« Policy tradeoffs under risk of abrupt climate change » by Y. Tsur and A. Zemel

Comments by Nicolas Treich (Toulouse School of Economics)

Figure 1: The growing interest of economists in catastrophes and disasters

Notes: Bibliometric search of the WEB OF SCIENCETM with the key words <catastrophe>, <catastrophe>, <catastrophe>, <catastrophe>, <catastrophe>, <disaster>, <disaster>, or <disastrous>; hits are articles published in selected economic journals between 1974 and 2014.

Source: Rheinberger and Treich (2015)

The contribution (as I see it)

• The paper:

- Examines the tradeoff between mitigation and adaptation in a dynamic stochastic model
- Uses more general functional forms than in previous literature (in particular Zemel 2015)

My assessment:

- The paper is well written, and the theoretical analysis well conducted
- The contribution is welcome because assumptions about functional forms drive the mitigation-adaption tradeoff
- The paper could yet be more general regarding assumptions about functional forms

Functional forms

- A general « well-behaved » instantaneous utility: u(m,a)
 - m: emissions
 - a: adaptation
 - Zemel (2015) assumes $u_{aa}=u_{am}=0$
 - Yet, a separable utility $u(m,a)=m-m^2/2-a^{1-\mu}$ is used in the example
- A damage function φ separable from the utility function
 - Implies for instance that (marginal) benefit of abatement is independent from initial wealth/capital

Insurance economics

Model:

- $U = (1-h(m)) u(m-k) + h(m) u(m-k-\phi(k))$
- k drives « self-insurance » and m drives « selfprotection » motives
- Remark: risk aversion (i.e., concavity of u) is enough to induce nonseparability
- The insurance economics literature has studied the self-protection and self-insurance tradeoff
- Key references: Ehrlich and Becker (JPE 1972),
 Jullien-Salanié-Salanié (GRIR 1999)