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Université Pierre et Marie Curie
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Abstract

In this paper, we consider global solutions for the following nonlinear Schrödinger equation
iut + ∆u + λ|u|αu = 0, in RN , with λ ∈ R and 0 6 α < 4

N−2
(0 6 α < ∞ if N = 1). We show

that no nontrivial solution can decay faster than the solutions of the free Schrödinger equation,
provided that u(0) lies in the weighted Sobolev space H1(RN )∩L2(|x|2; dx), in the energy space,
namely H1(RN ), or in L2(RN ), according to the different cases.

1 Introduction and notations

We consider global solutions of the following nonlinear Schrödinger equation,i
∂u

∂t
+ ∆u+ λ|u|αu = 0, (t, x) ∈ [0,∞)× RN ,

u(0) = ϕ, in RN ,
(1.1)

where λ ∈ R, 0 6 α <
4

N − 2
(0 6 α <∞ if N = 1) and ϕ a given initial data.

It is well-known that if we denote by T (t) the Schrödinger’s free operator, then for every r ∈ [2,∞]

and for every ϕ ∈ Lr′(RN ),

∀t ∈ R \ {0}, ‖T (t)ϕ‖Lr 6 (4π|t|)−N( 1
2−

1
r )‖ϕ‖Lr′ , (1.2)

where r′ = r
r−1 . Note that for every r ∈

[
2, 2N

N−2

)
(r ∈ [2,∞) if N = 1), if ϕ ∈ L2(RN ) ∩ L2(|x|2; dx)

then ϕ ∈ Lr′(RN ) and ‖ϕ‖Lr′ 6 C(‖ϕ‖L2 , ‖xϕ‖L2). Furthermore, the estimate (1.2) is optimal in the

following sense. For every r ∈ [1,∞] and for every ϕ ∈ S ′(RN ), if ϕ 6≡ 0 then

lim inf
t→±∞

|t|N( 1
2−

1
r )‖T (t)ϕ‖Lr > 0. (1.3)
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For the proof, see Strauss [26] (r > 2) and Kato [22] (general case). In the same way, there exist

some solutions of the nonlinear Schrödinger equation (1.1) which have a linear decay (in the sense

of (1.2)). See for example Cazenave [3], Theorem 7.2.1; Hayashi and Naumkin [19]. In particular,

these solutions lie in H1(RN )∩L2(|x|2; dx). On the other hand, we know that there exist solutions of

some heat, Ginzburg-Landau and Schrödinger type equations which have a decay rate faster than the

corresponding linear problem (Hayashi, Kaikina and Naumkin [17, 18]). Take an example. Let u be

a classical solution of the heat equation ut −∆u+ |u|αu = 0, (t, x) ∈ [0,∞)×RN , with initial datum

u0 ∈ L∞(RN ), u0 6≡ 0 and u0 > 0 a.e. Then we have by the maximum principle, ‖u(t)‖L∞ 6 (αt)−
1
α ,

for every t > 0, whereas for every t > 1, ‖et∆u0‖L∞ > Ct−
N
2 , for some constant C > 0. Thus, if

0 < α < 2
N then u(t) decays faster than et∆u0. So, it is natural to wonder if some solutions of the

nonlinear Schrödinger equation (1.1) may have faster decay than the solutions of the linear equation.

We will see that such solutions do not exist (except the trivial solution). There exist partial results

in this direction. This is the case for α = 2
N and N = 1 (Hayashi and Naumkin [19]), for α = 4

N

(Cazenave and Weissler [8], Theorem 2.1 (a)) or for some self-similar solutions for α > α0, where α0

is given by α0 = −(N−2)+
√
N2+12N+4

2N (Cazenave and Weissler [10], Corollary 3.9).

This paper is organized as follows. In Section 2, we give the main results concerning the solutions

lying in H1(RN )∩L2(|x|2; dx) and in H1(RN ). In Section 3, we give the main results concerning the

solutions lying in L2(RN ). In Section 4, we give several estimates for large times and establish Lemma

4.5, which asserts that the existence of a scattering state in L2(RN ) implies a maximum rate decay

which is linear (in the sense that the solution satisfies (1.3)). Lemma 4.5 is at the heart of the results

of this paper. Finally, we will prove the results for solutions in H1(RN ) ∩ L2(|x|2; dx) and H1(RN )

in Section 5, and those for solutions in L2(RN ) in Section 6.

We finish this section by giving some notations and we recall an embedding property of the

weighted Sobolev space L2(RN ) ∩ L2(|x|2; dx), which will be used to prove the results for solutions

lying in this space, and some results of the solutions of the nonlinear Schrödinger equation (1.1).

We design by z the conjugate of the complex number z and ∆ =
N∑
j=1

∂2

∂x2
j
. For p ∈ [1,∞], we denote

by p′ the conjugate of p defined by 1
p + 1

p′ = 1 and by Lp(RN ) = Lp(RN ;C), with norm ‖ . ‖Lp ,

the Lebesgue spaces. H1(RN ) = H1(RN ;C) with norm ‖ . ‖H1 , is the well-known Sobolev space and

we use the convention W 0,p(RN ) = Lp(RN ) and H0(RN ) = W 0,2(RN ) = L2(RN ). We define the

Hilbert spaces Y =
{
ψ ∈ L2(RN ;C); ‖ψ‖Y <∞

}
with norm ‖ψ‖2Y = ‖ψ‖2L2(RN ) +

∫
RN
|x|2|ψ(x)|2dx
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and X =
{
ψ ∈ H1(RN ;C); ‖ψ‖X <∞

}
with norm ‖ψ‖2X = ‖ψ‖2H1(RN ) +

∫
RN
|x|2|ψ(x)|2dx. For a

functional space E ⊂ S ′(RN ) with norm ‖ . ‖E , we write ‖f‖E =∞ if f ∈ S ′(RN ) and if f 6∈ E. We

design by (T (t))t∈R the group of isometries (eit∆)t∈R generated by i∆ on L2(RN ;C) and by C the

auxiliary positive constants. Finally C(a1, a2, . . . , an) indicates that the constant C depends only on

parameters a1, a2, . . . , an and that the dependence is continuous.

It is clear that Y is a separable Hilbert space and that Y ↪→ Lr
′
(RN ) with dense embedding, if

r ∈
[
2, 2N

N−2

)
(r ∈ [2,∞] if N = 1).

We recall that for every ϕ ∈ H1(RN ), (1.1) has a unique solution u ∈ C((−T∗, T ∗);H1(RN ))

which satisfies the conservation of charge and energy, that is, for all t ∈ (−T∗, T ∗), ‖u(t)‖L2 = ‖ϕ‖L2

and E(u(t)) = E(ϕ), where E(ϕ)
def
= 1

2‖∇ϕ‖
2
L2 − λ

α+2‖ϕ‖
α+2
Lα+2 . Moreover, for every admissible pair

(q, r) (see Definition 1.1 below), u ∈ Lqloc((−T∗, T ∗);W 1,r(RN ))). In addition, if λ 6 0, if α < 4
N

or if ‖ϕ‖H1 is small enough then T ∗ = T∗ = ∞ and ‖u‖L∞(R;H1) < ∞. Finally, if ϕ ∈ X then

u ∈ C((−T∗, T ∗);X). See Ginibre and Velo [11, 12, 13, 14, 15], Kato [20, 21]. See also Cazenave and

Weissler [4, 6]. We are also interested by solutions in L2(RN ). We recall that if 0 < α 6 4
N then for

every ϕ ∈ L2(RN ), (1.1) has a unique solution u ∈ C((−T∗, T ∗);L2(RN ))∩Lqloc((−T∗, T ∗);Lα+2(RN )),

where q = 4(α+2)
Nα , which satisfies the above conservation of charge. In addition, for every admissible

pair (q, r), u ∈ Lqloc((−T∗, T ∗);Lr(RN )). Finally, if α < 4
N then T ∗ = T∗ =∞. See Tsutsumi [28]. See

also Cazenave and Weissler [5, 7].

Definition 1.1. We say that (q, r) is an admissible pair if the following holds.

(i) 2 6 r 6 2N
N−2 (2 6 r <∞ if N = 2, 2 6 r 6∞ if N = 1),

(ii) 2
q = N

(
1
2 −

1
r

)
.

Note that in this case 2 6 q 6∞ and q =
4r

N(r − 2)
.

Finally, we recall the Strichartz’ estimates. Let I ⊆ R, be an interval, let t0 ∈ I, let (q, r) and (γ, ρ)

be two admissible pairs, let ϕ ∈ L2(RN ) and let f ∈ Lγ
′
(I;Lρ

′
(RN )). Then the following integral

equation defined for all t ∈ I, u(t) = T (t)ϕ + i

∫ t

t0

T (t − s)f(s)ds, satisfies the following inequality

‖u‖Lq(I,Lr) 6 C0‖ϕ‖L2 +C1‖f‖Lγ′ (I;Lρ′ ), where C0 = C0(N, r) and C1 = C1(N, r, ρ). For more details,

see Keel and Tao [23].
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2 Sharp lower bound

Theorem 2.1. Let λ 6 0, 0 6 α <
4

N − 2
(0 6 α < ∞ if N = 1), ϕ ∈ H1(RN ) and u be the

corresponding solution of (1.1). If α 6
4

N
then assume further that ϕ ∈ X. If ϕ 6≡ 0 then for every

r ∈ [2,∞],

lim inf
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0.

Theorem 2.2. Let λ > 0, 0 6 α <
4

N − 2
(0 6 α < ∞ if N = 1) and ϕ ∈ H1(RN ) be such that

the corresponding solution u of (1.1) is positively global in time. If α 6
4

N
then assume further that

ϕ ∈ X. If ϕ 6≡ 0 then for every r ∈ [α+ 2,∞],
lim inf
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0, if α 6

4

N
,

lim sup
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0, if α >

4

N
.

And if there exists ρ ∈ [α+ 2,∞] such that lim sup
t→∞

|t|N( 1
2−

1
ρ )‖u(t)‖Lρ <∞ then for every r ∈ [2,∞],

lim inf
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0.

Remark 2.3. Theorems 2.1 and 2.2 assert that if u is a solution of (1.1) with λ ∈ R, α = 0 and

initial data ϕ ∈ X, then for every r ∈ [2,∞], lim inf
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0.

In the attractive case and when α > 4
N+2 (α > 2 if N = 1), we may obtain an optimal lower

bound. It is sufficient to choose ‖ϕ‖X small enough (see corollary below).

Corollary 2.4. Let λ > 0,
4

N + 2
< α <

4

N − 2
(2 < α < ∞ if N = 1), ϕ ∈ X and u be the

corresponding solution u of (1.1). If ϕ 6≡ 0 and if ‖ϕ‖X is small enough then u is global in time and

for every r ∈ [2,∞],

lim inf
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0.

When α = 4
N , we may suppose that ϕ ∈ H1(RN ) instead of ϕ ∈ X, as shows the following

proposition, provided that ‖ϕ‖H1 is small enough.

Proposition 2.5. Let λ ∈ R \ {0}, α =
4

N
, ϕ ∈ H1(RN ) and u be the associated solution of (1.1). If

ϕ 6≡ 0 and if ‖ϕ‖H1 is small enough then u is global in time and for every r ∈ [2,∞],

lim inf
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0.
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Remark 2.6. The lower bounds obtained in Theorems 2.1 and 2.2 are optimal with respect to the

decay. In particular, if u is any nontrivial solution of (1.1), then the following estimate never occurs.

∀t > 0, ‖u(t)‖Lr 6 C|t|−N( 1
2−

1
r ) (ln |t|)−δ , (2.1)

for some r > 2 and δ > 0. This is very surprising since some above results are established for solutions

of some heat or Ginzburg-Landau equations (see the beginning of Section 1). For example, such

estimates are obtained for the solutions u of the Schrödinger equation

ut − uxx + i|u|2u = 0, (t, x) ∈ [0,∞)× R,

if ‖u(0)‖X is sufficiently small (Theorem 1.1 of Hayashi, Kaikina and Naumkin [18]). Furthermore, if

α > 4
N then Theorems 2.1 and 2.2 are optimal with respect to the assumption on the initial data ϕ,

that is ϕ ∈ H1(RN ), in the sense that H1(RN ) is the smallest functional space in which we must take

ϕ to have a solution. On the other hand, when α 6 4
N , we have to make the additional assumption

on initial data ϕ, that is ϕ ∈ X. This request is very reasonable since this is in this functional space

that we obtain solutions of (1.1) which have a linear decay (see the references cited in Section 1).

Remark 2.7. Note that all the results of this section and Section 3 hold for t < 0 as soon as the

solution u is negatively global in time. Indeed, it is sufficient to apply the case t > 0 to the solution

positively global in time ũ of (1.1) with initial data ϕ. Since ũ(t) = u(−t), the result for t < 0 follows.

3 Main results in the Lebesgue space

As show the results of Section 2, if we suppose a suitable asymptotic behavior of the initial value

(u(0) ∈ X if α 6 4
N , u(0) ∈ H1(RN ) if α > 4

N ), then we have a sharp lower bound. In particular,

under the hypotheses of Section 2, such results do not allow estimates of type (2.1), for any nontrivial

solution of (1.1), for some r > 2 and δ > 0 (see Remark 2.6). In this section, we establish some

lower bounds which eventually allow estimates on the above type, only if α is small enough (see

Theorem 3.5 below). The loss of sharp estimate is compensated by a weaker assumption on u(0), that

is u(0) ∈ L2(RN ) if α 6 4
N . As we can see, this hypothesis is optimal with respect to the integrability

of the initial data, in the sense that we make the minimal assumption on u(0) to have existence of a

solution. But when α > 4
N , Theorems 2.1 and 2.2 are optimal with respect to the lower bound and to

the assumption on u(0). So we only have to consider the case α 6 4
N . On the other hand, if α > 4

N+2
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(α > 2 if N = 1), then the sharp estimate still holds (see Theorems 3.1 and 3.2 below). However, we

have to make an additional decay assumption on the solution u (u must satisfy (3.1)).

Theorem 3.1. Let λ ∈ R \ {0}, 4

N + 2
< α 6

4

N
(2 < α 6 4 if N = 1), ϕ ∈ L2(RN ) and u be

the corresponding solution of (1.1). If α =
4

N
then assume further that u is positively global in time.

Suppose that for every r ∈
[
2, 2N

N−2

)
(r ∈ [2,∞) if N = 1),

a.e. t > 0, ‖u(t)‖Lr 6 C|t|−N( 1
2−

1
r ). (3.1)

Then we have for every r ∈ [2,∞],

lim inf
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0.

Theorem 3.2. Let λ ∈ R \ {0}, let α0 = −(N−2)+
√
N2+12N+4

2N , α0 < α 6
4

N
, ϕ ∈ L2(RN ) and u be

the corresponding solution of (1.1). If α =
4

N
then assume further that u is positively global in time.

If there exists r ∈ [α+ 2,∞] such that u satisfies (3.1) then for every r ∈ [2,∞],

lim inf
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0.

Remark 3.3. When ϕ ∈ L2(RN ), the condition (3.1) makes sense. Indeed, we have by the Strichartz’

estimates that u ∈ Lqloc([0,∞);Lr(RN )), for every admissible pair (q, r). This yields, u(t) ∈ Lr(RN ),

for almost every t > 0 and for all r ∈
[
2, 2N

N−2

]
(r ∈ [2,∞) if N = 2, r ∈ [2,∞] if N = 1).

Remark 3.4. As shows Lemma 4.3, Theorem 3.2 has less restrictive assumptions than Theorem 3.1

when α > α0. Indeed, we do not have to suppose that u satisfies (3.1) for all r. We may only assume

that it is satisfied for r = α+ 2. Furthermore, estimates of type (2.1) do not occur. Finally, Theorem

3.2 can be extended for α = α0 in the following sense. If there exists r ∈ [α0 + 2,∞] and ε > 0 such

that for almost every t > 0,

‖u(t)‖Lr 6 C|t|−N( 1
2−

1
r )−ε, (3.2)

then for all t ∈ R, u(t) ≡ 0. See the proof of Theorem 3.2 for the justification.

Remark 3.5. In the case where α 6 4
N+2 (α 6 1 if N = 1), we have the following result. Let

λ ∈ R \ {0}, 0 < α 6
4

N + 2
(0 < α 6 1 if N = 1), ϕ ∈ L2(RN ) and u be the corresponding solution
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of (1.1). Let r ∈ [2,∞]. If there exists ε > 0 such that
‖u(t)‖

L
2N
N−2

6 C|t|−(1+
4−α(N+2)

4α +ε), if N > 3,

‖u(t)‖Lr 6 C|t|−2( 1
2−

1
r )− r(1−α)+α

rα −ε, if N = 2,

‖u(t)‖L∞ 6 C|t|−( 1
2 + 2−α

2α +ε), if N = 1,

(3.3)

for almost every t > 0, then for all t ∈ R, u(t) ≡ 0. See the proof of Theorem 3.2 for the justification.

When N > 3 and α =
4

N + 2
, the result is the same if we have (3.3) for some r ∈

[
2N
N−2 ,∞

]
. Indeed,

by Lemma 4.3 this hypothesis leads to (3.3) with r = 2N
N−2 . When α < 4

N+2 (α 6 1 if N = 1), estimate

(3.3) is a very strong assumption since it implies that u decays faster than the solution of the linear

equation. Furthermore, there is a gap between the admissible and the non-admissible powers of decay

(compare (3.1) with (3.3)).

4 Estimates at infinity

Proposition 4.1. Let λ ∈ R \ {0}, m ∈ {0; 1}, 0 < α 6
4

N − 2m
(0 < α < ∞ if N = m = 1 and

0 < α <
4

N − 2
if N > 2 and m = 1), ϕ ∈ Hm(RN ) and u ∈ C((−T∗, T ∗);Hm(RN )) be the unique

corresponding solution of (1.1). Assume that T ∗ = ∞. If there exist t0 > 0 and (γ, ρ) an admissible

pair with γα
γ−2 < ∞ and 2 6 ρα

ρ−2 6 2N
N−2 (2 6 ρα

ρ−2 < ∞ if N = 2, 2 6 ρα
ρ−2 6 ∞ if N = 1) such that

u ∈ L
γα
γ−2 ((t0,∞);L

ρα
ρ−2 (RN )), then the following properties hold.

1. For every admissible pair (q, r), u ∈ Lq((0,∞);Wm,r(RN )),

2. There exists u+ ∈ Hm(RN ) such that lim
t→∞

‖T (−t)u(t)− u+‖Hm = 0.

A similar result holds for t < 0.

Proof. By remark 2.7, we only have to show the case t > 0. We proceed in 2 steps. Set f(u) = λ|u|αu.

Step 1. f(u) ∈ Lγ′((t0,∞);Wm,ρ′(RN )).

We first show that u ∈ Lγ((0,∞);Wm,ρ(RN )). We already know that u ∈ Lqloc([0,∞);Wm,r(RN )),

for every admissible pair (q, r). We have the following integral equation.

∀S > 0, ∀t > 0, u(t) = T (t− S)u(S) + i

t∫
S

T (t− s)f(u(s))ds.
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So we have by the Hölder’s inequality (applied in space-time) and Strichartz’ estimates,

‖f(u)‖Lγ′ ((t0,t);Wm,ρ′ ) 6 C‖u‖α
L
γα
γ−2 ((t0,∞);L

ρα
ρ−2 )
‖u‖Lγ((0,t);Wm,ρ), (4.1)

‖u‖Lγ((S,t);Wm,ρ) 6 C + C0‖u‖α
L
γα
γ−2 ((S,∞);L

ρα
ρ−2 )
‖u‖Lγ((S,t);Wm,ρ), (4.2)

for every t0 6 S < t < ∞. Since u ∈ L
γα
γ−2 ((t0,∞);L

ρα
ρ−2 (RN )), there exists S0 > t0 large enough

such that C0‖u‖α
L
γα
γ−2 ((S0,∞);L

ρα
ρ−2 )

6 1/2, where C0 is the constant in (4.2). So with (4.2), we obtain

‖u‖Lγ((S0,t);Wm,ρ) 6 2C, for every t > S0. It follows that ‖u‖Lγ((S0,∞);Wm,ρ) 6 2C and so we have

u ∈ Lγ((0,∞);Wm,ρ(RN )). Hence the result by letting t↗∞ in (4.1).

Step 2. Conclusion.

By Step 1 and Strichartz’ estimates, u ∈ Lq((0,∞);Wm,r(RN )), for every admissible pair (q, r). Then

1 follows. From the Strichartz’ estimates and by the fact that T (t) is an isometry on Hm(RN ), we

obtain for every τ > t > t0,

‖T (−t)u(t)− T (−τ)u(τ)‖Hm 6 C‖f(u)‖Lγ′ ((t,τ);Wm,ρ′ )

t,τ→∞−−−−→ 0,

by Step 1. Hence 2. This concludes the proof.

Remark 4.2. Note that by assumption, one always has γα
γ−2 > 0. However, it may happen that

γα
γ−2 < 1. This is clearly not a problem since the above proof still holds and that we do not use the

triangular inequality.

Lemma 4.3. Let λ ∈ R, m ∈ {0; 1}, 0 6 α 6
4

N − 2m
(0 6 α <∞ if N = m = 1 and 0 6 α <

4

N − 2

if N > 2 and m = 1), ϕ ∈ Hm(RN ) and u ∈ C((−T∗, T ∗);Hm(RN )) be the corresponding solution of

(1.1). Assume that T ∗ = ∞. If there exist r ∈ (2,∞], ε > 0 and a constant C = C(t) > 0 such that

u(t) satisfies (3.2) for some t > 0, then for every ρ ∈ (2, r], there exist ε(ρ) > 0 and C0(t) > 0 such

that

‖u(t)‖Lρ 6 C0(t)t−N( 1
2−

1
ρ )−ε(ρ), (4.3)

where the function ρ 7−→ ε(ρ) is continuous from (2, r] to [0,∞) and satisfies ε(ρ) > 0 ⇐⇒ ε > 0. If

C is independent on t then C0 is also independent on t. Finally, if (3.2) is satisfied for every t > 0

then (4.3) is satisfied for every t > 0, and if lim inf
t→∞

C(t) = 0 then lim inf
t→∞

C0(t) = 0.

Proof. Let ρ ∈ (2, r]. Set θ =
r

ρ

ρ− 2

r − 2
, ε(ρ) = εθ and C0(t) = C(t)θ. Then θ ∈ (0, 1] and θ satisfies
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1

ρ
=

1− θ
2

+
θ

r
. By Hölder’s inequality and conservation of charge, we obtain

‖u(t)‖Lρ 6 ‖u(t)‖1−θL2 ‖u(t)‖θLr 6 C(t)θ|t|−N( 1
2−

1
2 )(1−θ)−N( 1

2−
1
r )θ−εθ 6 C0(t)|t|−N( 1

2−
1
ρ )−ε(ρ).

Hence the result.

Lemma 4.4. Let λ ∈ R \ {0}, m ∈ {0; 1}, 0 < α 6
4

N − 2m
(0 < α < ∞ if N = m = 1

and 0 < α <
4

N − 2
if N > 2 and m = 1), ϕ ∈ Hm(RN ) and u ∈ C((−T∗, T ∗);Hm(RN )) be

the corresponding solution of (1.1). Assume that T ∗ = ∞. If u satisfies (3.1) for every r ∈
[
2, 2N

N−2

)
(r ∈ [2,∞) if N = 1) and if α > 4

N+2 (α > 2 if N = 1), then there exists an admissible pair (γ, ρ) with

1 < γα
γ−2 <∞ and 2 < ρα

ρ−2 <
2N
N−2 (2 < ρα

ρ−2 <∞ if N = 1) such that u ∈ L
γα
γ−2 ((1,∞);L

ρα
ρ−2 (RN )).

Proof. We distinguish 3 cases : N > 3, N = 2 and N = 1.

Case N >3. Set ρ∗ = 4N
2N−α(N−2) . Since 0 < α < 4

N−2 then 2 < ρ∗ <
2N
N−2 . Let γ∗ > 2 be such that

(γ∗, ρ∗) is an admissible pair. For this choice of ρ∗, we have ρ∗α
ρ∗−2 = 2N

N−2 and γ∗
γ∗−2 = 4

4−α(N−2) .

When α < N+2
N , we have ρ∗ <

2N
(N+2)−Nα ⇐⇒ α > 4

N+2 . Let ρ > ρ∗, ρ sufficiently close to ρ∗ to

have ρα
ρ−2 > 2. If α < N+2

N , then we also choose ρ < 2N
(N+2)−Nα . Since ρ > ρ∗ then ρα

ρ−2 <
2N
N−2 and so

there exists γ > 2 such that (γ, ρ) is an admissible pair. Then γ
γ−2 = 2ρ

2N−ρ(N−2) . By (3.1) we have,

‖u‖
γα
γ−2

L
γα
γ−2 ((1,∞);L

ρα
ρ−2 )

=

∞∫
1

‖u(t)‖
γα
γ−2

L
ρα
ρ−2

dt 6 C

∞∫
1

t−N
ρα−2(ρ−2)
2N−ρ(N−2) dt <∞.

Indeed, if α < N+2
N then N ρα−2(ρ−2)

2N−ρ(N−2) > 1 ⇐⇒ ρ < 2N
(N+2)−Nα and if α > N+2

N then we always have

N ρα−2(ρ−2)
2N−ρ(N−2) > 1. So, for this choice of (γ, ρ), u ∈ L

γα
γ−2 ((1,∞);L

ρα
ρ−2 (RN )).

Case N=2. Since α > 1 is fixed, we can choose ρ > 2 sufficiently close to 2 to have α > 2(ρ−1)
ρ .

In particular, this implies that ρα
ρ−2 > 2. Moreover, γ

γ−2 = ρ
2 where γ > 2 is such that (γ, ρ) is an

admissible pair. By (3.1) we have,

‖u‖
γα
γ−2

L
γα
γ−2 ((1,∞);L

ρα
ρ−2 )

=

∞∫
1

‖u(t)‖
ρα
2

L
ρα
ρ−2

dt 6 C

∞∫
1

t−
ρα−2(ρ−2)

2 dt <∞,

since ρα−2(ρ−2)
2 > 1 ⇐⇒ α > 2(ρ−1)

ρ . So u ∈ L
γα
γ−2 ((1,∞);L

ρα
ρ−2 (R2)) for this choice of (γ, ρ).

Case N=1. Since α > 2 is fixed, we can choose ρ > 2 sufficiently close to 2 to have α > 3ρ−2
ρ . In

particular, this implies that ρα
ρ−2 > 2. Moreover, γ

γ−2 = 2ρ
ρ+2 where γ > 2 is such that (γ, ρ) is an

9



admissible pair. By (3.1) we have,

‖u‖
γα
γ−2

L
γα
γ−2 ((1,∞);L

ρα
ρ−2 )

=

∞∫
1

‖u(t)‖
2ρα
ρ+2

L
ρα
ρ−2

dt 6 C

∞∫
1

t−
ρα−2(ρ−2)

ρ+2 dt <∞,

since ρα−2(ρ−2)
ρ+2 > 1 ⇐⇒ α > 3ρ−2

ρ . So for this choice of (γ, ρ), u ∈ L
γα
γ−2 ((0,∞);L

ρα
ρ−2 (R)).

As seen in Section 1, the crux of the proof of results of this paper is based on the following lemma.

Lemma 4.5. Let λ ∈ R \ {0}, m ∈ {0; 1}, 0 6 α 6
4

N − 2m
(0 6 α < ∞ if N = m = 1 and

0 6 α <
4

N − 2
if N > 2 and m = 1), ϕ ∈ Hm(RN ) and u ∈ C((−T∗, T ∗);Hm(RN )) be the

corresponding solution of (1.1). Assume that T ∗ =∞. If ϕ 6≡ 0 and if there exists u+ ∈ L2(RN ) such

that lim
t→∞

‖T (−t)u(t)− u+‖L2 = 0, then for every r ∈ [2,∞],

lim inf
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0.

The proof of Lemma 4.5 is based on the pseudo-conformal transformation.

For every positively global solution u of (1.1) with initial data ϕ ∈ L2(RN ), we define the function

v ∈ C([0, 1);L2(RN )) by

∀t ∈ [0, 1), a.e. x ∈ RN , v(t, x) = (1− t)−N2 u
(

t

1− t
,

x

1− t

)
e−i

|x|2
4(1−t) . (4.4)

A straightforward calculation gives for every p ∈ [1,∞] and for all t ∈ [0, 1),

‖v(t)‖Lp = (1− t)−N( 1
2−

1
p )
∥∥∥∥u( t

1− t

)∥∥∥∥
Lp
, (4.5)

‖v(t)‖L2 = ‖ϕ‖L2 , (4.6)

where the last identity comes from (4.5) and from conservation of charge for u. Note that (4.5) makes

sense as soon as u
(

t
1−t

)
∈ Lp(RN ). When ϕ ∈ X, we obviously have v ∈ C([0, 1);X) and so we may

define for all t ∈ [0, 1),

E1(t) =
1

2
(1− t)

4−Nα
2 ‖∇v(t)‖2L2 −

λ

α+ 2
‖v(t)‖α+2

Lα+2 ,

E2(t) =
1

8
‖(x+ 2i(1− t)∇)v(t)‖2L2 −

λ

α+ 2
(1− t)Nα2 ‖v(t)‖α+2

Lα+2 .

Then for all t ∈ [0, 1),

d

dt
E1(t) =

Nα− 4

4
(1− t)

2−Nα
2 ‖∇v(t)‖2L2 , (4.7)

d

dt
E2(t) = 0. (4.8)
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For the proof, see Proposition 3.8 and formulas (3.20) and (3.21) of Cazenave and Weissler [9].

Proof of Lemma 4.5. We argue by contradiction. Let v ∈ C([0, 1);L2(RN )) be the function defined

by (4.4). Assume that there exists r > 2 such that

lim inf
t→∞

tN( 1
2−

1
r )‖u(t)‖Lr = 0.

Then, we shall show that ϕ ≡ 0.

By conservation of charge and Lemma 4.3, we may assume that 2 < r < 2N
N−2 (2 < r <∞ if N = 1).

Since u(t) ∈ Lr(RN ) for almost every t > 0, it follows that v(t) ∈ Lr(RN ), for almost every t ∈ (0, 1).

By (4.5), we have

lim inf
t↗1

‖v(t)‖Lr = 0. (4.9)

By hypothesis, lim
t→∞

‖T (−t)u(t) − u+‖L2 = 0 for some u+ ∈ L2(RN ). From Proposition 3.14 of

Cazenave and Weissler [9], this implies that there exists w ∈ L2(RN ) such that

lim
t↗1
‖v(t)− w‖L2 = 0. (4.10)

(Although Proposition 3.14 is given with α > 0, the result still holds for α = 0 since the proof applies

without any modification.) From (4.9) and (4.10) we deduce that lim
t↗1
‖v(t)‖L2 = 0, from which it

follows with the conservation of charge (4.6), ‖ϕ‖L2 = 0. This is absurd since ϕ 6≡ 0.

5 Proof of the results of Section 2

Our strategy is the following. We show that if a solution u of (1.1) has a decay rate too fast, then

the corresponding function v given by the pseudo-conformal transformation must converge to 0 in a

Lebesgue space Lp(RN ), for some 2 < p < ∞. But these functions also satisfy the conservation of

charge. And by using the embedding Y ↪→ Lp
′
(RN ) or the existence of a strong limit for v(t) in

L2(RN ) as t↗ 1, we deduce that v(t) ≡ 0, that is u(t) ≡ 0, for all t ∈ R.

In order to show Theorems 2.1 and 2.2, we split the proof in 2 cases, which are α 6 4
N and α > 4

N .

Lemma 5.1. Let λ ∈ R, 0 6 α 6
4

N
, ϕ ∈ X and let u ∈ C((−T∗, T ∗);X) be the corresponding

solution of (1.1). If α =
4

N
then we suppose that T ∗ =∞. If ϕ 6≡ 0 then

lim inf
t→∞

|t|N( 1
2−

1
r )‖u(t)‖Lr > 0,

for every r ∈ [2,∞] if λ 6 0, and for every r ∈ [α+ 2,∞] if λ > 0.
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Proof. We argue by contraposition. Let v ∈ C([0, 1);X) be the function defined by (4.4). Assume

there exists r > 2 if λ 6 0, and r > α+ 2 if λ > 0, such that

lim inf
t→∞

tN( 1
2−

1
r )‖u(t)‖Lr = 0.

Then, we have to show that ϕ ≡ 0.

By conservation of charge, if r = 2 then ϕ ≡ 0. So we may assume that r > 2. Furthermore, by

Lemma 4.3, we also may assume that r < 2N
N−2 (r <∞ if N = 1) if λ 6 0 or if α = 0, and r = α+2, if

λ > 0 and if α > 0. Since lim inf
t→∞

tN( 1
2−

1
r )‖u(t)‖Lr = 0, it follows from (4.5) that lim inf

t↗1
‖v(t)‖Lr = 0.

Thus, there exists a sequence (tn)n∈N ⊂ (0, 1) satisfying tn
n→∞−−−−→ 1 such that

lim
n→∞

‖v(tn)‖Lr = 0. (5.1)

If λ 6 0 or if α = 0 then by (4.6) and (4.7), we have sup
t∈[0,1)

(1 − t)‖∇v(t)‖L2 < ∞, which leads with

(4.8) and (4.6), sup
t∈[0,1)

‖v(t)‖Y < ∞. If λ > 0 and if α > 0 then by (4.7) and (5.1), we have for all

n ∈ N, ‖∇v(tn)‖L2 6 C(1− tn)
Nα−4

4 . It follows that,

(1− tn)‖∇v(tn)‖L2 6 C(1− tn)
Nα
4

n→∞−−−−→ 0,

and with (5.1) and (4.8), we deduce that sup
n∈N
‖xv(tn)‖L2 <∞. This last estimate yields with (4.6),

sup
n∈N
‖v(tn)‖Y <∞. (5.2)

It follows that for λ ∈ R and for α ∈
[
0, 4

N

]
, we have (5.2). From (4.6), Hölder’s inequality, from the

embedding Y ↪→ Lr
′
(RN ), from (5.2) and (5.1), we obtain

‖ϕ‖L2 = ‖v(tn)‖L2 6 ‖v(tn)‖
1
2

Lr′
‖v(tn)‖

1
2

Lr 6 C‖v(tn)‖
1
2

Y ‖v(tn)‖
1
2

Lr 6 C‖v(tn)‖
1
2

Lr
n→∞−−−−→ 0.

So ‖ϕ‖L2 = 0 which is ϕ ≡ 0. Hence the result.

Proof of Theorem 2.1. If α 6 4
N then the result comes from Lemma 5.1. So we may assume that

α > 4
N . Since λ < 0 and α > 4

N , there exists u+ ∈ H1(RN ) such that lim
t→∞

‖T (−t)u(t) − u+‖H1 = 0

(Ginibre and Velo [16], Nakanishi [24, 25]). The result comes from Lemma 4.5.

Proof of Theorem 2.2. We proceed in 4 steps. Let v ∈ C([0, 1);L2(RN )) be the function defined

by (4.4).

Step 1. If α > 4
N and if lim sup

t→∞
tN( 1

2−
1

α+2 )‖u(t)‖Lα+2 6 C then there exists u+ ∈ H1(RN ) such that

lim
t→∞

‖T (−t)u(t)− u+‖H1 = 0. (5.3)
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Let q = 4(α+2)
Nα . Then (q, α + 2) is an admissible pair. Since u ∈ C([0,∞);H1(RN )) and that

H1(RN ) ↪→ Lα+2(RN ), then u ∈ L
qα
q−2

loc ([0,∞);Lα+2(RN )). Since α > 4
N , then Nα2

4−α(N−2) > 1 and

it follows that

‖u‖
qα
q−2

L
qα
q−2 ((1,∞);Lα+2)

=

∞∫
1

‖u(t)‖
qα
q−2

Lα+2dt 6 C

∞∫
1

t−
Nα2

4−α(N−2) dt <∞.

Therefore, u ∈ L
qα
q−2 ((0,∞);Lα+2(RN )) and the result comes from Proposition 4.1.

Step 2. If ϕ 6≡ 0 and if α 6 4
N then for all r > α+ 2, lim inf

t→∞
tN( 1

2−
1
r )‖u(t)‖Lr > 0.

The result comes from Lemma 5.1.

Step 3. If ϕ 6≡ 0 and if α > 4
N then for all r > α+ 2, lim sup

t→∞
tN( 1

2−
1
r )‖u(t)‖Lr > 0.

We argue by contraposition. Assume that there exists r > α+ 2 such that

lim sup
t→∞

tN( 1
2−

1
r )‖u(t)‖Lr = 0.

Then, we have to show that ϕ ≡ 0.

By Lemma 4.3, we may assume that r = α+2. Step 1 implies that there exists u+ ∈ H1(RN ) satisfying

(5.3). Then ϕ ≡ 0 by Lemma 4.5, which is the desired result.

Step 4. If ϕ 6≡ 0 and if there exists ρ > α+ 2 such that lim sup
t→∞

tN( 1
2−

1
ρ )‖u(t)‖Lρ <∞ then

lim inf
t→∞

tN( 1
2−

1
r )‖u(t)‖Lr > 0,

for all r ∈ [2,∞].

If α = 0 then Step 2 gives the result and so we consider the case α > 0. By Lemma 4.3, we may

assume that ρ = α + 2. We argue by contradiction. Suppose that there exists r > 2 such that

lim inf
t→∞

tN( 1
2−

1
r )‖u(t)‖Lr = 0. Then 2 < r < 2N

N−2 (2 < r < ∞ if N = 1). Indeed, this comes from

conservation of charge and Lemma 4.3. We obtain with (4.5),

sup
t∈[0,1)

‖v(t)‖Lα+2 <∞, (5.4)

lim inf
t↗1

‖v(t)‖Lr = 0. (5.5)

Note that since u ∈ C([0,∞);H1(RN )) and that the embedding H1(RN ) ↪→ Lr(RN ) ∩ Lα+2(RN )

holds, then we have v ∈ C([0, 1);Lr(RN ) ∩ Lα+2(RN )).

Case 1 : 0 < α 6 4
N .

From (4.6), (4.7), (4.8) and (5.4), sup
t∈[0,1)

‖v(t)‖Y < ∞. From (4.6), from Hölder’s inequality and the
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embedding Y ↪→ Lr
′
(RN ), we have for all t ∈ [0, 1),

‖ϕ‖L2 = ‖v(t)‖L2 6 ‖v(t)‖
1
2

Lr′
‖v(t)‖

1
2

Lr 6 C‖v(t)‖
1
2

Y ‖v(t)‖
1
2

Lr 6 C‖v(t)‖
1
2

Lr .

Thus ‖ϕ‖L2 6 C lim inf
t↗1

‖v(t)‖
1
2

Lr = 0 by (5.5) and so ‖ϕ‖L2 = 0, which is absurd.

Case 2 : α > 4
N .

By Step 1, there exists u+ ∈ H1(RN ) satisfying (5.3), which gives ϕ ≡ 0 by Lemma 4.5. This result

being absurd, Step 4 is true. This concludes the proof.

Proof of Corollary 2.4. By Cazenave and Weissler [9], we know that if ‖ϕ‖X is sufficiently small,

then u is global in time and there exists u+ ∈ X such that T (−t)u(t)
X−−−→

t→∞
u+. Then, Lemma 4.5

gives the result.

Proof of Proposition 2.5. It is well-known that if ‖ϕ‖H1 is sufficiently small then u is global in

time and u ∈ Lα+2(R;Lα+2(RN )) (Remark 7.7.6 of Cazenave [3]). Then T (−t)u(t)
H1(RN )−−−−−→
t→∞

u+, for

some u+ ∈ H1(RN ) (Proposition 4.1), and the result comes from Lemma 4.5.

6 Proof of the results of Section 3

Our strategy is the same as for Section 5. However, we could give an other proof as follows, without

requiring the pseudo-conformal transformation. We would show that if a solution u of (1.1) had a

decay rate too fast, then u would have a scattering state u∞ whose corresponding solution of the linear

problem (that is (1.1) with λ = 0) would have a decay rate of the same order of u. In particular, α > 2
N

otherwise u∞ ≡ 0 (Barab [1], Strauss [26, 27]). This rate being too fast, we would have u∞ ≡ 0 (by

(1.3)). And from conservation of charge, we would deduce that u(t) ≡ 0, for all t ∈ R. Furthermore,

in the case N = 1, we would have to make the additional assumption ϕ ∈ X when 1 < α 6 2 (in

order to apply the result of Barab [1]). But this case falls into the scope of Theorems 2.1 and 2.2

where there is a better result. It follows that in this case, the result would not be interesting.

Proof of Theorems 3.1 and 3.2 and Remarks 3.4 and 3.5. We proceed in 2 steps.

Step 1. There exists u+ ∈ L2(RN ) such that lim
t→∞

‖T (−t)u(t)− u+‖L2 = 0.

Case of Theorems 3.1. Since u satisfies (3.1) for every r ∈
[
2, 2N

N−2

)
(r ∈ [2,∞) if N = 1), it follows

from Lemma 4.4 that there exists an admissible pair (γ, ρ) such that u ∈ L
γα
γ−2 ((1,∞);L

ρα
ρ−2 (RN )).

The result follows from Proposition 4.1.

Case of Theorems 3.2 and Remark 3.4. Set q = 4(α+2)
Nα . Thus (q, α + 2) is an admissible pair. By
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Lemma 4.3, we may assume that r = α+ 2 in (3.1) and in (3.2). Let ε > 0 as in (3.2) (ε = 0 in (3.1)).

We set ε0 = qα
q−2ε. And since Nα2

4−α(N−2) > 1 ⇐⇒ α > α0, it follows from (3.1) or (3.2) that,

‖u‖
qα
q−2

L
qα
q−2 ((1,∞);Lα+2)

=

∞∫
1

‖u(t)‖
qα
q−2

Lα+2dt 6 C

∞∫
1

t−
Nα2

4−α(N−2)
−ε0dt <∞.

Then u ∈ L
qα
q−2 ((1,∞);Lα+2(RN )) and the result comes from Proposition 4.1.

Case of Remark 3.5. Let r > 2 and ε > 0 be as in (3.3). By conservation of charge, r > 2. Furthermore

when N = 2, we may assume that r < ∞ (Lemma 4.3). Let (γ, ρ) =
(

8
α(N−2) ,

4N
2N−α(N−2)

)
if

N > 3, (γ, ρ) =
(

2r
α ,

2r
r−α

)
if N = 2 and (γ, ρ) = (∞, 2) if N = 1. Then, ρα

ρ−2 = 2N
N−2 if N > 3,

ρα
ρ−2 = r if N = 2 and ρα

ρ−2 = ∞ if N = 1. Applying (3.3), it follows that for these choices of (γ, ρ),

u ∈ L
γα
γ−2 ((1,∞);L

ρα
ρ−2 (RN )). The result comes from Proposition 4.1.

Step 2. Conclusion.

The result comes from Step 1 and Lemma 4.5. This achieves the proof.
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Note added in proof. Recently, a generalization of Theorem 2.1 has been established for a

large class of nonlinearities, as soon as the solution is bounded in time in H1
0 (Ω). Unfortunately, these

results do not apply in the case of L2−solutions (which is the case in Section 3 of this paper). For

more details, see [2].
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