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Abstract

We study the impact of pharmaceutical regulation on the incentives to invest in late stage
R&D, with a focus on rare diseases. A Bayesian health technology provider faces a two-
stage decision problem in which it must first choose the optimal sample size for a Phase III
trial. Conditional upon obtaining Regulatory Authority approval, the provider then chooses
the optimal price to propose to a health care insurer in the presence of uncertainty surround-
ing the true value of the insurer’s willingness to pay for health gain. Optimal policy rules and
rewards are derived, together with a comparative static analysis, and we present an applica-
tion of the model in the field of cystic fibrosis. Results confirm that the size of the population
to treat has a very large impact on the firm’s decision to invest in R&D. We discuss the role
of a number of policy parameters as possible incentive mechanisms. A particularly interest-
ing role is that of the uncertainty surrounding the insurer’s willingness to pay. We show that,
for reasonable functional forms, a situation with a small amount of uncertainty on the cost-
effectiveness threshold, in comparison with one where this is known with certainty, implies
more uncertainty on the true clinical effectiveness, due to a reduction in the clinical trial’s
optimal sample size, and weaker incentives for R&D investment, due to lower expected prof-
its. However, these impacts are non-monotonic in the degree of uncertainty.
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1 Introduction
The fast pace of growth of health care expenditure relative to GDP growth that has been ex-
perienced by most developed countries, especially prior to the global economic crisis (OECD,
2013), has led regulators to look for innovative solutions to deal with the increasing demands on
health care budgets. With a general consensus that technological innovation plays a central role
in driving increased costs (Weisbrod, 1991), much regulatory effort has been targeted towards
the process by which new technologies are adopted and priced. The aim has been to reduce two
types of risk faced by regulators: paying for technologies that are not ‘good value for money’ and
adopting technologies whose effectiveness, once deployed, is lower than demonstrated efficacy
in the clinical trials upon whose results the adoption decisions were made (Eichler et al., 2011).

Including an assessment of a new health technology’s cost-effectiveness has been a common
response to the first risk. For the second, interest in risk-sharing agreements has been growing in
recent years (Pita Barros, 2011; Towse and Garrison, 2010; Cook et al., 2008). Such agreements
can take several forms, but what is common to all of them is that part of what is paid by the
health care insurer must be paid back if the true effectiveness of the treatment is below a defined
threshold (performance-based agreements), or the total cost to the insurer is higher than a pre-
specified amount (financial-based agreements).

Somewhat surprisingly, however, at the same time as health care insurers have been growing
more concerned about technology-induced growth of health care expenditures, suppliers of in-
novations have been experiencing some negative trends, including a substantial reduction in the
number of new drugs approved per billion of US dollars spent on R&D (Scannell et al., 2012;
Pammolli et al., 2011) and an increase in the average cost of development of a new drug (DiMasi
et al., 2003). This has inspired investigation into the impact of specific regulatory decisions on
the incentives to invest in R&D by the industry, including price regulation (Filson, 2012), cost-
effectiveness thresholds (Jena and Philipson, 2008), value-based pricing (Danzon et al., 2015)
and risk-sharing agreements (Levaggi et al., 2013). Empirical evidence that tighter regulation
leads to a delay in the adoption of innovations, and a weaker incentive for the industry to invest
in R&D, has also been provided (Danzon and Epstein, 2008; Golec et al., 2010; Vernon, 2005;
Danzon et al., 2005; Kyle, 2007).

The tension between the objective of curbing expenditure on health technologies that are al-
ready available in the market and the need to provide incentives for investments in R&D that will
lead to future innovations is known as the trade-off between static and dynamic efficiency. How-
ever, equity concerns may also be relevant. For a regulatory framework which does not explicitly
account for the size of the population to be treated, incentives to invest in R&D are weaker for
technologies targeting comparatively rare diseases (‘orphan diseases’). One reason why these
are comparatively unattractive areas for R&D investments is that predicted sales are proportional
to the size of the population to treat, while R&D expenses are largely independent of it (Ace-
moglu and Linn, 2004; Dimitri, 2012). Moreover, for rare diseases, meeting the requirements
set by authorities regulating market access may be more costly, and require a longer period for
experimentation, due to the availability of a smaller population from which to obtain a sample.
Hence, disincentives for research into rare diseases may be found at both the commercialisation,
and the development, stage.
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In 1983, in an attempt to address such disincentives, the United States introduced the ‘Orphan
Drug Act’. A recent review of the impact of the Act (Braun et al., 2010) concluded that 247 drugs
for over 200 different diseases had received FDA approval since its inception. The European
Commission has also taken a number of steps to stimulate research into rare diseases. In 2000,
regulations for orphan drugs were introduced to the EU, including Regulation (EC) No 141/2000,
which grants exclusivity in the market for new drugs for a period of 10 years. This has led
to over 850 orphan drug designations and around 60 marketing approvals (The Committee for
Orphan Medicinal Products and the European Medicines Agency Scientific Secretariat, 2011).
The EUROPLAN project promotes national strategies for tackling rare diseases.1 At the level of
statistical methodology, recent EU ‘Framework’ Programmes have funded a number of initiatives
intended to develop general statistical methods to improve clinical trials for small population
groups.

A new drug needs to pass two key regulatory steps if it is to be approved for use by a health
care insurer. Firstly, it must be deemed to be safe and efficacious. If these conditions are met, the
drug can be used, but it must be fully paid for by the patient. Because, at least for the majority
of innovations, most of the cost is paid by an (often public) health insurer, that insurer must
then decide whether the drug can be reimbursed at a particular price. This price is determined
according to rules which vary considerably from country to country. The importance of the cost-
effectiveness dimension to this decision has been increasing in recent years. As a result, Phase III
clinical trials, which previously aimed only to assess effectiveness, are often accompanied by an
economic evaluation. However, there can exist a lack of transparency on the precise role played
by cost-effectiveness results in determining adoption decisions. Even the National Institute for
Health and Care Excellence (NICE) in the UK, which is probably one of the most transparent
institutions in this respect, does not refer to a single value for the cost-effectiveness threshold
when making its decisions, but to a range of between £20,000 and £30,000 per Quality-Adjusted-
Life-Year gained (McCabe et al., 2008).

The aim of this paper is to provide a unified framework for the analysis of these two reg-
ulatory stages, and so to study how late-stage R&D incentives for the pharmaceutical industry
depend on interactions among parameters and policy variables at each stage. We then investigate
how these incentives may affect decisions to invest in rare diseases. We use a Bayesian decision-
theoretic model for a health technology provider operating within a defined jurisdiction (such
as at the country level) and define its optimal sampling and pricing policies over two stages. In
Stage 0, the health technology provider decides whether to run a trial and, if it does so, the trial’s
sample size. If, based on the results of the trial, the regulatory authority (RA) for the jurisdiction
deems the treatment to be effective at a predefined level of statistical significance, the provider
may apply for reimbursement by a health care insurer in Stage 1. This involves proposing a price
for the new product which, together with the evidence on effectiveness provided by the trial, sets
the level of the incremental cost-effectiveness ratio upon which the health care insurer bases its
decision about whether or not to reimburse the cost of the new technology.

Although it is acknowledged that the drug discovery and development process extends well
beyond the remit of this paper (Pennings and Sereno, 2011), our focus on late-stage incentives

1http://www.europlanproject.eu/
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on R&D, starting with the Phase III trial, is a crucial part of a drug development project be-
cause of the size of its costs, which are estimated to be around 50% of the total cost of clinical
development (Parmaceutical Research and Manufacturers of America, 2014) and the very high
probability of failure (estimated to be around 50% in Phase III). Hence the late stage incentives
that are the focus of this paper may be expected to influence earlier decisions relating to drug
discovery and development, even though they are not formally modelled here.

To the best of our knowledge, our model is the first to present a full analysis of how the
‘double hurdle’, in the form of the regulatory authority and the health care insurer, affect optimal
pricing policies, expected profit and sample sizes. We show that moving from a situation of no
uncertainty on the cost-effectiveness threshold to one with some uncertainty leads to lower prices,
lower expected profit, a lower probability of the trial taking place, and a smaller sample size if
it does. This implies that the presence of uncertainty on the cost-effectiveness decision (Stage
1) can shift rents from the firm to the insurer, and increase uncertainty on the true effectiveness
of the innovation due to the reduction in the optimal sample size. However, the impact of such
uncertainty is non-monotonic.

Concerning the focus on rare diseases, we characterize the minimum size of a population
to treat such that the firm is incentivised to invest in the development of a new drug. This is
influenced by regulatory parameters in both Stage 0 and Stage 1, and a calibrated model of a
rare diseases is used to study the interaction between parameters such as the level of the Type I
error that characterises the RA’s decision and the level of the expected value of the incremental
cost-effectiveness ratio (ICER) threshold that is set by the insurer.

Section 2 of this paper presents a brief summary of the literature that is relevant to this work.
Section 3 presents the model, which is solved in Section 4 first in general form and then assuming
a specific probability distribution for the random variable related to the insurer’s willingness to
pay for health gain. Section 5 presents the application. Section 6 discusses some of the main
results, the limitations of the work and provides conclusions.

2 Background
The work builds on a number of statistical and economic approaches to Phase III trial design,
drug approval decisions and research on rare diseases. Kikuchi and Gittins (2009) and Kikuchi
et al. (2008) propose a ‘Behavioural Bayes’ (BeBay) model of sample size determination in
a Phase III trial which accounts for the costs and benefits of the trial as well as deployment
of the new treatment. The model is ‘behavioural’ because, following the ideas of Gittins and
Pezeshk (2000), although it maximises total expected net benefit from the perspective of the firm
developing the drug, the behaviour of the regulator and users of the drug are not assumed to be
optimal. The authors model the level of demand for the new treatment as an increasing function
of the point estimate of effectiveness from the trial, noting the disincentive that exists to Phase III
development for rare conditions, in which there is a low chance that expected revenues can cover
development costs. Willan (2008) and Willan and Eckermann (2010) present Bayesian models
of drug development in which the optimal sample size is chosen to maximise the expected value
of sample information minus the costs of the trial.
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Acemoglu and Linn (2004) consider the effect of the potential size of markets on pharma-
ceutical innovation and entry of new drugs. The authors derive an equilibrium condition for
the levels of R&D effort and show that, the greater is the market size, the more profitable it is
to supply the drug and so the greater will be the research effort required to gain market-leader
position. Magazzini et al. (2013) consider the effects of R&D sunk cost and market size on a
pharmaceutical company’s decision to enter a clinical trial. They present a two-stage model with
a number of firms which can enter one or more therapeutic submarkets. During Stage 1, the firm
makes a decision about whether to run a trial for a particular drug, paying a R&D cost. In Stage
2, the entrants to the market compete for customers. The firm’s reward is profit in Stage 2 minus
the cost paid to enter the market. Each trial has a probability π ∈ (0, 1) of success and it is as-
sumed that entrants take an equal share of the market premium. In line with Acemoglu and Linn,
the authors predict that, the greater is the market size, the higher is the total R&D investment.
With lower success rates and a higher cost per trial, fewer firms enter clinical testing. Further, an
increase in sunk R&D expenditures lowers the number of trials and firms. Pennings and Sereno
(2011) present a real options model of evaluating pharmaceutical R&D under what they term
‘technical’ and ‘economic’ uncertainty. They recognise the risk of failure (for example, due to
safety issues) during drug development, but do not model clinical trial design or pricing for HTA
approval. Dranove and Meltzer (1994) are concerned with the time for new medical entities
(NMEs) to be approved in the US and conclude that, since the 1950s, more important drugs do
indeed reach the market sooner than less important ones. However, it has been argued that more
should be done to remove hurdles related to the development stage by improving the definition
of ‘rarity’ with reference to how feasible it will be to commission trials with appropriate power
to detect a clinically relevant effect (Clarke et al., 2014).

The above models are important precursors to ours and contain many common elements and
ideas. However, none of them explicitly combine the optimal choice of a trial’s sample size with
explicit modelling of a price-setting rule at Stage 1, in the presence of uncertainty surrounding
the health care insurer’s willingness to pay.

3 The model
We take the perspective of a Health Technology Provider (HTP) which is considering whether
to commission a Phase III clinical trial to evaluate the efficacy of a new drug. If a trial is com-
missioned, upon its completion, a Regulatory Authority (RA) in charge of granting access to
the market considers the evidence concerning the drug’s efficacy, where ‘evidence’ is defined as
being the point estimate of incremental effectiveness, together with its standard error. This stage
of the process is defined as being ‘Stage 0’. If RA approval is granted, the HTP aims to have
the drug reimbursed by a Health Care Insurer (HCI) by proposing a price for the treatment of a
single patient. This stage of the process is defined as ‘Stage 1’. The HTP’s choice variables are
therefore the following: 1. whether or not to commission a trial (a ‘Stage 0’ decision); 2. the
sample size of the trial, should it be commissioned (also a ‘Stage 0’ decision) and 3. the price
the HTP proposes to the HCI, should the HTP seek to have the drug reimbursed (a ‘Stage 1’
decision).

5



Let µX be the incremental effectiveness (assumed unknown to all agents) of the new treatment
versus standard in the population. We assume that the control group is treated with placebo.2

We ignore differences in costs which are not directly related to the cost of the pharmaceutical
product, implying that the incremental cost coincides with the price of the new drug.

It is assumed that the n responses observed in the trial are used to calculate the sample mean
X̄ , an unbiased estimator of µX :

X̄ | µX ∼ N

(
µX ,

σ2
X

n

)
, (1)

where n is the sample size of the trial and σX is twice the residual standard deviation,3 assumed
known to all agents. From the perspective of the start of Stage 0, X̄ is a random variable. When
discussing the HTP’s optimal pricing rule in Stage 1, conditional upon the trial having concluded,
we shall use x̄ to denote the realised value of X̄ that resulted from the trial.

3.1 The Regulatory Authority
Conditional upon meeting a requirement for a minimum sample size for the trial, nmin > 0, the
RA’s decision is based upon classical frequentist statistical criteria, so that the new treatment is
required to show superiority to placebo at a given one-sided level of statistical significance, α,
where α is conventionally taken to be 2.5% (Food and Drug Administration, 1998). Approval
for the new treatment will be granted if and only if the point estimate x̄ is such that:

x̄ ≥ h(n) ≡ zασX√
n

> 0; n ≥ nmin, (2)

where zα is the critical value for a standard normal random variable at α. If this condition is not
satisfied, the treatment is rejected by the RA and is not taken forward to Stage 1. If the condition
is satisfied, the HTP proceeds to Stage 1 and aims to have the cost either reimbursed to patients
or directly paid by the HCI.

3.2 The Health Care Insurer
The HCI’s aim is to ensure that only innovations that are deemed to be ‘good value for money’
are reimbursed. This requires comparing x̄ from the Phase III trial with the incremental cost of
the innovation. The incremental cost equals the HTP’s proposed price for providing the treatment
to a single patient, defined as c > 0. It is assumed that the HCI only adopts technologies whose
ICER (c/x̄) is below a defined threshold. As was noted in Section 1 there exists uncertainty
surrounding this value.

Conditional upon the point estimate x̄ > 0 resulting from the trial, from the perspective of the
HTP, the uncertainty surrounding the HCI’s ICER threshold is modelled as a continuous random

2This may be ethically justified when there is no approved treatment, or when the new treatment is given as an
add-on to existing standard treatment, situations that are commonly found for rare diseases.

3Note that a sample size of n means that n/2 differences can be observed.
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variable, V , with location (or mean) parameter ν > 0, scale (or dispersion) parameter ω > 0 and
cumulative distribution function FV (v; ν, ω). From the perspective of the HTP, the probability,
P, 0 < P < 1, that the new treatment is reimbursed by the HCI is defined as:

P(c; x̄, ν, ω) = 1− FV
( c
x̄

; ν, ω
)
. (3)

FV is assumed to be C(2) in all its arguments, where C(m) denotes the class of functions that are
m times continuously differentiable. By the standard properties assumed for FV it follows that:

∂P

∂c
< 0;

∂P

∂x̄
> 0,

∂P

∂ν
> 0. (4)

Moreover, in order to show the existence of a unique optimal pricing policy, we assume that, for
finite values of ω:

lim
c→∞

cP = 0. (5)

The parsimonious definition of P, which depends only on the price proposed by the HTP and the
point estimate of effectiveness to arise from the trial, means that the HCI’s acceptance decision
does not depend on the strength of evidence concerning the result of the trial (because n is not an
argument of P), nor does it depend on whether or not the disease is a rare one (because k is not
an argument of P). The implications of relaxing these assumptions are considered in Section 6.

3.3 The Health Technology Provider’s Problem
The HTP’s problem is solved by backward induction within a Bayesian decision-theoretic frame-
work (Raiffa and Schlaifer, 1961; DeGroot, 1970). At the beginning of Stage 0, the HTP decides
whether it should enter Phase III clinical testing. The cost of performing the trial is assumed to
be I0 + dn, where I0 > 0 is a fixed cost of setting up the trial and d > 0 is the cost of increasing
the sample size by one unit.

The HTP encodes its uncertainty on µX using a normal prior density with mean µ0 and
standard deviation σ0. By running the Phase III trial with a sample size n, the HTP can use the
prior predictive distribution for X̄ to view the optimal Stage 1 profit as a function of the Stage
0 choice of sample size. Viewed from the start of Stage 0, this prior predictive distribution is
normal with mean µ0 and standard deviation

√
σ2

0 + σ2
X/n (Pratt et al., 1995).

Once x̄ is known, if Eq. (2) is satisfied and RA approval granted, the HTP moves to Stage 1
and proposes the price, c, to the HCI. The HCI will adopt the new technology with probability
P(c; x̄, ν, ω) defined by Eq. (3). If the technology is not adopted, the HTP makes no profit.
Otherwise, the Stage 1 profit is k(c − cp(k)), where k is the size of the population to treat with
the new technology and cp(k) ≡ I1/k + b > 0 is the production cost per patient treated. I1 > 0
is a fixed investment cost and b > 0 is a constant marginal cost of production. Hence, the Stage
1 profit function may be written as

Π1(c; k, x̄, I1, b, ν, ω) = k(c− cp(k))1HCI adopts,
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where 1E is the indicator function, equal to 1 if the event E is realized and 0 otherwise. Hence
expected Stage 1 profit becomes:

Γ1(c; k, x̄, I1, b, ν, ω) = E [Π1(c; k, x̄, I1, b, ν, ω)] = k(c− cp(k))P(c; x̄, ν, ω). (6)

4 The HTP’s optimal policy

4.1 The HTP’s Stage 1 pricing rule
Given RA approval, the HTP solves the problem

Γ∗1(k, x̄, I1, b, ν, ω) ≡ max
c> 0

Γ1(c; k, x̄, I1, b, ν, ω). (7)

The assumptions made to date ensure that a solution to Eq. (7) exists 4 and the first order neces-
sary condition (FONC) defining the optimal choice of c is:

kP(c; x̄, I1, b, ν, ω) + k[ c− cp(k)]
∂P(c; x̄, I1, b, ν, ω)

∂c
= 0. (8)

The first term on the LHS of Eq. (8) is the marginal benefit to the HTP of increasing c: the
expected additional total profit flow from a one unit increase in c. The second term is the marginal
cost, the total Stage 1 profit weighted by the lower probability of acceptance that a higher price
implies.

Since P is differentiable, any solution to Eq. (7) must also satisfy Eq. (8). Depending on the
precise form of P, it may be the case that, although an optimal price exists, it is not unique. We
therefore impose a sufficient condition on P to ensure that the FONC has at most one solution:5

∂

∂c

(
P
∂P
∂c

)
≥ A > −1, for some constant A. (10)

4To see this, define c+ to be any price such that c+ > cp(k), with corresponding expected profit Γ+
1 > 0. By Eq.

(5) it is the case that:
lim
c→∞

Γ1 = lim
c→∞

k(c− cp(k))P = 0+,

so that there must exist a positive number cR such that Γ1 < Γ+
1 whenever c > cR. Noting also that Γ1 < 0 unless

c ≥ cp(k), it follows that any solution to

max
cp(k)≤ c≤ cR

Γ1(c; k, x̄, I1, b, ν, ω)

also solves Eq. (7). The latter problem must have a solution, since P is C(2 given the assumption on FV .
5By Eq. (4), ∂P/∂c 6= 0, meaning that Eq. (8) may be rewritten as

P
∂P
∂c

+ (c− cp(k)) = 0. (9)

Since existence of a maximum in (7) has already been established, we know that (9) is satisfied in at least one point.
But, by (10), the left hand side of (9) is differentiable with respect to c, with derivative ≥ A + 1 > 0. Therefore,
the left hand side is strictly increasing in c, so that (9) can be satisfied in at most one point, implying that there is a
unique, common solution to the FONC and (7).
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This optimal Stage 1 policy is therefore:

c∗ = c∗(k, x̄, I1, b, ν, ω). (11)

Finally, the assumptions placed on P up to this point are sufficient to show that c∗ is C(1) in
all of its arguments (see section A.1 of the appendix). This permits us to derive the following
comparative static results.

Proposition 1 (Stage 1 Optimal Profit Comparative Statics).

The partial derivatives of expected optimal Stage 1 profit satisfy:

∂Γ∗1
∂x̄

> 0,
∂Γ∗1
∂ν

> 0,
∂Γ∗1
∂k

> 0.

Proofs: See Section A.2 of the Appendix.

Proposition 2 (Stage 1 Optimal Price Comparative Statics).

The partial derivative of the optimal pricing policy with respect to k satisfies:

∂c∗

∂k
< 0.

Further, letting

ePc = c

(
∂P
∂c

P

)
be the price elasticity of the probability of reimbursement by the HCI, under the additional as-
sumptions that P satisfies

∂ePc
∂x̄

∣∣∣∣
c=c∗

> 0,
∂ePc
∂ν

∣∣∣∣
c=c∗

> 0, (12)

the partial derivatives of the optimal pricing policy with respect to x̄ and ν satisfy:

∂c∗

∂x̄
> 0,

∂c∗

∂ν
> 0.

Proofs: See Section A.4 of the Appendix.

The economic intuition for the effect of k on c∗ in Proposition 2 is straightforward. Consider two
drugs with very different population sizes, but common fixed costs of production I1 > 0. For
both drugs, an increase in c increases expected revenues if the technology is eventually adopted,
but also reduces the probability of adoption (respectively, the first and second terms in Eq. (8)).
Absent fixed investment costs, both terms would be proportional to k and the marginal condition
would not be affected. But with I1 > 0, the change of the second term is no longer proportional,
because what is left to the HTP once fixed costs are covered is lower for rare diseases than for
common ones. Hence, when I1 > 0, the marginal cost of increasing c is smaller the smaller is
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k, implying that it is optimal to set a higher price. This, in turn, implies that as long as k does
not appear in the HCI’s decision function, technologies targeting small populations have a lower
probability of being adopted (via the result for ∂P/∂c in Proposition 1).

Finally, we note that clear-cut comparative static results for the effect of ω on c∗ and Γ∗1 are
not easily obtainable. This matter is explored in more detail in sections 5 and 6.

4.2 The HTP’s Stage 0 optimal choice of sample size
From the perspective of the start of Stage 0, define Γ0(n; c∗(X̄; k, I1, b, ν, ω), I0, d) as the ex-
pected reward of running a Phase III trial with an sample size n and pricing optimally during
Stage 1 according to the policy defined in Eq. (11). Since, from the perspective of Stage 0, X̄ is
a random variable, Stage 1 reward depends on the optimal choice of c∗ via the realisation of X̄ .
The Stage 0 optimal choice of n must therefore be computed using the predictive distribution for
x̄, defined as fn(x̄). Recalling from Section 3.1 that nmin is the minimum sample size required
by the RA, the Stage 0 problem to be solved by the HTP is the following:

Γ∗0(n; c∗(x̄; ·), I0, d) ≡ max
n

{
E
[

Γ∗1( c∗(x̄; ·) ) | x̄ > h(n)
]
P(x̄ > h(n))− (I0 + dn)

}
(13)

=

{∫ ∞
h(n)

Γ∗1(k, x̄, I1, b, ν, ω)fn(x̄) dx̄− (I0 + dn)

}
(14)

subject to n ≥ nmin,

where P is the probability that x̄ from the trial exceeds the RA’s lower acceptance threshold,
h(n):

P(x̄ > h(n)) = 1− Φ(h(n)), (15)

where Φ(h(n)) is the CDF of the prior predictive distribution.
The FONCs for the optimal choice of n, defined as n∗, are the following:

∂Γ0(·)
∂n

∣∣∣
n∗
≤ 0, n∗ − nmin ≥ 0, (n∗ − nmin)

∂Γ0(·)
∂n

∣∣∣
n∗

= 0, (16)

where the first derivative with respect to n is best interpreted with reference to Eq. (13):

∂Γ0(·)
∂n

=

∂E
[
Γ∗1( c∗(x̄; ·))|x̄ > h(n)

]
∂n

P(x̄ > h(n)) + E
[
Γ∗1(c∗(x̄; ·))|x̄ > h(n)

]∂P(x̄ > h(n))

∂n
− d.

(17)

Assuming that the n∗ that results from the solution to the FONCs yields a unique positive
value of Γ∗0, the HTP’s optimal choice of n is best interpreted by considering Γ∗0 as a function of
x̄ and studying the effect of changing n on the predictive distribution for x̄. Figure 1 shows the
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Γ∗
1(c

∗(x̄; ·); ·)

0Pessimistic prior Optimistic prior

Figure 1: Optimal choice of sample size at Stage 0 given possible scenarios for the prior predic-
tive distribution

scenario for which Γ∗1 is a strictly convex function of x̄, approaching linearity at high and low
values of x̄, which is the case studied in section 5, where a logistic functional form is chosen for
P .

There are three broad scenarios for the HTP, given the prior on µX :

1. ‘Pessimistic prior’: in this scenario, µ0 is negative and far from any range for x̄ which
leads to positive expected rewards at Stage 1 (see Figure 1). By referring to Eq. (17),
the marginal benefit of sampling is negative because P is close to zero and ∂P/∂n < 0
(increasing the sample size increases the HTP’s belief of a bad result in the trial). As a
result, no trial is commissioned because the net marginal benefit of sampling in Eq. (17) is
negative.

2. ‘Optimistic prior’: in this scenario, µ0 is positive and maps to Γ∗0 via the linear part of
Γ∗1. The HTP sets n∗ = nmin so as to satisfy the RA’s requirement for a minimum sample
size. The marginal benefit of increasing n above nmin is negative because ∂E[·]/∂n = 0
in Eq. (17) (increasing n does not change x̄ and does not change Stage 0 expected profit
because Γ∗1 is linear on the support x̄) and ∂P(·)/∂n = 0 (the HTP already believes that
the probability of acceptance at n = nmin is equal to one).

3. Between ‘Pessimistic’ and ‘Optimistic priors’: in this scenario, the predictive distribution
for x̄ maps, at least in part, via the strictly convex part of Γ∗1, to Γ∗0. In this scenario, the
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Figure 2: Determination of Stage 0 optimal sample size using Eqs. (16) and (17)

aforementioned constituent elements of Eq. (17) are not equal to zero and there can exist an
optimal sample size that is equal to, less than, or greater than, nmin. If either of the former
two result, then n∗ = nmin and the first derivative is not equal to zero. If the latter, the first
derivative in the FONC is equal to zero and n > nmin. This scenario is illustrated using
Figure 2, which plots the first two terms of Eq. (17) – the marginal benefits of sampling
– and the marginal cost, d. For this particular scenario, there exists a unique expected
utility-maximising value of n∗. We study this scenario in more detail in section 5.

Finally, we state two quite intuitive comparative static results for Stage 0.

Proposition 3 (Stage 0 Optimal Profit Comparative Statics).
The partial derivatives of the optimal Stage 0 expected profit with respect to k and ν satisfy:

∂Γ∗0
∂k

> 0,
∂Γ∗0
∂ν

> 0.

Proofs: See Section A.3 of the Appendix.

Since Γ∗0(k = 0) < 0, this allows us to define the minimum size of a population to treat, such
that the expected profit of investing in the development of a new treatment is positive:

kmin = min {k ‖Γ∗0(k, ·) > 0} . (18)
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This definition is required for some of the analysis of the incentives to invest in trials for rare
diseases that is presented in Sections 5 and 6.

4.3 A logistic model for the probability of acceptance
In order to illustrate the general framework and to prepare the ground for the application, this
section considers a specific functional form for P, which assumes that the HTP describes its
uncertainty about the HCI’s willingness to pay, V , by a logistic density with mean parameter ν
and scale parameter ω. The logistic density is chosen for two reasons. Firstly, it has been used
in a recent report assessing how estimates of cost-effectiveness and other variables affect NICE
decisions (Dakin et al., 2014). Secondly, its functional form is convenient for deriving first order
necessary conditions and analysing the comparative static results with respect to ω. Given that x̄
has been observed in the trial, reimbursement will occur if and only if c/x̄ ≤ V , implying that
Eq. (3) is:

P(c; x̄, ν, ω) =

(
1 + exp

(
c/x̄− ν

ω

))−1

. (19)

It is easily verified that P as defined above satisfies all the general requirements stated in Section
3.2, together with the additional assumptions on the elasticity derivatives in Eq. (12).

By inserting the definition in Eq. (19) into the Stage 1 FONC (Eq. (8)) and rearranging terms,
one obtains the following equation for the optimal choice of c∗:

c∗ = cp(k) + x̄ω

(
1 + exp

(
ν − c∗/x̄

ω

))
.

A unique solution to this equation may be obtained in terms of the so called LambertW function.6

Denoting this function by W , the optimal Stage 1 price and expected profit are given by

c∗ = cp(k) + x̄ω

[
1 +W

(
exp

(
ν − cp(k)/x̄

ω
− 1

))]
, (20)

Γ∗1 = kx̄ωW

(
exp

(
ν − cp(k)/x̄

ω
− 1

))
. (21)

Propositions 1 and 2 showed that c∗ and Γ∗1 both respond monotonically to changes in k, x̄
and ν, but it was noted that the effect of changes on ω on optimal policies and rewards was less
clear-cut. The effect of the dispersion parameter, ω, on these values is more complicated. By
using the properties of the LambertW function, the following limit results may be shown using
Eqs. (20) and (21):

lim
ω→0

(c∗,Γ∗1) =

{
(cp(k), 0) if x̄ν ≤ cp(k)

(x̄ν, k(x̄ν − cp(k))) if x̄ν > cp(k)
, lim

ω→∞
(c∗,Γ∗1) = (∞,∞). (22)

As ω → 0, the HTP’s uncertainty about the true value of V approaches certainty. Hence, the first
limit result just states that, as the HTP becomes certain that V = ν, the optimal pricing rule is

6http://mathworld.wolfram.com/LambertW-Function.html
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to set the price to the maximum that will imply an adoption decision, provided that this ensures
non-negative profits (c∗ ≥ cp(k)).

The second limit result states that, as the HTP’s uncertainty about the true value of V grows
without bounds, so will the optimal price and corresponding expected profit.

By differentiating Eqs. (20) and (21) w.r.t ω, for constants βc ≈ 5.8696 (found numerically)
and βΓ1 = 2 it is the case that:

∂c∗

∂ω
< 0 if ω < ω̆c,

∂Γ∗1
∂ω

< 0 if ω < ω̆Γ1 ,

∂c∗

∂ω
= 0 if ω = ω̆c,

∂Γ∗1
∂ω

= 0 if ω = ω̆Γ1 ,

∂c∗

∂ω
> 0 if ω > ω̆c,

∂Γ∗1
∂ω

> 0 if ω > ω̆Γ1 ,

where : ω̆c =
ν − cp(k)/x̄

βc
, ω̆Γ1 =

ν − cp(k)/x̄

βΓ1

.

Hence, we may distinguish two qualitatively different cases. If x̄ν ≤ cp(k), then both the optimal
price and the optimal expected Stage 1 profit are strictly increasing in ω. On the other hand, if
x̄ν > cp(k), both c∗ and Γ∗1 are first decreasing and then increasing in ω. Moreover, in this case,
the optimal price has a strict global minimum at ω̆c and the optimal profit has a strict global
minimum at ω̆Γ1 . Further, if x̄ν > cp(k), then, by the envelope theorem,

∂Γ∗1(ω)

∂ω
=

(
∂Γ1

∂ω

)∣∣∣∣
c=c∗(ω)

=

(
k(c− cp(k))

(
∂P

∂ω

))∣∣∣∣
c=c∗(ω)

= 0 =⇒ c∗(ω) = x̄ν,

since c∗(ω) > cp(k) always holds and ∂P/∂ω = 0 only if c = x̄ν for the logistic model. Hence
it follows that:

c∗(ω̆Γ1) = c∗
(
ν − cp(k)/x̄

βΓ1

)
= x̄ν = lim

ω→0
c∗(ω).

This analysis shows that, changes in ω imply changes both in the optimal price paid by
the insurer and the expected profit for the company. Hence, not only is the expected value of
the cost-effectiveness threshold able to shift rents between the HCI and the HTP, as previously
shown in the literature (Jena and Philipson (2008)), but the uncertainty surrounding it can also
have such an effect. Moreover, in what can reasonably be considered the most likely situation,
that is, one where the parameters are such that the HTP would make positive profit with a known
cost-effectiveness threshold, the optimal expected profit is non-monotonic in ω. The results also
have clear policy implications for Stage 1 decisions, because they show that the degree of trans-
parency of the HCI’s adoption decision may influence the rent enjoyed by the HTP. However, the
non-monotonicity of the relationship makes essential the practical question of whether at levels
of ω consistent with an HCI’s observed decision pattern the optimal price and expected profit
functions are increasing or decreasing in ω. We shall address this point in Section 5.
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5 Application
We implement the model using evidence from the recent NICE health technology appraisal of
mannitol dry powder (Bronchitol) for inhalation for treating cystic fibrosis (NICE, 2012b). Cys-
tic fibrosis is deemed to be a rare disease according to the Orphanet register of rare diseases,
with a prevalence of approximately 12.6 per 100,000 in Europe (Orphanet, 2014). It affects
approximately 9,600 adults in the U.K. (NICE, 2012a) and 30,000 in the U.S. (Food and Drug
Administration, 2013).

The technology is chosen for a number of reasons. Firstly, high quality data on the clinical
effectiveness, costs and QALYs upon which NICE made its recommendations are available in
the NICE report itself and the publications reporting the results of the two key Phase III clinical
trials (Bilton et al. 2011; Aitken et al. 2013). Secondly, the control was effectively placebo
in both clinical trials, that is, it was the same drug set at a very low, non-therapeutic, dosage.
Thirdly, although the EMA and NICE approved the product for use in 2012 for a sub-group of
cystic fibrosis patients (described below), the U.S. FDA denied marketing authorisation in 2013,
based on the same clinical trial results, citing concerns over the high level of discontinuation with
treatment in the clinical trials and the failure to achieve effects that were statistically significant.

It should be noted that the application is illustrative and is not intended to be a comment on
the efficacy or cost-effectiveness of the technology in question.

We briefly summarise the results of the two clinical studies and the NICE health technology
appraisal as it relates to the estimates of cost-effectiveness. Table 1 summarises the main param-
eter values that are taken from these documents to parameterise the model, together with their
sources. A summary of how the parameter values are derived is contained in Appendix B.

• The Phase III trials. Bilton et al. (2011) compared 400 mg of mannitol twice daily with
placebo for 324 subjects aged 6 years or over, randomised 3:2 to mannitol and control. The
subjects were based in Europe, Australia and New Zealand. At 26 weeks, upon conclusion
of the double-blind stage of the study, the authors reported a significant improvement in
forced expiratory volume in one second (FEV1) in subjects receiving mannitol compared
with control. Aitken et al. (2013) compared the same dosage of mannitol to placebo for
192 patients aged 6 years or over, again randomised 3:2. Patients were recruited from
North America, South America and Europe. The authors reported a statistically significant
improvement in FEV1 for the mannitol group compared with control during the double-
blind stage of the study (the first 26 weeks). Both studies included open label periods,
running for 26 weeks after the double-blind stage had concluded, intended to collect more
data on adverse reactions. The studies also collected data on quality of life, together with
other secondary outcome measures.

• The NICE Health Technology Appraisal’s assessment of cost-effectiveness. Cost-
effectiveness was assessed in the manufacturer’s submission to NICE using a Markov
model comparing treatment with and without mannitol and populated with data from the
clinical trials (NICE, 2012a). The NICE technology appraisal calculates ICERs accord-
ing to subgroups defined according to whether or not patients were using an alternative
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treatment, rhDNase. The baseline results for the estimated ICER are split by this classi-
fication: that for mannitol compared to treatment without mannitol in the rhDNase group
is £47,095 per QALY and that for the group not using rhDNase is £41,074. The report
summarises the results of various sensitivity analyses which resulted in changes in these
estimates and concluded that the high reported ICERs (between £50,000 and £80,000 per
QALY) for patients taking rhDNase meant that the treatment could not be recommended
for them because it was not cost-effective; the ICER for those not on rhDNase because
they were ineligible, intolerant, or because of inadequate response was considered to be
above £30,000 per QALY. However, for those in the latter group whose lung function is
decreasing rapidly, the ICER was considered to be under £30,000 per QALY (two reported
estimates are £27,700 and £30,100 per QALY). The NICE appraisal committee therefore
concluded that mannitol could be considered a cost-effective use of NHS resources for this
sub-group only.

Although the trials overlapped in calendar time, we assume a hypothetical scenario in which
the first trial reported before the second. We take the perspective of an HTP using information
from the first trial to decide whether or not to go ahead with the second trial. This permits us to
use the results of the first trial to define some of the parameter values at the start of the second
trial, including the prior mean, µ0, and variance, σ2

0 .
The functional form of P used in the application is given by Eq. (19). The calibration of the

values for ν and ω in that formula merit some discussion. The values in units of £/QALY are
taken from Dakin et al. (2014), who estimate a number of different regression models for past
NICE appraisal decisions and find that the reported ICER was the major factor influencing the
probability of acceptance (no other factor, other than the type of condition, was found to have
a statistically significant effect on NICE’s decision). For the model with the highest prediction
accuracy, Dakin et al. (2014) report that the ICER values corresponding to probabilities of NICE
recommendations of 0.25, 0.50 and 0.75 were £51,754, £39,417 and £27,047 per QALY, respec-
tively (Table III, model 4 in Dakin et al. (2014)). The pairs (0.5, 39,417) and (0.75, 51,754),
when inserted into Eq. (19), give two equations for ν and ω which can be solved to yield the
following estimates: ν = £39,417/QALY and ω = £11,230/QALY. Now, the unit of the incre-
mental efficacy x̄ is not QALYs, but FEV1 mL. Hence, when performing computations within
the model it is first necessary to convert the willingness to pay into units of £/mL. Calibration
gives a conversion factor of s = 0.0018 QALYs/mL.

We assume 10,000 patients treated per year, and a time horizon of 10 years, which is the
length of the exclusivity period allowed in the European Union for rare diseases. This implies
k = 100,000.

5.1 Stage 1
To explore some of the features of the HTP’s optimal Stage 1 pricing policy, it is neccessary to
condition upon a particular value of x̄. For the purposes of illustration, we assume that x̄ is equal
to the point estimate to emerge from the first study and that this is also the HTP’s prior (and
predictive) mean as it considers whether or not to commission the second study. This Stage 1
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analysis therefore assumes a point estimate x̄ that is equal to the mean of the HTP’s predictive
distribution for x̄, x̄ ≈ 85.03mL (refer to Section B).

Fixing k at its baseline value of 100,000, Figure 3 shows Γ1 versus c for some different
values of ω. There are two common intersection points, where all curves meet regardless of the
specific value of ω. One appears when c is set equal to the production cost cp(k) = 100, so that
Γ1 = 0. The other occurs when c = νx̄s ≈ 6030, that is, the ICER equals the expected value of
the distribution of the cost-effectiveness threshold, since this choice will always make P = 1/2
regardless of the value of ω. The circles in Figure 3 mark the optimal price-profit pairs (c∗,Γ∗1)
for each value of ω.

The non-monotonic dependence of optimal price and optimal expected profit on ω which
was analysed in Section 4.3 is clearly visible by tracing the path of the circles as ω increases. In
particular, since x̄ν > cp(k) for the baseline values of the simulation, there exists a strict global
minimum for the optimal price at ω̆c = {(s ν − cp(k)/x̄)/βc} × (1/s) ≈ 6604 and there exists a
strict global minimum for the optimal Stage 1 profit at ω̆Γ1 = {(sν − cp(k)/x̄)/βΓ1} × (1/s) ≈
19381. An interesting implication is that, for values of ω between 6604 and 19381, a reduction in
ω means a lower optimal price and a higher Stage 1 expected profit, due to the higher probability
of adoption. Hence, both the HTP and the HCI are better-off with reduced uncertainty on the
true value of the cost-effectiveness threshold within this range.

In the perspective of assessing the role of the size of the population to treat, it is not only
interesting to study the total expected profit Γ1, but also the expected profit per-patient Γ1/k. The
results of Section 4.3 provide quick answer for some limit case. For the specific combination of
parameter values used, as k → ∞, Eqs. (20) and (21) imply that c∗ → 4949 and Γ∗1/k → 3230,
with a corresponding limit value of P equal to 0.653. Figure 4(a) shows Γ1/k versus c for some
finite values of k. The figure shows that, as k falls, the optimal price rises but the the total
expected profit and the expected profit per-patient falls.

5.2 Stage 0
We now consider the full model, that is, we consider the decision of an HTP which has observed
the results of the first trial and which is considering whether to commission a second trial.

Fixing k at the baseline value in Table 1, Figure 4(b) shows how the non-monotonic response
of the optimal Stage 1 price and profit with respect to changes in ω determine of n∗ at Stage
0. For example, n∗ for ω = 50,000 is larger than the corresponding value for ω = 25,000, but
smaller than that for ω = 5,000. For the parameter values corresponding to our baseline case,
as ω increases from a small value, the optimal sample size and the optimal Stage 0 profit first
decrease, reach their minimum values and then increase.

Fixing ω at the baseline value, Figure 4(c) shows the Stage 0 profit per patient for different
values of the population size as a function of n.7 The figure shows that n∗ is increasing in k. In
increasing order (that is, as k increases in Figure 4(c)), the optimal sample sizes for the Stage 0
decision are n∗ = 0, 53, 73, 117 and 168, respectively. The probability of RA acceptance under

7Figure 4(c) shows profits per patients and not total profits for the sake of clarity in the illustration. Note that the
maximization problem is unaffected.
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Figure 3: Optimal Stage 1 expected profit (Γ1) as a function of the HTP’s proposed price, c,
given various values of uncertainty on the HCI’s willingness to pay, ω.

the prior, P in Eq. (15), is also strictly increasing in k and may be computed for each specific
optimal sample size. Performing this calculation yields values of P equal to 0, 0.864, 0.934,
0.983 and 0.995, respectively. Finally, Figure 4(c) shows that for the set of parameters used in
the calibration, the value of kmin is between 5,000 and 10,000.

5.3 Dependence of kmin on the RA parameters α and nmin

In this section we will take a brief look at how the parameters α and nmin, defining the behaviour
of the RA, influence the value of kmin, the minimum population size required for the HTP to
invest in a trial. Figure 4(d) shows kmin as a function of nmin for some different values of α,
with 5 ≤ nmin ≤ 80. As expected, kmin decreases in the significance level, α, because a stricter
policy by the RA (a lower α) requires, other things being equal, larger samples, which pay less
in terms of expected profit when the population to treat is small. For a given value of α, kmin is
non-decreasing in nmin because, when the latter is a binding constraint, an increase means that
larger values of k are needed to make non-negative profits. The flat parts of the curves correspond
to regions where n∗ > nmin. Overall, the figure suggests that any policy consideration on the
impact of statistical requirements on the incentive to invest in R&D should take both of these
parameters into account. In quantitative terms, for the set of parameters used, the impact of
increasing α from 2.5% to 20% is to almost halve the value of kmin when kmin is very small.
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5.4 The role of uncertainty on the cost-effectiveness threshold
The parameter ω could be seen as a policy parameter from the perspective of the HCI. NICE, for
example, might reduce ω by narrowing the declared range of the maximum values of ICER ac-
cepted (£20,000 - £30,000), or by formally stating how specific characteristics of the technology
or the disease (e.g. life threatening conditions) have an impact on the decision. Figures 3 and
4(b) show that uncertainty on the HTP’s cost-effectiveness threshold has a large impact on the
optimal price setting policy, profit and choice of sample size for the HTP. Although a full wel-
fare analysis is beyond the scope of the present work, the results obtained so far provide some
interesting insights.

The combination of the analytical results in Section 4.3 with those of the calibration im-
ply that, with a logistic distribution, moving from a situation of no uncertainty on the cost-
effectiveness threshold to one with some uncertainty reduces c∗, Γ∗0 and n∗. Hence, for this
particular case, more uncertainty on the cost-effectiveness threshold implies more uncertainty on
the true effectiveness of the treatment, due to the smaller size of the trial. Moving to a higher
range of values of ω, it is interesting to observe that, for the application under consideration, if
NICE reduced ω from 11,230 to 5,000 the impact would be: a lower price (Figure 3), a stronger
incentive to invest in R&D via Γ∗0 (Figure 4(b)) and more precision on the estimate of the effec-
tiveness via n∗ (Figure 4(b)).

Another interesting question is whether, and to what extent, a lack of transparency on the true
cost-effectiveness threshold (ω > 0) can shift rents from the HTP to the HCI. In the formal limit
case of ω = 0, and assuming the HTP’s beliefs about the threshold are correct in expectation, the
threshold will then be equal to the mean ν. Provided that νx̄ > cp(k), the HTP’s optimal price
choice in Stage 1 is c∗ = νx̄. If instead νx̄ ≤ cp(k), then no price is proposed, so Stage 1 profits
equal zero. Hence, the optimal Stage 0 sample size is found by solving

max
n≥nmin

{∫ ∞
h(n)

kmax(νx̄− cp(k), 0)fn(x̄) dx̄− (I0 + dn)

}
.

With parameter values as in the application of Section 5, the optimal sample size for this special
case was found to be n∗ = 135, with an optimal profit of £575,000,000. In comparison, for the
situation where ω equals the value calibrated from NICE’s actual decisions, ω = £11,230/QALY,
n∗ = 117 and Γ∗0 = £299,000,000.

An interesting extension would be to estimate the Expected Value of Perfect Information
about the cost-effectiveness threshold, which takes into account the fact that the threshold, while
allowing for better HTP decisions once obtained, is still uncertain during the HTP’s planning
phase.

6 Discussion and Conclusions
Historically, clinical trials were mainly designed with the objective of obtaining registration by
demonstrating effectiveness and safety of the new drug, with economic evaluation playing a sec-
ondary role. The increasing need for regulators to assess the economic implications of their de-
cisions implies that integration between these two types of evaluation is much greater nowadays.
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To the best of our knowledge, the two-stage model that we propose is the first to investigate how
regulation of access to the market interacts with the decision by health care insurers on whether
to reimburse a new pharmaceutical.

Results confirm that the size of the population to treat has a very large impact on the de-
cision by a firm to invest in R&D for a specific disease. At the stage where a decision on the
reimbursement of the new product is made, the optimal price increases when the population size
decreases, which in turn implies a lower probability of acceptance for orphan drugs. As a result,
it is the case that both total profit and profit per patient are smaller, the rarer is the disease. These
results carry over to the decision about whether to undertake R&D investment: there exists a
smaller expected profit and a higher probability that not undertaking R&D investment at all is
optimal. The possibility that the RA requires a minimum sample size to consider the application
reinforces this result, because this is more likely to be binding for a rare disease.

In our framework, a number of policy variables have an impact on these decisions and could
be used as incentive mechanisms. Some of them have to do with the commercialization stage
(Stage 1), others with the development stage (Stage 0). The decision by the European Com-
mission to grant exclusivity in the market for new orphan drugs for a period of 10 years is an
incentive related to the former. Similarly, consistent with some results of the literature (Jena and
Philipson, 2008) one could think of setting higher cost-effectiveness thresholds for rare diseases.
In our analysis, we pay particular attention to the role of the degree of uncertainty around the
true value of these thresholds, rather than to their level. We show that, for reasonable functional
forms, introducing a small amount of uncertainty reduces the maximum expected return of the
R&D investment for the firm with respect to the case of no uncertainty. Moreover, the optimal
trial sample size is also reduced. The policy implication is that introducing uncertainty on the
reimbursement decision may result in a less precise estimate of the new treatment’s effective-
ness. However, the result is not monotonic and the sign of the impact on both expected profit
and optimal sample size changes to positive for higher levels of uncertainty. This result holds
independently of the size of the population to treat. Interestingly, for our application, results
suggest that by reducing, but not eliminating, the degree of uncertainty by some amount from
our estimate of the current degree of uncertainty on the true value of the threshold, NICE could
obtain a lower price, a stronger incentive to invest in R&D for the industry and more precision
in the estimate of the effectiveness.

Concerning incentives that can be provided at the development stage, it has been suggested
that this opportunity might have been under-explored so far (Clarke et al., 2014). Our model
provides a framework to investigate this and, in principle, to study the substitutability of incen-
tives at the commercialization and the development stage. Our application includes a tentative
estimate of the impact of a change in the significance level (α) of the statistical test, used by the
regulatory authority to approve a new drug, on the minimum size of the population that ensures
non negative expected profit from an investment in R&D.

Although the calibration seems to suggest that the model can predict pretty well price and
sample size setting policy by the firm, it also comes with a number of limitations. For example, it
is assumed that there is only one authority deciding on market access – the RA – and one deciding
on reimbursement – the HCI. Although key decisions tend to be concentrated in a limited number
of RAs in the real world (e.g. the FDA in the US and the EMA in Europe), this is not true for

22



insurers.
RA rules are similar in the two main regions, US and EU, and there is a relatively well

established practice on the requirements of efficacy, in that it is normally required that two Phase
III trials demonstrate efficacy of a new drug. However, it is not uncommon to see decisions based
on only one trial, as we assume, for example, if trial results are complemented by sufficiently
strong evidence of efficacy from Phase II, if a large mortality trial is performed, if the patient
population is small or if the drug already has already been shown to be efficacious for a similar
indication. Moreover, relaxing this assumption would not change our results.

There is a strong convention within RAs that the type I error rate should be controlled at 5%
2-sided, that is, that the one-sided level, α, should be 0.025. However, the FDA has stressed
that this rule is not written in stone and actual FDA decisions for rare diseases confirm this
(Sasinowski, 2012). Our results on the consequences of different choices of α are therefore
practically relevant.

Regarding commercialisation, our model is based on NICE’s approach, which is clearly
stated as dependent on cost per QALY. Reasons to focus on this system are that it is relatively
well described and understood, that empirical data on NICE decisions is readily available, and
that NICE’s paradigm and decisions are influential for other HCIs. In contrast, multiple HCIs
are active in the US, and US legislation bans the formal use of cost per QALY for insurance
decisions. Both the concept of quality-adjustment of life, and of setting a price on the value of
a life (year) are far from uncontroversial. The model used in this article could potentially be
extended to allow the sponsor gain to be dependent on decisions from a multitude of RAs and
HCIs. Moreover, decisions made in different countries may not be independent, for example
when reference pricing mechanisms are adopted. Taking this into account would raise a number
of interesting and challenging questions related to strategic interactions and the optimal sequence
of reimbursement decisions from the perspective of the company, as well as increasing the po-
tential size of the market. Another valuable extension would be allowing for further rounds of
negotiations in case of rejection.

Ideally, one would also get rid of the assumption that the incremental cost of the new tech-
nology only depends on the difference between prices. A better technology may, for example,
also reduce other health care costs. This would mean that incremental cost and effectiveness are
not independent. Methods similar to those used by Kikuchi and Gittins (2009) and Kikuchi et al.
(2008) (see Section 2) could be used to incorporate such a relationship.

Finally, it has been assumed that the increase in QALYs is proportional to the increase in ef-
ficacy. This proportionality may be reasonable, but may depend on the scale on which efficacy is
measured. For example, QALY benefit is normally linked more directly to average survival time,
or time to progression, than to the hazard ratio (which is the standard efficacy variable in oncol-
ogy trials). In this case, the variables are merely measuring the same thing (survival) in different
ways. Things get more complicated when RAs and HCIs focus on distinctly different variables:
RAs often prefer an objective, ‘hard’, endpoint, while HCIs may look more at patient-reported
quality-of-life. In an extension, we could therefore assume that two different, but correlated,
response variables are in focus in the two different stages of the model. An interesting research
question is to what extent such a lack of alignment between RAs and HCIs could disincentivise
drug development. Recently, the EMA has invited HCIs to increase the alignment.
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Future research will aim to remove these and to address some related issues that have not
been studied here. Underlying the concern for the lack of incentives to invest in R&D for orphan
diseases is an equity argument, i.e. the idea that people should not have fewer chances to be
treated because their disease is rare.8 One way to incorporate the rarity of the disease into the
model would be to allow the size of the population to directly affect directly the probability
of adoption. A natural extension would be to study the equity-efficiency trade-off, if any, that
is, whether improving incentives to invest in rare diseases in comparison with more common
ones, keeping the budget constant, has a price in terms of total expected health benefit in the
population.
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A Proofs

A.1 c∗ is C(1)

In order to establish that c∗(k, x̄, ν, ω) ∈ C(1) the implicit function theorem (Rudin, 1976, p. 224)
may be applied. The theorem requires that P ∈ C(2) and cp(k) ∈ C(1), which we have assumed
explicitly. Further, it must be verified that

∂2Γ1

∂c2

∣∣∣∣
c=c∗
6= 0.

The first and second order partial derivatives of Γ1 w.r.t. c are given by

∂Γ1

∂c
= k

(
P + (c− cp(k))

∂P

∂c

)
∂2Γ1

∂c2
= k

(
∂P

∂c
+
∂P

∂c
+ (c− cp(k))

∂2P

∂c2

)
.

By definition, c∗ solves the FONC, implying

(c∗ − cp(k)) = −
(

P
∂P
∂c

)∣∣∣∣∣
c=c∗

. (23)

It follows that

∂2Γ1

∂c2

∣∣∣∣
c=c∗

= k

(
∂P

∂c
+

(
∂P
∂c

)2 − P∂2P
∂c2

∂P
∂c

)∣∣∣∣∣
c=c∗

= k

[
∂P

∂c

(
1 +

∂

∂c

(
P
∂P
∂c

))]∣∣∣∣∣
c=c∗

< 0, (24)

where the last inequality follows from (4) and (10).

A.2 Proposition 1 (Stage 1 Optimal Profit Comparative Statics)
Γ∗1 is C(1) since c is C(1). Hence, it follows from the envelope theorem, as given in (Varian, 1992,
p. 490), that

∂Γ∗1
∂k

=

(
∂Γ1

∂k

)∣∣∣∣
c=c∗

=

(
(c− cp(k))P− k∂cp(k)

∂k
P

)∣∣∣∣
c=c∗

> 0,

since c∗ > cp(k) and, by assumption, P > 0 and ∂cp(k)

∂k
< 0. For any other variable y (x̄ or ν) the

corresponding result is

∂Γ∗1
∂y

=

(
∂Γ1

∂y

)∣∣∣∣
c=c∗

=

(
k(c− cp(k))

(
∂P

∂y

))∣∣∣∣
c=c∗

.

Hence, the sign of ∂Γ∗
1

∂y
equals the sign of

(
∂P
∂y

)∣∣∣
c=c∗

and Proposition 1 follows.

25



A.3 Proposition 3 (Stage 0 Optimal Profit Comparative Statics)
For these results, Γ∗0 > 0 denotes the optimal profit corresponding to a unique optimal choice
n∗ > nmin in an open set of values for k, ν and ω. By the envelope theorem, Leibniz’s rule and
the corresponding results for Γ∗1, partial differentiation of Γ0 w.r.t. k and ν gives

∂Γ∗0
∂k

=

(
∂Γ0

∂k

)∣∣∣∣
n=n∗

=

(∫ ∞
h(n)

∂(Γ∗1)

∂k
fn(x̄) dx̄

)∣∣∣∣
n=n∗

> 0,

∂Γ∗0
∂ν

=

(
∂Γ0

∂ν

)∣∣∣∣
n=n∗

=

(∫ ∞
h(n)

∂(Γ∗1)

∂ν
fn(x̄) dx̄

)∣∣∣∣
n=n∗

> 0.

A.4 Proposition 2 (Stage 1 Optimal Price Comparative Statics)
By differentiating (23) w.r.t. y ( = k, x̄ or ν) and rearranging terms, we obtain

∂c∗

∂y
=

 ∂cp(k)

∂y
− ∂

∂y

(
P
∂P
∂c

)
1 + ∂

∂c

(
P
∂P
∂c

)
∣∣∣∣∣∣

c=c∗

. (25)

Hence, by (10), the sign of ∂c∗

∂y
is equal to the sign of the numerator in Eq. (25). If y = k, then

∂c∗

∂k
< 0 since ∂cp(k)

∂k
< 0 and P by assumption does not depend on k. For any other y ( = x̄ or ν),

since cp(k) only depends on k, the numerator is reduced to

− ∂

∂y

(
P
∂P
∂c

)∣∣∣∣∣
c=c∗

= − ∂

∂y

(
c

ePc

)∣∣∣∣
c=c∗

= −c∗ ∂

∂y

(
1

ePc

)∣∣∣∣
c=c∗

= c∗
(

∂ePc

∂y

e2
Pc

)∣∣∣∣∣
c=c∗

,

which must be positive by (12) and the fact that c∗ > cp(k).

B Sources of parameter values for application
Both Phase III trials use as their primary outcome the improvement in FEV1. The trials over-
lapped in time, with the second one (Aitken et al. 2013) starting as the first (Bilton et al. 2011)
was concluding.

Bilton et al. (2011) report a statistically significant improvement in FEV1 compared with
placebo (p < 0.001) in the first trial. Averaged across the post-randomisation visits, the point
estimate of x̄ is reported to be 85.03mL with a 95% confidence interval of (53.5mL,116.6mL)
(Bilton et al., 2011, page 1073, section entitled ‘Efficacy’). It is therefore assumed that µ0 =
85.03mL for the start of the second Phase III trial (Aitken et al., 2013).

The 95% confidence interval reported by Bilton et al. is used to obtain an estimate of σX , the
standard deviation of the difference between effects in the treatment and control arms. Assume
that σt = σc ≡ σ, that is, the sampling variances of the two trial arms are equal. Then, referencing
Table 1 of Bilton et al. (2011), the sample sizes of nt = 177 (number of subjects in treatment
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arm) and nc = 118 (number of subjects in control arm), an estimate of σ may be obtained by
rearranging the standard error formula for two independent means when the variance is known
(this being one of the assumptions of the model solved in Section 3):

σ = SE(X̄)
(√

1/nt + 1/nc

)−1

, (26)

where SE(X̄) = (116.6 − 85.03)/1.96 = 16.10, obtained from the 95% confidence interval.
Solving Eq. (26) yields an estimate of σ = 135.5. The standard deviation of the difference is
therefore σX =

√
2×135.5 = 191.63. Alternatively, we may assume a sample size equivalent to

approximately n = 140 pairwise allocations and calculate σX directly as σX = SE(X̄)/
√
n =

16.10 ×
√

140 = 190.5. The standard deviation for the prior is simply taken to be the standard
error, σ0 = SE(X̄) = 16.10.
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