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Abstract

In this paper, we consider the nonlinear Schrédinger equation with the super critical power
of nonlinearity in the attractive case. We give a sufficient condition and a necessary condition
to obtain global or blowing up solutions. These conditions coincide in the critical case, thereby
extending the results of Weinstein [20, 27]. Furthermore, we improve a blow-up condition.

1 Introduction and notations

We consider the following nonlinear Schrédinger equation,

Ou + Au+ Nul*u =0, (t,z) € (-T,,T*) x RV,
ot (1.1)

u(0) = ¢, in RY,

i

where A€ R, 0 < a < (0<a<ooif N=1) and ¢ a given initial data.

N -2
It is well-known that for every ¢ € H1(R™), (1.1) has a unique solution u € C((=T%, T*); H*(RY))

which satisfies the blow-up alternative and the conservation of charge and energy. In other words, if
T* < oo then tl/l(r;l [lu(t)]| g = oo. In the same way, if T, < oo then 75{imT llu(t)|| g2 = oco. And for

* def o
all t € (=T, T%), [u(®)|z2 = llllzz and E(u(t)) = E(p), where E(p) = §[[Vel7. — g2z llelfit.

def

If p € X = H'(RY) N L%(|2|* dz) then u € C((—T%,T*); X). Moreover, if A < 0, if @ < 4 or if
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|| 1 is small enough then T* = T, = oo and ||u|| e (r,zr1) < 00. Finally, is a > + then there exist
initial values ¢ € H'(RY) such that the corresponding solution of (1.1) blows up in finite time. See
Cazenave [9], Ginibre and Velo [11, 12, 13, 14], Glassey [15], Kato [17].

In the attractive and critical case (A > 0 and o = %), there is a sharp condition to obtain global
solutions (see Weinstein [26, 27]). It is given in terms of the solution of a related elliptic problem.
But in the super critical case (o > +), we only know that there exists ¢ > 0 sufficiently small such
that if ||| g1 < €, then the corresponding solution is global in time.

In this paper, we try to extend the results of Weinstein [26, 27] to the super critical case a > %.
As we will see, we are not able to establish such a result, but we can give two explicit real values
functions 7, and r, with 0 < v, < 7, such that if ||¢||z2 < (|Ve||r2), then the corresponding
solution is global in time. Furthermore, for every (a,b) € (0,00) x (0,00) such that a > r.(b), there
exists pqp € HY(RY) with ||¢apllz2 = a and | Va2 = b such that the associated solution blows
up in finite time for both ¢ < 0 et ¢ > 0 (see Theorem 4.1 below). Despite of the fact we do not
obtain a sharp condition (since 7. < r.), we recover the results of Weinstein [26, 27] as a N\ %.
Setting A = {¢ € HY(RM); |||z < 7 ([[VellL2)}, it follows that for every ¢ € A, the corresponding
solution of (1.1) is global in time and uniformly bounded in H!(RY). It is interesting to note that
A is an unbounded subset of H*(RY) as for the case a = %. We also improve some results about
blow-up (Theorems 2.1 and 2.2).

This paper is organized as follows. In Section 2, we give a sufficient blow-up condition. In Section
3, we recall the best constant in a Gagliardo-Nirenberg’s inequality. In Section 4, we give the main
result of this paper, that is necessary conditions and sufficient conditions to obtain global solutions.
In Section 5, we prove the result given in Section 4.

The following notations will be used throughout this paper. A = f) 8872? and we denote by B(0, R),
for R > 0, the ball of RY of center 0 with radius R. For 1 < p < oo, Wiz_dlesign by LP(RY) = LP(RY; C),
with norm || . ||z», the usual Lebesgue spaces and by H'(RY) = H*(RY;C), with norm || . ||z, the
Sobolev space. For k € NU {0} and 0 < v < 1, we denote by C*7(RV) = C*Y(RN;C) the
Hélder spaces and we introduce the Hilbert space X = {4 € H'(RY;C); ||¢|x < oo} with norm
1% = Y13 @y + [V |z|?|4(z)|?dz. For a normed functional space E C Li _(RY;C), we denote
by Ey.q the space of ft?nctions f € FE such that f is spherically symmetric. E;,q is endowed with the

norm of E. Finally, C' are auxiliary positive constants.



2 Blow-up

The first two results are an improvement of a blow-up condition (see Glassey [15], Ogawa and Tsutsumi
[23]). We know that if a solution has a negative energy, then it blows up in finite time. We extend

this result for any nontrivial solution with nonpositive energy.

4
N_2(4<a<ooifN:1) and p € X, p Z0. If E(¢) <0

then the corresponding solution u € C((=Tx,T*); X) of (1.1) blows up in finite time for both t > 0

Theorem 2.1. Let A\ > 0, % <a<

and t < 0. In other words, T* < co and T, < 0.

4
Th 2.2. Let A N>2 —
eorem et A >0, ’N<Q<N—2

If E(p) < 0 then the corresponding solution u € C((—=Ty, T*); HY(RY)) of (1.1) blows up in finite

(2<a<4if N=2)and ¢ € H. (RY), p £0.

rad

time for both t > 0 and t < 0. In other words, T* < co and T, < co.

4
Remark 2.3. When E(y) = 0, the conclusion of Theorems 2.1 and 2.2 is false for oo = N Indeed,
let ¢ € Xad, @ # 0, be a solution of —Ap + ¢ = Ag|¥ ¢, in RY. Then E(p) = 0 from (3.5) but
u(t,z) = p(x)et is the solution of (1.1) and so T* = T, = cc.
Similar results exist for the critical case. See Nawa [10, 21]. It is shown that if ¢ € H*(RY)
(¢, i)

lellZ
of (1.1) blows up in finite time or grows up at infinity, the first case always occurring when N = 1.

satisfies F(p) < ,when N = 1, or if E(¢) < 0, when N > 2, then the corresponding solution
Here, (, ) denotes the scalar product in L?(RY). See also Nawa [20, 22]. Note that in the case N = 1,
the result of Nawa [21] slightly improves that of Ogawa and Tsutsumi [24], since it allows to make

blow-up some solution with nonnegative energy.

Proof of Theorem 2.1. We argue by contradiction. Set for every ¢t € (=T%,T*), h(t) = ||zu(t)||2..
Then h € C?((=T,, T*);R) and

vt € (~T.,T*), h'(t) = ANaE(p) — 2(Na — 4)||Vu(t)||2. (2.1)

(Glassey [15]). Since E(p) < 0, we have by Gagliardo-Nirenberg’s inequality (Proposition 3.1)
Na
and conservation of energy and charge, ||Vu(t)[|2, < %Hu(t)”‘zﬁz < C||Vu(t)]| 2 , for every
4
t € (=T, T*). Since a > i and ¢ # 0, we deduce that ( inf : IVu(t)||r2 > 0 and with (2.1), we
te(=T,, T

obtain

vt e (=T, T, h'(t) < -C.



So, if T* = oo or if T, = oo then there exists S € (=T, T*) with |S| large enough such that h(S) < 0

which is absurd since A > 0. Hence the result. O

Proof of Theorem 2.2. For ¥ € W*>(R¥;R), ¥ > 0, we set

Ve (=T, T"), V(t) = /\Il(x)|u(t,x)\2dx.

RN

We know that there exists ¥ € W4>(RN;R), ¥ > 0, such that V € C?((—T,T*);R) and
Vi € (T, T), V"(t) < 2NaE(p) — 2(Na — 4)[|Vau(t)| 22,

(see the proof of Theorem 2.7 of Cazenave [8] and Remark 2.13 of this reference). We conclude in the

same way that for Theorem 2.1. O

3 Sharp estimate

In this section, we recall the sharp estimate in a Gagliardo-Nirenberg’s inequality (Proposition 3.1)

and a result concerning the ground states.

4
Let A>0,w>0and 0 < a < ) (0 < o < 0 if N =1). We consider the following elliptic

equations.
~AR+ R = |R|°R, n RY, (3.1)
R e H'(RY;R), R#0, |
—AD +wd = \|®|*®, in RV, (3.2)
® € H'(RV;R), ® #0. |

It is well-known that the equation (3.2) possesses at less one solution ¢. Furthermore, each solution
¥ of (3.2) satisfies vy € C2Y(RM)NW3P(RN), ¥y € (0,1), Vp € [2,00), [¢(z)| < Ce 01l forallz € RV,
where C and § are two positive constants which do not depend on x, lim |D?y(z)| =0, V|3| < 2

T|—0o0

||
multi-index. Finally, 1) satisfies the following identities.

wNa

2
V6l = garr s I (33
a+2 2(“}(@ + 2) 2
15 = e 2w, (3.4
2 2
iz = 202 oz, (35)



Such solutions are called bound states solutions. Furthermore, (3.2) has a unique solution ® satisfying
the following additional properties. ® € S;aq (}RN ;R); @ > 0 over RY: & is decreasing with respect to
r = |z|; for every multi-index 3 € NV, there exist two constants C' > 0 and § > 0 such that for every

r € RN |®(z)| + |DP®(2)| < Ce~%l7l. Finally, for every solution 1 of (3.2), we have

[@llz2 < [[¢]lze- (3.6)

Such a solution is called a ground state of the equation (3.2).

Equation (3.2) is studied in the following references. Berestycki, Gallouét and Kavian [3];

Berestycki and Lions [4, 5] ; Berestycki, Lions and Peletier [6]; Gidas, Ni and Nirenberg [10]; Jones
and Kiipper [16]; Kwong [18]; Strauss [25]. See also Cazenave [9], Section 8.

4
Proposition 3.1. Let 0 < a < N_3 (0 << o0 if N=1) and R be the ground state solution of

(3.1). Then the best constant Cy > 0 in the Gagliardo-Nirenberg’s inequality,

1N a+2 N 5
Ve H (RY), [[flIzeis < Cullfll e IVFLE (3.7)
is given by
2a+2) [4—a(N—-2)\ 1

a+ —a(N —
C, = R||75. 3.8
() T e (33
See Weinstein [26] for the proof in the case N > 2. See also Lemma 3.4 of Cazenave [8] in the case

4

a = N But for convenience, we give the proof. It makes use of a compactness result which is an

adaptation of the compactness lemma due to Strauss (Strauss [25]).

Proof of Proposition 3.1. We define for every f € H'(RY), f # 0, the functional

Filesa\ZiFA
2 v 2
J(f) = L2 at2 L2 ,
(WP
and we set 0 = inf J(f). Then o € (0,00) by (3.7). We have to show that ¢ = C;! where C,

feH\{o0}
is defined by (3.8). Let (fn)nen C HY(RY) be a minimizing sequence. Let

N—-2
2
— 7Hf"”L2 = 7”]6"”“ and Vz € RV, V(7)) = i fro(An).

1Vsallfy VAl

—(a+2) n—oo

Then ||vn| 2 = |Vunl|z2 = 1and J(fn) = J(vn) = [|vn]| otz = —— 0. Let v}, be the symmetrization

n—0o0

of Schwarz of |v,| (see Bandle [1]; Berestycki and Lions [4], Appendix A.IIT). Then J(v}) —— o

and by compactness, v, — v as { — oo in HL(RY) (and in particular, in LE™2(Q) for every



*)n and for some v € HL  (RY).

La+2
subset Q C RY) and v}, PR for a subsequence (v;,)e C (v},
— 00

Indeed, since (v};)nen is bounded in H! ;(RY) and nonincreasing with respect to |z|, then V/ € N
and Vo € RN, |vf (2)] < Clz|~%, where C > 0 does not depend on £ and z (Berestycki and
Lions [1], Appendix A.II, Radial Lemma A.IV). From this and Hoélder’s inequality, we deduce that

V& € N and VR > 0, |lvy,,[|pat2@y\B(o,r) < CR™ 2<55:2>, for a constant C' > 0 which does not

depend on {. Then VR > 0, HU||L°‘+2(RN\B(O R)) < liminf ||/U;;[HLO¢+2(RN\B(O R)) < CR™ 2(2‘15:2) . The
’ £—00 i ’

strong convergence in L®T2(RY) follows easily from the two above estimates and from the compact

embedding H*(B(0, R)) — L**2(B(0, R)), which holds for every R > 0. Since ||v,||pa+2 = [|v}]|pa+2,

it follows that ||v[|$47, = o~! and then v # 0. Thus, J(v) = o and ||v||z2 = ||[Vv|[r2 = 1. It follows

that Vw € H(RY), &4.J(v 4 tw);—o = 0. So v satisfies —Av + AzolN=2), a%hﬂ“v, in RY. Set

) dt Na

a= (ﬁ)%,b: (M>é and Vz € RY | u(x) = bv(az). Then u € H]

T=a(N-2) T—a(N-2) taa(RY) is a solution

of (3.1) and J(u) = o. By (3.3)—(3.4), we obtain J(u) = C* N;l"‘%z =oc and J(R) = C;! > o (since

R also satisfies (3.1)). Then ||ul|z2 < ||R||z2 and so with (3.6), ||u||z2 = ||R||2. Hence the result. O

4 Necessary condition and sufficient condition for global ex-
istence

4
Theorem 4.1. Let XA > 0, N <a< (A< a<ooif N=1) and R be the ground state solution

N -2
of (3.1). We define for every a > 0,

Na—4
Na a2y , Toa(N=7) ___Na-a__
(@)= [— N A iR ) Ta(N-D) 4.1
o= (=) (A 1Rl a (41)
Na — 4\ T2y
a — 2(d—a(N—2
= (Ta?) r.(a). (42

1. If o € HY(RY) satisfies
lellz < %(IVellL2), (4.3)

then the corresponding solution u € C((=T.,T*); HY(RN)) of (1.1) is global in time, that is
T* =T, = oo, and the following estimates hold.
2N«

t)]|2 E
wew | ITHOI: < R
V()2 < 7t (el z2),
Na—-14
where ;1 is the function defined by (4.5). In particular, E(p) > QO]é\fa [Vel2,.



2. For every a > 0 and for every b > 0 satisfying a > r.(b), there exists v, € HY(RY) with

|2 = a and |Vap||L2 = b such that the associated solution u,p, € C((=T., T*); HY(RN))

l¢a.b
of (1.1) blows up in finite time for both t > 0 et t < 0. In other words, T* < oo and T, < 0.

Furthermore, E(pap) >0 <= 1.(b) < a < p.(b) and E(pap) =0 <= a = p.(b), where for

every a > 0,

po(a) = (Na) @) (4.4)

Na —4
2N«

Finally, E(pqp) < Va3t

Remark 4.2. Let «, be the function defined by (4.2). Set

A={pe H'RY); |ollze <%lllVellr2)}-

By Theorem 4.1, for every ¢ € A, the corresponding solution of (1.1) is global in time and uniformly
bounded in H'(RY). It is interesting to note that A is an unbounded subset of H'(R"). So Theorem
4.1 gives a general result for global existence for which we can take initial values with the H*(R™)

norm large as we want.

Remark 4.3. Let 7, 7., and p, be the functions defined respectively by (4.2), (4.1) and (4.4). It
is clear that since o > %, Yes Vi Ly T, 7L, pi and p; ! are decreasing and bijective functions from

(0,00) to (0,00) and for every a > 0,

7 (a) = (NO““);r:l(a),

No
1

Na 2 . Natd  _t-a(v-2)
Ty= [ ———— —a T T Na—1
r; (a)—<4_a<N_2)> (A F IR ) T 0 (4.5)

2

_ No\ Vo= _
= () e

So the condition condition (4.3) is equivalent to the condition |[Vil|z2 < 77 1(||¢|lz2). Furthermore,

Yo <7y < pyand 77t <r7t < prl

Remark 4.4. Let 7., 1y, and p, be the functions defined respectively by (4.2), (4.1) and (4.4). Then
aNF L 1 aNF L1 aNF L 1 .

Yo — A" a||R||z2 and r. — A" <||R||z2 (and even, p, —— A~ a||R||12). So we obtain the

sharp condition for global existence, ||¢|| > < A% ||R||.> which coincide with the results obtained by

Weinstein [26, 27]. However, we do not know if ~, or r, are optimum.



5 Proof of Theorem 4.1

In order to prove the blowing up result (2 of Theorem 4.1), we need of several lemmas. We follow
the method of Berestycki and Cazenave [2] (see also Cazenave [7] and Cazenave [9], Section 8.2). A
priori, we would expect to use Theorem 2.1, that is to construct initial values in X with nonpositive
energy, which is the case for a = % But it will not be enough because we have to make blow-up

some solutions whose the initial values have a positive energy.

We define the following functionals and sets. Let A >0, w > 0,8> 0,0 < a < 0<a<oo

N -2
if N=1) and v € HY(R").

o demt _ 20a+2) [VYlZ.
TS N g TR
B AN« at2

QW) = 1991 - s 52

S() = 5IV613 — 5 Il + Sl

P(B,1)(x) = B2 (Bx), for almost every = € RV,

M= {¢ e H'RY); ) #0 and Q(v) =0},

A={p e H'RN); v #0 and — A +wip = A|yp|*9, in RV},
G={peA Vpe A S(¥)<S)}.

Note that by the discussion at the beginning of Section 3 and (3.3)—(3.6), M # 0, A # () and G # 0.

Lemma 5.1. We have the following results.

1.VB>0, B#6°(¥), S(P(B,¢)) < S(P(B*(¥),¥))-

2. The following equivalence holds.

v e M,
VEG = SW) = minS(9),

3. Letm ™ gélﬂl/l[ S(¢). Then Vo € HY(RYN) with Q(¢) <0, Q(¢) < S(¢) —m.

See Cazenave [9], Lemma 8.2.5 for the proof of 1; Proposition 8.2.4 for the proof of 2; Corollary 8.2.6
for the proof of 3. There is a mistake in the formula (8.2.4) of this reference. Replace the expression

)\"‘(u)%74 = ‘%2 (f . Vu|2) (f . u|°‘+2)_1 with \*(u) et 2a42) (f . Vu|2) (f .

The proof of 1 of Theorem 4.1 relies on the following lemma.

u|°‘+2)_1.




Lemma 5.2. Let I C R, be an open interval, to € I, p>1,a>0,b>0 and ® € C(I;R"). We set,

-1
Ve =20, f(x)=a—x+bxP, z = (bp)fp%l and b, =2 . Assume that ®(tg) < z, a < by and that

fo®>0. Then, Vt € I, ®(t) < z.

Proof. Since ®(tp) < z and ® is a continuous function, there exists n > 0 with (to—n,t0+n) C I such
that, Vt € (to —n,to +n), ®(t) < z. If ®(t.) = z for some t, € I, then fo®(t,) = f(z) =a— b, <0.
But fo® > 0. Then, Vt € I, ®(t) < z. O

The proof of 2 of Theorem 4.1 makes use the following lemma.

4
Lemma 5.3. Let)\>0,w>0andﬁ<a< (d<a<ooif N=1). We set for every >0

N -2
and for every ¢ € HY(RYN), pg = P(B,v). Let ug € C((=T., T*); HY(RY)) be the solution of (1.1)

with initial value pg. Then we have, Vip € G, V3 > 1, T, < 0o and T < oo.

Proof. Let ¢ € G. By (3.5), we have

voms _ 2a+2) BVl

B* Na )
) Wa 5% [0l
D V
Qo) = IVl - 5 8 T2 ).

AN« ad2

—— = 22.
Sy gy W IEE = VWl

Na—4 Na Na—4

So, B*(pp) 2 =p~ 274, Qpp) = —ﬂQHV@bHiz ([3 7 — 1) and 8*(v)) = 1. From these three last

equalities, from 1 and 2 of Lemmas 5.1 and by conservation of charge and energy, we have

VB> 1, Qpp) <0, (5.1)
VB #1, S(pp) < SY)=m, (5.2)
VB >0, Vt € (—T., T*), S(us(t)) = S(ps). (5.3)

By continuity of ug, by (5.1)—(5.3) and from 3 of Lemma 5.1, we have for every 5 > 1,
Vit e (=T, T"), Qus(t)) < S(pg) —m < 0. (5.4)

Set Vt € (=Ty,T*), h(t) = |lzup(t)||?,. Then we have by Glassey [15], h € C*((=T,T*);R) and

Wt (=T T), W(E) = 8| Vus(8)]2: — B8 s (6)|42 = 8Q(us(8)). So with (5.4),

vt e (=T, T*), h"(t) < 8(S(ps) —m) <0,



for every 8 > 1. It follows that T}, < oo and T* < oco. Hence the result. O

Proof of Theorem 4.1. We proceed in two steps.
Step 1. We have 1.

Let C, be the constant defined by (3.8). We set I = (=T%.,T%), to = 0, p = &2, a = [|[Vl2.,

-2)
b= a+20 ||<p||L2 , T = (bp)_ﬁ7 by = p%g, Vt € I, ®(t) = ||[Vu(t)||2, and for any = > 0,
f(z) = a—x+bxP. Then by conservation of energy, by Proposition 3.1 and by conservation of charge,

we have
vtel, |[Vu®)|i. = 2E(p) + —— llu u(t) 547

< [IVellz: +7C*||<PHL2 (IVu®)llz2)"
And so, Vt € I, a—||Vu(t)||3.+b(||Vu(t)||32)P > 0, that is fo® > 0. Furthermore, ®(tg) = a < by < z.

Indeed, by Remark 4.3, we have

O(to) <be = [Volle <7 M (llellze) <= llellze < w(IVellze)-

So by Lemma 5.2, ®(t) < z = [r;1(|l¢llz2)]?, Vt € I. Thus, I = R and for every t € R,

Va2 <7t (lellz2).

It follows from conservation of charge and energy, (3.7), (3.8), and the above inequality, that

2

1 d-a(N-2) Na
weR, B) > 3 (IVu0l: - 225l Ivu ¥ )

a+2
= 1w 2. (1 - [r1<||go|Lz>|w<t>||—1]W>
2 Na ‘' * L2
4
-~ Va

)

1
> LIvu)z (1

Na
= HV )72

Hence 1.
Step 2. We have 2.
Let R be the ground state solution of (3.1). Let first remark from the assumptions and from Remark

4.3, we have b > r!(a). We set

N _da
v=D ) (FEE2) T TR, w= @R = (AR R pea ) T

and for every x € RN, ¢(z) = vR(y/wz). Then 1 € Sraa(RY) N A. Since R satisfies (3.1)—(3.6), it
follows that ¢ € G. Furthermore, ||[¢||z2 = a and || V|| z2 = rt(a). Let 8 =

b
o' (a)

10



z € RN, Va,b(z) = pp(x) = P(B,9)(x). In particular, ¢, € Sraa(RY) and ©q,p satisfies

Na-—4 .
~Apap +wWBPab =A% |0ab|*Pap, in RY.

Denote uqp € C((=T%, T*); H*(RY) N X,4q) the solution of (1.1) with initial value ¢, . Then by

Lemma 5.3, Ty < oo and T™* < co. Moreover, ||@qpllr2 = a, [[Vgapllrz = b and by (3.5),

1 2 )\ Ot+2
E(%,b) = §||V<Pa,b||m - m”%,bnmw
1 A Na 192
= §||V<Pa,b||2L2 - mﬂ > |y (za+2
Voansll2s ( Na-4
= ——& (Na—-4 )
2N o @ A=

_ ||V<Pa,b||%2 Na—4
= v (Ve

By Remark 4.3, it follows that

N Na—4 N Na—141
E(pap) <0 <= > ( a) = b= (a) riNa) = prt(a) <= a = p.(b).

4 4
Hence the result. O
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