Policy tradeoffs under risk of abrupt climate change

Yacov Tsur¹ and Amos Zemel²

¹Hebrew University of Jerusalem and ²Ben-Gurion University of the Negev

The Economics of Energy and Climate Change Toulouse, September 8-9, 2015

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		00	00	
		0		

MOTIVATION

- The more serious outcomes of climate change are associated with abrupt catastrophic events;
- Occurrence conditions are stochastic or not well-understood ⇒
- Uncertain occurrence time; occurrence probability depends on policy: endogenous hazard

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		00	00	

CLIMATE CHANGE CONTEXT

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		00	00	

CLIMATE CHANGE CONTEXT

- Q(t) =GHG stock affects the hazard rate (occurrence probability)
- k(t) =adaptation capital (levees, vaccines, crop varieties) affects the scale of damage upon occurrence

Intro	Setup	Long run properties	Application	summary
00000	00000	0 00 00	0 0 00	

CLIMATE POLICY: MITIGATION & ADAPTATION

Mitigation efforts (emission abatement, carbon capture) affect the GHG stock Q(t)

Adaptation investment determines the adaptation capital k(t)

Both activities reduce the welfare of present generation but contribute to the welfare of future generations

Intro	Setup	Long run properties	Application	summary
00000	00000	0 0 00	0 0 00	

CLIMATE POLICY: MITIGATION & ADAPTATION

Mitigation efforts (emission abatement, carbon capture) affect the GHG stock Q(t)

Adaptation investment determines the adaptation capital k(t)

Both activities reduce the welfare of present generation but contribute to the welfare of future generations

Purpose

Characterize optimal long-run **Mitigation-Adaptation** mix (steady state properties)

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	0	
		00	00	
		0		

CONTRIBUTION

- Tsur and Zemel (2014) developed a general method to identify optimal steady states in multi-dimensional dynamic economic models (extends the single-state case of Tsur & Zemel, 2001, 2014a)
- Apply this methodology to (2-dimensional) mitigation-adaptation, climate change policies
- Relaxes the linearity assumption of Zemel (2015)

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	0	
		00	00	
		0		

EXAMPLES

- Unknown stock (Kemp 1973)
- Date of nationalization (Long 1975)
- Nuclear accidents (Cropper 1976; Aronsson et al. 1998)

Intro	Setup	Long run properties	Application	summary
00000	00000	0 0 00	0 0 00	
		0		

EXAMPLES

- Unknown stock (Kemp 1973)
- Date of nationalization (Long 1975)
- Nuclear accidents (Cropper 1976; Aronsson et al. 1998)
- Biological collapse (Reed and Heras 1992, Tsur and Zemel 1994)
- Forest and rangeland fire (Reed 1984, Yin and Newman 1996, Perrings and Walker 1997)
- Disease outburst, pollution control (Clark and Reed 1994; Tsur and Zemel 1998)
- Ecological regime shift (Mäler 2000, Dasgupta and Mäler 2003, Mäler et al. 2003, Polasky et al. 2011; de Zeeuw and Zemel 2012)

Intro	Setup	Long run properties	Application	summary
00000	00000	0 0 00	0 0 00	
		0		

EXAMPLES

- Unknown stock (Kemp 1973)
- Date of nationalization (Long 1975)
- Nuclear accidents (Cropper 1976; Aronsson et al. 1998)
- Biological collapse (Reed and Heras 1992, Tsur and Zemel 1994)
- Forest and rangeland fire (Reed 1984, Yin and Newman 1996, Perrings and Walker 1997)
- Disease outburst, pollution control (Clark and Reed 1994; Tsur and Zemel 1998)
- Ecological regime shift (Mäler 2000, Dasgupta and Mäler 2003, Mäler et al. 2003, Polasky et al. 2011; de Zeeuw and Zemel 2012)
- Climate change (Tsur & Zemel 1996, 2008,2009; Gjerde et al (1999); Mastrandrea & Schneider 2001, 2004; Naevdal 2006)
- Climate change IAMs (Traeger & Lemoin 2014; van der Ploeg & de Zeeuw 2014; Lontzek, Cai, Judd & Lenton 2015)

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	0	
		00	00	
		0		

RECURRENT EVENT

A damage $\psi(k)$ is inflicted each time the event occurs (Tsur and Zemel 1998) and the problem continues under risk of future occurrences

octup	Long run prop	erties Application	n summary
00000 0000	0 0	0	
	00	00	

GHG STOCK & OCCURRENCE PROB

Mitigation efforts m(t) drive GHG stock Q(t) according to

 $\dot{Q}(t) = m(t) - \gamma Q(t)$

Intro	Setup	Long run properties	Application	summary
00000	0000	0 0 00	0 0 00	
		0	00	

GHG STOCK & OCCURRENCE PROB

Mitigation efforts m(t) drive GHG stock Q(t) according to

$$\dot{Q}(t) = m(t) - \gamma Q(t)$$

GHG stock Q(t) and occurrence probability:

T = next occurrence time

 $S(t) = Pr{T > t}$ (survival probability)

f(t) = -dS(t)/dt (density of T)

h(Q(t)) (hazard rate): $h(Q(t))\Delta = Pr\{T \in (t, t + \Delta] | T > t\} = f(t)\Delta/S(t)$

Intro	Setup	Long run properties	Application	summary
00000	0000	0 0 00	0 0 00	
		0		

GHG STOCK & OCCURRENCE PROB

Mitigation efforts m(t) drive GHG stock Q(t) according to

$$\dot{Q}(t) = m(t) - \gamma Q(t)$$

GHG stock Q(t) and occurrence probability:

T = next occurrence time

 $S(t) = Pr{T > t}$ (survival probability)

f(t) = -dS(t)/dt (density of T)

h(Q(t)) (hazard rate): $h(Q(t))\Delta = Pr\{T \in (t, t + \Delta] | T > t\} = f(t)\Delta/S(t)$

$$S(t) = \exp\left(-\int_0^t h(Q(s))ds\right), \quad f(t) = h(Q(t))S(t)$$

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	0	
		00	00	
		0		

ADAPTATION CAPITAL & OCCURRENCE DAMAGE

Adaptation capital evolves with investment a(t) according to

$$\dot{k}(t) = a(t) - \delta k(t)$$

and affects occurrence damage $\psi(k)$:

Intro	Setup	Long run properties	Application	summary
00000	00000	0 0 00 0	0 0 00	

PAYOFF

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	0	
		00	00	
		0		

EXPECTED PAYOFF

$$\int_0^\infty \left[u(m(t), a(t)) + h(Q(t))\varphi(Q(t), k(t)) \right] e^{-\int_0^t \left[\rho + h(Q(s))\right] ds} dt$$

where

$$\varphi(\boldsymbol{Q},\boldsymbol{k}) = \boldsymbol{v}(\boldsymbol{Q},\boldsymbol{k}) - \psi(\boldsymbol{k})$$

is the continuation value

Intro	Setup	Long run properties	Application	summary
00000	00000	000	0 0 00	

EXPECTED PAYOFF

$$\int_0^\infty \left[u(m(t), a(t)) + h(Q(t))\varphi(Q(t), k(t)) \right] e^{-\int_0^t \left[\rho + h(Q(s))\right] ds} dt$$

where

$$\varphi(\boldsymbol{Q},\boldsymbol{k}) = \boldsymbol{v}(\boldsymbol{Q},\boldsymbol{k}) - \psi(\boldsymbol{k})$$

is the continuation value

Seek the feasible mitigation-adaptation policy that maximizes the expected payoff $% \left({{{\mathbf{F}}_{\mathbf{r}}}^{T}} \right)$

Notice the discount rate endogeneity (Tsur and Zemel 2009, 2014b)

Intro	Setup	Long run properties	Application	summary
00000	00000	•	0	
		0	0	
		00	00	
		0		

LONG RUN PROPERTIES: DEFINITIONS

States: X = (Q, k)'Actions: C = (m, a)'

Intro	Setup	Long run properties	Application	summary
00000	00000	•	0	
		00	00	
		0		

LONG RUN PROPERTIES: DEFINITIONS

States: X = (Q, k)'Actions: C = (m, a)'

States evolution:
$$\dot{X} = (\dot{Q}, \dot{k})' = G(X, C)' = \begin{pmatrix} m - \gamma Q \\ a - \delta k \end{pmatrix}$$

Jacobian of *G* wrt $C = (m, a)' : J_C^G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Intro	Setup	Long run properties	Application	summary
00000	00000	•	0	
		0	0	
		00	00	
		0		

LONG RUN PROPERTIES: DEFINITIONS

States: X = (Q, k)'Actions: C = (m, a)'

States evolution:
$$\dot{X} = (\dot{Q}, \dot{k})' = G(X, C)' = \begin{pmatrix} m - \gamma Q \\ a - \delta k \end{pmatrix}$$

Jacobian of *G* wrt $C = (m, a)' : J_C^G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Instantaneous utility: $f(X, C) \equiv u(m, a) + h(Q)\varphi(X)$

Gradient of *f* wrt
$$C = (m, a)'$$
: $f_C = \begin{pmatrix} u_m \\ u_a \end{pmatrix}$

Intro	Setup	Long run properties	Application	summary
00000	00000	○ ● ○ ○	0 0 00	

STEADY STATE

The (not necessarily optimal) steady state policy maintains a constant state:

$$\hat{C}(X) = (\gamma Q, \delta k)'$$

Intro	Setup	Long run properties	Application	summary
00000	00000	•	0	
		00	00	

STEADY STATE

The (not necessarily optimal) steady state policy maintains a constant state:

$$\hat{C}(X) = (\gamma Q, \delta k)'$$

Expected payoff under the steady state policy:

$$W(X) = \int_0^\infty \left[u(\hat{C}(X)) + h(Q)[W(X) - \psi(k)] \right] e^{-\int_0^t [\rho + h(Q)] ds} dt$$
$$= \frac{u(\gamma Q, \delta k) + h(Q)[W(X) - \psi(k)]}{\rho + h(Q)}$$

Intro	Setup	Long run properties	Application	summary
00000	00000	•	0	
		00	00	

STEADY STATE

The (not necessarily optimal) steady state policy maintains a constant state:

$$\hat{C}(X) = (\gamma Q, \delta k)'$$

Expected payoff under the steady state policy:

$$W(X) = \int_0^\infty \left[u(\hat{C}(X)) + h(Q)[W(X) - \psi(k)] \right] e^{-\int_0^t [\rho + h(Q)] ds} dt$$
$$= \frac{u(\gamma Q, \delta k) + h(Q)[W(X) - \psi(k)]}{\rho + h(Q)}$$

from which W(X) is solved:

$$W(X) = rac{u(\gamma Q, \delta k) - h(Q)\psi(k)}{
ho}$$

0	Setup	Long run properties	Application	summary
0000	00000	0	0	
		0	0	
		•0	00	
		0		

THE L(X) FUNCTION

$$L(X) \equiv \begin{pmatrix} l_1(X) \\ l_2(X) \end{pmatrix} = (\rho + h(Q)) \left([J_C^{G'}]^{-1} f_C + W_X(X) \right)$$

(all functions are evaluated at the steady state policy)

	Setup	Long run properties	Application	summary
00	00000	0	0	
		0	0	
		•0	00	
		0		

THE L(X) FUNCTION

Intro

$$L(X) \equiv \begin{pmatrix} h_1(X) \\ h_2(X) \end{pmatrix} = (\rho + h(Q)) \left([J_C^{G'}]^{-1} f_C + W_X(X) \right)$$

(all functions are evaluated at the steady state policy)

In the present setting, L(X) specializes to

$$L(X) = \frac{\rho + h(Q)}{\rho} \begin{pmatrix} (\rho + \gamma)u_m(\gamma Q, \delta k) - h'(Q)\psi(k) \\ (\rho + \delta)u_a(\gamma Q, \delta k) - h(Q)\psi'(k) \end{pmatrix}$$

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	00	

L(X) MOTIVATION (SINGLE STATE)

$$W^{\epsilon\delta}(X) - W(X) \approx L(X)(\epsilon\delta) + o(\epsilon\delta)$$

Extension to multi-state is straightforward

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0 0 00	

STEADY STATE PROPERTIES (TSUR AND ZEMEL 2014)

Necessary conditions for the location of an optimal steady state: (*i*) If $\hat{Q} \in (0, \bar{Q})$ and $\hat{k} \in (0, \bar{k})$ then $L(\hat{X}) = 0$. (*ii*) If $\hat{Q} = \bar{Q}$, then $l_1(\hat{X}) \ge 0$; if $\hat{k} = \bar{k}$, then $l_2(\hat{X}) \ge 0$. (*iii*) If $\hat{Q} = 0$, then $l_1(\hat{X}) \le 0$; if $\hat{k} = 0$, then $l_2(\hat{X}) \le 0$.

Intro	Setup	Long run properties	Application	summary
00000	00000	000	0 0 00	

STEADY STATE PROPERTIES (TSUR AND ZEMEL 2014)

Necessary conditions for the location of an optimal steady state: (*i*) If $\hat{Q} \in (0, \bar{Q})$ and $\hat{k} \in (0, \bar{k})$ then $L(\hat{X}) = 0$. (*ii*) If $\hat{Q} = \bar{Q}$, then $l_1(\hat{X}) \ge 0$; if $\hat{k} = \bar{k}$, then $l_2(\hat{X}) \ge 0$. (*iii*) If $\hat{Q} = 0$, then $l_1(\hat{X}) \le 0$; if $\hat{k} = 0$, then $l_2(\hat{X}) \le 0$.

Necessary condition for stability:

If a steady state \hat{X} at which $L(\hat{X}) = 0$ is locally stable, then $\det(J^L_X(\hat{X})) > 0.$

Intro	Setup	Long run properties	Application	summary
00000	00000	000	• 0 00	

APPLICATION TO CLIMATE POLICY Functions:

Utility: $u(m, a) = \alpha m - m^2/2 - a^2$ Hazard: $h(Q) = \beta Q$ Damage: $\psi(k) = \psi_0 k_m / (k + k_m)$

Intro	Setup	Long run properties	Application	summary
00000	00000	0 0 00	• • •	
		0		

APPLICATION TO CLIMATE POLICY Functions:

- Utility: $u(m, a) = \alpha m m^2/2 a^2$ Hazard: $h(Q) = \beta Q$ Damage: $\psi(k) = \psi_0 k_m / (k + k_m)$ Parameters:
- $\alpha = 1$ (utility parameter);
- $\rho = 0.03$ (discount rate);
- $\gamma =$ 0.01 (GHG rate of decay);
- $\delta = 0.03$ (adaptation capital depreciation rate);
- $\beta = 0.005$ (hazard sensitivity)
- $\psi_0 = 10, \ k_m = 50$ (damage parameters)
- $\bar{Q} = 200; \, \bar{k} = 33.33$

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	00	
		0		

A unique internal steady state (with L(X) = 0):

$$\hat{X} \equiv (\hat{Q}, \hat{k}) = (106.178, \ 16.616)$$

A unique internal steady state (with L(X) = 0):

$$\hat{X} \equiv (\hat{Q}, \hat{k}) = (106.178, \ 16.616)$$

The Jacobian
$$J_X^L(\hat{X}) = \frac{\rho + h(\hat{Q})}{\rho} \begin{pmatrix} -0.0004 & 0.000563 \\ 0.000563 & -0.0054 \end{pmatrix}$$
 has a positive determinant, as required by the Stability Property .

A unique internal steady state (with L(X) = 0):

$$\hat{X} \equiv (\hat{Q}, \hat{k}) = (106.178, \ 16.616)$$

The Jacobian
$$J_X^L(\hat{X}) = \frac{\rho + h(\hat{Q})}{\rho} \begin{pmatrix} -0.0004 & 0.000563 \\ 0.000563 & -0.0054 \end{pmatrix}$$
 has a positive determinant, as required by the Stability Property .

Checking the corners (Q = 0 or \overline{Q} , k = 0 or \overline{k}), we find that none of the corners satisfy the necessary conditions for an optimal SS:

A unique internal steady state (with L(X) = 0):

$$\hat{X} \equiv (\hat{Q}, \hat{k}) = (106.178, \ 16.616)$$

The Jacobian
$$J_X^L(\hat{X}) = \frac{\rho + h(\hat{Q})}{\rho} \begin{pmatrix} -0.0004 & 0.000563 \\ 0.000563 & -0.0054 \end{pmatrix}$$
 has a positive determinant, as required by the Stability Property .

Checking the corners (Q = 0 or \overline{Q} , k = 0 or \overline{k}), we find that none of the corners satisfy the necessary conditions for an optimal SS:

 $\hat{X} \equiv (\hat{Q}, \hat{k}) = (106.178, 16.616)$ is the unique optimal steady state to which the system converges from any initial state $X_0 \equiv (Q_0, k_0)$.

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	0	
		00	•0	
		0		

CORNER STEADY STATE

Doubling the hazard sensitivity (from $\beta = 0.005$ to $\beta = 0.01$):

First:

L(X) admits no real roots \implies the optimal steady state must fall on a corner

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	0	
		00	•0	
		0		

CORNER STEADY STATE

Doubling the hazard sensitivity (from $\beta = 0.005$ to $\beta = 0.01$):

First:

L(X) admits no real roots \implies the optimal steady state must fall on a corner

Second:

Only the corner $\hat{X} \equiv (\hat{Q}, \hat{k}) = (0, 0)$ satisfies the necessary conditions for an optimal steady state $\Longrightarrow (\hat{Q}, \hat{k}) = (0, 0)$ is the unique optimal steady state.

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		00	0	
		0		

CORNER STEADY STATE (CONT.)

The strong dependence of the hazard rate on the GHG stock provides a strong incentive to reduce emissions and bring the occurrence probability down to zero.

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	0	
		00	0	

CORNER STEADY STATE (CONT.)

- The strong dependence of the hazard rate on the GHG stock provides a strong incentive to reduce emissions and bring the occurrence probability down to zero.
- Eliminating the catastrophic risk removes the motivation to invest in adaptation, hence the adaptation capital stock k is also driven down to its lowest feasible level.

Intro	Setup	Long run properties	Application	summary
00000	00000	0	0	
		0	0	
		00	00	
		0		

SUMMARY

- Identify optimal mitigation-adaptation (two-dimensional) steady states by means of a simple (algebraic) function L(X), both for interior and for corner steady states.
- In either case, the optimal steady state reflects the tradeoffs between the adaptation and mitigation responses to the catastrophic risk.
- The method can be applied in other multi-dimensional resource situations involving uncertain abrupt changes, such as regime shifts in the dynamics of ecosystems and other regenerating resources.