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Intro Setup Long run properties Application summary

MOTIVATION

The more serious outcomes of climate change are associated
with abrupt catastrophic events;

Occurrence conditions are stochastic or not well-understood⇒

Uncertain occurrence time; occurrence probability depends on
policy: endogenous hazard
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CLIMATE CHANGE CONTEXT

Q(t) =GHG stock – affects the hazard rate (occurrence
probability)

k(t) =adaptation capital (levees, vaccines, crop varieties) –
affects the scale of damage upon occurrence
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CLIMATE POLICY: MITIGATION & ADAPTATION

Mitigation efforts (emission abatement, carbon capture) affect the
GHG stock Q(t)

Adaptation investment determines the adaptation capital k(t)

Both activities reduce the welfare of present generation but contribute
to the welfare of future generations

Purpose

Characterize optimal long-run Mitigation-Adaptation mix (steady
state properties)



Intro Setup Long run properties Application summary

CLIMATE POLICY: MITIGATION & ADAPTATION

Mitigation efforts (emission abatement, carbon capture) affect the
GHG stock Q(t)

Adaptation investment determines the adaptation capital k(t)

Both activities reduce the welfare of present generation but contribute
to the welfare of future generations

Purpose

Characterize optimal long-run Mitigation-Adaptation mix (steady
state properties)



Intro Setup Long run properties Application summary

CONTRIBUTION

Tsur and Zemel (2014) developed a general method to identify
optimal steady states in multi-dimensional dynamic economic
models (extends the single-state case of Tsur & Zemel, 2001,
2014a)

Apply this methodology to (2-dimensional) mitigation-adaptation,
climate change policies

Relaxes the linearity assumption of Zemel (2015)
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EXAMPLES

Unknown stock (Kemp 1973)

Date of nationalization (Long 1975)

Nuclear accidents (Cropper 1976; Aronsson et al. 1998)

Biological collapse (Reed and Heras 1992, Tsur and Zemel 1994)

Forest and rangeland fire (Reed 1984, Yin and Newman 1996, Perrings
and Walker 1997)

Disease outburst, pollution control (Clark and Reed 1994; Tsur and
Zemel 1998)

Ecological regime shift (Mäler 2000, Dasgupta and Mäler 2003, Mäler et al.
2003, Polasky et al. 2011; de Zeeuw and Zemel 2012)

Climate change (Tsur & Zemel 1996, 2008,2009; Gjerde et al (1999);
Mastrandrea & Schneider 2001, 2004; Naevdal 2006)

Climate change - IAMs (Traeger & Lemoin 2014; van der Ploeg & de Zeeuw
2014; Lontzek, Cai, Judd & Lenton 2015)
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RECURRENT EVENT

A damage ψ(k) is inflicted each time the event occurs
(Tsur and Zemel 1998) and the problem continues
under risk of future occurrences
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GHG STOCK & OCCURRENCE PROB

Mitigation efforts m(t) drive GHG stock Q(t) according to

Q̇(t) = m(t)− γQ(t)

GHG stock Q(t) and occurrence probability:

T = next occurrence time

S(t) = Pr{T > t} (survival probability)

f (t) = −dS(t)/dt (density of T )

h(Q(t)) (hazard rate): h(Q(t))∆ = Pr{T ∈ (t , t + ∆]|T > t} = f (t)∆/S(t)

S(t) = exp

(
−
ˆ t

0
h(Q(s))ds

)
, f (t) = h(Q(t))S(t)
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ADAPTATION CAPITAL & OCCURRENCE DAMAGE

Adaptation capital evolves with investment a(t) according to

k̇(t) = a(t)− δk(t)

and affects occurrence damage ψ(k) :
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PAYOFF

ˆ T

0
u(m(t),a(t))e−ρtdt + e−ρT [v(Q(T ), k(T ))− ψ(k(T ))]
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EXPECTED PAYOFF

ˆ ∞
0

[u(m(t),a(t)) + h(Q(t))ϕ(Q(t), k(t))] e−
´ t

0 [ρ+h(Q(s))]dsdt

where

ϕ(Q, k) = v(Q, k)− ψ(k)

is the continuation value

Seek the feasible mitigation-adaptation policy that maximizes the ex-
pected payoff

Notice the discount rate endogeneity (Tsur and Zemel 2009, 2014b)
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LONG RUN PROPERTIES: DEFINITIONS

States: X = (Q, k)′

Actions: C = (m,a)′

States evolution: Ẋ = (Q̇, k̇)′ = G(X ,C)′ =

(
m − γQ
a− δk

)
Jacobian of G wrt C = (m,a)′ : JG

C =

(
1 0
0 1

)
Instantaneous utility: f (X ,C) ≡ u(m,a) + h(Q)ϕ(X )

Gradient of f wrt C = (m,a)′ : fC =

(
um
ua

)
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STEADY STATE

The (not necessarily optimal) steady state policy maintains a constant
state:

Ĉ(X ) = (γQ, δk)′

Expected payoff under the steady state policy:

W (X ) =

ˆ ∞
0

[
u(Ĉ(X )) + h(Q)[W (X )− ψ(k)]

]
e−
´ t

0 [ρ+h(Q)]dsdt

=
u(γQ, δk) + h(Q)[W (X )− ψ(k)]

ρ+ h(Q)

from which W (X ) is solved:

W (X ) =
u(γQ, δk)− h(Q)ψ(k)

ρ
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THE L(X) FUNCTION

L(X ) ≡
(

l1(X )
l2(X )

)
= (ρ+ h(Q))

(
[JG ′

C ]−1fC + WX (X )
)

(all functions are evaluated at the steady state policy)

In the present setting, L(X ) specializes to

L(X ) =
ρ+ h(Q)

ρ

(
(ρ+ γ)um(γQ, δk)− h′(Q)ψ(k)
(ρ+ δ)ua(γQ, δk)− h(Q)ψ′(k)

)
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L(X) MOTIVATION (SINGLE STATE)

W εδ(X )−W (X ) ≈ L(X )(εδ) + o(εδ)

Extension to multi-state is straightforward
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STEADY STATE PROPERTIES (TSUR AND ZEMEL 2014)

Necessary conditions for the location of an optimal steady state:

(i) If Q̂ ∈ (0, Q̄) and k̂ ∈ (0, k̄) then L(X̂ ) = 0.

(ii) If Q̂ = Q̄, then l1(X̂ ) ≥ 0; if k̂ = k̄ , then l2(X̂ ) ≥ 0.

(iii) If Q̂ = 0, then l1(X̂ ) ≤ 0; if k̂ = 0, then l2(X̂ ) ≤ 0.

Necessary condition for stability:

If a steady state X̂ at which L(X̂ ) = 0 is locally stable, then
det(JL

X (X̂ )) > 0.
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APPLICATION TO CLIMATE POLICY

Functions:

Utility: u(m,a) = αm −m2/2− a2

Hazard: h(Q) = βQ

Damage: ψ(k) = ψ0km/(k + km)

Parameters:

α = 1 (utility parameter);

ρ = 0.03 (discount rate);

γ = 0.01 (GHG rate of decay);

δ = 0.03 (adaptation capital depreciation rate);

β = 0.005 (hazard sensitivity)

ψ0 = 10, km = 50 (damage parameters)

Q̄ = 200; k̄ = 33.33
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INTERNAL STEADY STATE

A unique internal steady state (with L(X ) = 0):

X̂ ≡ (Q̂, k̂) = (106.178, 16.616)

The Jacobian JL
X (X̂ ) = ρ+h(Q̂)

ρ

(
−0.0004 0.000563
0.000563 −0.0054

)
has a

positive determinant, as required by the Stability Property .

Checking the corners (Q = 0 or Q̄, k = 0 or k̄ ), we find that none of
the corners satisfy the necessary conditions for an optimal SS:

X̂ ≡ (Q̂, k̂) = (106.178, 16.616) is the unique optimal steady state to
which the system converges from any initial state X0 ≡ (Q0, k0).
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CORNER STEADY STATE

Doubling the hazard sensitivity (from β = 0.005 to β = 0.01):

First:

L(X ) admits no real roots =⇒ the optimal steady state must fall on a
corner

Second:

Only the corner X̂ ≡ (Q̂, k̂) = (0,0) satisfies the necessary conditions
for an optimal steady state =⇒(Q̂, k̂) = (0,0) is the unique optimal
steady state.
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CORNER STEADY STATE (CONT.)

The strong dependence of the hazard rate on the GHG stock
provides a strong incentive to reduce emissions and bring the
occurrence probability down to zero.

Eliminating the catastrophic risk removes the motivation to invest
in adaptation, hence the adaptation capital stock k is also driven
down to its lowest feasible level.
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SUMMARY

Identify optimal mitigation-adaptation (two-dimensional) steady
states by means of a simple (algebraic) function L(X ), both for
interior and for corner steady states.

In either case, the optimal steady state reflects the tradeoffs
between the adaptation and mitigation responses to the
catastrophic risk.

The method can be applied in other multi-dimensional resource
situations involving uncertain abrupt changes, such as regime
shifts in the dynamics of ecosystems and other regenerating
resources.
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