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1 Introduction

In many markets such as health care, education, transportation, and utility, public and private �rms jointly

serve consumers. Product and service quality is a major concern in these markets. This concern stems from

a fundamental point due to Spence (1975). Because a good�s quality bene�ts all buyers, the social bene�t

of quality is the sum of consumers�valuations. At a social optimum, the average consumer valuation of

quality should be equal to the marginal cost of quality. Yet, a pro�t-maximizing �rm is only concerned with

the consumer indi¤erent between buying and not. A �rm�s choice of quality will be one that equates this

marginal consumer�s valuation to the marginal cost of quality. This gives the classic Spence (1975) result:

even when products are priced at marginal cost, their qualities will be ine¢ cient. In this paper, we show

that a mixed oligopoly, in which public and private �rms interact, may be a mechanism for remedying this

ine¢ ciency.

We use a standard model of vertical product di¤erentiation: in the �rst stage, two �rms simultaneously

choose product qualities. In the second stage, �rms simultaneously choose product prices. The two �rms

have access to the same technology. The only di¤erence from the textbook setup is that one �rm is a social-

surplus maximizing, public �rm whereas the other remains a pro�t-maximizing, private �rm. Surprisingly,

this single di¤erence has many implications.

First, the model exhibits multiple equilibria: in some equilibria, the public �rm�s product quality is

higher than the private �rm�s, but in others, the opposite is true. More important, equilibrium qualities may

be socially e¢ cient. In fact, we present general conditions on consumers�quality-valuation distribution in

which qualities in low-public-quality equilibria are e¢ cient, as well as general conditions in which qualities

in high-public-quality equilibria are e¢ cient. When equilibrium qualities are ine¢ cient, for both public and

private �rms deviations from the �rst best go in tandem. That is, either qualities in public and private �rms

are both below the corresponding �rst-best levels, or they are both above. Equilibrium qualities form a rich

set, and we have constructed examples with many con�gurations.

Our analysis proceeds in the standard way. Given a subgame de�ned by a pair of qualities, we �nd the

equilibrium prices. Then we solve for equilibrium qualities, letting �rms anticipate that their quality choices
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will result in the corresponding subgame-equilibrium prices in the next stage. In the pricing subgame,

qualities are given. The public �rm�s objective is to maximize social surplus, so its price best response

must achieve the e¢ cient allocation of consumers across the two �rms. This requires that consumers fully

internalize the cost di¤erence between high and low qualities. Given the private �rm�s price, the public �rm

sets its price so that the di¤erence in prices is exactly the di¤erence in quality costs. The private �rm�s best

response is the typical inverse demand elasticity rule.

When �rms choose qualities, they anticipate the subgame-perfect equilibrium prices in the next stage.

Given the private �rm�s quality, the public �rm chooses its quality to maximize the surplus of consumers

that it will serve. It anticipates the e¢ cient assignment of consumers across �rms in the next stage, so it

chooses quality for the best welfare of its own customers. The private �rm, however, will try to manipulate

the subgame-perfect equilibrium prices through its quality.

Because the equilibrium price di¤erence will be the quality cost di¤erence, when the private �rm chooses

a quality di¤erent from the public �rm�s, it implements a larger price di¤erence. Without any price response

from the public �rm, the private �rm would have chosen the quality that would be optimal for the marginal

consumer, just as we have stated above (Spence (1975)). A larger quality di¤erence, however, would be

preferred because that would raise the price. Because of the price manipulation, the private �rm�s subgame-

perfect equilibrium quality is one that maximizes the utility of an inframarginal consumer, not the utility of

the marginal consumer who would just be indi¤erent between buying from the public and private �rms.

In the �rst best, the socially e¢ cient qualities are determined by equating average consumer valuations

and marginal cost of quality. The surprise is that in contrast to private duopoly, the private �rm�s equilibrium

quality choice may coincide with the �rst-best quality. In other words, the inframarginal consumer whose

utility is being maximized by the private �rm happens to have the average valuation among the private

�rm�s customers.

The (su¢ cient) conditions for �rst-best equilibria refer to properties of consumers� quality-valuation

distribution. In the class of equilibria where the public �rm produces at a low quality, equilibrium qualities
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are �rst best when the valuation distribution has a linear hazard rate.1 The linear hazard rate condition

is equivalent to the private �rm�s marginal revenue function linear in consumer valuation. In the class of

equilibria where the public �rm produces at a high quality, equilibrium qualities are �rst best when the

valuation distribution has a linear reverse hazard rate. The linear reverse hazard rate condition is equivalent

to the private �rm�s marginal revenue function linear in consumer valuation.

Although the hazard and reverse hazard rates have �gured prominently in the information economics

literature, we are unaware of any work that imposes linearity on them. We derive all distributions that

possess the linear properties. We wish to note that the uniform distribution, which has been used often to

describe consumer valuations, has linear hazard and reverse hazard rates (but it is not the one that has this

property� see Remark 5 below). Also, because hazard and reverse hazard rates can behave quite di¤erently,

for some distributions the equilibria for one class (say, low quality at public) can be the �rst best but not

the equilibria in other (say high quality at public), and vice versa.

We draw various policy implications from our results. Our use of a social-welfare objective function

for the public �rm can be regarded as making a normative point. If the public �rm aims to maximize

only consumer surplus, then it will subscribe to marginal-cost pricing. Then equilibrium price di¤erence

between public and private �rms will never be the quality cost di¤erence because the private �rm never

prices at marginal cost. The �rst best is never achieved (even when hazard or reverse hazard rates are

linear). A social-welfare objective does mean that the public �rm tolerates high prices. However, our policy

recommendation is that undesirable e¤ects from high prices should be remedied by a tax credit or subsidy

to consumers independent of where they purchase from. This ensures that consumers face a price di¤erence

equal to the quality di¤erence, a necessary condition for the �rst best.

Our research contributes to the literature vertical product di¤erentiation in mixed oligopolies. We use

the classical model of quality-price competition in Gabszewicz and Thisse (1979, 1986) and Shaked and

Sutton (1982, 1983). Whereas pro�t-maximizing �rms use quality di¤erentiation to relax price competition,

1See Lemmas 3 and 6 below. If F denotes the distribution, and f the density, then the hazard rate is
1� F
f

, and

the reverse hazard rate is
F

f
. By a function being linear, we mean that it has a constant slope and an intercept. This

is often called a¢ ne linear in mathematics, but we trust that our abbreviation will not cause any confusion.
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a social-surplus maximizing public �rm does not. This di¤erence has led to the mixed oligopoly literature,

which revolves around the theme that the presence of a public �rm may improve welfare. In a Hotelling,

horizontal di¤erentiation model with quadratic transportation cost, Cremer et al. (1991) show that a public

�rm improves welfare when the total number of �rms is either two or more than six. Also using a Hotelling

model, Matsumura and Matsushima (2004) show that mixed oligopoly gives some cost-reduction incentives.

In a Cournot model, Cremer et al. (1989) consider replacing some private �rms by public enterprises, and

nationalizing some private �rms. In these models, the public �rm may discipline the private �rms.

Whereas horizontal di¤erentiation and Cournot models have been explored, few studies in mixed oligopolies

have used the vertical di¤erentiation framework (but see below). However, for pro�t-maximizing �rms, Cre-

mer and Thisse (1991) show that, under very mild conditions on transportation costs, horizontal di¤erenti-

ation models are actually a special case of vertical product di¤erentiation (see also Champsaur and Rochet

(1989)). The equivalence result can be translated to mixed duopolies. The key in the Cremer-Thisse (1991)

proof is that demands in horizontal models can be translated into equivalent demands in vertical models.

Firms�objectives are unimportant. Hence, results in horizontal mixed oligopolies do relate to vertical mixed

oligopolies.

In most horizontal di¤erentiation models, consumers are assumed to be uniformly distributed on the

product space, and the transportation or mismatch costs are quadratic. These assumptions translate to a

uniform distribution of consumer valuations and a quadratic quality cost function in vertical di¤erentiation

models. We use a general distribution of valuation and a general quality cost function. Our results therefore

extend those in the horizontal di¤erentiation mixed oligopolies. For example, the e¢ ciency result in Cremer

et al. (1991) in the case of two �rms is due to the uniform distribution, so it will fail to hold generally. More-

over, our characterization of equilibrium qualities translate to equilibrium locations under general consumer

distributions on the Hotelling line and transportation costs. Therefore, our conditions on consumer valuation

distributions for �rst-best qualities will be corresponding conditions on consumer location distributions on

the Hotelling line for horizontal mixed oligopolies.

For private �rms, Anderson et al. (1997) provide the �rst characterization for a general location distrib-
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ution with quadratic transportation costs. Our techniques are consistent with those in Anderson et al., but

we use a general cost function. Recent paper by Benassi et al. (2006) use a symmetric trapezoid valuation

distribution and explore consumers� nonpurchase options. Yurko (2011) have worked with, respectively,

lognormal distributions. Our monotone hazard and reverse hazard rate assumptions are valid under the

trapezoid distribution, but not under lognormal. In any case, our general characterization on the private

oligopoly complements these recent advances.

Qualities in mixed provisions are often discussed in the education and health sectors. However, perspec-

tives such as political economy, taxation, and income redistribution are incorporated. Brunello and Rocco

(2008) combine consumers voting and quality choices by public and private schools, and let the public school

be a Stackelberg leader. Epple and Romano (1998) consider vouchers and peer e¤ects but have used a com-

petitive model for interaction between public and private schools. Grassi and Ma (2011, 2012) present models

of publicly rationed supply and private �rm price responses under public commitment and noncommitment.

Our results here indicate that commitment may not be necessary, and imperfectly competitive markets may

sometimes be e¢ cient.

Privatization has been a policy topic in mixed oligopolies. Ishibashi and Kaneko (2008) set up a mixed

duopoly with price and quality competition. The model has both horizontal (Hotelling) and vertical di¤er-

entiation. However, all consumers have the same valuation on quality, and are uniformly distributed on the

horizontal product space (as in Ma and Burgess (1993)). They show that the government should manipulate

the objective of the public �rm so it maximizes a weighted sum of pro�t and social welfare, a form of partial

privatization. (Using a Cournot model, Matsumura (1998) earlier demonstrates that partial privatization is

a valuable policy.) Our model is richer on the vertical dimension, but consists of no horizontal di¤erentiation.

Our policy implication has a privatization component to it, but a complete welfare maximization objective

for the public �rm is su¢ cient.

Section 2 presents the model. Section 3 studies equilibria in which the public �rm�s quality is lower than

the private �rm�s, and Section 4 studies the opposite case. In each section, we �rst derive subgame-perfect

equilibrium prices, and then equilibrium qualities. We present characterization of equilibrium qualities, and
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conditions for equilibrium qualities to be �rst best. Section 5 considers policies, and various robustness

issues. We consider alternative preferences for the public �rm. We also let cost functions of the �rms be

di¤erent. Then we let consumers have outside options. Finally we consider multiple private �rms. Section 6

presents a benchmark private duopoly model. The last section draws some conclusions. Proofs and details

of numerical computations are in the Appendix.

2 The model

2.1 Consumers

There is a set of consumers with total mass normalized at 1. Each consumer would like to receive one

unit of a good or service. In our context, it is helpful to think of such goods and services as education,

transportation, and health care including child care, medical, and nursing home services. In these markets,

often the public sector participates actively. In fact, in the literature many papers are written for these

speci�c markets; see for example Epple and Romano (1998), and Brunello and Rocco (2008).

A good has a quality, denoted by q, which is assumed to be positive. Each consumer has a valuation of

quality v. This valuation varies among consumers. We let v be a random variable de�ned on the positive

support [v; v] with distribution F and strictly positive density f . We also assume that f is continuously

di¤erentiable

We will use two properties of the distribution, namely [1�F ]=f � h, and F=f � k. We assume that h is

decreasing, and that k is increasing, so h0(v) < 0 and k0(v) > 0. The assumptions ensure that pro�t functions,

to be de�ned below, are quasi-concave, and are implied by f being logconcave (Anderson et al. (1997)). These

monotonicity assumptions are satis�ed by many common distributions such as the uniform, the exponential,

the beta, etc. (Bagnoli and Bergstrom (2005)). We will call h the hazard rate, and k the reverse hazard rate,

although the terminology used by economists varies.2

2 In statistics f=(1 � F ) is called the hazard rate. Suppose that the random variable x has distribution F and
density f . Then f(v)=(1 � F (v)) is the conditional density of x = v given that x � v. For example, if x denotes
the time of failure, the hazard rate measures the density of failure occurring at v given that failure has not occurred
before v. We are unable to �nd a common usage for f=F in statistics. However, f=F is the conditional density of
x = v given that x � v. That is, this is the density of failure occurring at x = v given that failure has occurred by v.
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Valuation variations among consumers have the usual interpretation of preference diversity due to wealth,

taste, or cultural di¤erences. We may call a consumer with valuation v a type-v consumer, or simply consumer

v. If a type-v consumer purchases a good with quality q at price p, his utility is vq � p. The quasi-linear

utility function is commonly adopted in the literature (see for example the standard texts Tirole (1988) and

Anderson et al. (1992)). We assume that each consumer will buy a unit of the good. This can be made

explicit by including an unattractive outside option (the utility of not buying anything), or that each good

o¤ers a su¢ ciently high bene�t which is independent of v. To save on notation, we do not write down formal

details.

2.2 Public and private �rms

There are two �rms, Firm 1 and Firm 2, and they have access to the same technology. Production requires

a �xed cost. The implicit assumption is that the �xed cost is so high that entries by many �rms cannot be

sustained. We focus on the case of a mixed oligopoly so we do not consider the rather trivial case of two

public �rms. Often a mixed oligopoly is motivated by a more e¢ cient private sector, so in Subsection 5.3

we let �rms have di¤erent technologies, and will explain why our results remain robust.

The variable, unit production cost of the good at quality q is c(q), where c : R+ ! R+ is a strictly

increasing and strictly convex function. A higher quality requires a higher marginal cost, and this marginal

cost also increases in quality. We also assume that c is twice di¤erentiable, and that it satis�es the usual

Inada conditions: limq!0+ c(q) = limq!0+ c
0(q) = 0, so in both the �rst best and in the equilibria of the

extensive forms to be analyzed, both �rms will be active.

Firm 1 is a public �rm, and run by a utilitarian regulator. Firm 1�s objective is to maximize social

surplus; the discussion of a general objective function for the public �rm is deferred until Subsection 5.2.

Firm 2 is a pro�t-maximizing private �rm. Each �rm chooses its product quality and price. We let p1 and

q1 denote Firm 1�s price and quality; similarly, p2 and q2 denote Firm 2�s price and quality. Given these

prices and qualities, each consumer buys from the �rm that o¤ers the higher utility. A consumer chooses

a �rm with probability a half if he is indi¤erent between them. We defer to Subsection 5.4 to discuss the

possibility that a consumer not purchasing anything at all.
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Consider any (p1; q1) and (p2; q2), and de�ne bv by bvq1�p1 = bvq2�p2. Consumer bv is supposed to be just
indi¤erent between purchasing from Firm 1 and Firm 2. If bv 2 [v; v], then the demands for the two �rms
are as follows

Demand for Firm 1 Demand for Firm 2

F (bv) 1� F (bv) if q1 < q2

1� F (bv) F (bv) if q1 > q2

1=2 1=2 if q1 = q2

(1)

We sometimes call consumer bv the indi¤erent or marginal consumer. (Otherwise, if bv =2 [v; v], or fails to
exist, one �rm will be unable to sell to any consumer.)

If Firm 1�s product quality is lower than Firm 2�s, its demand is F (bv) when its price is su¢ ciently low
than Firm 2�s price. Conversely, if Firm 2�s price is not too high, then its�demand is 1 � F (bv). If the two
�rms�product qualities are identical, then they must charge the same price if both have positive demands.

In this case, all consumers are indi¤erent between them, and each �rm receives a half of the market. The

demand functions exhibit discontinuity when �rms o¤er products with identical qualities: any small price

di¤erence will cause demand to shift completely to the �rm that o¤ers the lower price.3

2.3 Allocation, social surplus, and �rst best

An allocation consists of a pair of product qualities, one at each �rm, and an assignment of consumers across

the �rms. The social surplus from an allocation is

Z v

v

[xq` � c(q`)]f(x)dx+
Z v

v

[xqh � c(qh)]f(x)dx; (2)

Here, the qualities at the two �rms are q` and qh, q` < qh. Those consumers with valuations between v and

v get the good with quality q`, whereas those with valuations between v and v get the good with quality qh.

3Existence of equilibria follows from Anderson et al. (1997).
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The �rst best is (q�` ; q
�
h; v

�) that maximizes (2), and characterized by the following:Z v�

v

xf(x)dx

F (v�)
= c0(q�` ) (3)Z v

v�
xf(x)dx

1� F (v�) = c0(q�h) (4)

v�q�` � c(q�` ) = v�q�h � c(q�h): (5)

The derivation of the characterization (3), (4), and (5) is standard. Those consumers with lower valuations

should consume the good at a low quality (q�` ), and those with higher valuations should consume at a high

quality (q�h). Therefore, divide consumers into two groups: those with v 2 [v; v�] and those with v 2 [v�; v].

The (conditional) average valuation of consumers in [v; v�] is in the left-hand side of (3), and, in the �rst

best, this is equal to the marginal cost of the lower �rst-best quality, the right-hand side of (3). A similar

interpretation applies to (4) for those consumers with higher valuations. Finally, the division of consumers

into the two groups is achieved by identifying consumer v� who enjoys the same surplus from both qualities,

and this yields (5).

As Spence (1975) has shown, quality is like a public good, so the total social bene�t is the aggregate

consumer bene�t, and in the �rst best, the average valuation should be equal to the marginal cost of quality.

As a result the indi¤erent consumer v� actually receives too little surplus from q` because v� > c0(q`), but

too much from qh because v� < c0(qh).

2.4 Extensive form

We study subgame-perfect equilibria of the following game.

Stage 0: Nature draws consumers�valuations v and these are known to consumers only.

Stage 1: Firm 1 chooses a quality q1; simultaneously, Firm 2 chooses a quality q2.

Stage 2: The qualities in Stage 1 are common knowledge. Firm 1 chooses a price p1; simultaneously, Firm

2 chooses a price p2.

Stage 3: Consumers observe price-quality o¤ers from both �rms, and pick a �rm for purchase.
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An outcome of this game consists of �rms�prices and qualities, (p1; q1) and (p2; q2), and the allocations

of consumers across the two �rms. Subgames at Stage 2 are de�ned by the �rms� quality pair (q1; q2).

Subgame-perfect equilibrium prices in Stage 2 are those that are best responses in subgames de�ned by

(q1; q2). Finally, equilibrium qualities in Stage 1 are those that are best responses given that prices are given

by a subgame-perfect equilibrium in Stage 2.

There are multiple equilibria. In one class of equilibria, in Stage 1 the public �rm chooses low quality,

whereas the private �rm chooses high quality, and in Stage 2, the public �rm sets a low price, and the private

�rm chooses a high price. In the other class, the roles of the �rms in terms of their ranking of qualities and

prices, are reversed. However, because the two �rms have di¤erent objectives, equilibria in these two classes

yield di¤erent allocations.

3 Equilibria with low quality at public �rm

In this section, we study equilibria when the public Firm 1�s quality q1 is lower than the private Firm 2�s

quality q2.

3.1 Subgame-perfect equilibrium prices

Consider subgames in Stage 2 de�ned by (q1; q2) with q1 < q2. According to (1), each �rm will have a

positive demand only if p1 < p2, and there is ev 2 [v; v] with
evq1 � p1 = evq2 � p2 or ev(p1; p2; q1:q2) = p2 � p1

q2 � q1
; (6)

where we have emphasized that ev, the consumer indi¤erent between buying from Firm 1 and Firm 2, depends
on qualities and prices. Expression (6) characterizes the basic demand functions for �rms. The �rms�payo¤s

are: Z ev
v

[xq1 � c(q1)]f(x)dx+
Z v

ev [xq2 � c(q2)]f(x)dx (7)

[1� F (ev)][p2 � c(q2)]: (8)

The expression in (7) is social surplus when consumers with valuations in [v; ev] buy from Firm 1, whereas

others buy from Firm 2. The prices that consumers pay to �rms are transfers, so do not a¤ect social surplus.
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The expression in (8) is Firm 2�s pro�t.

Firm 1 chooses its price p1 to maximize (7) given the demand (6) and price p2. Firm 2 chooses price p2

to maximize (8) given the demand (6) and price p1. Equilibrium prices, (bp1; bp2), are best responses against
each other.

Lemma 1 In subgames (q1; q2) with q1 < q2, and v <
c(q2)� c(q1)
q2 � q1

< v, equilibrium prices (bp1; bp2) are:
bp1 � c(q1) = bp2 � c(q2) = (q2 � q1)1� F (bv)

f(bv) � (q2 � q1)h(bv); (9)

where bv = c(q2)� c(q1)
q2 � q1

: (10)

Proof of Lemma 1: Consider bp2 = argmaxp2 [1 � F (ev)][p2 � c(q2)], where ev = p2 � bp1
q2 � q1

(see (6)). The

�rst-order derivative of the pro�t function with respect to p2 is

[1� F (ev)]� f(ev)[p2 � c(q2)] 1

q2 � q1

= f(ev)�h(ev)� [p2 � c(q2)] 1

q2 � q1

�
;

where we have used the partial derivative of ev with respect to p2, namely 1=(q2 � q1). From the assump-

tion that h is decreasing, the second-order derivative is negative, so the �rst-order condition is su¢ cient.

Therefore, bp2 is given by bp2 � c(q2) = (q2 � q1)h(ev).
Next, consider Firm 1 choosing p1 to maximize (7) where ev = bp2 � p1

q2 � q1
(see (6)). Because (7) is inde-

pendent of p1, we can choose ev to maximize (7) ignoring (6). The optimal value bv is given by setting the
�rst-order derivative of (7) with respect to ev to zero: bvq1� c(q1) = bvq2� c(q2). Then we simply choose bp1 to
satisfy (6) such that bv = bp2 � bp1

q2 � q1
=
c(q2)� c(q1)
q2 � q1

. We have shown that bp1 and bp2 in (9) and (10) are mutual
best responses. �

Lemma 1 says that in equilibrium, both �rms set the same price-cost margin, so the price di¤erential

across �rms is the same as the cost di¤erential: bp2 � bp1 = c(q2)� c(q1). Second, it says that, Firm 2 makes

a pro�t, and its price-cost margin is proportional to the quality di¤erential and the hazard rate h.

We explain the result as follows. Firm 1�s payo¤ is social surplus, so it seeks the consumer assignment to

the two �rms, ev, to maximize social surplus (7). This is achieved by getting consumers to fully internalize
11



the cost di¤erence between the high and low qualities. Therefore, given bp2, Firm 1 sets bp1 so that the price
di¤erential bp2 � bp1 is equal to the cost di¤erential c(q2)� c(q1). In equilibrium, the indi¤erent consumer is
given by bvq1 � c(q1) = bvq2 � c(q2), which indicates an e¢ cient allocation in the quality subgame (q1; q2).
Firm 2 seeks to maximize its pro�t. Given Firm 1�s price bp1, Firm 2�s optimal price follows the usual

marginal-revenue-marginal-cost calculus. For a unit increase in p2, the marginal loss is [p2�c(q2)]f(ev)=(q2�
q1), whereas the marginal gain is [1� F (ev)]. Therefore, pro�t maximization yields
bp2 � c(q2) = (q2 � q1)

1� F (bv)
f(bv) . (This is also the standard inverse elasticity rule for the determination of

Firm 2�s price-cost margin.4) Putting �rms�best responses together, we have Lemma 1.

The key point in Lemma 1 is that equilibrium market shares and prices can be determined separately.

Once qualities are given, Firm 1 will aim for the socially e¢ cient allocation, and it adjusts its price, given

Firm 2�s price, to achieve that. Firm 2, on the other hand, aims to maximize pro�t so its best response

depends on Firm 1�s price as well as the elasticity of demand. Firm 1 does make a pro�t, and we will return

to this issue in Subsection 5.2.

To complete the characterization of price equilibria, we consider subgames (q1; q2) with q1 < q2, and

either
c(q2)� c(q1)
q2 � q1

< v or v <
c(q2)� c(q1)
q2 � q1

. In the former case, Firm 1 would like to allocate all consumers

to Firm 2, whereas in the other case, Firm 1 would like to allocate all consumers to itself. In both cases,

there are multiple equilibrium prices. They take the form of high values of bp1 when all consumers go to Firm
2, but low values of bp1 in the other. In any case, equilibria in the game must have two active �rms, so these
subgames cannot arise.5

The equilibrium prices (bp1; bp2) in (9) and (10) formally establish three functional relationships, those that
relate any qualities to equilibrium prices and allocation of consumers across �rms. We can write them as

bp1(q1; q2), bp2(q1; q2), and bv(q1; q2) � ev(bp1(q1; q2); bp2(q1; q2); q1:q2). Applying the Implicit Function Theorem,
we derive how equilibrium prices and market share change with qualities. As it turns out, we will only need

to use the information of how bp1(q1; q2) and bp2(q1; q2) change with q2:
4Firm 2�s demand is 1� F (ev). Hence, elasticity is d(1� F (ev))

dp2

p2
1� F (ev) = �q2 � q1h(ev)

5We defer to Subsection 4.1 the discussion of equilibria of �rms having identical qualities.
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Lemma 2 From the de�nition of (bp1; bp2) and bv in (9) and (10), we have bv increasing in q1 and q2, and
@bp1(q1; q2)

@q2
= h(bv) + h0(bv) [c0(q2)� bv] (11)

@bp2(q1; q2)
@q2

= c0(q2) + h(bv) + h0(bv) [c0(q2)� bv] : (12)

Proof of Lemma 2: First, from (10), we obtain (q2�q1)dbv+bv(dq2�dq1) = c0(q2)dq2�c0(q1)dq1, which,
together with the convexity of c, yield

@bv
@q1

=
bv � c0(q1)
q2 � q1

=
1

q2 � q1

�
c(q2)� c(q1)
q2 � q1

� c0(q1)
�
> 0 (13)

@bv
@q2

=
c0(q2)� bv
q2 � q1

=
1

q2 � q1

�
c0(q2)�

c(q2)� c(q1)
q2 � q1

�
> 0: (14)

Next, from (9), we obtain

dbp1 � c0(q1)dq1 = (dq2 � dq1)h(bv) + (q2 � q1)h0(bv)� @bv
@q2

dq2 �
@bv
@q1

dq1

�
dbp2 � c0(q2)dq2 = (dq2 � dq1)h(bv) + (q2 � q1)h0(bv)� @bv

@q2
dq2 �

@bv
@q1

dq1

�
:

We then use (13) and (14) to simplify these, and obtain

@bp1(q1; q2)
@q2

= h(bv) + h0(bv) [c0(q2)� bv]
@bp2(q1; q2)

@q2
= c0(q2) + h(bv) + h0(bv) [c0(q2)� bv] ;

which are the expressions in the Lemma. �

Lemma 2 describes how the equilibrium consumer changes with qualities, and the strategic e¤ect of Firm

2�s quality on Firm 1�s price. Consider a subgame (q1; q2). Figure 1 shows the determination of bv. We have
drawn the utility function of the marginal consumer bv, whose utilities are bvq1� p1 = bvq2� p2. Suppose that
q1 increases. From Figure 1, it is clear that consumer bv strictly prefers to buy from Firm 1; so does consumer
bv + � for a small and positive value of �. Therefore, the e¢ cient allocation will allocate more consumers to
Firm 1, so bv increases. Next, suppose that q2 increases, it is also obvious that bv strictly prefers to buy from
Firm 1. The point is that quality q1 is too low for consumer bv but quality q2 is too high. An increase in q1
makes Firm 1 more attractive, but an increase in q2 makes Firm 2 less attractive.
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Figure 1: Qualities and the marginal consumer�s utility

If Firm 2 increases its quality, it expects to lose market share. However, it does not mean that its pro�t

must decrease. From (8), Firm 2�s pro�t is increasing in Firm 1�s price.6 Hence if in fact Firm 1 raises

its price against a higher q2, Firm 2 may earn a higher pro�t. In any case, because h is decreasing, and

c0(q2) > bv, according to Lemma 2, an increase in q2 may result in higher or lower equilibrium prices. The

point is simply that Firm 2 can in�uence Firm 1�s price response. Also, Firm 2�s equilibrium price always

increases at a higher rate than Firm 1�s: @bp2=@q2 � @bp1=@q2 = c0(q2) (see (11) for @bp1=@q2 and (12) for
@bp2=@q2).
3.2 Subgame-perfect equilibrium qualities

At qualities q1 and q2, the continuation equilibrium payo¤s for Firms 1 and 2 are, respectively,

Z bv(q1;q2)
v

[xq1 � c(q1)]f(x)dx+
Z v

bv(q1;q2)[xq2 � c(q2)]f(x)dx (15)

[1� F (bv(q1; q2))][bp2(q1; q2)� c(q2)]; (16)

6The partial derivative of (8) with respect to p1 is
f(ev)[p2 � c(q2)]

q2 � q1
> 0.
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where bp2 is Firm 2�s equilibrium price and bv is the indi¤erent consumer from Lemma 1. Let (bq1; bq2) be the
equilibrium qualities. They are mutual best responses, given continuation equilibrium prices:

bq1 = argmax
q1

Z bv(q1;bq2)
v

[xq1 � c(q1)]f(x)dx+
Z v

bv(q1;bq2)[xbq2 � c(bq2)]f(x)dx (17)

bq2 = argmax
q2

[1� F (bv(bq1; q2))][bp2(bq1; q2)� c(q2)]: (18)

A change in quality q1 has two e¤ects on social surplus (15). First, it directly changes vq1 � c(q1), the

surplus of consumers who purchase the good at quality q1; this e¤ect is in the �rst integral in (15). Second,

it changes the equilibrium prices and the marginal consumer bv (hence market shares) in Stage 3; this e¤ect
is formally given by the partial derivative of bv(q1; q2) with respect to q1 (at q2 = bq2). However, given that
Firm 1 chooses the equilibrium price in Stage 3 to maximize social surplus, by the Envelope Theorem the

e¤ect of q1 on (15) via its e¤ect on bv is second order. Therefore, the �rst, direct e¤ect is the only relevant
consideration, and the �rst-order derivative of (15) with respect to q1 is

R bv(q1;q2)
v

[x� c0(q1)]f(x)dx.

Similarly, a change in quality q2 has two e¤ects on Firm 2�s pro�t. First, it directly changes the marginal

consumer�s surplus bvq2 � c(q2). Second, it changes the equilibrium prices and the marginal consumer. We

rewrite (18) as

[1� F (bv(q1; q2))] [bv(q1; q2)q2 � c(q2)� bv(q1; q2)q1 + bp1(q1; q2)] (19)

because

bv(q1; q2) = ev(bp1(q1; q2); bp2(q1; q2); q1:q2) � bp1(q1; q2)� bp2(q1; q2)
q1 � q2

(20)

which gives the channels for the in�uence of q2 on prices. In Stage 3, Firm 2 will choose its own price (and

the corresponding marginal consumer) in Stage 3 to maximize pro�t. By the Envelope Theorem, the e¤ect

of q2 on pro�t in (19) via bv(q1; q2) has a second-order e¤ect. Therefore, the �rst-order derivative of (19) with
respect to quality q2 is bv(q1; q2)� c0(q2) + @bp1(q1; q2)

@q2
(where we have omitted the factor [1� F (bv(q1; q2))]).

We set the �rst-order derivatives of social surplus with respect to q1 and of pro�t with respect to q2 to

zero. Then we apply (11) in Lemma 2 to obtain the following.

Proposition 1 Equilibrium qualities (bq1, bq2), and the marginal consumer bv solve the following three equa-
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tions in q1, q2, and v R v
v
xf(x)dx

F (v)
= c0(q1)

v +
h(v)

1� h0(v) = c0(q2)

vq2 � c(q2) = vq1 � c(q1):

Proof of Proposition 1: The �rst-order derivative of (15) with respect to q1 is

Z bv(q1;q2)
v

[x� c0(q1)]f(x)dx+ f[bv(q1; q2)q1 � c(q1)]� [bv(q1; q2)q2 � c(q2)]g f(bv(q1; q2)) @bv
@q1

:

By Lemma 1, the term inside the curly brackets is zero. By putting this �rst-order derivative to zero, we

obtain the �rst equation in the Proposition. Also, because equilibrium prices bp1(q1; q2) and bp2(q1; q2) must
follow Lemma 1, we have

bv(q1; q2) = c(q2)� c(q1)
q2 � q1

;

which is the last equation in the Proposition.

Next, we use (19) to obtain the �rst-order derivative of Firm 2�s pro�t with respect to q2:

[1� F (bv(q1; q2))] �bv(q1; q2)� c0(q2) + @bp1(q1; q2)
@q2

�
+

f�f(bv(q1; q2)[bp2(bq1; q2)� c(q2)] + [1� F (bv(q1; q2))](q2 � q1)g @bv(q1; q2)
@q2

:

Again, by Lemma 1, the term inside the curly bracket is zero. After setting the �rst-order derivative to 0,

we obtain

bv(q1; q2)� c0(q2) + @bp1(q1; q2)
@q2

= 0:

We then use (11) in Lemma 2 to substitute for
@bp1(q1; q2)

@q2
, and write the �rst-order condition as

bv � c0(q2) + h(bv) + h0(bv) [c0(q2)� bv] = 0;
which simpli�es to

bv + h(bv)
1� h0(bv) = c0(q2);

the second equation in the Proposition. �
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The explanation of Proposition 1 is this. In Stage 1, Firm 1�s objective is to maximize social surplus by

choosing its quality q1, given Firm 2�s quality bq2, and the continuation equilibrium prices. These equilibrium
prices will imply the e¢ cient allocation of consumers across the two �rms, and the indi¤erent consumer is

given by bv(q1; q2) = c(q2)� c(q1)
q2 � q1

(which is the third equation in the Proposition 1). Therefore, given Firm

2�s quality, Firm 1 chooses q1 to maximize the utility of consumers it serves. Hence bq1 equates the conditional
average valuation of consumers in [v; bv], R bvv xf(x)dx

F (bv) , and the marginal cost c0(q1). This explains the �rst

equation.

Firm 2�s incentive is more involved. Firm 2�s quality will a¤ect Firm 1�s price in Stage 2. If this were

not the case (imagine that @bp1=@q2 were 0), the pro�t-maximizing quality would be the optimal level for the
marginal consumer: bv = c0(q). This is reminiscent of the basic property of quality due to Spence (1975). A
pro�t-maximizing �rm would set its quality at the optimal level for the marginal consumer, and then raise

the price to extract the surplus.7

Nevertheless, there is the price e¤ect due to product di¤erentiation. By raising quality from one satisfying

bv = c0(q), it may also raise Firm 1�s price, hence its own pro�t. This is a �rst-order gain. Although Lemma

1 says that Firm 2 may lose market share (bv(q1; q2) increases in q2), the optimal tradeo¤ is now given by
bv+ @bp1(bq1; q2)

@q2
= c0(bq2). To induce a higher price from Firm 1 in Stage 2, Firm 2 raises its quality to a level

higher than one that is e¢ cient for the marginal consumer. In other words, Firm 2�s higher quality serves to

increase cost di¤erential, and hence price di¤erential between the two �rms. The condition for this higher

quality simpli�es to the second equation in the Proposition: the quality is e¢ cient for a consumer whose

valuation is bv + h(bv)
1� h0(bv) .

According to Proposition 1, the only di¤erence between equilibrium qualities and those in the �rst best

stems from how Firm 2 chooses its quality. Firm 2�s consumers are are those with valuations above bv, so their
average valuation is

R vbv xf(x)dx
1� F (bv) , which is the benchmark for social e¢ ciency, and this average valuation

should be equal to the marginal cost of Firm 2�s quality. Firm 2, however, is only interested in maximizing

the utility of the consumer with valuation bv+ h(bv)
1� h0(bv) , so it sets a quality with marginal cost equal to this

7Suppose that Firm 2 chooses q2 and p2 to maximize its pro�t in (8) subject to ev = (p2 � p1)=(q2 � q1). The
�rst-order conditions simplify to p2 � c(q2) = h(bv)(q2 � q1) and bv = c0(q2).
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valuation.

Our next result gives a class of valuation distributions where the average valuation of Firm 2�s customers

happens to be bv+ h(bv)
1� h0(bv) . As a result, Firm 2�s private incentive coincides with the social incentive. First,

we present a mathematical lemma, which, through a simple application of integration by parts, allows us to

write the conditional expectation of valuations in terms of hazard rate and the density.

Lemma 3 For any distribution F (and its corresponding density f and hazard rate h � (1�F )=f), we haveZ v

v

xf(x)dx

1� F (v) � v +

Z v

v

f(x)h(x)dx

f(v)h(v)
: (21)

Proof of Lemma 3: By de�nition, f(x)h(x) = (1� F (x)). We haveR v
v
xf(x)dx

1� F (v)

= �
R v
v
xd(1� F (x))
f(v)h(v)

=
v(1� F (v))
f(v)h(v)

+

R v
v
(1� F (x))dx
f(v)h(v)

= v +

R v
v
f(x)h(x)dx

f(v)h(v)
;

where the second equality is due to integration by parts. �

Proposition 2 Suppose that the hazard rate h is linear; that is, h(x) = �� �x, x 2 [v; v], for some � and

� � 0. Then for any v

v +
h(v)

1� h0(v) =
R v
v
xf(x)dx

1� F (v) � v +
R v
v
f(x)h(x)dx

f(v)h(v)
: (22)

Equilibrium qualities and market shares are �rst best.

Proof of Proposition 2: Suppose that h(x) = �� �x. We have, h0(x) = ��, and

v +
h(v)

1� h0(v) = v +
�� �v
1 + �

=
v + �

1 + �
:
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Then we compute

v +

R v
v
f(x)h(x)dx

f(v)h(v)
= v +

R v
v
f(x)(�� �x)dx
f(v)h(v)

= v +
�[1� F (v)]
f(v)h(v)

� �
R v
v
xf(x)dx

f(v)h(v)

= v + �� �
(
v +

R v
v
f(x)h(x)dx

f(v)h(v)

)
;

where the expression in the curly brackets comes from the identity (21). Simplifying, we have

v +

R v
v
f(x)h(x)dx

f(v)h(v)
=
v + �

1 + �
:

We have proved (22).

The three equations in Proposition 1 are now exactly those that de�ne the �rst best in (3), (4), and (5).

Equilibrium qualities and consumer allocation must be �rst best. �

Proposition 2 exhibits a set of consumer-valuation distributions for which the quality-price competition

game yields �rst-best equilibrium qualities. The pro�t-maximizing private �rm has the exact incentive to

invest the e¢ cient (high) quality. On the one hand, for pro�t maximization, in Stage 2 Firm 2 increases the

quality from the level that is optimal for the marginal consumer in order to raise Firm 1�s price in Stage 3.

This increase depends on the magnitude of @bp1=@q2 (see (11)). If consumer bv is the indi¤erent consumer,
Firm 2 chooses the best quality optimal for consumer with valuation bv + h(bv)

1� h0(bv) . On the other hand, for
social-surplus maximization, the �rst-best quality is one that maximizes the surplus of the average consumer

conditional on types higher than the indi¤erent consumer bv. We have managed to write the conditional
average in terms of the hazard rate in Lemma 3, and this is bv + R vbv f(x)h(x)dx

f(bv)h(bv) . When the hazard rate is

linear,
h(bv)

1� h0(bv) �
R vbv f(x)h(x)dx
f(bv)h(bv) , Firm 2�s pro�t maximization incentive aligns with the social incentive.

The following remark gives the economic interpretation for the linear hazard rate.

Remark 1 When Firm 2 sells to high-valuation consumers, its marginal revenue is linear in consumer

valuation if and only if h(v) is linear.

Proof of Remark 1: When Firm 2 sells to consumers with valuations above v at price p2, its revenue

is [1�F (v)]p2, where v =
p2 � p1
q2 � q1

. If we express p2 as a function of v, we have p2(v) = p1+ v(q2� q1). The
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marginal revenue is the derivative of revenue with respect to the �rm�s quantity, [1� F (v)]:

d[1� F (v)]p2(v)
d[1� F (v)]

= p2(v) + [1� F (v)]
dp2(v)

d[1� F (v)] = p2(v) + [1� F (v)]
dp2(v)=dv

d[1� F (v)]=dv

= p2(v)�
1� F (v)
f(v)

dp2(v)
dv

= p2(v)� h(v)(q2 � q1):

Because p2(v) is linear in v, marginal revenue is linear in v if and only if the hazard rate h(v) is linear.�

As far as we know, the linearity of the hazard rate has never been used in the theoretical literature such

as auction design, regulation, and screening and pricing under asymmetric information. The Myerson virtual

cost and La¤ont-Tirole information rent adjustments almost always involve the hazard rate (see for instance

Myerson (1997), La¤ont and Tirole (1993)), but no linearity assumption has been used before. By contrast,

in the empirical literature (such as labor economics), the linear hazard model has been very popular, although

our assumption has no direct bearing on the estimation of, and inference from, such models.

Many distributions satisfy the linear hazard rate assumption. They include the popular uniform and

exponential distributions. (The uniform distribution has been used extensively in the product-di¤erentiation

and the mixed-oligopoly literature, see for example Cremer et al. (1991)). Essentially, the condition [1 �

F (v)]=f(v) = � � �v requires that all distributions conditional on the random variable exceeding v to be

quite similar. For example, if the lower parts of the uniform or exponential distributions are removed, the

remaining distributions still are uniform or exponential. In any case, [1 � F (v)]=f(v) = � � �v de�nes a

di¤erential equation, and we solve for all distributions that have linear hazard rates.

Remark 2 Suppose that h(x) = ���x. Then if � = 0, f is the exponential distribution f(x) = A

�
exp(�x

�
),

with v = 1, and A = exp(
v

�
), so when v = 0, f(x) =

1

�
exp(�x

�
) for x 2 R+. If � > 0, then f(x) =�

(�� �x)(1��)
(�� �v)

� 1
�

, with � � �v = 0. For the uniform distribution, we have h(x) = v � x (so � = v, and

� = 1).

Proof of Remark 2: De�ne y � 1 � F , so y0 = �f . We have h(x) = � � �x equivalent to y
0

y
=

�1
�� �x . First, suppose that � = 0. We have

y0

y
=
�1
�
, so y(v) = A exp(� v

�
), some A. Therefore,
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F (v) = 1 � A exp(� v
�
). Because we have F (v) = 0, we must have A = exp(

v

�
). We also have F (v) = 1,

which requires v =1.

Second, suppose that � > 0. We have
y0

y
=

�1
�� �v . Solving this di¤erential equation, we have y (v) =

A(� � �v)
1
� , for some constant A. Hence, F (v) = 1 � A(� � �v)

1
� , and we obtain the expression for f in

the Remark by di¤erentiation. Because F (v) = 0, we have A = (� � �v)
�
1

� . Because F (v) = 1, we must

have �� �v = 0, so that � and � cannot be arbitrary. �

Next, we show that �rms�equilibrium qualities must be either simultaneously excessive or de�cient. It

cannot be an equilibrium for one �rm�s quality higher than the �rst best while the other �rm�s quality lower

than the �rst best.

Proposition 3 Let an equilibrium be written as (bq1; bq2; bv), corresponding to Firm 1�s quality, Firm 2�s

quality, and the marginal consumer. If the equilibrium is not �rst best, either

(bq1; bq2; bv) < (q�` ; q�h; v�) or (bq1; bq2; bv) > (q�` ; q�h; v�):
That is, when equilibrium qualities are not �rst best, either both �rms have equilibrium qualities lower than

the corresponding �rst-best levels, or both have equilibrium qualities correspondingly higher.

Proof of Proposition 3: For any q2 we consider Firm 1�s best response function:

eq1(q2) = argmax
q1

Z bv(q1;q2)
v

[xq1 � c(q1)]f(x)dx+
Z v

bv(q1;q2)[xq2 � c(q2)]f(x)dx:

First, at q2 = q�h, we have eq1(q�h) = q�` . Clearly, if Firm 2 chooses q�h, from the de�nition of the �rst best,

Firm 1�s best response is q1 = q�` because Firm 1 aims to maximize social surplus. It follows that the �rst

best belongs to the graph of Firm 1�s best response function.

Second, we establish that eq1(q2) is increasing in q2. The sign of the derivative of eq1(q2) has the same sign
of the cross partial derivative of Firm 1�s objective function (15) evaluated at q1 = eq1(q2). The derivative of
(15) with respect to q1 is simply Z bv(q1;q2)

v

[x� c0(q1)]f(x)dx
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because the partial derivative with respect to bv is zero. The cross partial is then obtained by di¤erentiating
the above with respect to q2, and this gives

[bv(q1; q2)� c0(q1)]f(bv)@bv(q1; q2)
@q2

> 0

where the inequality follows because at q1 = eq1(q2), we have bv(q1; q2) > c0(q1) and @bv
@q2

> 0 by (14) in the

proof of Lemma 2. �

The proposition can be explained as follows. Firm 1 aims to maximize social surplus. If Firm 2 chooses

q2 = q�h, Firm 1�s best response is to pick q1 = q�` . Next, Firm 1�s best response is increasing in q2. This

stems from the properties of bv(q1; q2), the e¢ cient allocation of consumers across the two �rms. Quality q1
is too low for consumer bv, whereas quality q2 is too high. If q2 increases, consumer bv would become worse
o¤ buying from Firm 2, so actually bv increases. This also means that Firm 1 should raise its quality because

it now serves consumers with higher valuations. In other words, if Firm 2 raises its quality, Firm 1�s best

response is to raise quality. Therefore, Firm 1�s quality is higher than the �rst best q�` if and only if Firm

2�s quality is higher than the �rst best q�h.

We have constructed a number of examples to verify that equilibrium qualities can be either below or

above the �rst best. However, it is more e¤ective if we discuss these examples after we have presented the

other class of equilibria in which the public �rm chooses a higher quality than the private �rm. The examples

are presented in Subsection 4.3. Also, at this point we already can draw various policy implications from

the results, but will defer those discussions until after we have presented the other class of equilibria. See

Subsections 5.1 and 5.2.

4 Equilibria with high quality at public �rm

In this class of equilibria Firm 1�s quality is higher than Firm 2�s, q1 > q2. Because the two �rms have

di¤erent objectives, equilibria in this class are not isomorphic to those in the previous section. However,

many de�nitions and proof procedures that have been used previously can be applied analogously, so where

appropriate we will omit proofs.
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4.1 Subgame-perfect equilibrium prices

When q1 > q2, the �rms have positive demand only if p1 > p2. The de�nition for demand in (1) continues

to apply. We rewrite the de�nition of the indi¤erent consumer ev:
evq1 � p1 = evq2 � p2 or ev(p1; p2; q1:q2) = p1 � p2

q1 � q2
: (23)

The �rms�payo¤s are respectively:

Z ev
v

[xq2 � c(q2)]f(x)dx+
Z v

ev [xq1 � c(q1)]f(x)dx (24)

F (ev)[p2 � c(q2)]: (25)

The expressions in (24) and (25) are social surplus and Firm 2�s pro�t, and are similar to those in (7) and

(8). Here, consumers with low valuations buy from the low-quality-low-price private �rm, whereas consumers

with high valuations buy from the high-quality-high-price public �rm.

Firm 1 chooses price p1 to maximize social surplus (24) given the demand function (23) and price p2. Firm

2 chooses price p2 to maximize pro�t (25) given the demand function (23) and price p1. Equilibrium prices,

(bp1; bp2), are best responses against each other. The following Lemma is the characterization of equilibrium
prices and consumer allocation. Its proof is similar to that of Lemma 1, and omitted.

Lemma 4 In subgames (q1; q2) with q1 > q2, and v <
c(q1)� c(q2)
q1 � q2

< v, equilibrium prices (bp1; bp2) are:
bp1 � c(q1) = bp2 � c(q2) = (q1 � q2)F (bv)

f(bv) � (q1 � q2)k(bv); (26)

where bv = c(q1)� c(q2)
q1 � q2

: (27)

Lemma 4 presents the equilibrium prices and consumer allocations in subgames with q1 > q2. Their

properties parallel those in Lemma 1. Firm 1 implements the socially e¢ cient consumer allocation by setting

a price di¤erential equal to the cost di¤erential: bp1� bp2 = c(q1)� c(q2). Firm 2�s pro�t maximization follows

the usual marginal-revenue-marginal-cost tradeo¤. We need to use the reverse hazard rate, k = F=f , in to

obtain (26). Finally, for subgames (q1; q2) with q1 > q2, and either
c(q1)� c(q2)
q1 � q2

< v or v <
c(q1)� c(q2)
q1 � q2

.

One �rm will be inactive, so these subgames are irrelevant.
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The equilibrium prices and allocation in (26) and (27) depend on the qualities, so we write them as

bp1(q1; q2), bp2(q1; q2), and bv(q1; q2). We totally di¤erentiate these three functions to obtain how prices and
allocation change with Firm 2�s quality. The following Lemma presents these results. The proof follows the

same steps as those in Lemma 2, and is omitted.

Lemma 5 From the de�nition of (bp1; bp2) in (26) and (27), we have bv increasing in q1 and q2,
@bp1(q1; q2)

@q2
= �k(bv) + k0(bv) [bv � c0(q2)] (28)

@bp2(q1; q2)
@q2

= c0(q2)� k(bv) + k0(bv) [bv � c0(q2)] : (29)

Lemma 5 shows how Firm 2�s quality will alter equilibrium prices and allocation. Unlike subgames where

Firm 2�s quality is higher than Firm 1�s, Firm 2�s market share increases with both q1 and q2. However, the

e¤ect of a higher quality q2 on prices may be ambiguous, but the e¤ect of q2 on bp2 is larger than that on bp1
by c0(q2).

Finally, we consider subgames where both �rms have chosen the same qualities, q1 = q2. According

to (1), the �rms share the market equally if they charge the same price; otherwise, the �rm that charges

the lower price gets all consumers. However, Firm 1�s objective is social surplus, which, for q1 = q2, isR v
v
[vq1� c(q1)]dv, irrespective of prices. Any price can be a best response for Firm 1. Clearly, Firm 2 prefers

its price (and Firm 1�s price) to be as high as possible. Here, we select the equilibrium in which the price

is at marginal cost c(q1). Our reason for this selection is to main continuity. In both (9) and (26), the

price-cost margin tends to zero as q1 and q2 tend to each other.

4.2 Subgame-perfect equilibrium qualities

Given qualities q1 and q2, Firm 1 and Firm 2 have, respectively, the continuation equilibrium payo¤s

Z bv(q1;q2)
v

[xq2 � c(q2)]f(x)dx+
Z v

bv(q1;q2)[xq1 � c(q1)]f(x)dx (30)

F (bv(q1; q2))[bp2(q1; q2)� c(q2)]; (31)
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where bp2 is Firm 2�s equilibrium price and bv is the indi¤erent consumer (see Lemma 4). Let (bq1; bq2) be the
equilibrium qualities. They are mutual best responses, given continuation equilibrium prices:

bq1 = argmax
q1

Z bv(q1;bq2)
v

[xq2 � c(q2)]f(x)dx+
Z v

bv(q1;bq2)[xbq1 � c(bq1)]f(x)dx (32)

bq2 = argmax
q2

F (bv(bq1; q2))[bp2(bq1; q2)� c(q2)]: (33)

We appy the same method to characterize equilibrium qualities. Changing q1 in Firm 1�s payo¤ in (32)

only a¤ects the second integral there because the e¤ect via the �rst integral is second order by the Envelope

Theorem. To study the e¤ect of changing q2 on Firm 2�s payo¤, we use the de�nition of bv to rewrite pro�t
in (33) as

F (bv(bq1; q2))[q2bv(bq1; q2)� c(q2)� bq1bv(bq1; q2) + bp1(bq1; q2)]:
Hence, changing q2 has only two e¤ects: the direct e¤ect on the surplus of the marginal consumer bvq� c(q2),
and the e¤ect on Firm 1�s equilibrium price, because any e¤ect on the marginal consumer is second order

according to the Envelope Theorem. We obtain the �rst-order conditIons

Z v

bv(q1;q2)[x� c
0(q1)]f(x)dx = 0

bv(bq1; q2)� c0(q2) + @bp1(bq1; q2)
@q2

= 0:

Then we apply Lemma 5, and use �k(bv)+k0(bv) [bv � c0(q2)] to substitute for @bp1=@q2. To sum up, we present
the characterization in the next Proposition (proof omitted).

Proposition 4 Equilibrium qualities (bq1, bq2), and the marginal consumer bv solve the following three equa-
tions in q1, q2, and v Z v

v

xf(x)dx

1� F (v) = c0(q1)

v � k(v)

1 + k0(v)
= c0(q2)

vq2 � c(q2) = vq1 � c(q1):

The intuitions behind Proposition 4 are similar to those in Proposition 1 in the previous section. Firm 1

chooses q1 to maximize the surplus of those consumers with valuations higher than bv. The marginal consumer
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is bv but Firm 2 chooses the quality that is e¢ cient for a lower type bv � k(bv)
1 + k0(bv) . Firm 2�s lower quality

serves to use product di¤erentiation to create a bigger cost di¤erential, and hence a bigger price di¤erential

between the two �rms.

Again, the di¤erence between the equilibrium qualities and the �rst best stems from Firm 2�s quality

choice. We can identify a class of distributions for which Firm 2�s pro�t incentive aligns with the social

incentive. First, we present a mathematical result that relates the reverse hazard rate and conditional

expectations.

Lemma 6 For any distribution F (and its corresponding density f and reverse hazard rate k � F=f), we

have Z v

v

xf(x)dx

F (v)
� v �

Z v

v

f(x)k(x)dx

f(v)k(v)
: (34)

Proof of Lemma 6: By de�nition, f(x)k(x) = F (x). We haveZ v

v

xf(x)dx

F (v)

=

Z v

v

xdF (x)

f(v)k(v)

=
vF (v)

f(v)k(v)
�

Z v

v

F (x)dx

f(v)k(v)

= v +

Z v

v

f(x)k(x)dx

f(v)h(v)
;

where the second equality is due to integration by parts. �

Proposition 5 Suppose that the reverse hazard rate k is linear; that is, k(x) =  + �x, x 2 [v; v], for some

 and � � 0. Then for any v

v � k(v)

1 + k0(v)
=

Z v

v

xf(x)dx

F (v)
� v +

Z v

v

f(x)k(x)dx

f(v)k(v)
: (35)

Equilibrium qualities and market shares are �rst best.
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Proof of Proposition 5: Suppose that k(x) =  + �x. We have k0(x) = �, and

v � k(v)

1 + k0(v)
= v �  + �v

1 + �
=
v � 
1 + �

:

Then we compute

v �
R v
v
f(x)k(x)dx

f(v)k(v)
= v �

R v
v
f(x)( + �x)dx

f(v)k(v)

= v � F (v)

f(v)k(v)
� �

R v
v
xf(x)dx

f(v)k(v)

= v �  � �
(
v �

R v
v
f(x)k(x)dx

f(v)k(v)

)
;

where the expression in the curly brackets comes from the identity (34). Simplifying, we have

v �
R v
v
f(x)k(x)dx

f(v)k(v)
=
v � 
1 + �

:

We have proved (35).

The three equations in Proposition 4 are now exactly those that de�ne the �rst best in (3), (4), and (5).

Equilibrium qualities and consumer allocation must be �rst best. �

We also present the following relationship between the linear reverse hazard rate and the private �rm�s

marginal revenue.

Remark 3 When Firm 2 sells to low-valuation consumers, its marginal revenue is linear in consumer

valuation if and only if k(v) is linear.

Proof of Remark 3: When Firm 2 sells to consumers with valuations below v at price p2, its revenue

is F (v)p2, where v =
p1 � p2
q1 � q2

. If we express p2 as a function of v, we have p2(v) = p1 � v(q1 � q2). The

marginal revenue is the derivative of revenue with respect to the �rm�s quantity, F (v):

dF (v)p2(v)
dF (v)

= p2(v) + F (v)
dp2(v)
dF (v)

= p2(v) + F (v)
dp2(v)=dv
dF (v)=dv

= p2(v) +
F (v)

f(v)

dp2(v)
dv

= p2(v)� k(v)(q1 � q2):

Because p2(v) is linear in v, marginal revenue is linear in v if and only if the reverse hazard rate k(v) is

linear.�
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The linear reverse hazard rate in Proposition 5 may look similar to the earlier condition for the �rst best

in Proposition 2, but in fact, hazard rate and the reverse hazard rate can behave rather di¤erently. For

example, the exponential distribution has a constant hazard rate (see Remark 2), but the reverse hazard

rate is nonlinear.8 As another example, a �triangular�distribution has a linear reverse hazard rate, but its

hazard rate is nonlinear (see Example 1 below). We present all distributions that have linear reverse rates

in the following.

Remark 4 Suppose that k(x) =  + �x. Then � > 0, and f(x) =
�
( + �x)1��

( + �v)

� 1
�

with  + �v = 0. For the

uniform distribution,  = �v and � = 1.

Proof of Remark 4: De�ne y � F , so y0 = f . we have k(x) =  + �x equivalent to
y0

y
=

1

 + �x
.

First, suppose that � = 0, then
y0

y
=
1


, or dln(y) =

dx

. Hence, ln(y) =

x


+ B, some constant B, so

y = exp(
x


+ B). We require F (v) = exp(

v


+ B) = 0, but this is impossible since v > 0. We conclude that

� > 0.

Second,
y0

y
=

1

 + �x
, we have dln(y) =

1

�

d( + �x)
( + �x)

. Therefore, ln(y) =
1

�
ln( + �x) + B, some B, or

F = y = A( + �x)

1

� , some A. Because F is a distribution function, we require F (v) = 0 and F (v) = 1.

These requirements are  + �v = 0 and A( + �v)
1
� = 1. We obtain the expression for f in the Remark by

di¤erentiation. �

For the uniform distribution, both hazard and reverse hazard rates are linear, but this is not the only

one. The following characterizes those distributions whose hazard and reverse hazard rates are both linear.

Remark 5 Finally, if h(v) = � � �v and k(v) =  + �v for the same distribution, we have f(v) =

[�(v � v) + �(v � v]�1 and F (v) = �(v � v) [�(v � v) + �(v � v]�1.

Proof of Remark 5: Suppose we have F = 1 � (� � �v)f and F = ( + �v)f . We use these two

equations to solve for f , and obtain f = [� +  + (� � �)v]�1. Then we substitute � by �v and  by ��v,

and simplify f to the expression of in the Remark. Finally, we obtain F in the Remark by substituting the

8Suppose that x has the exponential density
1

�
exp(�x

�
) on R+, � > 0, then h(v) = �, and k(v) = �[exp(

v

�
)� 1].
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solution for f in either of the two equations. �

When the equilibrium is not �rst best, the distortion in equilibria with higher public qualities exhibits

the same pattern as in equilibria with lower public qualities: Proposition 3 holds verbatim for the class of

high-public-quality equilibria. (The proof parallels that for Proposition, and is omitted.9) Either both �rms

simultaneously produce qualities higher than �rst best, or both simultaneously produce qualities lower.

4.3 Examples and comparison between equilibrium and �rst-best qualities

We now present three sets of examples to illustrate the di¤erent types of equilibria. All examples use

the same quadratic cost function c = 1
2q
2, but di¤erent distributions. The Mathematica programs for the

computations are collected in the Appendix.

First two examples illustrate Proposition 5 and consider distributions for which either the hazard rate

or the reverse hazard rate is linear. The last four examples consider distributions for which neither the

hazard nor the reverse hazard rates are linear and therefore represent the equilibrium outcomes in which the

qualities can be higher or lower than the �rst best.

Example 1 Two triangular distributions: f(v) = 2v and its reverse f(v) = 2(1� v), for v 2 [0; 1].

In the �rst triangular distribution, we have :

f(v) = 2v F (v) = v2

h(v) =
1� v2
2v

k(v) =
v

2
;

so the hazard rate is not linear, but the reverse hazard rate is. Proposition 5 says that when the public

�rm�s quality is higher than the private �rm�s, equilibrium qualities are �rst best, but this may not be true

9The proof of Proposition 3 can just be repeated here. The only di¤erence is that the cross partial derivative
of Firm 1�s objective function now becomes �[bv � c0(q1)]@bv=@q2. This is positive because now in an equilibriumbv < c0(q1) whereas @bv=@q2 remains positive.
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when the public �rm�s quality is lower. The following presents the �rst best and the equilibria:

Welfare

First best q�l = 0:4102 q�h = 0:8240 v� = 0:6180 0:2423

Low public quality bq1 = 0:3849 bq2 = 0:7698 bv = 0:5773 0:2416

High public quality bq1 = q�h bq2 = q�l bv = v� 0:2423

When the public Firm 1 chooses a low quality, equilibrium qualities are all below the �rst best, and there is

a small welfare loss.

In the second triangular distribution, we have

f(v) = 2� 2v F (v) = 2v � v2

h(v) =
1� v
2

k(v) =
2v � v2
2(1� v) ;

so the hazard rate is linear but the reverse hazard rate is not. Equilibrium qualities are �rst best when the

public �rm chooses a low quality (Proposition 2). The following presents the �rst best and equilibria:

Welfare

First best q�l = 0:1760 q�h = 0:5880 v� = 0:3820 0:0756

Low public quality bq1 = q�l bq2 = q�h bv = v� 0:0756

High public quality bq1 = 0:6151 bq2 = 0:2302 bv = 0:4227 0:0749

In this example, when the public Firm 1 chooses a high quality, equilibrium qualities are all above the �rst

best.

Example 2 Two exponential distributions: f(v) =
[exp (�v=�)]=�
1� exp (�v=�) and its reverse f(v) =

[exp (�(v � v)=�)]=�
1� exp (�v=�) ,

for � > 0, and v 2 [0; v].

In the �rst exponential, we have

f(v) =
[exp (�v=�)]=�
1� exp (�v=�) F (v) =

1� exp (�v=�)
1� exp (�v=�)

h(v) = � [1� exp (�(v � v)=�)] k(v) = � [exp (v=�)� 1] ;

so neither the harzard rate nor the reverse hazard rate are linear. We have computed the �rst best and
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equilibria for � = 20 and v = 100:

Welfare

First best q�l = 11:1172 q�h = 46:9151 v� = 29:0162 299:857

Low public quality bq1 = 11:4546 bq2 = 49:0791 bv = 30:2668 299:617

High public quality bq1 = 61:4085 bq2 = 28:9712 bv = 45:1898 298:215

In both equilibria, �rms�qualities are higher than the �rst best. Moreover, the equilibrium with the public

�rm producing a lower quality has a higher equilibrium welfare.

In the second exponential distribution, we have

f(v) =
[exp (�(v � v)=�)]=�
1� exp (�v=�) F (v) =

exp (�(v � v)=�)� exp (�v=�)
1� exp (�v=�)

h(v) = � [exp ((v � v)=�)� 1] k(v) = � [1� exp(v=�)]

Again, neither the hazard rate nor the reverse hazard rate are linear. We use the same values of � and v,

and compute the �rst best and equilibria:

Welfare

First best q�l = 53:0849 q�h = 88:8828 v� = 70:9838 3367:69

Low public quality bq1 = 38:5915 bq2 = 71:0288 bv = 54:8102 3259:67

High public quality bq1 = 88:5454 bq2 = 50:9209 bv = 69:7332 3324:81

In both equilibria, �rms�qualities are lower than the �rst best. However, the equilibrium in which the public

�rm produces a higher quality yields a higher welfare.

Example 3 A Beta distribution: f(v) =
v(��1)(1� v)(��1)Z 1

0

x(��1)(1� x)(��1)dx
, for �; � > 0, and v 2 [0; 1].

The Beta distribution with parameters � and � (as in the above expression) constitutes a big class. For

some values of � and �, its hazard or reverse hazard rates are linear (for example a Beta distribution with

� = � = 1 is the uniform distribution). We have computed the equilibria two di¤erent parameters: � = 5,

� = 2, and � = 2, � = 5: The densities are illustrated in the following diagram,
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Figure 2: Beta densities when parameters are � = 5, � = 2 (solid) and � = 2, � = 5 (dashed).

For � = 5 and � = 2; we have

f(v) = 30v4(1� v) F (v) = 6v5 � 5v6

h(v) =
1� 5v5
30v4

k(v) =
6v � 5v2
30(1� v)

and the hazard and reverse hazard rates are not linear. The �rst best and equilibria are as follows:

Welfare

First best q�l = 0:5476 q�h = 0:8182 v� = 0:6829 0:2638

Low public quality bq1 = 0:5006 bq2 = 0:7386 bv = 0:6196 0:2623

High public quality bq1 = 0:8258 bq2 = 0:5730 bv = 0:6994 0:2637

Equilibrium qualities are not �rst best, but now the deviations from the �rst best are di¤erent from the

examples above. If the public �rm produces a lower quality than the private �rm, both �rms produce

equilibrium qualities below the �rst best. If the public �rm produces a higher quality, then both �rms

produce equilibrium qualities above the �rst best. The equilibrium welfare when the public �rm produces

high quality is higher.

For � = 2 and � = 5, we have

f(v) = 30v(1� v)4 F (v) = 15v2 � 40v3 + 45v4 � 24v5 + 5v6

h(v) =
1

30

�
1 + 4v � 5v2

v

�
k(v) =

15v2 � 40v3 + 45v4 � 24v5 + 5v6

30 (1� v)4 v

and again the hazard and reverse hazard rates are not linear. The �rst best and equilibria are as follows:

32



Welfare

First best q�l = 0:1818 q�h = 0:4524 v� = 0:3171 0:04948

Low public quality bq1 = 0:1742 bq2 = 0:42703 bv = 0:3006 0:04941

High public quality bq1 = 0:4995 bq2 = 0:2615 bv = 0:3805 0:0480

Also in this beta example, the equilibrium qualities are not �rst best. If the public �rm produces a lower

quality than the private �rm, both �rms produce equilibrium qualities below the �rst best. If the public

�rm produces a higher quality, then both �rms produce equilibrium qualities above the �rst best. However,

now the equilibrium welfare when the public �rm produces low quality is higher than the equilibrium welfare

when public �rm producing high quality.

5 Policies and robustness

5.1 Competition and regulatory policies

The analysis in the previous two sections points to various policy implications. The regulation literature

has commonly adopted a mechanism-design approach. In our model, this would take the form of a regu-

lator �rst committing to the quality and price of the product of a public �rm, and then the private �rm

reacts. Instead, we use a conventional simultaneous-move, quality-price competition model. In fact, the

commitment-Stackelberg model, as we will argue, adds few conceptual advantages.

First, Propositions 2 and 5 present conditions for the �rst best (linear hazard and reverse hazard rates).

These propositions have a direct implication for competition policy. Suppose that the market initially consists

of private duopolists (see also Section 6 ). If a regulator would like to improve quality e¢ ciency, taking over

a private �rm and making its objective to social surplus maximizing may be all it takes. Propositions 2 and

5 also indicate whether a public �rm should take over a �rm producing a low quality or a high quality.

Second, equilibrium qualities are �rst best in the simultaneous-move games if and only if they are �rst best

in the Stackelberg game (when the public �rm can commit to quality or price). The reason is this. Suppose

that Stackelberg equilibrium qualities are �rst best. If public �rm chooses the (�rst-best) low quality, the

private �rm must choose the (�rst-best) high quality as a best response. Because the public �rm�s payo¤ is
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social surplus, the (�rst-best) low quality is a best response against the (�rst-best) high quality, so the �rst

best is an equilibrium in the simultaneous-move game. Improvement due to commitment is inadequate for

the �rst best.

Proposition 3 implies that the improvement in welfare from a predetermined public quality must come

from the public �rm choosing a quality closer to the �rst best. For example, if in an equilibrium, qualities are

lower than the �rst best (as in the reverse truncated exponential distribution case in Example 2), a higher

public quality leads to a higher best response by the private �rm, so both qualities will become closer to the

�rst best.

5.2 General objective for the public �rm and subsidies

So far our focus has been on quality e¢ ciency. The public �rm�s objective function has been social welfare, so

prices are transfers between consumers and �rms that do not a¤ect social welfare. A more general objective

function for a public �rm can be a weighted sum of consumer surplus, and pro�ts, also a common assumption

in the literature. In this case, we can rewrite Firm 1�s objective function as

�

(Z ev
v

[xq1 � p1]f(x)dx+
Z v

ev [xq2 � p2)]f(x)dx
)
+(1��) fF (ev)[p1 � c(q1)] + ([1� F (ev)][p2 � c(q2)]g . (36)

Here consumers are paying for the lower quality q1 at price p1, and the higher quality q2 at price p2; the

weight on consumer surplus is � >
1

2
, whereas the weight on pro�ts is 1� �, so pro�ts are unattractive from

a social perspective. We can rewrite (36) as

�

(Z ev
v

[xq1 � c(q1)]f(x)dx+
Z v

ev [xq2 � c(q2)]f(x)dx
)
� (2��1) fF (ev)[p1 � c(q1)] + ([1� F (ev)][p2 � c(q2)]g ;

which always decreases in Firm 1�s price. If we impose a balanced-budget constraint, then the public �rm

must set price p1 at marginal cost c(q1) to break even.

In this speci�cation, Lemmas 1 and 4 would not apply. Price di¤erentials no longer equal cost di¤erentials.

In fact, in any price equilibrium, we have p2�p1 > c(q2)� c(q1) due to Firm 2�s pro�t-maximizing price-cost

margin: p2 > c(q2). The incremental price for purchasing the good at a higher quality exceeds the true cost

di¤erence, so fewer consumers will use the private �rm. The �rst best cannot be an equilibrium because

consumers will never bear the full incremental cost between high and low qualities.
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The concern for distribution naturally suggests a subsidy policy. Consider an equilibrium in which Firm

1 chooses a low quality and Firm 2 chooses a higher quality. Each �rm�s price is given by Lemma 1, so each

�rm earns a pro�t. Firm 1�s pro�t can be set aside for distribution. Firm 2�s pro�t can be taxed as a lump

sum. The total collection now can be given as a subsidy to consumers who purchase from either the public

or the private �rms. This subsidy policy is often implemented as a voucher or tax credit. In cases where

conditions in Propositions 2 or 5 are satis�ed, this would allow the �rst best to become an equilibrium.

From a normative perspective, a government instructing an administrator of a public �rm to adopt a goal

of social-surplus maximization may allow the implementation of e¢ cient qualities.

5.3 Di¤erent cost functions for public and private �rms

We now let �rms have di¤erent cost functions. Let c1(q) and c2(q) be Firm 1�s and Firm 2�s unit cost at

product quality q, and these functions are increasing and convex. Often the public �rm is assumed to be less

e¢ cient, so we can assume c1(q) > c2(q) and c01(q) > c
0
2(q), so both unit and marginal unit costs are higher

at the public �rm. Our formal model, however, does not require this particular comparative advantage.

The analysis in Sections 3 and 4 remains exactly the same. Simply replace every c(q1) by c1(q1) and

every c(q2) by c2(q2). In the price subgame, the equilibrium still has price di¤erence equal to cost di¤erence:

p2 � p1 = c2(q2) � c1(q1). The equilibrium qualities continue to satisfy their respective conditions after

�rst-order conditions are simpli�ed.

Propositions 2 and 5 have to be adjusted. This is because the �rst best in Subsection 2.3 has to be

rede�ned. There are now two ways to assign technology. In one, low quality for low-valuation consumers

incurs the cost c1(q), and high quality incurs the cost c2(q) . In the other, it is the opposite. One of these

technology assignments will yield a higher social welfare. However, our abstract model does not allow us to

determine which technology should be used for low quality.10

10As an illustration, let c1(q) = (1+s)c(q), and c2(q) = (1�s)c(q). The social welfare from using c1 to produce the
low quality is

R v
v
[xq` � (1 + s)c(q`)]f(x)dx+

R v
v
[xqh � (1� s)c(qh)]f(x)dx. At s = 0, this is the model in Subsection

2.1. From the Envelope Theorem, the derivative of the maximized welfare with respect to s evaluated at s = 0 is the
partial derivative of welfare with respect to s: �c(q�` )F (v�) + c(q�h)[1�F (v�)]. Properties of q�` , q�h, and v� from (3),
(4), and (5) do not indicate if this derivative is positive or negative.
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Suppose that the �rst best has the low quality produced by the public �rm. Equilibriua in Section 4

can never achieve the �rst best because the low quality is produced by the private �rm. Hence, the last

statement in Proposition 5 has to be dropped. The same reasoning applies to equilibria in Section 3 and

Proposition 2 when the low quality is produced by the private �rm in the �rst best. These quali�cations do

not seem to pose any conceptual problem. Misallocation is due to a kind of miscoordination on equilibria.

Our policy implication in Subsection 5.1 is actually strengthened. If the government takes over a private

�rm, its decision should be guided by both strategic and technological considerations. It may decide to take

over a �rm with cost c1 and produces a low quality because that is what is called for by the �rst best, and

because of the potential for quality e¢ ciency in the mixed oligopoly.

5.4 Consumer outside option and many private �rms

Formally, the case of the consumer having an outside option is modeled by a �ctitious �rm o¤ering a

product at zero quality and zero price. The �rst best may assign null consumption to some consumers

whose valuations of quality are below a threshold. The full-market coverage assumption is commonly used

in the extant literature of product di¤erentiation (either horizontal or vertical). The assumption simpli�es

the strategic interactions. A price set by the public �rm may a¤ect two margins: whether consumer should

choose between the low-quality good and the high-quality good, as well as whether a consumer should choose

between the low-quality good and non-consumption.

It is fairly obvious that the one instrument cannot handle two margins su¢ ciently. E¢ cient allocation

requires that all consumers face price di¤erentials that correspond to cost di¤erentials. Hence, Firm 1

produces a low quality q1 and Firm 2 produces a high quality q2. Prices in Firms 1 and 2 induce e¢ cient

consumer choices between Firms 1 and 2 when p2 � p1 = c(q2) � c(q1). When p2 > c(q2) due to Firm 2�s

market power, p1 > c (q1). However, to induce consumers to make e¢ cient nonconsumption decisions, p1

should be set at c(q1).

The case of many private �rms is formally very similar. When a public �rm has to interact with, say, two

private �rms, it does not have enough instruments to induce e¢ cient decisions. For example, there are three

�rms, and they produce low, medium, and high qualities. Suppose that the medium quality is produced by
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a public �rm, whereas the other qualities are produced by private �rms. Private �rms exploit their market

power, but the public �rm cannot simultaneously use one price to induce two e¢ cient margins, so consumers

can choose between medium and low qualities e¢ ciently, and at the same time choose between high and

medium qualities e¢ ciently.

The lack of tractable analysis seems pervasive in the literature of horizontal and vertical di¤erentiation

with multiple �rms.

6 Private Duopoly

We now analyze a duopoly model with two private �rms under the same extensive form in Subsection 2.4.

Firm 1 now maximizes pro�t, so this is a standard model in which product di¤erentiation is used to relax

price competition.

6.1 Subgame-perfect equilibrium prices

Consider a subgame (q1; q2) in Stage 2. Without loss of generality, let q1 < q2. Firm 1�s pro�t is now

F (ev)[p1 � c(q1)], where the demand ev is given by (6). Given Firm 2�s price p2, Firm 1 chooses p1 to

maximize its pro�t, and the �rst-order condition is

F (ev)� f(ev)[p1 � c(q1)]
q2 � q1

= 0:

We simplify this �rst-order condition, and combine the �rst-order condition of Firm 2�s pro�t maximization

(which is derived in the proof of Lemma 1) to obtain the following Lemma (whose proof is omitted). (We

use the same notation as in the previous sections when Firm 1 is the public �rm, but this should not create

any confusion.)

Lemma 7 In subgames (q1; q2) with q1 < q2, equilibrium prices (bp1; bp2) are given by the following:
bp1 � c(q1) = (q2 � q1)F (bv)

f(bv) � (q2 � q1)k(bv); (37)

bp2 � c(q2) = (q2 � q1)1� F (bv)
f(bv) � (q2 � q1)h(bv) (38)

where bv = bp2 � bp1
q2 � q1

:
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Lemma 7 presents the usual price markups. The key observation is that the �rst-best allocation of

consumers across the two �rms is generally not an equilibrium. We substract (37) from (38) to obtain

bv = p2 � p1
q2 � q1

=
c(q2)� c(q1)
q2 � q1

+ h(bv)� k(bv); (39)

which says that the price di¤erence between the two �rms is di¤erent from their cost di¤erence. Compared

with either Lemma 1 or Lemma 4, for a given pair of qualities, duopoly prices may be higher or lower than

prices when Firm 1 aims to maximize social surplus.

We write equilibrium prices in Stage 2 as bp(q1; q2) and bp(q1; q2). The equilibrium marginal consumer

bv(q1; q2) is implicitly de�ned by (39). Pro�ts of Firm 1 and Firm 2 are, respectively, F (bv(q1; q2))[bp1(q1; q2)�
c(q1)] and [1 � F (bv(q1; q2))][bp2(q1; q2) � c(q2)]. In a subgame-perfect equilibrium, each �rm chooses its

quality in Stage 1 to maximize its pro�t, given the rival �rm�s quality and the continuation equilibrium

prices bp1(q1; q2) and bp2(q1; q2). The following properties of equilibrium prices will be used for the derivation

of the equilibrium qualities.

Lemma 8 From the de�nitions of (bp1; bp2) in (37) and (38), and the marginal consumer bv(q1; q2) implicitly
de�ned by (39) we have bv increasing in both q1 and q2, and

@bv
@q1

=

c(q2)� c(q1)
q2 � q1

� c0(q1)

(q2 � q1)[1� h0(bv) + k0(bv)] > 0 and
@bv
@q2

=

c0(q2)�
c(q2)� c(q1)
q2 � q1

(q2 � q1)[1� h0(bv) + k0(bv)] > 0:
Furthermore, Firm 1�s equilibrium price increases with Firm 2�s quality, but Firm 2�s equilibrium price

decreases with Firm 1�s quality:

@bp1
@q2

= k(bv) + (q2 � q1)k0(bv) @bv
@q2

> 0 and
@bp2
@q1

= �h(bv) + (q2 � q1)h0(bv) @bv
@q1

< 0:

Proof of Lemma 8: In subgame (q1; q2) the equilibrium indi¤erent consumer in Stage 2 is given by

(39), which is rewritten as

[bv � h(bv) + k(bv)] = c(q2)� c(q1)
q2 � q1

.

Now we use this to di¤erentiate bv with respect to the qualities to obtain:
@bv
@q1

[1� h0(bv) + k0(bv)] =
1

q2 � q1

�
c(q2)� c(q1)
q2 � q1

� c0(q1)
�
> 0

@bv
@q2

[1� h0(bv) + k0(bv)] =
1

q2 � q1

�
c0(q2)�

c(q2)� c(q1)
q2 � q1

�
> 0;
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which simplify to the �rst two expressions in the Lemma, and where the inequalites follow from h0 < 0,

k0 > 0, and q1 < q2.

Next, the derivative of bp1 in (37) with respect to q2 and the derivative of bp2 in (38) with respect to q1 in
the Lemma are obtained by straightforward computation, and we have kept track of bv(q1; q2) being implicitly
de�ned by (39). Again, the inequalities follow from h0 < 0 k0 > 0, and the properties of bv derived above. �
Lemma 8 reports classical tendency of stronger intensity of price competition when products are more

similar. If Firm 1 raises its quality, then the lower quality q1 gets closer to the higher quality q2. As a

consequence, Firm 2 will reduce its price in Stage 2. Likewise, if Firm 2 raises its quality, then the higher

quality q2 gets farther away from the lower quality q1, so Firm 1 now raises its price. Our characterization in

Lemma 8, however, uses no speci�c assumptions such as the uniform distribution on quality valuations and

quadratic cost functions. Lemma 8 also contrasts with Lemmas 2 and 5. When Firm 1 aims to maximize

social surplus, its price responds to quality di¤erences solely to ensure e¢ cient allocation of consumers.11

6.2 Subgame-perfect equilibrium qualities

We characterize equilibrium qualities. Pro�ts of Firms 1 and 2 are, respectively, F (bv(q1; q2))[bp1(q1; q2)�c(q1)]
and [1 � F (bv(q1; q2))][bp2(q1; q2) � c(q2)], where bp1, bp2, and bv are subgame-perfect equilibrium prices and

marginal consumer in Lemma 7. Equilibrium qualities bq1 and bq2 are mutual best responses:
bq1 = argmax

q1

F (bv(q1; bq2))[bp1(q1; bq2)� c(q1)] with bv(q1; bq2) = bp2(q1; bq2)� bp1(q1; bq2)bq2 � q1
bq2 = argmax

q2

[1� F (bv(bq1; q2))][bp2(bq1; q2)� c(q2)] with bv(bq1; q2) = bp2(bq1; q2)� bp1(bq1; q2)
q2 � bq1 :

As in the earlier subsections on equilibrium qualities when Firm 1 is a public �rm, we substitute for bp1
by bv and rewrite Firm 1�s pro�t function as

F (bv(q1; bq2))[bp2(q1; bq2)� bv(q1; bq2)(bq2 � q1)� c(q1)]:
Changing q1 changes the marginal consumer bv, Firm 2�s price bp2, and the surplus for the indi¤erent consumer
bvq1 � c(q1). Now the Envelope Theorem applies, and the e¤ect of q1 on pro�t through bv is second order.
11The signs of (11) in Lemma 2 and (28) in Lemma 5 are ambiguous in general.
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The �rst-order derivative of Firm 1�s pro�t with respect to q1 is

@bp2(q1; bq2)
@q1

+ bv � c0(q1), (40)

where we have omited the factor F (bv(q1; bq2)) (and the partial derivative with respect to bv).
Similarly, for Firm 2, we substitute bp2 by bv, and rewrite its pro�t as

[1� F (bv(bq1; q2))][bp1(bq1; q2) + bv(bq1; q2)(q2 � bq1)� c(q2)]:
The e¤ect of q2 on pro�t through its e¤ect on bv is zero by the Envelope Theorem. The derivative of Firm
2�s pro�t with respect to q2 is

@bp1(bq1; q2)
@q2

+ bv � c0(q2); (41)

where again we have omitted the factor 1� F . We now state our main result for the duopoly model.

Proposition 6 The equilibrium qualities and market share solve the three equations in q1, q2, and v:

v = c0(q1) + h(v)� h0(v)

2664
c(q2)� c(q1)
q2 � q1

� c0(q1)

1� h0(v) + k0(v)

3775

v = c0(q2)� k(v)� k0(v)

2664c
0(q2)�

c(q2)� c(q1)
q2 � q1

1� h0(v) + k0(v)

3775
v =

c(q2)� c(q1)
q2 � q1

+ h(v)� k(v):

Proof of Proposition 6: We begin with the derivatives of �rms pro�ts in (40) and (41), and set them

to zero to obtain �rst-order conditions. Equilibrium qualities bq1 and bq2 are best responses, so must satisfy
the �rst order conditions simultaneously:

@bp2(bq1; bq2)
@q1

+ bv � c0(bq1) = 0 (42)

@bp1(bq1; bq2)
@q2

+ bv � c0(bq2) = 0; (43)

The continuation equilibrium in prices must also satisfy Lemma 7, so (39) must also be satis�ed at qualities

bq1 and bq2:
bv = c(bq2)� c(bq1)bq2 � bq1 + h(bv)� k(bv);
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which is the third equation in the Proposition.

Next, we use the expressions for
@bp2(bq1; bq2)

@q1
and

@bp1(bq1; bq2)
@q2

in Lemma 8. After substitution, the �rst-

order conditions (42) and (43) become

bv = c0(bq1) + h(bv)� (q2 � q1)h0(bv) @bv
@q1bv = c0(bq2)� k(bv)� (q2 � q1)k0(bv) @bv
@q2

:

Then we apply the expression for
@bv
@q1

and
@bv
@q2

in Lemma 8 to the above, simplify, and obtain the �rst two

equations in the Proposition. �

Proposition 6 gives a full characterization of equilibrium qualities. It con�rms the product di¤erentiation

result: Firm 1 chooses a quality lower than one that is optimal for the indi¤erent consumer, but Firm 2

does the opposite. From the �rst two equations in Proposition 6, we have c(bq1) < bv < c0(q2). Lemma 7

already says that for any given �rm qualities, the allocation of consumers across the two �rms is not �rst

best. Proposition 6 now says that the equilibrium qualities have very little to do with the �rst best. In fact,

for all the examples we have presented above, equilibrium qualities are not �rst best.

An example of �maximal�product di¤erentiation can illustrate the ine¢ ciency. This can be illustrated

by the typical uniform-quadratic example. Let f(v) = 1=10 and F (v) = 1=10(v � 10), for v 2 [10; 20], and

c(q) = 1
2q
2. The �rst best has q�l = 12

1
2 , q

�
h = 17

1
2 , and v

� = 15: The equilibrium qualities and the market

shares are given by the solution of the three equations in Proposition 6. The equilibrium qualities are bq1 = 7 12
and bq2 = 2212 , and the equilibrium indi¤erent consumer is bv = 15.
7 Conclusion

In this paper we have studied how distribution of consumer�s valuation for quality a¤ects price and quality

competition in mixed oligopoly. We have used the conventional a conventional simultaneous-move, quality-

price competition model of product di¤erentiation but assume one �rm to maximize social surplus and one

pro�ts. We have analyzed a general model and use general distribution for consumer�s valuations and general

cost functions for �rms.
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We have provided a complete characterization of equilibria and show, that there are multiple equilibria.

In one class, the public o¤ered low quality and the private o¤ered high quality. In other class, the opposite

was true.

The assumption of consumer�s valuation turned out to have several implications. In contrast to private

duopoly, in mixed oligopoly the private �rm�s equilibrium quality choice may coincide with the �rst-best

quality. Unlike previous papers on mixed oligopoly, we have derived the (su¢ cient) conditions for this �rst-

best equilibria by relating conditional means of a distribution to the hazard rate and reverse hazard rate.

First, in the class of equilibria where the public �rm produces at a low quality, equilibrium qualities were

the �rst best when the hazard rate is linear. Then, in the class of equilibria where the public �rm produces

at a high quality, equilibrium qualities were the �rst best when the reverse hazard rate is linear. In fact, we

have derived all distributions that possessed the linearity properties.

These results were important from the competition policy point of view. If the �rst best is an equilibrium

in the simultaneous move game, the commitment-Stackelberg model adds few conceptual advantages. More

importantly, if the �rst best is not an equilibrium in the simultaneous move game, even if public �rm commits

to qualities and private moves second is not su¢ cient regulatory tool to implement �rst best. Another

important policy issue comes from the fact that the equilibria in our model were not payo¤-equivalent. Then

a public policy of regulator taking over either high or low-quality-�rm would yield di¤erent social surplus.

We have extended our model and done some robustness checks for our results in various ways. In case of

subsidies, are results still apply. We have also analyzed a game where public �rm maximizes a more general

objective function than social surplus and found the �rst best is never an equilibrium. In case of multiple

�rms and zero outside option it seems that the public �rm does not have enough instruments to implement

the e¢ cient allocation. We have also studied a game where �rms had di¤erent technologies. This actually

strengthened our policy suggestions, in which the decision of the regulator should be guided by both strategic

and technological considerations.
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