
Rational habits in residential electricity demand?

Massimo Filippini, Bettina Hirl, Giuliano Masiero Università della Svizzera Italiana (USI) The Economics of Energy and Climate Change

Toulouse, September 8-9, 2015

The electricity consumption decision

Introduction •0000

Model and empirical strategy 000000 Results

Conclusions

Are households forward looking?

- Do households consider the future when deciding how much electricity to consume?
- If YES, what are the policy implications?

Example CO_2 tax:

- What is the impact of a CO₂ tax on energy consumption?
- Direct impact of the tax on today's consumption
- Impact on today's consumption through reaction to future tax
- If a household expects a tax in the future, takes this into account when making today's consumption decision

Introduction	Model and empirical strategy	Results		Conclusions	
00000	000000		0000		0000

Are households forward looking?

- Do households consider the future when deciding how much electricity to consume?
- If YES, what are the policy implications?

Example CO_2 tax:

- What is the impact of a CO₂ tax on energy consumption?
- Direct impact of the tax on today's consumption
- Impact on today's consumption through reaction to future tax
- If a household expects a tax in the future, takes this into account when making today's consumption decision

Overview

What is this paper about?

- Estimating aggregated residential electricity demand in the US
- Panel data set of 48 states and 17 years

What is new?

- Combine rational habits and the partial dynamic adjustment model
- Allow for forward looking agents

How is that relevant?

- Better understand underlying factors of residential electricity demand
- Formulate better policies aiming at, e.g. saving energy
- Calculate more precise price elasticities

Introduction
00000

Overview

What is this paper about?

- Estimating aggregated residential electricity demand in the US
- Panel data set of 48 states and 17 years

What is new?

- Combine rational habits and the partial dynamic adjustment model
- Allow for forward looking agents

How is that relevant?

- Better understand underlying factors of residential electricity demand
- Formulate better policies aiming at, e.g. saving energy
- Calculate more precise price elasticities

Introduction
00000

Overview

What is this paper about?

- Estimating aggregated residential electricity demand in the US
- Panel data set of 48 states and 17 years

What is new?

• Combine rational habits and the partial dynamic adjustment model

• Allow for forward looking agents

How is that relevant?

- Better understand underlying factors of residential electricity demand
- Formulate better policies aiming at, e.g. saving energy
- Calculate more precise price elasticities

What influences electricity demand?

Electricity prices, weather, household income etc.

• These are all in the present. Past? Future?

Past consumption matters

- Appliance stock cannot be replaced immediately
- It takes time to change behavioral patterns

Expectations matter

- Rational agents have expectations of the future
- Incorporate these in their behaviour

Introduction
00000

Model and empirical strategy 000000

What influences electricity demand?

Electricity prices, weather, household income etc.

• These are all in the present. Past? Future?

Past consumption matters

- Appliance stock cannot be replaced immediately
- It takes time to change behavioral patterns

Expectations matter

- Rational agents have expectations of the future
- Incorporate these in their behaviour

Introduction
00000

Model and empirical strategy 000000

What influences electricity demand?

Electricity prices, weather, household income etc.

• These are all in the present. Past? Future?

Past consumption matters

- Appliance stock cannot be replaced immediately
- It takes time to change behavioral patterns

Expectations matter

- Rational agents have expectations of the future
- Incorporate these in their behaviour

Introduction	
00000	

Static model of electricity demand

Azevedo et al.(2011); Cebula et al.(2012); Eskeland and Mideska (2010)

Dynamic partial adjustment model:

Alberini and Filippini (2011); Paul et al.(2009); Bernstein and Griffin (2005)

Rational habits: Becker et al.(1994); Baltagi and Griffin (2002)

Rational habits and gasoline consumption:

Scott (2012)

Introduction 00000 Results

Conclusion

Static model of electricity demand

Azevedo et al.(2011); Cebula et al.(2012); Eskeland and Mideska (2010)

Dynamic partial adjustment model:

Alberini and Filippini (2011); Paul et al.(2009); Bernstein and Griffin (2005)

Rational habits: Becker et al.(1994); Baltagi and Griffin (2002)

Rational habits and gasoline consumption:

Scott (2012)

Introduction 00000

Static model of electricity demand

Azevedo et al.(2011); Cebula et al.(2012); Eskeland and Mideska (2010)

Dynamic partial adjustment model:

Alberini and Filippini (2011); Paul et al.(2009); Bernstein and Griffin (2005)

Rational habits: Becker et al.(1994); Baltagi and Griffin (2002)

Rational habits and gasoline consumption:

Scott (2012)

Introduction 00000

Static model of electricity demand

Azevedo et al.(2011); Cebula et al.(2012); Eskeland and Mideska (2010)

Dynamic partial adjustment model:

Alberini and Filippini (2011); Paul et al.(2009); Bernstein and Griffin (2005)

Rational habits: Becker et al.(1994); Baltagi and Griffin (2002)

Rational habits and gasoline consumption:

Scott (2012)

Introduction 0000 Results

Conclusion

The rational habits model for electricity demand Households maximize utility from energy services:

- E.g. Light, hot water, cooling, entertainment
- Energy services are produced from electricity and el. appliances

Household utility at time t:

$$U_t = u(e_t, e_{t-1}, c_t; x_t)$$

where e_t is current electricity consumption, e_{t-1} is past electricity consumption, c_t all other consumption goods, and x_t environmental factors.

Lifetime utility function of the household:

$$\sum_{t=1}^{\infty} \delta^{t-2} U_t = \sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

where $\delta = (1 + r)^{-1}$ is the constant rate of time preference and r is the interest rate.

Introduction 00000 Model and empirical strategy •00000

Results

Conclusions

The rational habits model for electricity demand Households maximize utility from energy services:

- E.g. Light, hot water, cooling, entertainment
- Energy services are produced from electricity and el. appliances

Household utility at time t:

$$U_t = u(e_t, e_{t-1}, c_t; x_t)$$

where e_t is current electricity consumption, e_{t-1} is past electricity consumption, c_t all other consumption goods, and x_t environmental factors.

Lifetime utility function of the household:

$$\sum_{t=1}^{\infty} \delta^{t-2} U_t = \sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

where $\delta = (1 + r)^{-1}$ is the constant rate of time preference and r is the interest rate.

Introduction 00000 Model and empirical strategy •00000

Results

Conclusions

The rational habits model for electricity demand Households maximize utility from energy services:

- E.g. Light, hot water, cooling, entertainment
- Energy services are produced from electricity and el. appliances

Household utility at time t:

$$U_t = u(e_t, e_{t-1}, c_t; x_t)$$

where e_t is current electricity consumption, e_{t-1} is past electricity consumption, c_t all other consumption goods, and x_t environmental factors.

Lifetime utility function of the household:

$$\sum_{t=1}^{\infty} \delta^{t-2} U_t = \sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

where $\delta = (1+r)^{-1}$ is the constant rate of time preference and r is the interest rate.

Introduction	Model and empirical strategy	Results		Conclusions	
00000	•00000		0000		0000

Today's consumption as function of past and future consumption

We get the following maximization problem assuming the appliance/habits stock fully depreciates after one period:

$$\sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

s.t.

•
$$e_0 = E_0$$

• $\sum_{t=1}^{\infty} \delta^{t-1}(c_t + P_t e_t) = W^0$

Solution of the FOC leads to the first-difference equation:

$$e_t = \theta e_{t-1} + \delta \theta e_{t+1} + \theta_1 P_t + \theta_2 x_t + \delta \theta_3 x_{t+1}$$

Introduction
00000

Model and empirical strategy

Results

Conclusions

Today's consumption as function of past and future consumption

We get the following maximization problem assuming the appliance/habits stock fully depreciates after one period:

$$\sum_{t=1}^{\infty} \delta^{t-1} u(e_t, e_{t-1}, c_t; x_t)$$

s.t.

•
$$e_0 = E_0$$

• $\sum_{t=1}^{\infty} \delta^{t-1} (c_t + P_t e_t) = W^0$

Solution of the FOC leads to the first-difference equation:

$$e_t = \theta e_{t-1} + \delta \theta e_{t+1} + \theta_1 P_t + \theta_2 x_t + \delta \theta_3 x_{t+1}$$

Introduction	
00000	

Model and empirical strategy OOOOO

Empirical model

We modify the first-difference equation to obtain:

$$e_{it} = \beta_0 + \beta_1 e_{it-1} + \beta_2 e_{t+1} + \beta_3 P_{it} + \beta_4 P G_{it} + \beta_5 Y_{it}$$

 $+\beta_6 HDD_{it} + \beta_7 CDD_{it} + \beta_8 HS_{it} + v_{it}$

 e_{it} : consumption today P_{it} : price of electricity PG_{it} : price of gas Y_{it} : income HDD_{it} , CDD_{it} : heating and cooling degree days HS_{it} : numbers of detached houses

Introduction 00000

Econometric issues

Three potential econometric issues to deal with:

- Heterogeneity bias due to low number of regressors
- Endogeneity of past and future consumption
- Measurement error in the price of electricity

Properties of the dataset:

- Relatively long time dimension (T=17)
- Small number of units (N=48)
- Properties of panel data estimators like GMM hold especially for N large

Introduction
00000

Econometric issues

Three potential econometric issues to deal with:

- Heterogeneity bias due to low number of regressors
- Endogeneity of past and future consumption
- Measurement error in the price of electricity

Properties of the dataset:

- Relatively long time dimension (T=17)
- Small number of units (N=48)
- Properties of panel data estimators like GMM hold especially for N large

Empirical strategy

How to solve the econometric issues:

- FE and RE account for unobserved heterogeneity
- 2SLSFE to fix the endogeneity problem
- Instrument for the price of electricity

We estimate the rational habits model using:

- Fixed effects estimators
- 2 stages least squares fixed effects estimator

Empirical strategy

How to solve the econometric issues:

- FE and RE account for unobserved heterogeneity
- 2SLSFE to fix the endogeneity problem
- Instrument for the price of electricity

We estimate the rational habits model using:

- Fixed effects estimators
- 2 stages least squares fixed effects estimator

Empirical model

We modify the first-difference equation to obtain:

$$e_{it} = \beta_0 + \beta_1 e_{it-1} + \beta_2 e_{t-1} + \beta_3 P_{it} + \beta_4 P G_{it} + \beta_5 Y_{it}$$

 $+\beta_6 HDD_{it} + \beta_7 CDD_{it} + \beta_8 HS_{it} + v_{it}$

 e_{it} : consumption today P_{it} : price of electricity PG_{it} : price of gas Y_{it} : income HDD_{it} , CDD_{it} : heating and cooling degree days HS_{it} : numbers of detached houses

Introduction 00000 Results

Conclusion

Estimation results FE specification

	FE	
e_{t-1}	0.476***	(14.97)
e_{t+1}	0.309***	(10.84)
P_t	-5602.4***	(-3.80)
PG_t	-10921.8	(-1.08)
Y_t	0.0114	(1.36)
HS_t	-306.9*	(-2.28)
HDD_t	0.181***	(9.72)
CDD_t	0.724***	(14.18)
Constant	182.5	(0.51)
N	719	

Introduction	
00000	

Model and empirical strategy 000000 Results

Conclusions

•000

Following Becker et al. (1994) and Baltagi et al. (2002), we use the following instruments:

- Input prices of coal and gas for the electricity sector
- Two-period lags and leads of the price of electricity
- one-period lag and lead of heating degree days

ntroduction	Model and empirical strategy	Results		Conclusions	
00000	000000		0000		0000

Estimation results 2SLSFE specification

Instrumented:	e_{t-1} , e_{t+1}		e_{t-1} , e_{t+1} , P_t	
	(1)		(2)	
e _{t-1}	0.432***	(4.90)	0.422***	(4.70)
e_{t+1}	0.221**	(2.85)	0.206**	(2.80)
P_t	-6787.8***	(-4.19)	-8196.7**	(-2.60)
PG_t	-1243.3	(-0.12)	-121.5	(-0.01)
Y _t	0.0309**	(2.87)	0.0325**	(3.02)
HS_t	-562.0**	(-3.11)	-588.6**	(-3.29)
HDD _t	0.185***	(10.16)	0.182***	(9.21)
CDD_t	0.641***	(16.84)	0.635***	(16.76)
Ν	611		611	
Underidentification test	41.495	[0.0000]	42.007	[0.0000]
Weak identification test	7.096		6.164	
5% critical value	3.78		NA	
Hansen J statistic	9.848	[0.1312]	10.210	[0.1161]

Introduction 00000 Model and empirical strategy 000000 Results

Conclusions

Short and long run elasticities

	Model	Short run	Long run
FE	(1)	0.1073	0.2603
FE2SLS	(2)	0.0931	0.2847
	(3)	0.0942	0.2207

All elasticities are negative and shown in absolute values.

Short run: residential electricity demand inelastic

Immediate adjustment appliances stock and behavioural habits is costly

Long run: residential electricity demand more elastic

Agents have more time to adapt habits and replace equipment

Introduction
00000

Model and empirical strategy 000000 Results

Conclusions

Short and long run elasticities

	Model	Short run	Long run
FE	(1)	0.1073	0.2603
FE2SLS	(2)	0.0931	0.2847
	(3)	0.0942	0.2207

All elasticities are negative and shown in absolute values.

Short run: residential electricity demand inelastic Immediate adjustment appliances stock and behavioural habits is costly

Long run: residential electricity demand more elastic

Agents have more time to adapt habits and replace equipment

Introduction
00000

Model and empirical strategy 000000 Results

Conclusions

Short and long run elasticities

	Model	Short run	Long run
FE	(1)	0.1073	0.2603
FE2SLS	(2)	0.0931	0.2847
	(3)	0.0942	0.2207

All elasticities are negative and shown in absolute values.

Short run: residential electricity demand inelastic

Immediate adjustment appliances stock and behavioural habits is costly

Long run: residential electricity demand more elastic

Agents have more time to adapt habits and replace equipment

Introduction
00000

Model and empirical strategy 000000 Results

Conclusion

A quick summary

Rational habits?

- Do households consider the future in their consumption decision?
- Extend and generalize existing DPA model
- Allowing for forward looking agents

Empirical evidence

- YES, households consider the future in their consumption decision
- Current electricity consumption depends on past and future (expectation of) consumption
- Does that mean agents are rational? Maybe it does.

Introduction	Model and empirical strategy	Results		Conclusions	
00000	000000		0000		•000

A quick summary

Rational habits?

- Do households consider the future in their consumption decision?
- Extend and generalize existing DPA model
- Allowing for forward looking agents

Empirical evidence

- YES, households consider the future in their consumption decision
- Current electricity consumption depends on past and future (expectation of) consumption
- Does that mean agents are rational? Maybe it does.

Introduction	Model and empirical strategy	Results		Conclusions	
00000	000000		0000		•000

Conclusions

Understanding demand:

- Knowing the factors influencing demand is crucial for policy makers
- Especially true for policies targeting energy savings
- DPA models may lead to biased estimates of policy impact

Future consumption impacts current consumption

- We can conclude that agents are forward looking
- We cannot conclude that agents are rational
- Elasticities only differ slightly from DPA model elasticities

Introduction
00000

Model and empirical strategy 000000

Conclusions

Understanding demand:

- Knowing the factors influencing demand is crucial for policy makers
- Especially true for policies targeting energy savings
- DPA models may lead to biased estimates of policy impact

Future consumption impacts current consumption

- We can conclude that agents are forward looking
- We cannot conclude that agents are rational
- Elasticities only differ slightly from DPA model elasticities

Introduction
00000

Policy Implications

Long-term policies

- Effect of policies today may depend on anticipated effect on future consumption
- Effect reinforced by anticipating the effect on future consumption

troduction	Model and empirical strategy	Results		Conclusions	
00000	000000		0000		0000

Thank you

Introduction	Model and empirical strategy	Results		Conclusions	
00000	000000		0000		0000