (A+ B)(A− B) we have

W2
2 (µ, νt)−W2

2 (µ, ν)

t
≤
∫
X |x− Tt[∇ϕ(x)]|2 dµ(x)−

∫
X |x−∇ϕ(x)|2 dµ(x)

≤
∫
X (2x− Tt[∇ϕ]−∇ϕ) (∇ϕ − Tt[∇ϕ]) dµ .

As, by (A.1.7)

Tt[∇ϕ(x)]−∇ϕ(x) = Tt[∇ϕ(x)]− T0[∇ϕ(x)] = tṪt[∇ϕ(x)] + o(t)

= tv [Tt(∇ϕ(x))] + o(t)

taking the limit when t → 0, we obtain

lim
t→0

W2
2 (µ, νt)−W2

2 (µ, ν)

t
≤
∫

X
〈2x− 2∇ϕ(x),−v [∇ϕ(x)]〉 dµ(x) .

As ∇ϕ pushes-forward µ onto ν and using Theorem A.1.1, we obtain

1

2

d

dt
W2

2 (µ, νt) =
∫
X
〈∇ϕ(x)− x, v [∇ϕ(x)]〉 dµ(x)

=
∫
X〈∇ϕ(x)−∇ϕ∗[∇ϕ(x)], v [∇ϕ(x)]〉 dµ(x)

=
∫
X〈y−∇ϕ∗(y), v(y)〉 dν(y) .
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T
his HDR thesis presents a selection of the results I obtained these past
years with the aim of understanding emergent properties in biology

and economics. I hope that it will contribute to a better understanding
of biological phenomena such as the aggregation of cells and migration at
the scale of molecules. I also hope that it will be a step towards successful
interactions between mathematicians and economists.

This HDR paves the way for three main research paths:

Perspectives in biology

The first concerns Keller-Segel type models. Entropy methods in connection
with functional inequalities have proved to be extremely smart tools for
the study of biological systems. Whilst I am rather critical of the sudden
increase in the number of articles on and the multiplication of Keller-Segel
type models, I strongly believe that this interest in Keller-Segel models,
highlighted in Chapter I of this thesis, will continue to increase, and at a
fast pace. Increased interactions with physicists and biologists would, in my
view, allow us to avoid irrelevant models and questions.

I listed a number of open questions in Chapter I, some of which could be
the subject of PhD theses. Some are rather challenging and need new ap-
proaches, mainly concerning the blowup profile and the notion of solutions
after blowup. The recent interest in these questions amongst the wide sci-
entific community is encouraging. In particular regarding one of the latest
challenges for the parabolic-elliptic Keller-Segel system. For such a model,
the recent result obtained by [173] is important ; firstly because it is the first
rigorous result on the profile of the blowup, and also because it sheds light
on the success of interactions between the dispersive and the Keller-Segel
communities. The precise shape of the open set on which the blowup profile
is known still needs to be described. We will then be better equipped to
establish the meaning to give to the solutions after blowup.

More generally, I believe that the interactions between mathematicians
and biologists are very promising and should lead to new fascinating mod-
els and surprising developments of smart mathematical techniques. The
research paths paved by P. Degond, such as the coordinated migration of
groups of animals - in close collaboration with biologists via projects such
as MIBS or MOTIMO, closely follow this philosophy. As do the interactions
between biologists and economists to model social behaviours of individuals.
I will come back to these projects at the end of the next paragraph.
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Perspectives in economics and social sciences

The second direction of this thesis is the use of mean-field techniques to
model human behaviours. Toulouse School of Economics (TSE) is probably
one of the the best places in France, even in Europe, to develop interac-
tions between mathematicians and economists. The dynamic working en-
vironment and the opportunity to attend many cross-cutting seminars and
conferences has allowed me to come to a better understanding of the way
economists tackle problems in their field. After a period of naivety, I have
come to a better understanding, and ideas flourish from discussion with my
colleagues. The major difference between an economist and a physicist is
that the former makes predictions to validate his model, whereas the latter
does not aim to predict. The following example has been given to me by
H. Berestycki: imagine that someone finds a perfect model to explain the
evolution of a financial market asset price, then the next day the model is
no longer valid as all actors have already modified their behaviour by using
the said model.

My initial expectation was that direct discussions with economists would
lead to interesting interactions. For two years I have spent much time dis-
cussing with G. Colletis in order to model the wage difference between fi-
nancial capital, productive capital and workers, via a difference in the cost
of transferring from one spacio-sectoral point to another. These meetings,
although very enlightening, have not yet produced any interesting models
from the mathematical point of view. It is actually rather through infor-
mal discussions and by attending seminars and conferences at TSE and the
Institute of Advanced Studies of Toulouse (IAST) that I find relevant ques-
tions around which to develop interesting mathematics. It is the case for
the two works which I present in this thesis. These are two of my most
advanced works, soon to be published in economics journals. The dynamic
and open environment of the IAST is a perfect place to present this kind of
work. This is how I happened to present these works in front of economists,
leading to interesting developments in collaboration with M. Lebreton and
A. Grimaud.

For future works, many more ideas come to mind, using tools from PDE,
kinetics and optimal transport. For instance, in contract theory there is
significant literature to justify why the wage of a president of a company
should to be much higher than that of the vice-president, see [183]. Starting
from a rank-tournament contract with a large number of agents, it is possible
to prove that such a contract will lead to a PDE of traffic flow type, in the
spirit of what was done in [50].

Interactions are even richer between economists and biologists. P.
Seabright, G. Theraulaz and I are currently working on an answer to [135],
where many confusions were made between “collective intelligence” and “ag-
gregative intelligence”. We give a precise definition of these two notions and
illustrate their differences using examples from biology and social sciences.

Long-term perspectives

In economics the definition of a utility function is an intransigent preclusion
to any study of social or economics phenomena. This assertion is not quite
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understood by researchers outside of economics and is criticised by some
economists themselves. It is however irrealistic to think that one can come
from another discipline and revolutionise the way economists create models.
I thus plan to carry on studying economics models using this paradigm, but
in the meantime I am working with colleagues from economics (P. Seabright,
I. Alger), biology (G. Theraulaz and his group), and physics (C. Sire) in or-
der to develop another type of approach. We would like to apply natural
science modelling methods to economics and social phenomena by integrat-
ing the new picture of individual motivation into a convincing picture of
emergent properties at the aggregate behaviour. As an example we want
to understand how groups of individuals can behave in ways that can be
described as purposive or intelligent even if none of those individuals con-
ceive the purposes or display the intelligence that can be attributed to their
groups. Emergent processes can be seen in many places, such as traffic pat-
terns, cities, political systems of governance, even in language, morals and
laws. In social sciences, one of the most amazing examples of a decentralised
system exhibiting emergent properties is the World Wide Web: Wikipedia,
GNU/open source/linux software, peer-to-peer evaluations, etc. are among
the most impressive examples of this emergent property. Another somewhat
frightening application of emergence behaviour is the recent tendency to ac-
credit the financial market with rational intentionality, such as in the ex-
pressions “the market attacks” or “the market needs to be reassured”. Along
the lines of what is done in ethology, we would like to model social agents
not as optimisers of a utility function but as agents emitting and responding
to stimuli. This modelling method has been used by [45] to understand the
way a nest is built by ants, and has been recently very successful in mod-
elling the movement of pedestrians, in an ANR project between biologists
and mathematicians, managed by P. Degond and G. Theraulaz.

More generally, the current crisis of the industrialised economies has
cast into sharp light some serious deficiencies in the research community’s
understanding of the behaviour of human societies. For instance, in his
opening address at the ECB Conference in Frankfurt on 18 November 2010,
European Central Bank President Jean-Claude Trichet dedicated a section
to the lessons from the crisis, and launched a call for more interdisciplinary
approaches:

Macro models failed to predict the crisis and seemed incapable of
explaining what was happening to the economy in a convincing
manner. As a policy-maker during the crisis, I found the avail-
able models of limited help. In fact, I would go further: in the
face of the crisis, we felt abandoned by conventional tools.[...]
Which lines of extension are most promising? [...] . First, we
have to think about how to characterise the homo economicus at
the heart of any model. The atomistic, optimising agents un-
derlying existing models do not capture behaviour during a crisis
period. We need to deal better with heterogeneity across agents
and the interaction among those heterogeneous agents. We need
to entertain alternative motivations for economic choices. Be-
havioural economics draws on psychology to explain decisions
made in crisis circumstances. Agent-based modelling dispenses
with the optimisation assumption and allows for more complex
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interactions between agents. Such approaches are worthy of our
attention.[...] In this context, I would very much welcome inspi-
ration from other disciplines: physics, engineering, psychology,
biology.

These discussions are ongoing and I hope that they will lead to a new im-
petus in the understanding of emergence properties using mathematics in
biology and economics.



General bibliography 133

General bibliography

[1] M. Agueh, Existence of solutions to degenerate parabolic equations
via the Monge-Kantorovich theory, Adv. Differential Equations, 10
(2005), pp. 309–360. (cf. page 78.)

[2] , Rates of decay to equilibria for p-laplacian type equations, Non-
linear Analysis, 68 (2008), pp. 1909–1927. (cf. pages 77 et 78.)

[3] M. Agueh, A. Blanchet, and J. A. Carrillo, Large time asymp-
totics of the doubly nonlinear equation in the non-displacement con-
vexity regime, Journal of Evolution Equations, 10 (2010), pp. 59–84.
(cf. page 79.)

[4] A. Ajdari and J. Prost, Mouvement induit par un potentiel péri-
odique de basse symétrie: dielectrophorese pulse, C. R. Acad. Sci.
Paris, Série II, 315 (1992), p. 1653. (cf. page 45.)

[5] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric
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matics ETH Zürich, Birkhäuser Verlag, Basel, 2005. (cf. pages 23, 39,
40, 41, 102, 116, 119, 123, 126 et 127.)

[6] P. Anderson, More is different, Science, (1972). 177:393-6. (cf.
page 1.)

[7] A. Arnold, J.-P. Bartier, and J. Dolbeault, Interpolation be-
tween logarithmic Sobolev and Poincaré inequalities, Communications
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singular parabolic equations with measurable coefficients, Arch. Ratio-
nal Mech. Anal., 118 (1992), pp. 257–271. (cf. page 76.)

[77] S. Childress, Chemotactic collapse in two dimensions, Lecture Notes
in Biomath, 55 (1984), pp. 217–237. (cf. page 18.)

[78] S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis,
Math. Biosci., 56 (1981), pp. 217–237. (cf. page 17.)

[79] D. Cordero-Erauquin and R. J. McCann, Accelereated diffusion
to minimum entropy. Unpublished, 2004. (cf. page 90.)

[80] P. Corning, The re-emergence of emergence: A venerable concept in
search of a theory, Complexity, 7 (2002), pp. 18–30. (cf. page 2.)

[81] L. Corrias, B. Perthame, and H. Zaag, Global solutions of some
chemotaxis and angiogenesis systems in high space dimensions, Milan
J. Math., 72 (2004), pp. 1–29. (cf. page 33.)

[82] G. Costantini and F. Marchesoni, Threshold diffusion in a tilted
washboard potential, Europhysics Letters, 48 (1999), pp. 491–497. (cf.
page 45.)

[83] A.-L. Dalibard, Long time behavior of parabolic scalar conserva-
tion laws with space periodic flux, Indiana Univ. math. j., 59 (2010),
pp. 257–300. (cf. page 60.)

[84] P. Daskalopoulos and M. del Pino, On the Cauchy problem for
ut = ∆ log u in higher dimensions, Math. Ann., 313 (1999), pp. 189–
206. (cf. page 70.)



General bibliography 139

[85] P. Daskalopoulos and N. Sesum, Eternal solutions to the Ricci
flow on R2, Int. Math. Res. Not., 20 (2006), p. 83610. (cf. page 70.)

[86] E. B. Davies, Heat kernels and spectral theory, vol. 92 of Cambridge
Tracts in Mathematics, Cambridge University Press, Cambridge, 1989.
(cf. page 73.)

[87] M. Del Pino and J. Dolbeault, Best constants for Gagliardo-
Nirenberg inequalities and applications to nonlinear diffusions, J.
Math. Pures Appl. (9), 81 (2002), pp. 847–875. (cf. pages 7, 28, 68,
69, 70, 77 et 89.)

[88] , Nonlinear diffusions and optimal constants in Sobolev type
inequalities: asymptotic behaviour of equations involving the p-
Laplacian, C. R. Math. Acad. Sci. Paris, 334 (2002), pp. 365–370.
(cf. page 77.)

[89] , Asymptotic behavior of nonlinear diffusions, Math. Res. Lett.,
10 (2003), pp. 551–557. (cf. page 77.)
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Rubi, and A. Pérez-Madrid, Giant acceleration of free diffusion by
use of tilted periodic potentials, Phys. Rev. Lett., 87 (2001), p. 010602.
(cf. page 45.)

[180] , Diffusion in tilted periodic potentials: Enhancement, universal-
ity, and scaling, Phys. Rev. E, 65 (2002), p. 031104. (cf. page 45.)
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[188] D. Slepčev and M. C. Pugh, Selfsimilar blowup of unstable thin-
film equations, Indiana Univ. Math. J., 54 (2005), pp. 1697–1738. (cf.
page 42.)

[189] Y. Sugiyama, Global existence in sub-critical cases and finite time
blow-up in super-critical cases to degenerate Keller-Segel systems, Diff.
Int. Eq., 19 (2006), pp. 841–876. (cf. pages 33 et 36.)

[190] , Application of the best constant of the sobolev inequality to de-
generate Keller-Segel models, Adv. Diff. Eq., 12 (2007), pp. 121–144.
(cf. pages 33 et 36.)

[191] Y. Sugiyama and J. J. L. Velázquez, Self-similar blow-up with
a continuous range of values of the aggregated mass for a degener-
ate Keller-Segel system, Adv. Diff. Eq., 16 (2011), pp. 85–112. (cf.
page 37.)

[192] C. Sulem and P. L. Sulem, The nonlinear Schrödinger equation,
vol. 139 of Applied Mathematical Sciences, Springer-Verlag, New
York, 1999. (cf. page 41.)

[193] T. Suzuki and R. Takahashi, Degenerate parabolic equation with
critical exponent derived from the kinetic theory, i, generation of the
weak solution, Adv. Diff. Eq., 14 (2009), pp. 433–476. (cf. pages 34
et 36.)

[194] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura
Appl., 110 (1976), pp. 353–372. (cf. page 70.)
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