

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

Conclusions

From fossil fuels to renewables: The role of electricity storage

Itziar Lazkano

Milwaukee

Linda Nøstbakken Norwegian School of Economics (NHH) Martino Pelli Université de Sherbrooke

The Economics of Energy and Climate Change Toulouse, October 2015

Directed technical change in electricity

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

Conclusions

 Climate change concerns have led society to seek alternatives to reduce GHG emissions

Electricity production is a main GHG source

- 32% of GHG emissions in the US in 2012 (transportation sector responsible for 28%)
- Up 11% from 1990
- \Rightarrow Highlights importance of shift from fossil fuels to renewable sources

Electricity storage plays important role

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

- A major obstacle for increasing the share of renewable sources in the grid mix is the intermittency of renewable energy sources – ex: wind, solar
- Large scale electricity storage represents a potential solution
 - Increases the flexibility in meeting demand produce then dispatch when needed
 - Enables the utilization of more of the potential energy available from intermittent sources

Electricity storage plays important role

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

- A major obstacle for increasing the share of renewable sources in the grid mix is the intermittency of renewable energy sources – ex: wind, solar
- Large scale electricity storage represents a potential solution
 - Increases the flexibility in meeting demand produce then dispatch when needed
 - Enables the utilization of more of the potential energy available from intermittent sources
- Electricity storage a double-edged sword?
 - Creates more arbitrage possibilities for existing power producers, including nonrenewable producers

Research question

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

- RQ: Does electricity storage shift the direction of innovation toward renewable energy sources?
- What this study does:
 - Model: Electricity storage endogenously improves the substitutability between renewable and fossil fuel technologies
 - Empirical analysis to test how and to what extent innovation in electricity storage affects innovation in renewable and fossil fuel generating technologies

Storage initiatives

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

- Public and private initiatives to increase electricity storage capacity
- Innovation is key: The cost of energy storage currently a big roadblock
- IHS CERA: 40 GW of storage capacity will be connected to the grid globally by 2022
- Storage technologies: Compressed air storage, liquid air storage, large batteries, power-to-gas, *pumped hydro*

Theory model

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Theory model

Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

- Directed technological change framework
- An application to the electricity sector
- Electricity storage changes substitutability between renewable and nonrenewable electricity

Model assumptions

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory model

Data

Empirical analysis ^{Strategy} Results Robustness

Conclusions

One-period model:

- 1 Innovation at beginning of period
- 2 Production with improved technologies at end of period
- Individuals: Consume electricity and aggregate outside good
- Firms: Electricity retailers and generators, innovators
 - Take all prices and initial technologies as given

Endogenous elasticity of substitution

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory model Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

Conclusions

The more efficient the storage technology, the higher the elasticity of substitution between renewable and nonrenewable electricity:

$$Y = \left(Y_c^{\frac{\epsilon(A_s)-1}{\epsilon(A_s)}} + Y_d^{\frac{\epsilon(A_s)-1}{\epsilon(A_s)}}\right)^{\frac{\epsilon(A_s)}{\epsilon(A_s)-1}}$$

where A_s is the current efficiency of the storage technology Innovation improves the storage technology

Innovation

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory model Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

- Innovation in three technologies: renewable and nonrenewable electricity generation, and storage
- Innovation x_j costs $\frac{1}{2}\psi_j x_j^2$ and yields technical progress:

$$A_j = (1+x_j) A_{j0}, \ j = c, d, s$$

- **Renewable and nonrenewable generation** (c, d):
 - Innovation yields more efficient production technologies
 ⇒ Lowers cost of electricity generation
- Storage technologies (s)
 - Innovation increases substitutability between renewable and nonrenewable electricity:

$$\epsilon(A_s) = \epsilon_0 \left(1 + x_s\right) A_{s0}$$

Equilibrium

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

- End-of-period production problem: Production levels of renewable and nonrenewable electricity for given technologies
- Beginning-of-period innovation problem: Innovation effort in renewable generation, nonrenewable generation, and storage technologies

Innovation in equilibrium

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation Stylized facts Theory mode

Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

Conclusions

Innovation in renewable and nonrenewable generation:

$$\psi_{j}x_{j}P^{\beta-\epsilon} = \left(\epsilon PF^{\frac{1}{\epsilon-1}} + 1 - \epsilon\right)F_{j}^{1-\epsilon}\left(\frac{A_{j0}}{A_{j}}\right), \ j = c, d$$

Innovation in storage:

$$\frac{\psi_{s} x_{s} P^{\beta-\epsilon}}{\epsilon_{0} A_{s0}} = \ln P \left(P F^{\frac{\epsilon}{\epsilon-1}} - F \right) + F_{c}^{1-\epsilon} \ln F_{c} + F_{d}^{1-\epsilon} \ln F_{d} + P F^{\frac{\epsilon}{\epsilon-1}} \left\{ \left(\frac{\epsilon}{\epsilon-1} \right) \frac{F_{c} F_{d}^{\epsilon} \ln F_{c} + F_{c}^{\epsilon} F_{d} \ln F_{d}}{F_{c}^{\epsilon} F_{d} + F_{c} F_{d}^{\epsilon}} + \frac{\ln F}{(\epsilon-1)^{2}} \right\}$$

- Highly nonlinear equation system that characterizes innovation equilibrium: x^{*}_c, x^{*}_d and x^{*}_s
- ightarrow Note that ϵ , A_j , F, F_j are all functions of innovation (x_j)

From theory to empirical analysis

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory model Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness According to the theory model, innovation mainly depends on the following factors:

- The initial state of technologies (knowledge stocks), A_{j0} for j = c, d, s
- Electricity prices, P
- Fossil fuel prices, f

Unique dataset What data do we need?

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation Stylized fact

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

Conclusions

We build a unique global, firm-level dataset of innovations in electricity storage, and clean and dirty generation, with information on:

1 Innovations from the global patent database of the OECD

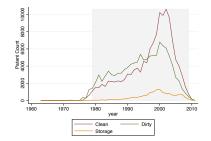
- ⇒ Select electricity related patents using International Patent Classification (IPC) codes from the World Intellectual Property Organization (WIPO)
- **2** Energy prices from the International Energy Agency
- **3** Economic data from the Penn World Tables

Descriptive statistics

From fossil fuels to renewables: The role of electricity storage

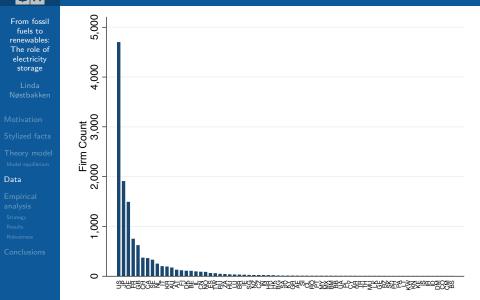
Linda Nøstbakken

Motivation

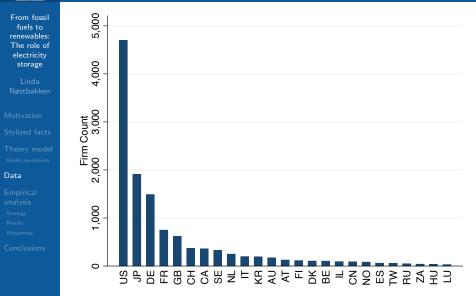

Stylized facts

Theory mode Model equilibrium

Data


Empirical analysis ^{Strategy} Results Robustness

- 12,557 firms
- 70 countries
- Period: 1968-2011
- 260,252 patents:
 - Renewable: 129,753
 - Nonrenewable: 116,534
 - Storage: 13,965



Innovating firms by country

Innovating firms by country Zooming in on the top 25

From fossil fuels to renewables: The role of electricity storage

Strategy

Empirical strategy

Baseline specification (firm *i*; country *n*; technology j = c, d, s; in year *t*)

$$A_{jit} = \mathbf{E}_{njt-1}\beta_{1j} + \mathbf{I}_{ijt-1}\beta_{2j} + \mathbf{I}_{ijt-1}^2\beta_{3j} + \mathbf{F}_{it-1}\alpha_j + \mathbf{X}_{it-1}\gamma_j + \delta_{tj} + \delta_{ij} + u_{ijt}$$

- A: number of patent applications filed by firm
 Relevant knowledge stock, K_{it}
 - Internal stock, I: Firm's cumulative number of patents
 - External stock, E: Cumulative number of patents by all other firms in the relevant region (spillover effects)
- **F**_{it}: Firm-level exposure to fossil-fuel and electricity prices
- **X**_{*it*}: Firm-level exposure to economic indicators (GDP and GDP/capita)
- δ_{ji}: firm fixed effects
- δ_{jt} : year fixed effects
- \Rightarrow Estimate with fixed-effects Poisson regression

Estimation results: Baseline model Probability to innovate in storage, renewable, and nonrenewable technologies

Dependent variable: storage/renewable/nonrenewable patent count

From fossil fuels to renewables: The role of electricity storage

ſt ¥

Results

	Storage	Renewable	Nonrenewable
Past innovations (L3):			
Storage	-0.00927**	0.01092**	0.00243
	(0.00354)	(0.00308)	(0.00395)
Renewable	0.00136*	-0.0032**	-0.00199
	(0.00056)	(0.00103)	(0.00135)
Nonrenewable	-0.00093*	-0.00047	-6.8e-05
	(0.00041)	(0.00038)	(0.00021)
Regional spillovers (L3):			
Storage	0.00033	0.00032 [†]	-0.00029
	(0.00028)	(0.00019)	(0.00028)
Renewable	-6.8e-05	-9.2e-05**	2.7e-05
	(5.7e-05)	(3.3e-05)	(5.5e-05)
Nonrenewable	5.7e-06	4.7e-06	-3.9e-05
	(3.5e-05)	(2.3e-05)	(3.5e-05)
Energy prices (L1):			
PCoal	-0.3045	-0.3397**	-0.3871*
	(0.2236)	(0.127)	(0.1786)
PElectricity	0.1312	0.2167	0.3259 [†]
-	(0.2331)	(0.1842)	(0.1804)
Economic controls (L1):			
GDP	0.1308	-0.0767	-0.04017
	(0.1314)	(0.08384)	(0.09254)
GDPcap	0.9574	1.4650*	1.0500 [†]
	(0.7476)	(0.587)	(0.6001)
Observations	13241	59265	38932
No. of groups	1335	8681	5107
Chi ²	6330.65	1304.89	493.22
Significance levels: **: 1% *: 5% †: 10%			

Significance levels: 10%

Storage helps both renewable and nonrenewable $_{\mbox{\scriptsize Result 1}}$

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

Conclusions

Q1: How does storage affect innovation in electricity generation?

- Renewable: Better storage technologies ⇔ more innovation in renewable technologies
- Nonrenewable:
 - Better storage technologies ⇒ more innovation in efficiency-improving nonrenewable technologies
 - However, overall effect (all nonrenewable technologies) positive but statistically non-significant
- \Rightarrow Electricity storage not only benefits renewable energy, also conventional production \rightarrow intermittency problem and ramping issue
- \Rightarrow Electricity storage affects both the speed and direction of technical change in electricity generation

Complements or substitutes? Result 2

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

Conclusions

Q2: Are renewable and nonrenewable electricity inputs complements or substitutes?

- Our empirical results match the theoretical predictions when renewable and nonrenewable are substitutes
- Exception: A higher fossil fuel price yields less innovation in renewable generation, rather than more
- $\Rightarrow \text{ Intermittent renewable electricity currently rely on} \\ \text{(base/peak) electricity from fossil fuels, but not the other way around}$

Fossil fuel prices Result 3

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory model Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

Conclusions

Q3: How does the fossil fuel price affect innovation in the electricity sector?

- Contrary to what we expected, the coal price has a negative impact on innovation in all three technologies: renewable, nonrenewable, and storage
- With current storage solutions, renewable electricity relies on backup from traditional fossil-fuel based electricity (grid balance, peak/off-peak)
- ⇒ Policies seeking to promote renewable electricity by raising the price of fossil fuels (ex: CO_2 tax) might not have the intended effect (yet) unless combined with other policy efforts

Robustness

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

Conclusions

Results are robust to various specifications:

- More fixed effects: Firm + year + country + country-by-year FEs
- Selection of patents (tech definition)
- Extent of spillovers
- Lag structure: 1 to 5 years
- Fuel prices: coal, natural gas, oil

Summary and conclusions

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory mode Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

- We study the role of storage on innovation in electricity:
 - We propose a stylized model of innovation and production in the electricity sector
 - Estimate the effect of innovation in electricity storage on innovation, and the direction of technological change in electricity generation using global patent data from 1969 to 2011

Summary and conclusions

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory model Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

- We study the role of storage on innovation in electricity:
 - We propose a stylized model of innovation and production in the electricity sector
 - Estimate the effect of innovation in electricity storage on innovation, and the direction of technological change in electricity generation using global patent data from 1969 to 2011
- We find that electricity storage significantly affects both the speed and direction of innovation in electricity generation:
 - Firms with more storage knowledge more likely to file patents related to renewable and efficiency-improving nonrenewable generation
- Positive feedback between innovation in storage and renewable generation (not between storage and nonrenewable)

Policy implications

From fossil fuels to renewables: The role of electricity storage

Linda Nøstbakken

Motivation

Stylized facts

Theory model Model equilibrium

Data

Empirical analysis ^{Strategy} Results Robustness

- Better storage promotes emissions reductions in electricity generation through innovation
- R&D subsidies and private efforts toward innovation in electricity storage key to increase the share of renewables
 - ...but also efficiency improvements in conventional generation
- Until more efficient storage solutions exist, higher fossil fuel prices (coal, natural gas) might hurt innovation in renewable/storage technologies