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Abstract

We study the transition between non renewable and renewable energy
sources with adjustment costs over the production capacity of renewable
energy. Assuming constant variable marginal costs for both energy sources,
convex adjustment costs and a more expensive renewable energy, we show
the following. With sufficiently abundant non renewable energy endowments,
the dynamic equilibrium path is composed of a first time phase of only non
renewable energy use followed by a transition phase substituting progressively
renewable energy to non renewable energy before a last time phase of only
renewable energy use. The investment into renewable energy may either
begin before actual production of renewable energy or be delayed until the
energy price achieves a sufficient gap with respect to the renewable energy
cost. With an initially abundant non renewable resource, the features of the
transition between non renewable and renewable energy do not depend upon
the initial resource stock.

JEL classification : D92, Q30, Q40, Q42

Keywords : energy transition; non renewable resource; renewable en-
ergy; adjustment costs; capacity constraints.

1



1 Introduction

The transition between different natural resources exploitation regimes typ-
ically takes time. While significantly in use since the sixteenth century in
Great Britain, coal mining replaced only very slowly charcoal in iron process-
ing or wood in energy provision until the nineteenth century (Wrigley, 2010,
Fouquet, 2008). The same may be said for the use of oil and natural gas
which developed over a sixty years range period since the end of the nine-
teenth century. More recently, the development of new energy sources like
solar or biofuel is expected to extend well over the current century (Nakicen-
ovic et al., 1998, chap 5). Most policy proposals to develop such alternatives
in order to mitigate climate change are explicitly time dependent, the Eu-
ropean Union 20-20-20 plan being one prominent example. Current and
prospected energy policies thus strongly acknowledge the time lags implied
by long run adaptations of the present energy mix. In some sense the cli-
mate challenge may be seen as a time to act problem, balancing the speed of
possible adaptations to climate change with the speed of such a change.

This time to build issue covers many different problems ranging from
the need of a sufficiently rapid technical progress to develop economically
relevant energy alternatives to a sufficiently fast investment pace in natu-
ral resources services provision. Adaptation, or more generally development
of the exploitation of natural resources is a costly process falling under the
heading of ’adjustment costs’ in investment economics. This issue of adjust-
ment costs is not only of concern for the development of new resources but
also for the development of existing ones, a well known feature of resource
industries, either for the exploration and exploitation of new oil fields or for
mineral resources.

The objectives of the paper are two-fold. First we want to stress the im-
portance of investment constraints over the development of renewable energy
alternatives. In order to focus upon the investment issue we shall dispense
from considering explicitly the pollution problems raised by burning fossil fu-
els. Hence the main motivation for developing energy alternatives will be the
increasing scarcity of non renewable fossil fuels like oil. For the same reason
we shall not deal with the important issue of technical progress or learning-
by-doing in the use of new energy sources. This issue has raised significant
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attention in the macroeconomic endogenous growth literature recently (Ace-
moglu et al., 2011) but the precise micro foundations of this analysis, both
at the firm level and at the energy sector level remain to be carefully settled.
Technical progress should result into the generation of higher quality capital
goods, an issue which would require to plug the analysis inside some vintage
capital model, a study worth a dedicated research.

Second we want to explicitly consider the price implications of the devel-
opment of renewable energy. One should expect that the gradual increase
of renewable energy inside the energy mix will affect both the energy price
trajectory and the depletion path of the already in use non renewable re-
source. Conversely, the time path of investment into renewable alternatives
should depend upon the relative scarcity of the non renewable resource. Such
possible linkages have attracted a lot of attention in the climate change regu-
lation literature recently, under the heading of the so-called ’Green Paradox’
dilemma.

To deal with this issue we depart both from the usual investment analysis
at the individual firm level and from the aggregate studies at a macro level.
We consider a partial equilibrium setting where the energy sector is composed
of a population of identical competitive firms either producing energy from a
non renewable resource or from a renewable one. Furthermore we assume that
the renewable energy industry has to purchase specific equipments, linking
at the equilibrium the dynamics of the energy price to the dynamics of the
renewable energy capital input price. We assume an upward slopping supply
curve of specific equipment of the renewable energy industry or equivalently
an increasing marginal cost curve of equipment provision to the renewable
industry. Thus the renewable industry faces external adjustment costs in the
Lucas (1967a) sense rather than internal adjustment costs in the Gould (1968)
sense. For simplicity we assume constant average and marginal variable
operating costs in the non renewable and renewable energy industries and a
lower operating cost of non renewable energy.

Adjustment costs have received a lot of attention in investment the-
ory, seminal contributions to this literature being Lucas (1967a,b), Gould
(1968) and Treadway (1969). However, while fully acknowledged as an
important issue in natural resource development problems at least since
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Hotelling, (1931)1, it has attracted a relatively modest attention from re-
source economists. The textbook treatments of substitution between natural
resources (for example Herfindahl and Kneese, 1974) do not consider explic-
itly adjustment costs. This results into a description of the history of natural
resources use development as a sequence of time phases of exploitation of a
dominant resource (the wood age, the coal age, the oil age) separated by
quick transitions from a dominant resource to another one, according to
their relative cost order.

It is a commonplace observation (IEA, 2013) that in energy production,
natural resources rather coexist than override each other. The possibility of
various types of capacity constraints in natural resources provision lies at the
heart of the rare attempts of the literature to provide a more realistic account
of the dynamics of energy transitions (Kemp and Long, 1980, Amigues et al.,
1998, Holland, 2003).

In the resource literature, reference to adjustment costs has served two
main purposes. The first one concerns the validity of the Hotelling rule.
The rule predicts an increasing trend of the non renewable resources prices
together with a decline of the production rate of these resources. However,
the currently available data reveals that despite a formidable increase of the
exploitation rate of the main mineral resources over the two last centuries,
their prices have remained more or less constant in real terms, showing no
definite upward trend that could be explained by the Hotelling rule (Gaudet,
2007). Various explanations, have been proposed to reconcile the theory
with the data (Livernois, 2009). On the theoretical side, it has been stressed
that capacity constraints, technical progress, dynamic costs structures, un-
certainties or market imperfections may account for the observed resource
price trends. On the empirical side, the difficulty to gather relevant data
over long time periods and various econometric estimation issues can also
explain the apparent lack of evidence concerning the Hotelling rule.

1"The cases considered in the earlier part of this paper all led to solutions in which
the rate of production of a mine always decreases. By considering the influence of fixed
investments and the cost of accelerating production at the beginning, we may be led
to production curves which rise continuously from zero to a maximum, and then fall
more slowly as exhaustion approaches. Certain production curves of this type have been
found statistically to exist for whole industries of the extractive type, such as petroleum
production." Hotelling, 1931, p 164.
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In the context of the theory of the mine, the fact that investment costs
may result in constant resource prices has been shown by Campbell (1980),
extending the previous work of Puu (1977). The strength of the Campbell
model is to take explicitly into account the consequences of extraction capac-
ity constraints over the resource price, but its main weakness, as emphasized
by Gaudet (1983), is to transform the gradual capacity development pro-
cess into a static investment problem, the mining industry having to choose
initially a given production capacity held constant over the whole mine life
duration. The resource price consequences of the firms investment decisions
have also been examined in a similar context by Lasserre (1986).

The second purpose is the study of transitions between different resources,
main contributions to this issue being Olsen (1989) and Cairns and Lasserre
(1991). The analysis of Olsen and Cairns and Lasserre are complex and
focus upon the transition between different non renewable resources under
adjustment costs.

Few parallel effort has been made to describe the transition between a non
renewable resource and a renewable one, this last resource being submitted to
adjustment costs in its productive capacity. One important contribution in
this direction is Tsur and Zemel (2011) which model the capital accumulation
process in producing solar energy under competition with existing fossil fuel
resources. However Tsur and Zemel do not take into account the exhaustible
nature of fossil fuels, assuming a forever constant supply of such resources.

The study of transitions between energy sources clearly appears useful in
the context of the climate policy debate, the development of ’green’ energy
alternatives being a major topic in this respect. The perception that green
energies develop at a too slow rate is commonplace in the public debate and it
already exist several policy initiatives aimed at subsidizing renewable energy
sources in industrialized countries. The rationale for such subsidies has been
questioned recently in the so-called ’green paradox’ debate (Sinn, 2012). This
is the point raised in conjunction with capacity constraints by Gronwald,
Long and Röpke (2013) in a recent work. The issue has also been studied
by Smulders, Tsur and Zemel (2012) within the context of macro-economic
growth theory, but without explicit consideration for the exhaustibility of
the polluting resource.
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The works of Switzer and Salant (1983) and Powell and Oren (1989) are
close to our work using a similar model. The same can be said of the Wirl
(1991) work, although the Wirl contribution is cast in a dynamic imperfect
competition setting where the incumbent non renewable resource extracting
industry faces the potential entry of renewable energy producers submitted
to production capacity development constraints. The findings of these au-
thors are close to ours in several aspects. All claim that renewable energy
should enter the market once the producers can at least cover their marginal
production costs. Powell and Oren, as Wirl, show also the existence of an
initial development phase where the industry builds some renewable energy
capacity before actually using it. However we show that this outcome is
only one possibility among the four possible energy transition scenarios we
identify in our paper.

Our main findings are the following. With sufficient non renewable re-
source initial endowments, the equilibrium path is a sequence of three phases,
a first phase during which only the cheaper non renewable resource is ex-
ploited, followed by a transition phase of simultaneous use of the non re-
newable and renewable energy sources up to some finite time when the non
renewable resource reserves become exhausted. This transition phase is fol-
lowed by a last renewable energy use phase of infinite duration. During the
first and second phases, the energy price increases, following a Hotelling like
path. It peaks at the depletion time of the non renewable resource and next
decreases during the last phase because of the continuous expansion of the
renewable energy production capacity which occurs all over this phase. This
overall shape of the energy transition has been already identified by Powell
and Oren or Wirl. However, all these authors posit a zero initial level of
marginal investment cost, which implicitly assumes that the equipment in-
dustry could start supplying productive capacity with no inputs. We make
instead the more realistic assumption of a strictly positive minimal price of
equipment. This opens new energy transitions possibilities than the ones
identified in this earlier literature.

The development of the renewable energy alternative may follow two pos-
sible scenarios. Under some conditions, the energy industry should start to
invest into the renewable alternative before using it, waiting for the energy
price to reach the variable average production cost level of renewable energy
to produce. This is the equilibrium scenario with zero initial adjustment
costs described by Wirl and others. In such scenarios, the initial renewable
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energy production capacity development and the beginning of renewable en-
ergy production happen in strict sequence. But, because of positive initial
adjustment costs, it is also possible that the industry should delay the devel-
opment of renewable energy only after a sufficient gap between the energy
price and the marginal production cost of the alternative has been achieved.
In this case capacity development and energy production will be synchronized
during the transition.

We also show that the features of the energy transition may be in fact
independent from the initial scarcity of the non renewable resource. In some
scenarios, a higher availability of this resource simply translates farther in
time the same renewable energy investment plan. This feature of the energy
transition applies both in a scenario of early building of the production ca-
pacity or in a scenario of simultaneous building of the capacity together with
the development of the production of renewable energy. However, if the price
at which renewable energy production becomes competitive is independent
from the non renewable resource scarcity in the first situation, this is not the
case in the second one.

In some scenarios, the investment into renewable energy first rises and
then begins to decrease strictly before the depletion of the non renewable
resource, the other possibility being a constant decline of the investment rate
after an initial jump up. In all scenarios, the industry incurs negative returns
over its investments at the early stage of the transition. After the exhaustion
of the non renewable resource, the renewable energy sector will continue
to expand its production capacity up to some long run efficient production
capacity level. This implies that it is never optimal for the renewable energy
sector to hold this long run capacity level at the end of the transition phase.

Last, we show that the renewable energy production capacity at the time
at which it replaces completely non renewable energy depends only of the
characteristics of the last pure renewable energy production phase and not
of the features of the energy transition. This applies also to the peak energy
price at the time of exhaustion of the non renewable resource, or ’peak oil’
price, which we prove rather counterintuitively to be independent not only of
the renewable energy production capacity building process, but even of the
scarcity of the non renewable resource itself.
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The paper is organized as follows. We describe in the next section a model
of transition between a non renewable resource and a renewable resource fac-
ing capacity development constraints. Under our constant variable marginal
costs assumption, it turns out that the non renewable resource will be ex-
hausted in finite time. Thus we proceed in section 3 to the description of the
ultimate phase of only renewable energy production. This last time phase
may be described using the phase diagram technique developed by Tread-
way (1969). Section 4 examines the features of the transition phase between
non renewable and renewable energy, focusing upon the description of the
investment path into the expansion of renewable energy. Section 5 provides
a closed form solution to the model and shows that the characteristics of the
investment policy into renewable energy may be largely independent from the
scarcity of the non renewable resource. Section 6 discusses the robustness of
the results and their policy implications. Section 7 concludes.

2 The model

The economy has access to two different primary energy sources. The first
one is a non renewable resource, say oil. Let us denote by X(t) the available
oil stock at time t, by X0 its initial endowment, X(0) = X0, and by x(t) its
instantaneous extraction rate, so that Ẋ(t) = −x(t). Assume a proportional
normalized to one delivery of energy services from oil extraction so that x(t)
denotes also the energy services generation rate from oil exploitation. The
provision of energy services from the oil primary source to the users incurs
a constant unit and marginal cost cx. We dispense from considering the
possible pollution problems raised by burning oil to produce energy.

The second energy source is a renewable resource, let say solar, and de-
note by y(t) the flow of energy services from the solar source. The delivery of
such energy services incurs a constant unit and marginal cost cy. The energy
services delivered by the industry from any primary source are perfect sub-
stitutes for the users. Let q(t) = x(t) + y(t) be the aggregate energy services
supply by the energy sector. p denotes the energy price and pd(q) is the
inverse demand function, pd(q) : R+ → R+, is continuous and differentiable
with dpd(q)/dq < 0 and limq↓0 p

d(q) = +∞. Last, let us denote by qd(p) the
direct energy demand function where dqd(p)/dp < 0.
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To use the solar source, the energy industry has to build a dedicated
production capacity, say a solar panels stock. Maintaining the production
capacity has a cost cK per unit of maintained capacity. The firms have
thus to decide over a maintenance effort. Assume that any fraction of the
capital stock which does not benefit from maintenance is definitively lost and
that the scrapping costs are nil. Thus a negative adjustment of the capital
stock is made possible by applying maintenance effort to only a fraction
of the installed capacity. Let K(t) be the installed and maintained solar
production capacity at time t. There is no installed solar production capacity
initially so that K(0) = 0. Let k(t) be the instantaneous purchase rate of
solar equipment, k(t) ≥ 0, and θ(t) the instantaneous proportional rate of
scrapped equipment, so that the maintained capital stock dynamics is defined
as K̇(t) = k(t)− θ(t)K(t).

Each unit of maintained capacity is assumed to be able to deliver one unit
of energy services thus: y(t) ≤ K(t). It will be shown that the production
capacity constraint does not necessarily bind. More precisely, the industry
can invest initially into capacity building without using it to produce solar
energy.

The energy industry has to purchase its equipment over a specific market
e.g. the solar panels market. Let pK(t) be the price of solar panels and denote
by ks(pK) the supply curve of solar panels. We assume that there exists
some positive p0

K > 0 such that ks(p0
K) = 0. We introduce this last feature

for the sake of realism but it will appear that it allows for a much better
understanding of the investment logic. Assume an increasing supply curve,
that is ks(p) : [p0

K ,∞)→ R+ is a continuous and differentiable function such
that dks(pK)/dpk > 0 and ks(p0

K) = 0. The supply curve would identify to
the marginal cost curve of the solar panel industry in a competitive situation.

Three remarks are in order at this stage. First, as pointed out in the
introduction, investment theory with adjustment costs (e. g. Lucas, 1967-b)
distinguishes between two kinds of costs: external costs associated to the
purchase of new capital equipment and internal costs identified to specific
costs of putting new equipment into a productive state together with the
existing installations. The present formulation neglects these internal costs,
the firms being able first, to run freely any level of available capacity at any
time and second, to incorporate new equipment without incurring specific
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installation costs.

Secondly, it may be possible that pK(t) < cK . In such a case the industry
should not apply any maintenance effort, scrap entirely the existing produc-
tion capacity at time t and next purchase a new one. Assume that cK < p0

K

to rule out such a possibility.

Thirdly, we are primarily interested in the logic of the energy transition
between an exhaustible fossil fuel and a renewable alternative in a time to
build context. To achieve this aim, we choose the simplest formulation of
the production costs of energy services from the two sources. More complex
forms, like increasing average costs functions or marginal cost functions de-
pending on past cumulated extraction for example, would blur the analysis,
since simultaneous exploitation of the two resources would become possi-
ble at the equilibrium even without any time to build issue. Adopting a
constant marginal cost structure put the model inside the Herfindahl logic:
without any capacity building problem, the two resources should be exploited
in strict sequence, beginning with the least cost resource. The existence of
a non trivial transition between the two energy sources will thus stand as a
salient feature of the present framework. However, it should be expected that
the precise characteristics of the transition are highly dependent upon the
shape of the energy demand function and the equipment supply function. To
achieve some degree of generality of the study, we retain for these functions
only reasonable qualitative properties: a decreasing energy demand function
and an increasing equipment supply function.

In the context of capacity investment costs, the both cases of a cheaper
solar energy with respect to oil or a cheaper oil than solar appear to be worth
a study. We shall concentrate upon the case of a cheaper oil energy that is
assume: cx < cy. Thus absent any depletion of the oil resource, there should
be no development of solar energy. It is the pure logic of resource exhaustion
that will motivate the expansion of the solar energy alternative.

The energy industry is composed of competitive firms having access to
the same technologies for energy services provision. Hence it does not matter
to assign specialization into oil or solar energy generation to a given firm.
Facing the same energy and solar equipment markets conditions, the firms
should take identical decisions regarding output and inputs purchase poli-
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cies. At the equilibrium, their solar energy investment policy will be affected
simultaneously by the present levels and future dynamics of the equipment
price and the energy price. The supply curve of solar equipments being up-
ward sloping, an increased speed of equipment accumulation should induce
price increases upon the equipment market. Hence the market behavior will
mimic at the equilibrium the features of the convex cost structure one finds
in the standard investment models with internal adjustment costs.

Assuming perfect competition over both the energy and solar equip-
ment markets, the energy sector has to design supply plans {(x(t), y(t)), t ≥
0} and solar capacity investment and scrapping and/or maintaining plans
{(θ(t), k(t)), t ≥ 0} maximizing the sum of discounted profits. Let r be the
interest rate assumed to be constant. Formally the energy sector solves:

max
x(t),y(t),θ(t),k(t)

∫ ∞
0

{p(t)[x(t) + y(t)]− cxx(t)− cyy(t)

−pK(t)k(t)− cKK(t)} e−rtdt

s.t. Ẋ(t) = −x(t) , X(0) = X0 > 0 given, X(t) ≥ 0

K̇(t) = k(t)− θ(t)K(t) , K(0) = 0 given , K(t) ≥ 0

θ(t) ≥ 0 , k(t) ≥ 0 , x(t) ≥ 0 , y(t) ≥ 0 , K(t)− y(t) ≥ 0 .

The current value Lagrangian of this problem writes (dropping the time
argument for the ease of reading):

L = p(x+ y)− cxx− cyy − pKk − cKK − λXx+ λK(k − θK)

+γθθ + γkk + γxx+ γyy + νKK + νXX + γK(K − y) .

The Lagrangian maximization yields:

Lx = 0 =⇒ p = cx + λX − γx (2.1)
Ly = 0 =⇒ p = cy + γK − γy (2.2)
Lk = 0 =⇒ pK = λK − γk (2.3)
Lθ = 0 =⇒ λKK = γθ , (2.4)

together with the usual complementary slackness conditions. The costate
variables λX and λK must satisfy, when differentiable:

λ̇X = rλX − LX =⇒ λ̇X = rλX − νX , (2.5)
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and:

λ̇K = rλK − LK =⇒ λ̇K = (r + θ)λK + cK − γK − νK , (2.6)

with νX ≥ 0 (= 0 if X > 0) and νK ≥ 0 (= 0 if K > 0).

The transversality condition at infinity reads:

lim
t↑∞

[λX(t)X(t) + λK(t)K(t)] e−rt = 0 . (2.7)

Let tX be the time at which oil is exhausted, then (2.5) gives the form of
the Hotelling rule when the average costs are constant:

λX(t) = λXe
rt where λX ≡ λX(0) , t ≤ tX . (2.8)

In the above system, the multiplier γK is the shadow marginal value of the
solar production capacity K. During any time period of solar energy produc-
tion, γy = 0 since y > 0 and, according to (2.2): γK = p− cy. Thus γK is the
gross unit margin in the solar energy activity, from which we must deduce
the unit maintenance cost, cK , to get the net margin, or operative cost, we
denote by βK : βK ≡ γK − cK .

Consider the condition (2.4) determining the scrapping rate, equivalently
the maintenance rate, of the installed solar production capacity K. Assume
that θ > 0, hence γθ = 0, so that λKK = 0. Thus either λK = 0, or
K = 0 or both. When K = 0, necessarily θ = 0 and we could be left with
λK = 0 during a period within which the firms would hold a positive solar
production capacity K > 0. Rather than incurring a marginal cost cK > 0
for maintaining a potentially productive solar energy capital K > 0, the
value of which is nil, it would be a more profitable management policy to
scrap it completely at zero cost. This argument holds for any θ > 0, however
large, and any K > 0, however small. We conclude that a profit maximizing
industry should never apply at any time t a positive scrapping rate, θ(t) > 0,
to the installed capital K(t) at this time.2

At any time t, the shadow marginal value of the solar production capital,
λK(t), must be equal to the sum of the future discounted net margins, that

2Clearly the argument would not hold under non stationary surplus functions, for
example a marginal surplus function first increasing through time and next decreasing.
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is3:

λK(t) =

∫ ∞
t

βK(τ)e−r(τ−t)dτ . (2.9)

The above relation shows that it identifies with the cumulated present value
of the opportunity cost of the capacity constraint over solar energy generation
net of the maintenance cost of capital.

Then, the condition (2.3) states that at the equilibrium, when the energy
industry invests in solar capacity, k > 0, the price of the solar equipment pK
must be equal to the shadow marginal value of this capital:

pK(t) = λK(t) =

∫ ∞
t

(p(τ)− (cK + cy)) e
−r(τ−t)dτ . (2.10)

Alternatively, the condition (2.10) may be seen as the no pure profit condition
that must prevail in a competitive situation.

Before turning towards a detailed analysis of the implications of the nec-
essary conditions, let us sketch a reasonable guess solution to the problem.

(i) Since cx < cy and solar development has to be started from scratch,
the non renewable resource will be put into exploitation right from the
beginning.

(ii) There cannot be an abrupt transition from oil to solar energy as in the
textbook Herfindahl model, since solar capacity building is costly and
the supply curve of solar equipment has been assumed to be upward
slopping. Hence, unlike the Herfindahl model, there should exist a
phase of simultaneous exploitation of both solar and oil energy, despite
the fact that their respective average costs are constant and that cx < cy
by assumption.

(iii) Depending upon the cost advantage of oil with respect to solar and
the other features of the model, it may or not be the case that the
investment into solar production capacity building will be delayed in
time, opening the door for a first phase of only oil exploitation before
the transition towards solar energy.

3Note that (2.9) holds provided that the transversality condition (2.7) be satisfied.
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(iv) In this last case, it appears possible that the industry should invest into
solar production capacity before using it to produce renewable energy.

(v) Since the marginal cost of oil energy services has been assumed to be
constant, oil should be depleted in finite time.

(vi) After oil depletion, only the solar energy sector will remain active.
Depending upon the previously accumulated production capacity, it
may or not be the case that capacity will continue to expand. In the
first case, energy supply should increase while the energy price should
decline over time.

That the non renewable resource should be exhausted in finite time results
from the following argument. Assume to the contrary that the resource is
exhausted only asymptotically. Then the Hotelling rule expressed in (2.8)
implies that the energy price should increase up to infinity in infinite time.
But in this case there should exist some finite time, t, when an investment
into solar energy generation becomes profitable, that is when the energy
price is sufficiently high to cover at least the minimal complete marginal cost
rp0

K + cK + cy of solar energy. Since the energy price should continue to grow
over time after t, the industry will accumulate solar production capacities.
To any finite capacity so accumulated, K, there exists a finite price level
p = pd(K) such that solar energy could serve the whole energy demand at
this price level, hence a contradiction.

The above features suggest the following study plan. We describe in the
next section the last phase of only solar energy use. Next we characterize
the properties of the transition phase from oil toward solar energy. Different
possible energy transition scenarios emerge from this study. We thus have to
identify the domain of validity of these scenarios. This is achieved by means
of an algorithmic procedure, providing a closed form solution to the present
model.
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3 The pure solar phase

After tX , the oil exhaustion time, solar is the only primary source and the
industry inherits a previously accumulated capacity K(tX) = KX . In this
section we determine the perfect foresight equilibrium as a function of KX ,
K(t) being the only state variable of the system since X(t) = 0, t ≥ tX .

3.1 Limits within which the equilibrium is to stay at KX

To determine the limits within which KX must lie in order that {K(t) =
KX , p(t) = pd(KX), t ≥ tX} be a perfect foresight equilibrium we must
check why for the given future price path {p(t) = pd(KX), t ≥ tX} the
industry does neither increase nor decrease its inherited capacity, that is
why {y(t) = KX , t ≥ tX} is on its supply path.

A first condition is that the industry be not in excess supply. If pd(KX) <
cK + cy, then at this price the current receipts are lower than the current
costs. The energy industry is in excess capacity. Since pd(K) is a decreasing
function of K, this level K̄ solution of pd(K) = cK + cy is the lower bound
of KX for which the industry is in excess capacity.

The second condition is that the industry be not in excess demand. As-
sume that there is no capacity investment after tX . A slight increase of the
capacity above KX would generate a marginal profit, in value at any time
t ≥ tX at which it is undergone, v(KX):

v(KX) =

∫ ∞
tX

[pd(KX)− cy − cK ]e−r(t−tX)dt =
pd(KX)− cy − cK

r
.

Assume that p0
K < v(KX), then a slight investment k > 0 at time t would

bear a cost p0
Kk and generate a larger profit v(KX)k. Thus a condition for

not to be in excess demand is that p0
K ≥ v(KX).

Let K̂ be the solution of v(KX) = p0
K , so that pd(K̂) − cy = rp0

K + cK .
The term rp0

K is the current rental price of equipment purchased at price p0
K
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and cK is its current maintenance cost. Thus rp0
K + cK is the current full

marginal cost of a small investment while pd(K̂)− cy is its current marginal
benefit at the constant price path {p(t) = pd(K̂), t ≥ tX}.

Because pd(K) is a decreasing function of K, then K̂ < K̄. For any
inherited capacity KX within the above two benchmarks, K̂ < KX < K̄,
if the industry foresights a price path p(t) = pd(KX), t ≥ tX and stays at
K(t) = KX , then it is neither in excess supply nor in excess demand. Hence
{p(t) = pd(KX), K(t) = KX , t ≥ tX} is a perfect foresight equilibrium.

3.2 Starting from outside the limits

Assume that KX > K̄. Then clearly the perfect foresight equilibrium is:
p(t) = pd(K̄), t ≥ tX , the capacity being reduced to K̄ by scraping immedi-
ately the excess capacity KX − K̄ at time tX .4

Assume now that the industry would be in excess demand by staying at
KX , that is KX < K̂. The problem is to find the price path of energy, p(t),
the price path of equipment, pK(t), and the investment path, k(t), maxi-
mizing the profits of the energy industry and the equipment industry. This
is equivalent to determine the solution of the following system of equations
(3.1)-(3.2):

K̇(t) = ks(λK(t)) (3.1)
λ̇K(t) = rλK(t) + cK −

(
pd(K(t))− cy

)
. (3.2)

where λK(t) = pK(t), is the equipment price (c.f. (2.3) with k > 0).

Equation (3.1) states that the capital investment K̇(t) = k(t), the equip-
ment demand, is equal to the equipment supply of the equipment industry,
ks(λK(t)) = ks(pK(t)). Equation (3.2) is the profit maximization condition
of the capital accumulation plan of the energy industry for p(t) = pd(K(t)),
the foresighted equilibrium energy price. Remember that γK = p − cy, that
is pd(K(t))− cy at the equilibrium while νK = 0 since K > 0, hence the form
(3.2) of (2.6).

4This is an example of an impulse decision. As shown later, it disappears along the
perfect foresight equilibrium starting from K(0) = 0 at t = 0.
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The system (3.1)-(3.2) is a simple non linear differential system which
can be studied with the phase diagram technique. The phase diagram in the
(K,λK) plane is pictured on Figure 1 (see Appendix A.1 for the details of
the construction).

Figure 1 about here

We show in Appendix A.1 that the saddle branch graphed as a solid
bold line is the only equilibrium solar capacity expansion path starting from
KX < K̂. We denote by λXK(K) the equation of the saddle branch. Note
that dλXK(K)/dK < 0 within the interval [KX , K̂]. In infinite time, the
equilibrium path converges toward (K̂, p0

K). The long run level of the solar
energy generation capacity, hence the long run solar energy production rate,
is the solution of p(K) = cy + cK + rp0

K . Thus even in the very long run the
gross marginal surplus from solar energy consumption will be higher than
cy, the marginal cost of solar production. Only in a case where the minimal
marginal adjustment cost p0

K would be zero together with the maintenance
costs, cK , the equalization in the long run of the gross marginal surplus to the
variable marginal cost cy would be profit maximizing for the solar industry.

Observe also that since λK(t) = pK(t) decreases along the saddle branch
through (2.3), k(t) = ks(pK(t)) also decreases down to zero. Investment
into capacity building follows a smooth decreasing pattern toward zero. The
production capacity of solar energy, hence the solar energy production rate,
expands while the energy price decreases. We may conclude as follows:

Proposition P. 1 Consider the perfect foresight equilibrium following the
exhaustion of the oil reserves at time tX starting with a previously accumu-
lated solar capacity KX . Let K̄, the solution of pd(K) = cy+cK, be the lower
bound for which the industry would be in excess capacity and K̂, the solution
of pd(K) = cy + cK + rp0

K, be the upper bound for which the industry would
be in excess demand for capacity. Clearly, K̂ < K̄ and:

1. If K̂ < KX < K̄, then staying at KX for t ≥ tX is the only perfect
foresight equilibrium on the industry production capacity market.
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2. If KX > K̄, the equilibrium capacity is K̄ and the excess capacity
KX − K̄ is scraped immediately at time tX .

3. If KX < K̂, the solar energy sector should permanently expand its pro-
duction capacity K(t) towards K̂, a level attained only asymptotically
in infinite time.

- During this capacity expansion phase, the investment level k(t)
into new solar equipment permanently decreases, converging down
to zero in the very long run.

- The equilibrium price of solar equipment, pK(t), decreases and
converges towards p0

K.

- The production of solar energy is given by y(t) = K(t), the capac-
ity constraint being binding all along the time phase. Solar energy
generation increases permanently towards ŷ = K̂. The energy
price decreases and converges down to p̂ ≡ rp0

K + cK + cy > cy.
y(t) increases at a decreasing rate while p(t) decreases also at a
decreasing rate.

The last phase of only solar energy use is a good illustration of the in-
vestment logic under adjustment costs in the line of Treadway. At each time
when the energy supply capacity is increased, the equilibrium market reaction
to this extra supply is an energy price decrease. This lowers the profitabil-
ity prospects for future investments into capacity expansion. The result is
a slowing trend of investment into solar energy generation equipment. The
demand reaction effect is partly counterbalanced by the decreasing returns
to scale over equipment provision. By reducing progressively the purchase
of new capital, the energy industry spans downward the supply curve, that
is the marginal cost curve of the solar panels industry. The resulting equip-
ment cost cut down restores partially the loss of profitability induced by the
demand reaction to the solar production capacity expansion.

As will be shown below, the argument extends to the capacity accumu-
lation policy before the depletion of the non renewable resource. The above
driving demand and cost forces explain also why the energy industry should
not end at the highest capacity economically profitable when the oil resource
becomes exhausted, that is KX < K̂.
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4 Transition toward the pure solar economy

Two features strongly shape the equilibrium transition toward the pure solar
economy. The first one is that before tX , the economy consumes the oil
resource. Hence the energy price increases according to the Hotelling rule:
p(t) = cx +λXe

rt (c.f. (2.1)). The second feature is that convex adjustments
costs prevent an instantaneous transition from a pure oil economy to a pure
solar one. Hence, before tX there must exists a phase of joint exploitation
of the two resources and a capital building phase at least as large since
producing solar energy requires capital.

4.1 Equilibrium constraint on the solar energy produc-
tion capital at the oil depletion time

The Hotelling rule before tX and the characteristics of the equilibrium energy
price path after tX , stated in Proposition 1, together imply that KX < K̂.

Assume to the contrary that KX ≥ K̂. From Proposition 1, after tX the
energy price is constant and equal to p(t) = pd(min{KX , K̄}), t > tX . This
price does not cover the current full marginal cost rpK+cK+cy > rp0

K+cK+cy
of any piece of equipment purchased before tX at a price pK > p0

K when k > 0.
Since the equilibrium energy price path must be continuous at time tX , then
p(t) < pd(min{KX , K̄}) before tX thanks to the Hotelling rule. Thus the full
marginal cost is never recovered, contradicting profit maximization by the
energy industry.

For KX < K̂, the equilibrium paths of λK(t) and K(t) must move along
the stable branch λXK(K) of the phase plane illustrated in Figure 1. Given
that the equilibrium paths of λK and p must be continuous at time tX ,
then the equilibrium values λK(tX) and p(tX) must be equal respectively to
λXK(KX) and pd(KX), the mining rent λXertX being thus equal to pd(KX)−cx.
Note that λXK(K) being a decreasing function of K and K(t) being increasing
over time after tX , λ̇K(t+X) < 0.5

5From now on we denote by h(t−) ≡ limτ↑t h(τ) and h(t+) ≡ limτ↓t h(τ) respectively
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Last, the continuity of the energy price path and of the solar capital
path at tX together imply that the oil consumption smoothly vanishes at tX ,
x(t−X) = 0, since q(t+X) = y(t+X) = KX and p(t−X) = p(t+X) = pd(KX). The
following Proposition summarizes these findings.

Proposition P. 2 Along the equilibrium path, at the oil exhaustion time tX :
KX < K̂, λK(tX) = λXK(KX), p(tX) = pd(KX), λXertX = pd(KX) − cx and
x(t−X) = 0.

The following immediate implication of Proposition 2 and of the dynamics of
λK(t) before tX resulting from (2.6) will appear very useful for characterizing
the equilibrium investment path in the paragraph 4.2.2 (see Appendix A.2
for a formal proof).

Corollary 1 λK(t) is time differentiable at tX and λ̇K(t−X) = λ̇K(t+X) < 0.

Note that, being endogenously determined, tX and KX link what happens
before and after the exhaustion of oil at the equilibrium.

4.2 Main characteristics of the energy transition

Let tK be the time at which the industry begins to accumulate solar energy
production capital and ty be the time at which the industry begins to produce
solar energy, 0 ≤ tK ≤ ty.

4.2.1 Beginning to accumulate solar capacity and beginning to
produce solar energy

It cannot be a priori excluded that the industry accumulates capital, K,
before producing solar energy, that is tK < ty. Clearly, for energy price levels

the left and right end limits at t of any time function h(t), when these limits exist.
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such that p(t) < cy, the solar energy production rate must be nil (c.f. (2.2)),
these price levels not covering the operative cost. But this does not imply
that the industry should not accumulate any solar capacity before that time
at which p(t) = cy and solar energy production could begin.

Assume that the energy firm faces some given increasing price schedule,
p(t), before tX (this will be the case at the equilibrium). Let t̄y be the time
at which p(t) = cy, not necessarily equal to ty. The firm can thus cover the
variable cost from t̄y onward. If it decides to produce solar energy at time
t̄y, some capacity is needed. For the firm to hold capacity at time t̄y, it is
necessary that:

λK(t̄y) =

∫ ∞
t̄y

[p(t)− cy − cK ] e−r(t−t̄y)dt ≥ p0
K ,

for the given price schedule p(t). It is immediately verified that:

λ̇K(t̄y) = rλK(t̄y)− [p(t̄y)− cy − cK ] = rλK(t̄y) + cK ≥ rp0
K + cK > 0 .

Thus λK(t) increases over time around t̄y. Furthermore, p(t) being increasing
before t̄y, λK(t) increases also before t̄y. Then, depending on the level of p0

K ,
the firm can be in three situations:

(i) If λK(t̄y) > p0
K , there exists a unique tK , tK < t̄y, such that λK(tK) =

p0
K . This means that the firm should have begun to invest strictly

before t̄y. But since p(t) < cy within the time interval [tK , t̄y), the firm
should continuously invest without producing solar energy.

(ii) In the case λK(t̄y) = p0
K , the firm begins to simultaneously invest and

produce solar energy from t̄y onward.

(iii) If λK(t̄y) < p0
K , the energy price is sufficiently high to cover the variable

cost but the minimal investment cost is too high to justify investing
in solar production capacity. Thus the firm waits until the energy
price is sufficiently high for λK(t) = p0

K . At this time, the firm starts
simultaneously to invest and produce solar energy.

Remark that if p0
K = 0 and cK = 0, only the first possibility remains, mean-

ing that the industry always invests in capacity building before starting to
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produce renewable energy. Note also the crucial role of the time increasing
pattern of the energy price. Facing for example a flat price level, p̄, either
p̄ < cy and the firm never invest or produce solar energy, either p̄ > cy and
the firm starts immediately to invest and produce from the competitive solar
source.

It is thus possible that the industry begins to develop the solar alternative
before using it to produce energy. This is a common feature of R&D models
where the industry has to invest into costly research efforts in order to attain a
sufficiently productive technological stage. There is no explicit R&D process
in this model, and the possibility of a delay between the beginning of the
investment plan and the beginning of the production plan of solar energy
appears here as an implication of the Hotelling rule constantly driving up
the equilibrium energy price.

This possibility is also strongly tied to the increasing pattern of the solar
equipment supply function ks(pK), the levels of the minimal unitary capital
cost, p0

K , the maintenance cost, cK , and the interest rate, r. For a low
minimal cost, p0

K , a supply function initially flat over a small price range
and next poorly elastic, low maintenance costs, cK and interest rate, r, it
may happen that accumulating capital before ty minimizes the building cost
of K(ty). However, delaying the production of solar energy although having
production capital at disposal is only possible when the variable cost cy is
positive and sufficiently high, or alternatively if initially the oil energy price,
cx + λXe

rt, is sufficiently low.

From the Proposition 2 and the above developments, we conclude that
there may exist four and only four equilibrium scenarios before oil depletion.

The first two types of scenarios begin with an initial phase of only oil
exploitation and a smooth start of the investment policy:

• Scenario 1 is a three phases scenario where 0 ≤ tK < ty < tX and
k(t+K) = 0.

• Scenario 2 is a two phases scenario where 0 ≤ tK = ty < tX and
k(t+K) = 0.
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In the two other scenarios, solar production capital building occurs immedi-
ately at a strictly positive rate because of oil scarcity:

• Scenario 3 is a two phases scenario where 0 = tK < ty < tX and
k(tK) > 0.

• Scenario 4 is a one phase scenario where 0 = tK = ty < tX and
k(tK) > 0.

Scenarios where ty = tX are excluded by the Proposition 2. Since at tX ,
p(tX) > cK + cy, then there must exist a time interval (tX − δ, t−X), δ > 0,
during which p(t) > cy and hence y(t) = K(t) > 0.

Before proceeding to the description of the solar energy investment plan in
the different scenarios, let us sketch the main features of the energy price and
quantity dynamics during the energy transition. The energy price, p(t), per-
manently increases implying that the total energy consumption, q(t) should
decline over time. Once solar energy is introduced, the progressive accumu-
lation of production capacity induces an increased use of solar energy inside
the energy mix, oil consumption decreasing at a higher rate than total en-
ergy consumption. These features apply in all scenarios. Note that in the
scenarios 1 and 3 of a delayed introduction of solar energy with respect to
the solar panels investment plan, that is when tK < ty, the consumption of
solar energy jumps up from zero to the available capacity level at time ty,
y(t+y ) = K(ty). Oil consumption makes a parallel downward jump at ty, total
energy consumption having to be time continuous.

4.2.2 Equilibrium investment dynamics in solar energy genera-
tion

Assume first that the oil endowment X0 is large so that λX is small and
there exists an initial phase during which cx + λXe

rt < cy. Hence, only oil is
exploited initially and the possible scenarios are of type 1 or 2.

Consider the scenarios of type 1 where 0 < tK < ty < tX . During the
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phase (tK , ty) of capacity investment without solar energy production, the
dynamics of λK(t) satisfies:

λK(tK) = p0
K and λ̇K(t) = rλK(t) + cK = rpK(t) + cK .

The first equality means that the capital accumulation process starts smoothly:
k(t+K) = 0. The reason is simple. Assume that k(t+K) > 0, hence pK(t+K) > p0

K .
Then reducing slightly the investment at t+K by dk and starting to invest
slightly earlier at t−K would allow for an investment cost reduction approxi-
matively equal to [pK(t+K)− p0

K ]dk. The second equality means that the in-
stalled capital is not scraped because its value increases sufficiently to cover
its rental price, rλK , and its maintenance cost, cK , but no more.

At ty, p(ty) = cy and the next phase is a phase of joint use of both
resources during which the dynamics of λK(t) is given by:

λ̇K(t) = rλK(t) + cK − (p(t)− cy) = rpK(t) + cK −
(
cx + λXe

rt − cy
)
.

Note that a ty, λ̇K(t) is well defined but the second order time derivative
λ̈K(t) jumps downward by rλXert, a point we check in appendix A.2. Hence
after ty, the increase of λK(t) begins to decelerate.

The maximum of λK(t) is attained a the time t̄ at which λ̇K(t) = 0, that is
rλK(t)+cK = cx+λXe

rt−cy, equivalently the time at which rλK(t) = βK(t),
(see Figure 2). At time t̄, λ̇K(t̄) = 0 implies that:

λ̈K(t̄) = rλ̇K(t̄)− rλXert̄ = −rλXert̄ < 0 ,

thus the maximum is unique. Appendix A.2 checks that t̄ < tX .

The Figure 2 illustrates the investment dynamics into solar capacity in
the scenario 1 in terms of the dynamics of the dual variables λK and βK ,
where:

βK(t) =


−cK/r , t < ty

cx + λXe
rt − (cK + cy) , ty ≤ t ≤ tX

pd(K(t))− (cK + cy) , tX < t .

Figure 2 about here
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The Figure 2 shows that the cash flow balance from one piece of equipment
may have quite complex evolutions, alternating negative returns periods and
positive ones. For equipments purchased between tK and t̄, like those pur-
chased at time t∗1 on Figure 2, the purchase price is λK(t∗1) = pK(t∗1) ≡ p∗K .
The net cash flow dynamics is a three phases sequence. During a first phase
(t∗1, t

∗
2), rλK(t∗1) = rp∗K > βK(t) shows that the revenue is lower than the

rental cost. During a second phase (t∗2, t
∗
3), the reverse holds and during the

third phase, (t∗3,∞), the revenue is again lower than the rental cost. Thus,
for pieces of equipment purchased at time t∗1, the industry experiences first
negative returns, then positive returns and last negative returns once again.
For pieces of equipment purchased after t̄, the cash flow balance is a sequence
of two phases, a first phase of positive returns followed by an infinite duration
phase of negative returns.

During the first pure investment phase, the net opportunity cost of the
capacity constraint, βK , remains at its minimal constant level −cK . βK
grows over time once solar energy is introduced within the energy mix. Thus
investing early allows to reduce the cost of the capacity constraint. On the
other hand, the returns from solar capacity investments are negative at least
until the time t at which p(t) = rp0

K+cK+cy > cy, thus later than ty, the time
at which p(t) = cy. The industry should try to minimize the length of this
negative returns period by delaying the beginning of its investments into the
solar alternative. The trade-off between these two opposite incentives may
result either in a early beginning of the solar investment if the first incentive
dominates or conversely in a delayed beginning if the second dominates. This
is what happens in type 2 scenarios. In all cases, the solar industry starts to
produce even if the energy price is too low to cover the full minimal marginal
cost level, that is rp0

K + cK + cy and hence faces negative returns over its
investments at the early stage of the transition.

Turn now to the scenario 2: 0 < tK = ty < tX . In order that tK = ty, it
is necessary that:

λK(tK) = p0
K and cx + λXe

rtK ≥ cy .

The argument for λK(tK) = p0
K is the same as for the scenario 1. The

inequality is necessary in order that the solar energy production begins once
the first piece of equipment is installed.

In scenarios 3 and 4 since tK = 0, it is now possible that the initial in-
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vestment rate, k(0), be strictly positive and pK(0) > p0
K contrary to what

happens in scenarios 1 and 2. It is also possible that the inverted U shape
pattern of the investment cost dynamics be reduced to a constantly decreas-
ing pattern for t ≥ 0.

The following Figure 3 illustrates the energy price dynamics and the solar
equipment price dynamics in a type 1 scenario.

Figure 3 about here

5 Characterizing the profit maximizing scenario
at the equilibrium

It remains to check the domain of validity of the various scenarios. We are
going to describe an algorithmic argument able to address this issue and
provide a closed form solution to the present model. The solving procedure
will make appear that the characteristics of the solar energy investment plan
may be independent from the size of the oil reserves. More precisely, we show
that with a sufficiently high initial level of oil reserves, the length of the solar
development phase, T ≡ tX − tK , and the accumulated capacity at the end
of the transition phase, KX , do not depend upon X0, the initial stock of the
non renewable resource.

The idea is quite simple. Consider a scenario of type 1 or 2 starting
at t = 0 with an initial oil endowment X0. Let t0 < 0 be an earlier date at
which the plan could start with the same phase structure after the date t = 0.
The new plan may start from t0 < 0 with an initial phase of oil consumption
between t0 and 0 following an energy price path p(t) = cx+λXe

rt, t0 < t < 0.
This is supported by an initial endowment X(t0) available at time t0, such
that:

X(t0)−X0 =

∫ 0

t0

qd(cx + λXe
rt)dt .

Thus clearly the investment path in solar capacity, the path of oil consump-
tion and the path of solar energy consumption, all after t = 0, are kept
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unchanged, hence also T and KX . We conclude that, once X0 is sufficiently
large, what happens after tK does not depend upon X0 in scenarios 1 and 2.

The argument does not hold for the scenarios 3 and 4. Assume that at
t0 < 0, λX = λX(0) being unmodified, the economy is endowed with an
oil stock X(t0) > X0 sufficiently large to sustain the oil consumption path
of a type 3 or 4 scenario together with the oil consumption path between
t0 and t = 0 implied by the energy price cx + λXe

rt. Note that ty would
remain unmodified. Since k(0) > 0 in such scenarios, pK(k(0)) > p0

K . Thus,
when starting from t0 < 0 rather than from t = 0, the industry should take
advantage of this longer delay, start to build its capacity earlier than t = 0
and reduce the building cost. But such a modification should also change
the whole investment path after t = 0. The consequence would be a different
solar production capital at the unchanged time t = ty, hence a different
solar energy production rate after ty. Since p(t) is kept unmodified, the oil
consumption rate should be modified too, a contradiction.

The above argument suggests the following dual solving strategy to iden-
tify the equilibrium scenario as a function of X0 for given other fundamentals
of the model, that is to determine first whether the equilibrium scenario is
of type 1 or 2, or a scenario of type 3 or 4.

To achieve this, assume that tK = 0, that is take the earliest time at which
the solar capacity investment could start, and denote by T the length of the
development phase of the solar production capacity before the oil exhaustion.
Since tK = 0, then tX = T . Denote by λ0

K ≥ p0
K any possible initial value

of λK : λK(0) ≡ λ0
K . Let λ0

X be the shadow value of the oil stock at the
beginning of the phase [0, T ). For any λ0

X define ty as:

ty = ty(λ
0
X) =


0 if λ0

X ≥ cy − cx

solution of: cy = cx + λ0
Xe

rt if λ0
X < cy − cx .

When ty > 0 define:

- λ1
K(t;λ0

K), 0 ≤ t ≤ ty as the solution of λ̇K = rλK + cK with the initial
condition λK(0) = λ0

K ;

- λ2
K(t;λ0

K), ty < t ≤ T as the solution of λ̇K = rλK + cK + cy −
(cx + λ0

Xe
rt) with the initial condition λK(ty) = λ1

K(ty;λ
0
K).
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When ty = 0 define λ2
K(t;λ0

K), 0 ≤ t ≤ T as the solution of λ̇K = rλK + cK +
cy − (cx + λ0

Xe
rt) with the initial condition λ2

K(0;λ0
K) = λ0

K .

For any given λ0
K ≥ p0

K , consider the following problem of finding a triplet
(T, λ0

X , KX) satisfying the three following conditions:

- Continuity of the energy price at time T :

pd(KX) = cx + λ0
Xe

rT . (5.1)

- Continuity of λK(t) at T , that is λK(T ) lying on the saddle branch of
the phase diagram in the (K,λK) plane at K = KX(see Figure 1):

λXK(KX) = λ2
K(T ;λ0

K) . (5.2)

- Continuity of the solar production capital path at time T , starting from
an initially nil capital, K(0) = 0:

KX =

∫ ty

0

ks(λ1
K(t;λ0

K))dt+

∫ T

ty

ks(λ2
K(t;λ0

K))dt . (5.3)

We show in Appendix A.3 that the above system has a unique solution,
denoted by (T (λ0

K), λ0
X(λ0

K), KX(λ0
K)).

Let K(t;λ0
K) be the corresponding solar production capital accumulated

at time t:

K(t, λ0
K) =


∫ t

0
ks(λ1

K(τ ;λ0
K))dτ , 0 ≤ t ≤ ty

K(ty;λ
0
K) +

∫ t
ty
ks(λ2

K(τ ;λ0
K))dτ , ty < t ≤ T .

Then X0(λ0
K), the corresponding cumulated oil consumption up to time T ,

amounts to:

X0(λ0
K) =

∫ ty

0

qd
(
cx + λ0

X(λ0
K)ert

)
dt

+

∫ T

ty

{
qd
(
cx + λ0

X(λ0
K)ert

)
−K(t;λ0

K)
}
dt . (5.4)
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The following Proposition 3 summarizes the properties of the solution of
the problem (5.1)-(5.3).

Proposition P. 3 As a function of λ0
K:

- The solar production capital to be built before the exhaustion of the oil
resource is constant: dKX(λ0

K)/dλ0
K = 0.

- The duration of the solar accumulation capital phase before oil depletion
is decreasing: dT (λ0

K)/dλ0
K < 0.

- The shadow marginal value, λ0
X , of the oil stock necessary to sustain the

solution path is increasing and the oil stock is decreasing: dλ0
X/dλ

0
K > 0

and dX0(λ0
K)/dλ0

K < 0.

- Furthermore when ty > 0, the duration of the accumulation phase with-
out solar energy production is decreasing: dty(λ0

K)/dλ0
K < 0.

Proof: See Appendix A.3.

The main point of the Proposition 3 is to show that the solar capital hav-
ing to be accumulated before oil depletion, KX , is independent from the en-
ergy transition features. This is a mere consequence of the Hamilton-Jacobi-
Bellman equation (HJB therefater) having to apply at tX , the exhaustion
time of the non renewable resource.

Let V (KX) be the continuation value of the industry profit maximization
program from tX in current value at this time. We have shown in section 3
that V is a function of KX only. Let H(t) be the current value Hamiltonian.
The HJB equation states that at the oil depletion time tX :

H(tX)e−rtX = − ∂

∂tX
e−rtXV (KX) ,

resulting in:

p(tX)q(tX)− cxx(tX)− cyy(tX)− cKK(tX)− pK(tX)k(tX)

+λK(tX)k(tX)− λX(tX)x(tX) = rV (KX) . (5.5)
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The continuity requirement over the equilibrium energy price trajectory at
t = tX implies that: x(tX) = 0, p(tX) = pd(q(tX)) and q(tX) = y(tX) =
K(tX) = KX (c.f. Proposition 2). On the other hand, k(tX) > 0 implies
that λK(tX) = pK(tX) (c.f. (2.3)). Hence the above HJB equation writes as:[

pd(KX)− (cK + cy)
]
KX = rV (KX) .

Since:

V (KX) =

∫ ∞
tX

{[
pd(K(t))− (cK + cy)

]
K(t)− pK(t)k(t)

}
e−r(t−tX)dt ,

time differentiating at tX yields:

V̇ (KX) = −
[
pd(KX)− (cK + cy)

]
KX + pK(tX)k(tX) .

Thus the HJB equation equivalently states that:

pK(tX)k(tX) = rV (KX) + V̇ (KX) . (5.6)

The above relation describes the profit maximization condition having to
apply in investments in solar production capacity after tX when solar energy
is supplying the whole demand.

The HJB equation determines the equilibrium level of KX as a function
of the continuation value of the profit maximization plan after the depletion
of the oil resource and the current operative profit when solar energy supplies
the whole demand. Thus KX appears clearly as determined independently
of the features of the transition toward the pure solar energy phase, that
is, when tK = 0, of T , λ0

X and λ0
K . Note in addition that the condition:

pd(KX) = cx + λX(T ) shows that λX(T ) = λ0
Xe

rT is also independent from
λ0
K . Whatever be the detailed characteristics of the capital accumulation

plan before oil depletion and the oil resource exploitation plan, the economy
must end at the oil depletion time at a price level only determined by KX ,
a capital stock level itself only dependent of the features of the pure solar
phase.

We can now identify the critical amount of initial oil endowment above
which the equilibrium scenarios are scenarios of types 1 or 2, and under which
they are of types 3 or 4.

Consider the initial oil endowment X0 = X0(p0
K). Starting with this oil

endowment, along the equilibrium path, solar production capital investment
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begins immediately and smoothly: tK = 0, λK(tK) = p0
K hence k(0+) = 0.

The transition scenario is a type 1 or a type 2 scenario.

According to the argument developed at the beginning of the present
section, for any X0 > X0(λ0

K), the equilibrium is also a type 1 or a type 2
scenario but now with an initial phase during which only oil is consumed and
the investment in solar production capacity is nil: 0 < tK ≤ ty < tX , and
k(t+K) = 0. Depending upon cx +λ0

X(p0
K) being smaller or larger than cy, the

equilibrium transition scenario is respectively a scenario 1 or 2.

Note that when X0 ≥ X0(p0
K), we get from λ0

X(p0
K) and X0(p0

K) the
calendar time tK at which the energy industry starts to accumulate solar
production capital in scenarios of types 1 or 2. Before tK = 0, at times
t < 0 measured from tK = 0, the energy price given by the Hotelling rule is
p(t) = cx+λ0

X(p0
K)ert, and for any given t < 0, the cumulated oil consumption

during the time interval [t, 0] amounts to
∫ 0

t
qd(cx + λ0

X(p0
K)erτ )dτ . Thus the

date tK now measured in calendar time is the length of the phase during
which the cumulated oil consumption amounts to X0−X0(p0

K), that is −tK ,
in times measured from tK = 0, solves:∫ 0

−tK
qd
(
cx + λ0

X(p0
K)ert

)
dt = X0 −X0(p0

K) .

An immediate implication of the above result is that for initial endow-
ments X0 < X0(p0

K), then tK = 0 and λ0
K = pK(0) > p0

K . The corresponding
scenario is of type 3 or 4. The lower is X0, the higher is λ0

K , hence pK(0)
and k(0), and the higher is λ0

X , here equal to λX . Again depending upon
cx + λ0

X(λ0
K) being smaller or larger than cy, the equilibrium transition sce-

nario is respectively a scenario 3 or a scenario 4.

The following proposition summarizes these findings.

Proposition P. 4 Let (T (λ0
K), KX(λ0

K), λ0
X(λ0

K)) be the unique solution of
the system (5.1)-(5.3) and let X0(λ0

K) be the corresponding cumulated oil
consumption. Then:

1. If X0 > X0(p0
K), the equilibrium path begins with a first phase [0, tK) of
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only oil production without investment into the solar energy alternative
and:

- If λ0
X(p0

K) < cy − cx, then tK < ty and the energy transition
follows the Scenario 1, with a second phase [tK , ty) of investment
into solar capacity without solar energy production, only oil being
consumed, followed by a phase [ty, tX) of investment and joint use
of both energy sources.

- If λ0
X(p0

K) > cy−cx, then tK = ty and the energy transition follows
the Scenario 2, with a single phase of investment during which both
energy sources are exploited until oil depletion.

2. If X0 < X0(p0
K), then there exists some λ0

K > p0
K such that X0(λ0

K) =
X0 and the development of the solar energy alternative starts immedi-
ately from t = 0 meaning that tK is reduced to zero and:

- If λ0
X(λ0

K) < cy− cx, then ty > 0 and the energy transition follows
the Scenario 3, composed of a first phase [0, ty) of investment into
solar capacity without solar energy production, followed by a phase
[ty, tX) of investment and joint use of both energy sources.

- If λ0
X(λ0

K) > cy − cx, then tK = ty = 0 and the energy transition
corresponds to the Scenario 4, that is a single phase of investment
and joint production from both energy sources until oil depletion.

6 Discussion and policy implications

We first show that the main properties of the equilibrium paths still hold
under alternative standard assumptions. Next we examine the impacts of
different policies over the equilibrium paths.

6.1 Alternative standard assumptions

The main characteristics of the transition scenarios result from the impossi-
bility to build instantaneously a solar production capital at a constant av-
erage cost. Would this be possible there would not exist a transition phase
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during which both resources are simultaneously exploited. The oil would be
first exploited up to the time at which it is exhausted and at this date the
solar capital would be built once and for all. Thus the energy price would
be first increasing during the oil extraction phase and next constant during
the solar phase. Since the average cost of the solar capital is constant, dis-
counting implies to delay the investment as far as possible, that is up to its
once and for all installation. However such a model implicitly assumes that
the instantaneous rate of the solar equipment can be infinite, an audacious
assumption.6

The sensible counterpart of a constant average cost assumption in the
solar equipment industry is the correlative assumption of a bounded produc-
tion capacity. Let cs be the assumed constant average cost of the equipment
industry and k̄ its production capacity assumed to be constant through time
to simplify, hence a total cost at time t equal to csk(t), 0 ≤ k(t) ≤ k̄.

In this modified model, the price pK(t) at which the energy industry
purchases its solar equipment is higher than cs and when positive, k(t) = k̄,
that is the investment rate in solar energy production capacity is constant
during the whole period of capacity building.7 All along the accumulation
process, the energy industry must cover the full marginal cost rpK(t)+cK+cy,
thus K(tX) = KX ≤ K̂s, the long run capacity being here given by pd(K̂s) =
rcs + cK + cy. While in the convex cost model, this inequality holds at
as a strict inequality, it may hold as an equality in the constant average
cost model. The HJB equation must thus be modified as follows. Let ω
be the Lagrange multiplier associated to the constraint K̂s − KX ≥ 0. By
complementarity slackness, we get ω ≥ 0 and ω(K̂s−KX) = 0. The relevant
HJB equation for the constant average cost model reads:[

pd(KX)− (cK + cy)
]
KX = rV (KX)− ω .

If the constraint does not bind, ω = 0 and (5.6) determinesKX . All the other
main characteristics of the equilibrium paths are left unchanged excepted that
now appear two pure solar phases. During the first one of finite duration
the solar energy production capital is brought from KX up to its long run
equilibrium K̂s. Thus denoting by tk the time at which ends the investment

6In discrete time models, the impossibility of infinite instantaneous production rates
tends to be diluted.

7We show in Appendix A.4 that we cannot have p(t) = cs over any non degenerate
time interval during which the investment rate is positive.
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in solar equipment, then tk − tX = (K̂s − KX)/k̄. The second phase of
infinite duration, (tk,∞), is the long run stationary solar phase: K(t) = K̂s

and y(t) = K̂s, t ≥ tk.8.

If the constraint binds, KX = K̂s and [pd(K̂s)− (cK + cy)] ≤ rV (K̂s). In
this last case, the first pure solar phase is reduced to zero, k̄ being sufficiently
high for the industry to be able to accumulate the long run capacity K̂s at
the oil depletion time. Note that, like in the initial model, the HJB equation
and the continuity of the energy price path imply that the solar capacity
accumulated at the exhaustion time of the fossil fuel energy depends only
upon the characteristics of the supply of capital equipment, here cs and k̄,
together with the maintenance cost, cK , and the operative cost, cy.

The other seemingly strong assumption of our model is the presumed
constant average cost of non renewable energy provision. It implies in par-
ticular that the whole stock of oil is exploited. A more realistic assumption
would be to consider average extraction cost functions increasing with past
cumulated consumption. Assume that cx ≡ cx(X), defined over (0, X0], is
twice continuously differentiable, decreasing and convex, with cx(0+) = +∞
to insure that the whole stock X0 will not be mined. The new problem is to
determine that part of X0 which will be consumed.

To determine the grade X(tX) at which ends the oil extraction, we may
use the HJB equation which reads now:

p(tX)q(tX)− cx(X(tX))x(tX)− cKK(tX)− pK(tX)k(tX)

+λK(tX)k(tX)− λX(tX)x(tX) = rV (KX) .

Again the continuity of the equilibrium energy price path at t = tX implies
that x(tX) = 0, p(tX) = pd(q(tX)) and q(tX) = y(tX) = K(tX). Again too,
k(tX) > 0 implies that λK(tX) = pK(tX). We conclude that (5.6) is left
unmodified, hence that K(tX) depend only upon the characteristics of the
supply function ks and the maintenance and operative costs of solar capital
as in the initial model.

Furthermore the mining rent must be nil for the last exploited grade.
Hence from the energy price continuity, p(tX) = pd(KX), and the zero rent

8Formally the other evident difference is that now in the scenarios 1 and 2 when begins
the solar capital accumulation process, pK(tK) = cs and k(t+K) = k̄ and not k(t+K) = 0.
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condition, the stock of oil left underground, X(tX), appears as the solution
of cx(X) = pd(K(tX)). The other qualitative properties of the scenarios are
the same. For example for a sufficiently cheap least costly grade cx(X0), the
equilibrium scenarios are of type 1 or 2, while for higher least costs levels,
they are of type 3 or 4.

Here again the details of the investment phases preceding the exhaustion
of the non renewable resource between tK and tX in equilibrium scenarios
of type 1 or 2 are independent from the oil endowment to some extent.
Assume that for X0 and a given cost function cx(X), the investment in solar
equipment starts at some time tK > 0. Then consider any alternative oil
endowmentX ′0, X(tK) < X ′0 < X0, and let t′0 be the time at whichX(t) = X ′0
along the equilibrium path, 0 < t′0 < tK . Then for this new initial endowment
and the same non renewable energy cost function, that is the restriction of
cx(X) to (0, X ′0], the new equilibrium path is the initial path from t′0 onward:
the value of any variable z at time t > t′0 is the value of the same variable at
time t− t′0 along the new equilibrium path starting from X ′0 at time t = 0.

6.2 Policy implications

The peak price of energy is attained at the depletion time of the oil resource.
Note that being given by p(tX) = pd(KX) at the equilibrium, the peak price
is independent from the features of the transition toward pure renewable
energy. After oil exhaustion, the energy price either continuously decreases
or decreases during the finite duration phase of completion of the long run
solar energy production capital when the equipment industry supplies capital
at a constant average cost with an upper limit over its production rate.

The robust results of Proposition 4 show that the features of the solar
development phases may be largely independent from the availability of the
non renewable resource for sufficiently high initial endowments. Investment
into the solar substitute is delayed by a higher oil reserves but once started,
the investment path in solar equipment together with oil consumption path
are the same, hence shifting later in time the same level of the peak price.

The above results have interesting implications in the discussion of the so-
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called Green Paradox (Sinn, 2008 and 2012).9 More precisely, they suggest
that fossil taxation policies should have quite different impacts upon the
equilibrium paths than carbon free energy promoting policies.

The most common taxation system is an unitary tax on the fossil fuel
consumption. It is well known that such a tax growing at a proportional
rate equal to the interest rate has no effect on the equilibrium path. Let
τ be the initial unitary tax and τ(t) = τert its amount at time t. Denote
by λX(τ) the initial mining rent under this taxation regime. Clearly the oil
consumption path and the solar equipment path are left unmodified provided
that τ + λX(τ) = λX where λX ≡ λX(0) is the initial mining rent in the tax
free equilibrium. The only effect of such a tax is to reduce the mining rent
by the same amount, a pure redistributive effect upon the mines owners.

An unitary tax growing at a constant proportional rate ρ higher than the
interest rate should increase the early fuel consumption rates and decrease
the late ones since the exploited oil stock is constant in the present model.
However in stock dependent cost models, the cumulated oil consumption
decreases because the extraction end at a less costly grade. The HJB equation
with a tax growing at a rate ρ > r reads:

p(tX)q(tX)− cxx(tX)− τeρtXx(tX)− λX(tX)x(tX)− cKK(tX)

−pK(tX)k(tX) + λK(tX)k(tX) = rV (K(tX)) .

The argument used in section 5 shows that (5.6) still holds. Note that the
same argument also holds when cx(X(tX))x(tX) is substituted to cxx(tX) in
the above equation. However in the stock dependent cost case the zero mining
rent condition for X(tX) under taxation implies that the last exploited grade
must satisfy pd(KX) − τeρtX = cx(X(tX)). Since pd(KX) does not depend
upon the tax rate, then X(tX) should be higher under the tax regime than
under the tax free regime.

Solar energy promotion can take several forms: subsidies for the purchase
of equipment, reduced interest rates, subsidies to maintenance and operative
costs or higher selling prices of solar energy than fossil energy prices. An-
other common promotion device is to impose constraints on the energy mix
supply, for example a fixed or a proportional mandate over the use of solar

9For recent surveys of partial equilibrium analysis results see Hoel (2012) and Van der
Ploeg (2013).
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energy, either immediately of at some given future date. We have focused
on promoting policies reducing either the maintenance cost, cK , or the op-
erative cost, cy. Such reductions may result from direct subsidies to solar
energy generation, equipment purchase subsidies or subsidized solar energy
tariffs.

It can be shown10 that in a scenario of type 1 or 2, a decrease of cK or cy
induces an increase of KX , the accumulated solar production capital at the
beginning of the pure solar phase, a decrease of λ0

X and has ambiguous effects
over T , the length of the transition phase toward pure renewable energy. A
decrease of λ0

X means a decrease of tK and ty. These results should probably
be expected. Promoting renewable energy policies favor an earlier start of
the investment process and an earlier introduction of solar energy in the
energy mix together with a higher accumulation of solar production capital.
This last result stands in contrast with oil taxation, a fossil fuel tax having
no impact upon the accumulated solar production capacity at the end of oil
exploitation.

7 Conclusion

We have shown that under adjustment costs, the transition from non renew-
able to renewable energy is smooth. The energy price is singled peaked, the
peak occurring at the time of exhaustion of the non renewable resource. Al-
though the Hotelling rule drives the energy price dynamics before and during
the transition, the peak is independent of the initial nonrenewable resource
endowment. Equivalently, the capital required to use the renewable resource
at the depletion time of the non renewable resource is independent of the
initial resource stock. Only the characteristics of the energy demand func-
tion, the equipment supply function, the interest rate and the maintenance
and operative cost structure matter to determine the peak price and/or the
accumulated capital at the exhaustion time. This conclusion is robust to
alternative assumptions about the shape of the supply function of equipment
or about the extraction costs of the non renewable resource.

10The details of the calculations are available upon request from the authors.
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An immediate policy implication of the above results is that under a fossil
fuel taxation regime, the peak price of energy is left unmodified, although
the price path is modified before the fossil fuel exhaustion together with
the depletion time. The renewable energy generation capital accumulated
at the exhaustion time is independent of the tax rate, although again the
investment path is modified during the energy transition. On the contrary,
subsidies to renewable energy modify both the peak price of energy and the
capital accumulated at the exhaustion time together with the long run level
of renewable energy production capacity.

One strong motivation for developing renewable energy alternatives is cli-
mate change mitigation. An explicit account of the polluting nature of fossil
fuels inside our model should impact in more or less complex ways both the
beginning time and the speed of development of the green energy alternatives.
In a carbon pollution accumulation framework not considering the scarcity of
fossil fuels but close to the present model in the specification of the renewable
production capacity building process, Fischer et al. (2004) conclude that the
long run accumulated renewable capacity is independent from the details of
the transition toward clean energy, a finding in line with our results. With
a fixed renewable production capacity, Gronwald et al. (2013) conclude that
moderate subsidies should enhance the transition toward clean energy, in ac-
cordance with our results. Most policy proposals to mitigate climate change
are designed in order to accelerate the transition toward clean energies, but
may have unintended negative side effects, an important issue deserving more
theoretical and empirical research.

37



References

ACEMOGLU D., AGHION P., BURSZTYN L. and D. HEMOUS, (2012),
The Environment and Directed Technical Change, American Economic Re-
view, 102(1), 131-66.

AMIGUES J. P., FAVARD P., GAUDET G. and M. MOREAUX, (1998),
On the Optimal Order of Natural Resource Use when the Capacity of the
Inexhaustible Substitute is Limited, Journal of Economic Theory, 80(1), 153-
170.

CAIRNS R. D. and P. LASSERRE, (1991), The Role of Investment in
Multiple-Deposit Extraction: Some Results and Remaining Puzzles, Journal
of Environmental Economics and Management, 21(1), 52-66.

CAMPBELL H. F., (1980), The Effect of Capital Intensity on the Op-
timal Rate of Extraction of a Mineral Deposit, The Canadian Journal of
Economics, 13(2), 349-356.

FISCHER C., TOMAN M. and C. WITHAGEN, (2004), Optimal Invest-
ment in Clean Production Capacity, Environmental and Resource Economics,
28(3), 325-345.

FOUQUET R., (2008), Heat, Power and Light: Revolutions in Energy
Services. Edward Elgar Publications. Cheltenham, UK, and Northampton,
MA, USA.

GAUDET G., (1983), Optimal Investment and Adjustment Costs in the
Economic Theory of the Mine, The Canadian Journal of Economics, 16(1),
39-51.

GAUDET G., (2007), Natural Resource Economics under the Rule of
Hotelling, The Canadian Journal of Economics, 40(4), 1033-1059.

GOULD J. P., (1968) Adjustment Costs in the Theory of Investment of

38



the Firm, Review of Economic Studies, 35, 47-55.

GRONWALD M., N. V. LONG and L. ROEPKE, (2013), Simultaneous
Supplies of Dirty and Green Fuels with Capacity Constraints: Is There a
Green Paradox?, CESIfo WP 4360.

HERFINDAHL O. C. and A. V. KNEESE, (1974), Economic Theory of
Natural Resources, Merril, Columbus.

HOEL M., (2012), Carbon Taxes and the Green Paradox, in R. W. Hahn
and A. Ulph, eds, Climate Change and Common Sense: Essays in Honor of
Tom Schelling, Oxford University Press, Oxford.

HOLLAND S. (2003), Extraction Capacity and the Optimal Order of
Extraction, Journal of Environmental Economics and Management, 64(3),
364-376.

HOTELLING H., (1931), The Economics of Exhaustible Resources, The
Journal of Political Economy, 39(2), 137-175.

IEA (2013), Key world energy statistics, Paris, www.iea.org.

KEMP M. C. and N. V. LONG, (1980), On Two Folk Theorems Concern-
ing the Extraction of Exhaustible Resources, Econometrica, 48(3), 663-673.

LASSERRE P., (1986), Exhaustible Resource Extraction with Capital, in
A.D. Scott, ed., Progress in National Resource Economics, Oxford University
Press, Oxford.

LIVERNOIS J., (2009), On the Empirical Significance of the Hotelling
Rule, Review of Environmental Economics and Policy, 3(1), 22-41.

LUCAS R., (1967a), Optimal Investment Policy and the Flexible Accel-
erator, International Economic review, 8(1), 78-85.

LUCAS R., (1967 b), Adjustment Costs and the Theory of Supply, Journal

39



of Political Economy, 75(1), 321-334.

NAKICENOVIC N., A. GRUBLER and A. McDONALD, (1998), Global
Energy Perspectives, Cambridge University Press, Cambridge.

OLSEN T. E., (1989), Capital Investments and Resource Extraction from
Non-Identical Deposits, Journal of Environmental Economics and Manage-
ment, 17(1), 127-239.

PLOEG, F van der, (2013), Cumulative Carbon Emissions and the Green
Paradox, Annual Review of Resource Economics, 5(1), 281-300.

POWELL S. G. and S. S. OREN, (1989), The Transition to Non de-
pletable Energy: Social Planning and Market Models of Capacity Expansion
Operations Research, 37(3), 373-383.

PUU T., (1977), On the Profitability of Exhausting Natural Resources,
Journal of Environmental Economics and Management, 4, 185-199.

SINN H. W., (2008), Public Policies against Global Warming: A Supply
Side Approach, International Tax and Public Finance, 15, 360-394.

SINN H. W., (2012), The green paradox: A supply-side approach to global
warming, Cambridge University Press, Cambridge.

SMULDERS S. H., TSUR Y. and A. ZEMEL, (2012), Announcing Cli-
mate Policy: Can a Green Paradox Arise without Scarcity, Journal of Envi-
ronmental Economics and Management, 64(3), 364-376.

SWITZER S. and S. SALANT. (1986). Expansion Optimale de Capacité
par des Exploitants Prévoyants d’une Ressource Non Renouvelable. in G.
Gaudet and P. Lasserre (eds.) Ressources Naturelles et Théorie Economique,
188-210, Les Presses de L’Université Laval, Quebec.

TREADWAY A. B., (1969), On Rational Entrepreneurial Behavior and
the Demand for Investment, Review of Economic Studies, 36, 227-39.

40



TSUR Y. and A. ZEMEL, (2011), On the Dynamics of Competing Energy
Sources, Automatica, 47(1), 1357-1365.

WIRL F., (1991), (Monopolistic) Resource Extraction and Limit Pricing:
The Market Penetration of Competitively Produced Synfuels, Environmental
and Resource Economics, 1, 157-178.

WRIGLEY E.A., (2010), Energy and the English Industrial revolution,
Cambridge University Press, Cambridge.

41



Appendix

A.1 Appendix A.1

Since k(t) > 0 by assumption, K̇(t) > 0. On the other hand, λ̇K > / =
/ < 0 depending upon λK > / = / < v(K(t)) where v(K) ≡ [pd(K) − cy −
cK ]/r = βK(t)/r. As shown before, v(K(t)) is the total net marginal surplus
in current value from t onwards if the solar production capacity and hence
the solar energy production level would be kept constant after t. Thus v(K)
measures the capacity rent resulting from a constant capacity level K. Since
dpd(q)/dq < 0 and limq↓0 p

d(q) = +∞ under our demand assumption, we
get immediately limK↓0 v(K) = +∞ and dv(K)/dK < 0. Last, K̄ appears
equivalently as the solution of v(K) = 0 while v(K) < 0 for K > K̄.

It is easily checked that the saddle branch converging toward (K̂, p0
K) is

the only equilibrium solar capacity path starting from KX < K̂. There exist
two other main types of trajectories solution of (3.1)-(3.2). A first kind of
trajectories initiates under the locus λ̇K = 0 and then move in finite time
above this curve inside a region where λ̇K > 0 and thus k̇ > 0 since k =
ks(λK) and dks(pK)/dpK > 0. Furthermore in this region: pK(k) = λK >
v(K). Since y(t) = K(t) increases permanently, p(t) decreases implying that:∫ ∞

t

e−r(τ−t)[p(τ)− cy − cK ]dτ <

∫ ∞
t

e−r(τ−t)[p(t)− cy − cK ]dτ

=
pd(K(t))− cy − cK

r
= v(K(t)) .

Thus above the curve v(K):

pK(k(t)) > v(K(t)) >

∫ ∞
t

e−r(τ−t)[p(τ)− cy − cK ]dτ .

The marginal cost of an investment into an increase of the capacity would be
higher than the total marginal gain from such an investment which cannot
be profit maximizing.

The other kind of trajectories starts from below the saddle branch and
then moves towards the horizontal p0

K in finite time. Consider such a trajec-
tory ending at some capacity level Ka as illustrated upon Figure 1. Let ta be
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that time when K(ta) = Ka. Since along such trajectories λK(t) < v(K(t))
we get at ta:

λK(ta) = p0
K < v(Ka) =

∫ ∞
t

e−r(τ−ta)[pd(Ka)− cy − cK ]dτ .

A slight investment effort dk > 0 above 0 would generate a surplus gain
higher than its cost, showing that such a choice of an investment policy
into solar production capacity building could not be efficient for the energy
industry.

A.2 Appendix A.2

Consider the transition scenario 1 where 0 < tK < ty < tX . During the phase
[tK , ty), λ̇K = rλK + cK > 0. Integrating this equation over [tK , t), t ≤ ty
yields:

λK(t) = er(t−tK)p0
K +

cK
r

(
er(t−tK) − 1

)
t ∈ [tK , ty) . (A.2.1)

Next, (2.6) together with the expression of γK(t) resulting from (2.2), yields
for t ≥ ty:

λ̇K(t) = rλK(t) + cy + cK − cx − λXert .

Note that since p(ty) = cx+λXe
rt = cy, λ̇K(t−y ) = λ̇K(t+y ), λK(t) is both time

continuous and differentiable at ty. Integrating over a time interval [t0, t),
ty ≤ t0 < t gets:

λK(t) = λK(t0)er(t−t0) +
cy + cK − cx

r

(
er(t−t0) − 1

)
− λXert(t− t0) .

(A.2.2)

Thus:

λ̇K(t) = π(t0)er(t−t0) − rλXert(t− t0) ,

where π(t0) ≡ rλK(t0) + cy + cK − cx − λXert0 . If π(t0) < 0 then λ̇K(t) < 0.
In the reverse case, there exists t̄ solution of λ̇K(t) = 0 that is of:

t = t0 +
π(t0)

rλXert0
.
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Investment into solar energy should take place before that time t at which
p(t) = rp0

K + cy + cK , that is tK < t. t ≥ 0 requires that λX be sufficiently
low for: cx + λXe

rt = rp0
K + cK + cy. To show the claim tK < t, assume

to the contrary that t ≤ tK , thus p(tK) ≥ cy + cK + rp0
K . Then, either the

investment process starts smoothly at tK , that is k(t+K) = 0, either its starts
abruptly so that k(t+K) > 0. In the first case, λK(t+K) = p0

K implies that
λ̇K(t+K) = rλK(t+K) + cK + cy − p(tK) < 0. Thus there exists a time interval
(tK , tK+δ), δ > 0 such that λK(t) < p0

K while k(t) > 0, hence a contradiction.
In the second case, pK(t+K) > p0

K . Since λK(t) is time continuous, there exists
a time interval (tK − δ, tK), δ > 0, such that λK(t) > p0

K . Thus the industry
should have invested during this time interval, also a contradiction.

It is easily verified that necessarily, ty < t < t̄. Since βK(t) = p(t) −
(cy + cK), t is equivalently defined as the solution of p0

K = βK(t)/r. Note
that γK(t) = 0, for t ∈ [tK , ty) implies that βK(t) = −cK during the first
investment phase. For t ∈ [ty, tX), ṗ(t) > 0 =⇒ β̇K(t) > 0. Thus, βK(ty) <
0 < βK(t) = rp0

K implies that ty < t. On the other hand, λ̇K(t) > 0 within
the time interval [tK , t̄) implies that λK(t̄) = βK(t̄)/r > p0

K = βK(t)/r and
thus t < t̄.

Next, it is easily checked that the time derivative of λK(t) at ty, although
continuous at ty, has a kink at this time. At t−y :

λ̈K(t−y ) = r2λK(t−y ) .

On the other hand, at t+y :

λ̈K(t+y ) = r2λK(t+y )− rλXert
+
y .

Since λK(t) is continuous at ty, then: λ̈K(t−y ) > λ̈K(t+y ).

Last, to check that t̄ < tX , evaluate (2.6) at the right end limit t = t+X :

λ̇K(t+X) = rλK(tX) + cK + cy − pd(KX) .

Performing the same evaluation at the left end limit t = t−X :

λ̇K(t−X) = rλK(tX) + cK + cy −
(
cx + λXe

rt
)
.

The price path having to be time continuous at tX : cx + λXe
rtX = pd(KX),

hence λ̇K(t−X) = λ̇K(t+X). λK(t) is not only continuous but also time differ-
entiable at t = tX . Since KX < K̂, λ̇K(t−X) = λ̇K(t+X) < 0. This shows the
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claim of the Corollary 1. Since λ̇K(t) < 0 only if either t > t̄ or t ≥ 0 the
Corollary 1 implies that t̄ < tX when t̄ is defined.

A.3 Appendix A.3

A.3.1 Partial derivatives of λK(t)

During the time interval [tK , ty), λ1
K(t) is defined by (A.2.1). Denote by

π0 ≡ rλ0
K + cK , then:

∂λ1
K(t)

∂t
= −∂λ

1
K(t)

∂tK
= π0e

r(t−tK) > 0 (A.3.1)

∂λ1
K(t)

∂λ0
K

= er(t−tK) . (A.3.2)

During the joint exploitation phase of oil and solar energy [ty, tX), λ2
K(t)

is given by:

λ2
K(t) = er(t−ty)λ2

K(ty) +
cy + cK − cx

r

(
er(t−ty) − 1

)
− λXert(t− ty) .

Since λK(t) is a continuous time function at t = ty:

λ2
K(ty) = λ1

K(ty) = er(ty−tK)λ0
K +

cK
r

(
er(ty−tK) − 1

)
,

thus:

λ2
K(t) = λ0

Ke
r(t−tK) +

cK
r

(
er(t−tK) − 1

)
+
cy − cx
r

(
er(t−ty) − 1

)
−λXert(t− ty) . (A.3.3)

(A.3.3) defines λ2
K(t) during the time interval (ty, tX) and:

∂λ2
K(t)

∂t
= (rλ0

K + cK)er(t−tK) + (cy − cx)er(t−ty) − rλXert(t− ty)− λXert

= er(t−ty)
[
(rλ0

K + cK)er(ty−tK) + cy − cx − λXerty
]
− rλXert(t− ty) .
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Next remark that (rλ0
K + cK)er(ty−tK) + cy − cx − λXerty = π0e

r(ty−tK) since
cy = cx + λXe

rty . Thus:

∂λ2
K(t)

∂t
= π0e

r(t−tK) − rλXert(t− ty) . (A.3.4)

Furthermore:

∂λ2
K

∂ty
= er(t−ty)

[
λXe

rty + cx − cy
]

= 0 (A.3.5)

∂λ2
K

∂tK
= −π0e

r(t−tK) < 0 (A.3.6)

∂λ2
K

∂λX
= −ert(t− ty) < 0 (A.3.7)

∂λ2
K(t)

∂λ0
K

= er(t−tK) . (A.3.8)

A.3.2 Proof that the system (5.1)-(5.3) has a unique
solution

We now check that for tK = 0 and λK(0) = λ0
K , the system (5.1)-(5.3)

determines in a unique way the vector (T, λ0
X , KX). Making use of (A.3.3)

evaluated at tK = 0 and at tX = T yields the following expression of (5.2):

λXK(KX) = λK(T ) = λ0
Ke

rT +
cK
r

(
erT − 1

)
+
cy − cx
r

(
er(T−ty) − 1

)
− λ0

Xe
rT (T − ty) .

Denote by:

|pd′ | ≡
∣∣∣∣dpd(q)dq

∣∣∣∣
q=q(T )

and |λX′

K | ≡
∣∣∣∣dλKX(K)

dK

∣∣∣∣
K=KX

ks
′ ≡ dks(λK)

dλK
> 0 .

Differentiating the system (5.1)-(5.3) yields:

rλ0
XdT + dλ0

X + |pd′ |e−rTdKX = 0 (A.3.9)
πdT − (T − ty)dλ0

X + |λX′

K |e−rTdKX = −dλ0
K (A.3.10)

k(T )dT − JλKdλ0
X − dKX = −AKdλ0

K , (A.3.11)
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where:

π ≡ rλ0
K + cK − rλ0

X(T − ty) = π0 − rλ0
X(T − ty) = λ̇2

K(T ) < 0

JλK ≡
∫ T

ty

ks
′
ert(t− ty)dt > 0 ; AK ≡

∫ T

0

ks
′
ertdt > 0 .

It is immediately checked that when ty > 0, the dty terms in the differ-
entiation of the system (5.1)-(5.3) vanish. The linearized system is thus
independent from dty.

Let ∆ be the determinant of the linearized system (A.3.9)-(A.3.11):

∆ =
[
k(T )(T − ty)− πJλK

]
|pd′ |e−rT +

[
k(T ) + rλ0

XJ
λ
K

]
|λX′

K |e−rT

+
[
π + rλ0

X(T − ty)
]
.

Since π = π0 − rλ0
X(T − ty):

∆ =
[
k(T )(T − ty)− πJλK

]
|pd′ |e−rT +

[
k(T ) + rλ0

XJ
λ
K

]
|λX′

K |e−rT

+π0 .

Since π < 0, ∆ > 0. Hence the system (5.1)-(5.3) evaluated at tK = 0 defines
a unique vector (T, λ0

X , KX).

A.3.3 Sensitivity of (T, λ0
X , KX) with respect to λ0

K

Applying Cramer rule:

dT

dλ0
K

=
1

∆

∣∣∣∣∣∣∣∣∣∣
0 1 |pd′ |e−rT

−1 −(T − ty) |λX
′

K |e−rT

−AK −JλK −1

∣∣∣∣∣∣∣∣∣∣
=

1

∆

{[
JλK − AK(T − ty)

]
|pd′ |e−rT − AK |λX

′

K |e−rT − 1
}

= − 1

∆

{
1 +

[
(T − ty)AK − JλK

]
|pd′|e−rT + AK |λX

′

K |e−rT
}
.
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Since t ≤ T and ty ≥ 0 imply together that:

JλK =

∫ T

ty

ks
′
ert(t− ty)dt < (T − ty)

∫ T

ty

ks
′
ertdt

≤ (T − ty)
∫ T

0

ks
′
ertdt = (T − ty)AK ,

it results that dT/dλ0
K < 0.

Next:

dλ0
X

dλ0
K

=
1

∆

∣∣∣∣∣∣∣∣∣∣
rλ0

X 0 |pd′|e−rT

π −1 |λX′
K |e−rT

k(T ) −AK −1

∣∣∣∣∣∣∣∣∣∣
=

1

∆

{
[k(T )− πAK ] |pd′ |e−rT + rλ0

XAK |λX
′

K |e−rT + rλ0
X

}
> 0 .

Making use of (A.3.9) together with the above expressions of dT/dλ0
K and

dλ0
X/dλ

0
K , the following expression of dKX/dλ

0
K results:

dKX

dλ0
K

|pd′ |e−rT = rλ0
X

dT

dλ0
K

+
dλ0

X

dλ0
K

=
1

∆

{
−rλ0

X

[
1 +

(
(T − ty)AK − JλK

)
|pd′|e−rT + AK |λX

′

K |e−rT
]

+
[
(k(T )− πAK) |pd′ |e−rT + rλ0

XAK |λX
′

K |e−rT + rλ0
X

]}
=

1

∆

{
k(T )− πAK − rλ0

X(T − ty)AK + rλ0
XJ

λ
K

}
|pd′|e−rT .

The HJB equation implies that dKX/dλ
0
K = 0. Since π = π0 − rλ0

X(T − ty),
it thus results that:

k(T )− π0AK + rλ0
XJ

λ
K = 0 . (A.3.12)

Next, making use of π = π0 − rλ0
X(T − ty) yields the following equivalent

expression of ∆:

∆ =
[(
k(T ) + rλ0

XJ
λ
K

)
(T − ty)− π0J

λ
K

]
|pd′|e−rT

+
[
k(T ) + rλ0

XJ
λ
K

]
|λX′

K |e−rT + π0 .
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Taking (A.3.12) into account:

∆ =
[
π0AK(T − ty)− π0J

λ
K

]
|pd′ |e−rT + π0AK |λX

′

K |e−rT + π0

= π0

{
1 +

[
AK(T − ty)− JλK

]
|pd′ |e−rT + AK |λX

′

K |e−rT
}
.

(A.3.13)

It results from (A.3.13) that:

dT

dλ0
K

= − 1

∆

∆

π0

= − 1

π0

. (A.3.14)

Since dKX/dλ
0
K = 0, the price condition (A.3.9) at T implies together with

(A.3.14) that:

dλ0
X

dλ0
K

= −rλ0
X

dT

dλ0
K

=
rλ0

X

π0

. (A.3.15)

Last, if ty > 0, the condition: cy = cx + λ0
Xe

rty shows that rλ0
Xdty = −dλ0

X .
Thus:

dty
dλ0

K

= − 1

rλ0
X

dλ0
X

dλ0
K

= − 1

π0

=
dT

dλ0
K

< 0 . (A.3.16)

The active solar production phase length, T − ty, is independent from λ0
K in

scenarios of type 1 or 3.

A.3.4 Proof that dX0(λ0
K)/dλ0

K < 0

An equivalent expression of (5.4) is:

X0(λ0
K) =

∫ T

0

qd
(
cx + λ0

Xe
rt
)
dt−

∫ T

ty

K(t)dt .

Since K̇(t) = k(t) and letting K(ty) ≡ Ky, K(t), t ∈ (ty, T ), is given by:

K(t) = Ky +

∫ t

ty

k(τ)dτ .

Hence: ∫ T

ty

K(t)dt = Ky(T − ty) +

∫ T

ty

∫ t

ty

k(τ)dτdt .
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Inverting the integration order:∫ T

ty

K(t)dt = (T − ty)
∫ ty

0

k(t)dt+

∫ T

ty

k(t)(T − t)dt .

The following expression of X0(λ0
K) results:

X0(λ0
K) =

∫ T

0

qd(cx + λ0
Xe

rt)dt− (T − ty)
∫ ty

0

ks(λ1
K(t))dt

−
∫ T

ty

ks(λ2
K(t))(T − t)dt . (A.3.17)

Next differentiating the cumulated oil consumption constraint (A.3.17)
yields:

dX0 = q(T )dT +

∫ T

0

dqd(p(t))

dp(t)
ertdtdλ0

X

−(dT − dty)
∫ ty

0

ks(t)dt− (T − ty)ks(ty)dty − (T − ty)
∫ ty

0

ks
′ ∂λ1

K

∂λ0
K

dtdλ0
K

+(T − ty)ks(ty)dty −
∫ T

ty

ks
′
[
∂λ2

K(t)

∂λ0
K

dλ0
K +

∂λ2
K(t)

∂λ0
X

dλ0
X

]
(T − t)dt

−
∫ T

ty

ks(t)dtdT .

Denote by qd′(t) ≡ dqd(p(t))/dp(t). Simplifying and rearranging yields:

dX0 =

[
q(T )−

∫ T

0

ks(t)dt

]
dT +Kydty

+

[∫ T

0

qd
′
ertdt−

∫ T

ty

ks
′ ∂λ2

K(t)

∂λ0
X

(T − t)dt

]
dλ0

X

−

[
(T − ty)

∫ ty

0

ks
′ ∂λ1

K(t)

∂λ0
K

dt+

∫ T

ty

ks
′ ∂λ2

K(t)

∂λ0
K

(T − t)dt

]
dλ0

K .

Since q(T ) = KX =
∫ T

0
ks(t)dt and taking (A.3.7) into account:

dX0 = Kydty +

[∫ T

0

qd
′
ertdt+

∫ T

ty

ks
′
ert(t− ty)(T − t)dt

]
dλ0

X

−

[
(T − ty)

∫ ty

0

ks
′
ertdt+

∫ T

ty

ks
′
ert(T − t)dt

]
dλ0

K .
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Remark that cy = cx + λ0
Xe

rty implies that dty = −dλ0
X/rλ

0
X . Taking the

expression (A.3.15) of dλ0
X/dλ

0
K into account yields:

dX0

dλ0
K

=
rλ0

X

π0

∫ T

0

qd
′
ertdt− Ky

π0

+

∫ T

ty

ks
′ rλ0

X

π0

ert(t− ty)(T − t)dt

−(T − ty)
∫ ty

0

ks
′
ertdt−

∫ T

ty

ks
′
ert(T − t)dt .

Since λ̇2
K(t) = π0e

rt − rλ0
Xe

rt(t− ty), t ∈ [ty, ], the above is equivalent to:

dX0

dλ0
K

=
rλ0

X

π0

∫ T

0

qd
′
ertdt− Ky

π0

− 1

π0

∫ T

ty

ks
′
λ̇2
K(t)(T − t)dt

−(T − ty)
∫ ty

0

ks
′
ertdt

=
rλ0

X

π0

∫ T

0

qd
′
ertdt− Ky

π0

− 1

π0

∫ T

ty

k̇s(t)(T − t)dt

−(T − ty)
∫ ty

0

ks
′
ertdt .

Integrating by parts the second integral yields:∫ T

ty

k̇s(t)(T − t)dt = ks(t)(T − t)|Tty +

∫ T

ty

ks(t)dt

= −ks(ty)(T − ty) +

∫ T

ty

ks(t)dt .

Thus:

dX0

dλ0
K

=
rλ0

X

π0

∫ T

0

qd
′
ertdt− Ky

π0

+
ks(ty)(T − ty)

π0

− 1

π0

∫ T

ty

k(t)dt

−(T − ty)
∫ ty

0

ks
′
ertdt

=
1

π0

{
rλ0

X

∫ T

0

qd
′
ertdt−

[
Ky +

∫ T

ty

k(t)dt

]}

+
(T − ty)
π0

[
ks(ty)− π0

∫ ty

0

ks
′
ertdt

]
=

1

π0

{
rλ0

X

∫ T

0

qd
′
ertdt−KX

}
+

(T − ty)
π0

[
ks(ty)− π0

∫ ty

0

ks
′
ertdt

]
.
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Since ṗ(t) = rλ0
Xe

rt over the time interval [0, T ):∫ T

0

qd
′
ertdt =

1

rλ0
X

∫ T

0

qd
′
(p(t))ṗ(t)dt =

1

rλ0
X

∫ T

0

q̇d(t)dt

=
1

rλ0
X

(q(T )− q(0)) .

Thus q(T ) = KX implies that:

dX0

dλ0
K

= −q(0)

π0

+
(T − ty)
π0

[
ks(ty)− π0

∫ ty

0

ks
′
ertdt

]
.

The relation (A.3.12) resulting from the HJB equation yields:

k(T ) = π0AK − rλ0
XJ

λ
K

= π0

∫ ty

0

ks
′
ertdt+ π0

∫ T

ty

ks
′
ertdt− rλ0

X

∫ T

ty

ks
′
ert(t− ty)dt

= π0

∫ ty

0

ks
′
ertdt+

∫ T

ty

[
π0 − rλ0

X(t− ty)
]
ertdt .

Making use once again of the expression (A.3.4) of λ̇2
K(t):

k(T ) = π0

∫ ty

0

ks
′
ertdt+

∫ T

ty

ks
′
λ̇2
K(t)dt

= π0

∫ ty

0

ks
′
ertdt+

∫ T

ty

k̇(t)dt

= π0

∫ ty

0

ks
′
ertdt+ k(T )− ks(ty) .

Hence:

ks(ty) = π0

∫ ty

0

ks
′
ertdt ,

implying that:

dX0

dλ0
K

= −q(0)

π0

< 0 .
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A.4 Appendix A.4

The argument is the following. In order that the purchase price pK(t) be
constant at pK(t) = cs and simultaneously that the investment rate k(t) be
positive over a time interval (t1, t2), t1 < t2, we should have through (2.3)
and (2.6) both holding:

pK(t) = λK(t) = cs =⇒ λ̇K(t) = 0 = rcs + cK − γK(t) , t ∈ (t1, t2) .

(A.4.1)

The last equality comes from K(t) > 0, hence νK = 0: k(t) > 0 implies that
K(t) increases within the interval, hence is positive.

From (2.2) which also holds, and (A.4.1), we get:

γK(t) = p(t)− cy − γy(t) = rcs + cK > 0 . (A.4.2)

Since γy(t) ≥ 0, (A.4.2) cannot hold during any investment phase within
which the solar energy production is nil and K(t) > 0. A necessary condition
for y(t) = 0 when K(t) > 0 is that p(t) ≤ cy, hence p(t)− cy − γy(t) ≤ 0.

For an investment phase during which both fossil and solar energies are
simultaneously exploited, p(t) = cx + λXe

rt and γy(t) = 0, thus γK(t) must
increase and again (A.4.2) cannot hold. Last assume that the solar pro-
duction is positive, γy(t) = 0, that oil is exhausted and that (A.4.2) holds,
that is: p(t) − cy = rcs + cK > 0. Since p(t) > cy then the available solar
equipment K(t) is wholly exploited: p(t) = pd(K(t)). Since k(t) > 0, then
ṗ(t) = pd

′
(K(t))k(t) < 0, hence γ̇K(t) < 0, a contradiction.
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Figure 1: Equilibrium Solar Capital Expansion Path after Oil De-
pletion.

54



, /K K rλ β

Kt t

t

( ) /K t rβ

0
Kp

Xt

( ) /K t rβ

( )K tλ

Joint use of oil and solar  Pure solar phase 

tyt

Pure oil phase 

0
/Kc r−

*
1t

*
2t

*
3t

*
Kp

Figure 2: Dynamics of λK and βK. Scenario 1: 0 < tK < ty.
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Figure 3: Energy Price and Solar Equipment Price Dynamics. Sce-
nario 1 with 0 < tK < ty.
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