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Public Perception of Financial Market Participants

I Buys something he has no intention of consuming and sells
something he does not or cannot produce

I Profits from buying low and selling high over time and space

I Can also sell first and buy back later–Short sales

I Financial participants are often called “arbitrageurs” or
“speculators”, because they engage in “risky arbitrage”

I Financial participants take money away from producers that
make product and consumers that purchase product

I Note that in wholesale electricity markets there are few
riskless profit opportunities for financial participants
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Traders Profit as Power Grid Is Overworked
By JULIE CRESWELL and ROBERT GEBELOFF AUG. 14, 2014

PORT JEFFERSON, N.Y. — By 10 a.m. the heat was closing in on the North Shore 

of Long Island. But 300 miles down the seaboard, at an obscure investment 

company near Washington, the forecast pointed to something else: profit.

As the temperatures climbed toward the 90s here and air-conditioners turned 

on, the electric grid struggled to meet the demand. By midafternoon, the wholesale 

price of electricity had jumped nearly 550 percent.

What no one here knew that day, May 30, 2013, was that the investment 

company, DC Energy, was reaping rewards from the swelter. Within 48 hours the 

firm, based in Vienna, Va., had made more than $1.5 million by cashing in on so-

called congestion contracts, complex financial instruments that gain value when 

the grid becomes overburdened, according to an analysis of trading data by The 

New York Times.

Those profits are a small fraction of the fortune that traders at DC Energy and 

elsewhere have pocketed because of maneuvers involving the nation’s congested 

grid. Over the last decade, DC Energy has made about $180 million in New York 

State alone, The Times found.

Across the nation, investment funds and major banks are wagering billions on 

similar trades using computer algorithms and teams of Ph.D.s, as they chase 

profits in an arcane arena that rarely attracts attention.

Congestion occurs when demand for electricity outstrips the immediate 

supply, sending prices higher as the grid strains to deliver power from distant and 

often more expensive locations to meet the demand. To help power companies and 

others offset the higher costs, regional grid operators, which manage the nation’s 

transmission lines and wholesale power markets, auction off congestion contracts, 

derivatives linked to thousands of locations on the grid. When electricity prices 
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What Did Financial Participants Do to Deserve This?

I Financial participants, generation unit owners, retailers are all
attempting to maximize expected profits by taking any legal
action that increases profits

I Desire of all market participants, including financial
participants, to earn higher profits is like gravity

I Cannot deny the existence of laws of gravity, but must respect
these laws in the design of buildings, aircrafts, etc.

I Energy market designers/regulators must respect “laws of
economics”

I If a profitable action exists, it will be exploited as long as it
remains profitable

I Regulator cannot deny the existence of this “law” in the
design of a wholesale electricity market



Implications for Market Design and Regulatory Oversight

I Many undesirable market outcomes can be traced to a failure
to respect laws of economics, not nefarious behavior by some
market participants

I In poorly designed market, financial participants exploiting
profitable opportunities can significantly increase costs to
consumers

I in well-designed market, financial participants exploiting
profitable opportunities can reduce cost of supplying
consumers and increase system reliability

I In both instances, financial participants are behaving
according to the “laws of economics” with no intent to harm
market efficiency

I This talk will present one example



Example of Efficiency Benefits of Financial Participants

I All US wholesale electricity markets are multi-settlement,
locational marginal pricing (LMP) markets

I Day-ahead buy or sell firm financial commitments to deliver or
consume electricity each hour of the following day

I In real-time, buy or sell energy every 5-minutes
I Both day-ahead and real-time markets set prices at thousands

of locations or nodes in the control area

I On February 1, 2011, California ISO introduced explicit virtual
bidding or convergence bidding, a purely financial product for
trading differences between day-ahead and real-time prices at
a location

I Discuss empirical evidence from Jha and Wolak (2014) that
introduction of this purely financial product improved
efficiency of market and increased system reliability



Background on Trading in Forward and Spot in
Commodity Markets

I In markets with risk neutral traders, we expect that
Et [p

S
t+k − pFt,t+k ] = 0, where

I pSt+k = spot price at time t+k
I pFt,t+k = forward price at time t for delivery at time t + k
I Et(.) = expectation conditional on information available at

time t

I All commodity markets have non-trivial trading costs that
invalidate this relationship. Profitable trading implies that
|Et [p

S
t+k,t+k − pFt,t+k ]| > c , where c = round-trip cost

associated with trading price differences across the two
markets

I Develop test of null hypothesis that a profitable trading
strategy exists in financial markets with transactions costs



Trading and Forward and Spot in Commodity Markets

I Assess impact of introduction of virtual bidding on c
(“implicit trading cost” described above), variance of
real-time prices, variance of difference between day-ahead and
real-time prices, autocorrelation of daily price difference vector

I Assess impact of introduction of virtual bidding on efficiency
of market outcomes in wholesale electricity market and
greenhouse gas emissions intensity of electricity sector

I Background on operation of US wholesale electricity markets
necessary to explain why expected profit-maximizing actions of
financial participants using explicit virtual bidding (EVB) has
potential to improve efficiency of wholesale market outcomes



Background on US Wholesale Electricity Markets–LMP

I In day-ahead market, ISO uses generation unit-specific offer
curves to solve for generation unit-level output levels for all 24
hours of following day

I Output levels found that minimize “as-bid cost” to serve
demand at all locations in transmission network subject to
expected real-time transmission network configuration and
other operating constraints

I Locational marginal price (LMP) at a node is increase in
optimized value of this objective function associated with
increasing demand at that node by 1 MWh.

I Resulting outputs levels and LMPs are firm financial forward
market commitments.



Background on US Wholesale Electricity Markets–LMP

I Between day-ahead and real-time market, suppliers can revise
their offer curves

I LMP process is re-run in real time to determine locational
prices and real-time output levels every 5-minutes using most
up-to-date information on transmission network and operating
constraints.

I LMPs and output levels that result from minimizing as-bid
cost to meet demand at all locations in transmission network
during 5-minute interval are also firm financial commitments

I Average of 5-minute LMPs during hour is hourly real-time
LMP.

I Hourly real-time prices are substantially more volatile than
day-ahead prices because of limited flexibility in electricity
generation units and transmission network in real-time versus
day-ahead time frame



Background on US Wholesale Electricity
Markets–Multi-Settlement

I Supplier receives revenue from day-ahead forward market sales
regardless of real-time output of its generation unit. Sell 40
MWh at a price of $25/MWh receive $1,000 for sales.

I Any deviation from day-ahead generation or load schedule is
cleared in real-time market.

I If supplier only produces 30 MWh, it must purchase 10 MWh
of day-ahead commitment from real-time market

I Same logic applies to a load-serving entity. Buy 100 MWh in
day-ahead for $40/MWh and pay $4,000 regardless of
real-time consumption.

I If load-serving entity consumes 110 MWh, must buy additional
10 MWh at real-time price.



Trading Day-Ahead and Real-Time Price Differences
before Explicit Virtual Bidding

I A supplier that thinks PDA < PRT will sell less than
anticipated real-time production in day-ahead market and sell
remaining output in real-time market

I Reduces supply in day-ahead market and increases supply in
real-time market, which causes day-ahead price to rise and
real-time price to fall

I A load-serving entity that thinks PDA > PRT will buy less
than anticipated real-time consumption in day-ahead market
and purchase remaining consumption in real-time market

I Reduces demand in day-ahead market and increases demand in
real-time market, which causes day-ahead price to fall and
real-time price to increase

I This ”implicit virtual bidding” can create significant system
reliability consequences and increase the costs of meeting
system demand



What is Explicit Virtual or Convergence Bidding?

I Virtual bids are identified as such to ISO and can be
submitted at nodal level

I Incremental (INC) virtual bid is a purely financial transaction
that is treated just like an energy offer curve in the day-ahead
market. Amount sold in day-ahead market must be purchased
in the real-time market as a price-taker

I Profit from day-ahead sale of 1 MWh INC bid is PDA − PRT

I Decremental (DEC) virtual bid is a purely financial
transactions that is treated just like an demand bid curve in
day-ahead market. Amount purchased in day-ahead market
must be sold in real-time market as a price-taker.

I Profit from accepted 1 MWh DEC bid is PRT − PDA

I All market participants can use EVB to profit from expected
price differences.



Why Should Explicit Virtual Bidding Reduce Trading Costs
and Improve Price Convergence?

I Generation unit owners have limited range of MWh over
which they can implicit virtual bid–from minimum operating
level to maximum operating level of generation unit.

I Firms can only implicitly virtual bid where own generation
units.

I Load-serving entities can only bid within range of expected
demand level.

I Load serving entities can only submit physical demand bids in
day-ahead market for their entire service area.

I ISO allocates this aggregate demand bid curve to nodes in
service territory of load-serving entity

I Prevents “implicit virtual bidding” at load nodes



Why Should Explicit Virtual Bidding Improve Market
Performance and Reduce GHG Emissions Intensity?

I If all expected nodal price differences are zero, no reason to
take costly actions to exploit them

I There are many low-variable cost, long-start units that may
not be started in day-ahead market

I If long-start units are not committed in day-ahead market they
are less likely to run in real-time

I More expensive short-start unit likely to have to operate
instead and set a higher real-time price

I Can submit a DEC virtual bid to increase day-ahead demand
and cause unit to be taken in day-ahead market

I Lower prices potentially set in both day-ahead and real-time
markets because long-start unit operates

I Conclusion–Besides reducing price differences between
day-ahead and real-time market, EVB can reduce actual cost
to serve system demand



Anticipated Benefit of Convergence Bidding in
Multi-Settlement Markets

I Reduce implicit trading cost necessary to earn profits trading
day-ahead versus real-time price differences

I Suppliers will have an incentive to schedule their expected
real-time output in day-ahead market because
E (PDA − PRT ) = 0.

I Load-serving entities have an incentive to schedule real-time
expected demand in day-ahead market



Anticipated Benefits of Convergence Bidding in
Multi-Settlement Markets

I Reduce the total operating costs of meeting demand in
real-time

I Virtual bidders that correctly anticipate that more real-time
demand or supply is needed than was scheduled in the
day-ahead market at a given location in transmission network
will profit from their virtual bids.

I Creates incentive for day-ahead market to produce least cost
mix of generation unit-level schedules to meet real-time nodal
demands which should also reduce volatility in real-time prices
and volatility of difference between day-ahead and real-time
prices

I We examine validity of these two hypotheses–improved price
convergence and market efficiency–for California wholesale
electricity market



Outline of Remainder of Talk

I Data Description

I Formulation of Hypothesis Tests for the Existence of a
Profitable Trading Strategy

I Trading Costs Implied by these Tests

I Market Performance Measures: Before and After Explicit
Virtual Bidding (EVB)

I Conclusions on Role of Purely Financial Trading



Data Overview

I Hourly prices from California’s day-ahead and real-time
markets from 4/1/2009 - 12/31/2012.

I California switched to nodal pricing market on 4/1/2009

I Present detailed empirical results at the Load Aggregation
Point (LAP) level and then summary of nodal-level results.

I There are three large load-serving entities in California:
Pacific Gas and Electric (PGE), Southern California Edison
(SCE), and San Diego Gas and Electric (SDGE). They bid
their demand in at the LAP level and pay the LAP price for
their withdrawals

I The LAP price is calculated as a nodal load-weighted average
of LMPs in each firm’s service territory.

I All generation units are paid or pay their nodal price.

I Many more nodes (about 5,000) than generation units (about
400) in California.

Summary Statistics



California’s Load-Serving Entity Territories

Sierra Pacific Power

PacifiCorp

PG&E

Mountain Utilities

Bear Valley
Electric

SDG&E

SCE
PG&E

Sierra Pacific Power

PacifiCorp

PG&E

Mountain Utilities

Bear Valley
Electric

SDG&E

SCE
PG&E

California's
 Electric Investor-Owned Utilities (IOUs)



The Location of California’s Pricing Nodes

*Disclaimer: The data and prices provided on this page are preliminary and should not be relied upon for
settlement or other purposes.
The California ISO makes no representations or warranties regarding the correctness or veracity of the data and
prices provided on this page and shall not be responsible for any parties reliance on any such data or prices.

Real-Time Dispatch [RTD] LMP Contour Map http://oasis.caiso.com/mrtu-oasis/lmp/RTM/POINTMap.html
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Average Hourly Price Differences: Before and After EVB
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Average Hourly Price Differences with 95 % C.I: PGE
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Average Hourly Price Differences with 95 % C.I: SCE
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Average Hourly Price Differences with 95 % C.I: SDGE
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Joint Null of Zero Expected Price Differences

Table: Test Statistics for Joint Test of Zero Mean Price Differences

Before EVB After EVB

PG&E 141.738 88.158
SCE 140.140 105.127
SDG&E 157.742 86.084

I The upper α = 0.05 critical value for the χ2(24) distribution
is 36.415.

I Both sets of test statistics are smaller after explicit virtual
bidding (EVB).

I Note: Non-zero trading costs could be reason for rejection of
null hypothesis of zero mean



The Trader’s Problem with Transactions Costs

I Consider a trader that has access to 24 financial assets
X (h) = P(h)RT − P(h)DA for h = 1, 2, ..., 24 with
X = (X (1),X (2), ...,X (24))′ with mean vector µ and
contemporaneous covariance matrix Λ.

I As mentioned previously, each asset is:
Buy (sell) MWhs in hour h in the day-ahead market and sell
(buy) back same number of MWhs in the real-time market.

I A profitable trading strategy exists if a trader can make a
expected profits from trading these assets, including per-unit
trading costs c

I Expected trading profits exist if a′µ− c
∑24

i=1 |ai | > 0 for
some a ∈ R24.

I Trading charge is assessed on absolute values of portfolio
weights, ai (i = 1, 2, ...24), because trader can buy or sell
day-ahead price minus real-time price, which implies the
normalization

∑24
i=1 |ai | = 1.



Test for the Existence of a Profitable Trading Strategy

I Let X be the 24 x 1 vector of estimates of elements of µ using
T days of data.

I Let a∗(µ) equal the expected profit-maximizing portfolio
weights and φ(µ) ≡ a∗(µ)‘µ, the optimized value of the
objective function for each value of µ.

I Hypothesis test is H : φ(µ) − c > 0 versus
H : φ(µ) − c ≤ 0, a profitable trading strategy exists
against alternative that it does not.



Test for the Existence of Profitable Trading Strategy

I Test of null hypothesis of the existence of a profitable trading
strategy can be re-written as:

I H : φ(µ) > c versus H : φ(µ) ≤ c .

I Problem complicated by fact that φ(µ) is not differentiable in
µ, so δ-method is not applicable. However, φ(µ) is
directionally differentiable in µ

I Fang and Santos (2014) derive a resampling procedure for
computing an estimate of the asymptotic distribution of√
T (φ(X ) − φ(µ))

I We employ a numerical derivative-based approach to
simulating this distribution developed by Hong and Li (2015)



Computing Estimate of Asymptotic Distribution of√
T (φ(X ) − φ(µ))

I Use bootstrap distribution of Zb to compute an estimate of
the distribution of φ(X ).

I Compute each bootstrap re-sample of φ(X ) as:
φ(X )b = φ(X ) + Zb/

√
T

I Use this distribution to compute two values of c :
I Smallest value of c that causes rejection of α = 0.05 test of
φ(µ) > c

I Largest value of c that causes rejective of α = 0.05 test of
φ(µ) < c .

I First value is clower and second is cupper .
I clower smallest value of trading cost that causes rejection of

null hypothesis of the existence of profitable trading strategy
I cupper is largest value of trading cost that causes rejection of

the null hypothesis that no profitable trading strategy exists



Form of Trading Strategies Considered

I We consider very simple trading strategies that require little
time or effort on the part of the trader. In this way, the
transactions costs that we capture are the most comparable to
the explicit market costs associated with trading.

I More complex trading strategies would require dedicated
worker to implement, update and execute. Salary of individual
and support staff should be included in trading costs to
determine profits

I This process is complicated by the fact that these costs are
primarily annual fixed costs

I As following analysis demonstrates, there is no empirical
evidence of exploitable autocorrelation over days in the vector
of price differences



Autocorrelation Past First Lag for Daily Price Differences
Before and After EVB

I Because day-ahead prices for following day are only known
during the afternoon of current day, there can be unexploitable
first-order autocorelation in vector of daily price differences

I Test for zero autocorrelation beyond first-order conditional on
existence of non-zero first order autocorrelation

I Let Γ(τ) = E (Xt − µ)(Xt−τ − µ)′ τ th order
autocorrelation matrix

I Test joint null hypothesis
H : Γ(2) = 0, Γ(3) = 0, ..., Γ(L) = 0

I Test H : ξ ≡ vec(Γ(2), Γ(3), ..., Γ(L)) = 0 and compute
estimate of asymptotic covariance of ξ̂ using moving blocks
bootstrap to allow for autocorrelation in Xt

I Test statistic is asymptotically distributed as chi-squared
random variable with 242 ∗ (L− 1) degrees of freedom



Multivariate Test for Autocorrelation Past First Lag for
Daily Price Differences

Table: Test Statistics for Autocorrelation (1 < L ≤ 10) in Daily Price
Differences

Before EVB After EVB

PG&E 2862.2 2767.0
SCE 2789.2 2842.6
SDG&E 3082.1 2700.7

The upper α = 0.05 critical value for the χ2(5184) for
5184 = 242 ∗ 9 distribution is 5352.6.



Zonal-Level Implied Trading Costs

Before EVB After EVB

PG&E 8.591 7.531
clower SCE 12.112 7.845

SDG&E 16.453 8.393

PG&E 14.385 11.684
cupper SCE 20.185 13.209

SDG&E 32.391 13.825



Bootstrap Distribution of φ(X ) Before and After EVB
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Tests for Changes in Implied Trading Costs Before versus
After Implementation of Explicit Virtual Bidding

I If lower 5th percentile of distribution of cpre − cpost is greater
than zero, then would reject null hypothesis that
ctruepre − ctruepost ≤ 0

I If upper 95th percentile is less than zero, then would reject
null hypothesis that ctruepre − ctruepost ≥ 0

I For SCE and SDG&E, reject null of that ctruepre − ctruepost ≤ 0
and do not reject ctruepre − ctruepost ≥ 0

I For PG&E, do not reject either null hypothesis



Bootstrap Distribution of the Difference in Implied Trading
Costs with Upper and Lower 5 percent Critical Values
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Second Moment Implications of Explicit Virtual Bidding

I Virtual bidders are expected to reduce day-ahead uncertaintly
about differences between day-ahead and real-time prices, as
well as uncertainty in real-time prices

I Formally, the hypothesis test is H : Λpre − Λpost ≥ 0, the
difference between pre-EVB convariance matrix and post-EVB
covariance matrix is a positive semi-definite matrix

I Nonlinear multivariate inequality constraints test of Wolak
(1989) with null hypothesis that all 24 eigenvalues of
Λpre − Λpost are greater than or equal to zero

I Estimate of asymptotic covariance matrix of eigenvalues of
Λ̂pre − Λ̂post using moving blocks boostrap that accounts for
potential autocorrelation in vector of daily prices



P-values associated with Volatility Tests

LAP Price Difference Real-Time Price

PG&E 0.284 0.516
Pre - Post SCE 0.509 0.697

SDG&E 0.476 0.647

PG&E 0.001 0.016
Post - Pre SCE 0.001 0.034

SDG&E 0.028 0.165

I Do not reject null hypothesis that all 24 eigenvalues of
Λpre − Λpost are greater than or equal to zero

I Reject null hypothesis that all 24 eigenvalues of Λpost − Λpre

are greater than or equal to zero

I Consistent with EVB reducing price volatility



Predictions About Differences in Nodal Level Trading Cost
Changes Between Generation Nodes and Non-Generation
Nodes Before versus After Implementation of Explicit
Virtual Bidding

I Average Implied Trading Costs falls for all nodes after
introduction of explicit virtual bidding (EVB)—Negative
Coefficient on ”Post EVB Indicator”

I Average Implied Trading Costs higher for non-generation
nodes before EVB—”Gen Node Indicator Negative”

I Average Implied Trading Costs at both types of nodes the
same after EVB—”Gen Node x Post EVB Indicator” positive
and equal in absolute value to ”Gen Node Indicator”



Regression Results Associated with Implied Trading Costs

(1) (2)
VARIABLES 5% Lower Bound 95% Upper Bound

1(Post EVB)*1(Gen Node) 0.532 1.421
(0.174) (0.431)

1(Post EVB) -3.527 -5.404
(0.0752) (0.193)

1(Gen Node) -0.654 -1.765
(0.119) (0.250)

Constant 10.72 19.16
(0.0538) (0.118)

Observations 9,791 9,791
R-squared 0.202 0.080

Results implies higher cost to implicit virtual bid at load nodes before EVB and

equal cost to virtual bid at all nodes after EVB



Nodal-Level Distribution of clower and cupper : Before and
After EVB
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Proportion of Nodes that Reject the Two Null Hypotheses
for Differences in Trading Cost Pre- versus Post-EVB

Total 1(Gen Node) 1(Non-Gen Node)

1(5% Lower Bound> 0) 0.707 0.659 0.711
1(95% Upper Bound<0) 0.042 0.076 0.039
Number of Observations 4316 355 3961

I 1(5% Lower Bound>0) implies reject null of that
ctruepre − ctruepost ≤ 0 and 1(95% Upper Bound<0) implies do
not reject ctruepre − ctruepost ≥ 0

I Results consistent with null hypothesis that implicit trading
costs fell at all nodes after implementation of EVB.



Nodal Results–White Noise Tests

Table: Percentage of Tests that Fail to Reject (α = 0.05)

Before EVB After EVB

Non-Generation Node 0.299 0.912
Generation Node 0.265 0.932

Table: Sample Counts By Cell

Before EVB After EVB

Non-Generation Node 4,031 4,386
Generation Node 669 673

I Results consistent with introduction of EVB eliminating
“exploitable autocorrelation” in nodal-level vector of daily
price differences



Market Efficiency Implications of EVB

I Examine impact of EVB on three measures of market
performance:

I TOTAL VC (t): is the total variable cost of all California ISO
natural gas-fired generation units (240 of them) in hour t.

I TOTAL ENERGY (t): the total amount of energy consumed in
hour t by California ISO natural gas-fired generation units.

I STARTS(t): total number of California ISO natural gas-fired
generation units started in an hour t.

I Controlling nonparametrically for hourly total instate
generation, instate renewable portfolio standard (RPS)
qualified generation, electricity imports, and daily natural gas
prices, conditional means of STARTS(t) is higher after the
introduction on EVB, while the conditional means of
TOTAL ENERGY (t) and TOTAL VC (t) are lower after the
introduction of EVB.



Notation and Setup

I Let yt = W ′
tα+ X ′tβ + θ(Zt) + εt , with E (εt |Xt ,Wt ,Zt) = 0,

where θ(Z ) is an unknown function of the vector Z .

I Three different dependent variables yt :
I Dependent variable yt is one of our three market efficiency

measures: ln(TOTAL VC (t)), ln(TOTAL ENERGY (t)), or
STARTS(t).

I Non-parametric controls Zt = hourly instate generation, hourly
instate renewable portfolio standard (RPS) qualified
generation, hourly electricity imports, and daily delivered
natural gas prices in both Northern and Southern California.

I Wt includes hour-of-day and month-of-year fixed effects.
I Specifications with Xt as a single indicator which is one if hour

of sample t is after the introduction of EVB in 2/1/2011 and
Xt as a (24x1) vector with k th element Xtk , which equals one
if hour t is after 2/1/2011.



Semiparametric Estimator

I We employ Robinson’s (1988) two-step (first step uses
cross-validation to estimate h) semiparametric estimator:

1. Find:[
h∗ α∗ β∗

]
= argmin
{h,α,β}

∑T
j=1[yj−W ′j α−X ′j β−θ̂−j(Zj , h)]2,

where θ̂−j(Zj , h) =
∑T

t=1,t 6=j (yt−W
′
t α−X

′
t β)K((z−Zt)/h)∑T

t=1 K((z−Zt)/h)

2. Run OLS of [yt − θ̂(Zt , h
∗)] on Wt and Xt , where

θ̂(Zj , h) =
∑T

t=1(yt−W
′
t α−X

′
t β)K((z−Zt)/h)∑T

t=1 K((z−Zt)/h)
.

I Robinson (1988) derives consistent estimate of variance of
asymptotic distribution, which we use to construct standard
errors.



Semiparametric Coefficient Results

Dependent variable ln(TOTAL ENERGY (t)) STARTS(t)

β -0.0615 0.3434
Standard error 0.0101 0.0672

Dependent variable ln(TOTAL VC (t))

β -0.0678
Standard error 0.0100

Implied total annual variable cost savings of approximately $180
million and total annual CO2 emissions reduction of 1,300,000
Tons.



Hour-of-the-Day Percent Change Estimates
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Conclusions

I Derive hypothesis test for the existence of a profitable trading
strategy between forward and real-time markets

I Smallest trading costs that rejects null hypothesis of the
existence of a profitable trading decreases after EVB at both
the LAP and nodal level

I Find evidence consistent with null hypothesis that trading
profits fell after the introduction of EVB (Results in paper)

I Cannot reject null hypothesis that variance in real-time prices
and variance in difference between day-ahead and real-time
prices fell after introduction of EVB

I Evidence of economically sizable market efficiency gains (cost
and energy) and environmental benefits from EVB



Questions or Comments?

Related Papers at
http://www.stanford.edu/wolak



Summary Statistics by Service Area and EVB

Before EVB After EVB

Area Variable Mean Std. Dev Mean Std. Dev

DA Price 35.771 12.396 29.774 12.159
PGE RT Price 37.922 64.614 28.684 57.789

Price Diff -2.151 63.504 1.089 56.823

DA Price 34.890 12.776 29.845 12.857
SCE RT Price 39.302 83.054 29.384 68.671

Price Diff -4.412 81.639 0.461 67.675

DA Price 34.776 12.493 30.806 12.508
SDGE RT Price 40.807 106.269 30.298 78.351

Price Diff -6.031 105.214 0.508 77.528
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