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Abstract

By now it is widely recognized that the more serious threats of cli-

mate change are associated with abrupt events capable of in�icting losses

on a catastrophic scale. Consequently, the main role of climate policies

is to balance between mitigation e�orts, aimed at delaying (or even pre-

venting) the occurrence of such events, and adaptation actions, aimed

at minimizing the damage in�icted upon occurrence. The former af-

fects the accumulation of greenhouse gases in the atmosphere; the latter

determines the impact of loss once the event occurs. This work exam-

ines the tradeo�s associated with these two types of policy measures by

characterizing the optimal mitigation-adaptation mix in the long run.
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1 Introduction

It is widely recognized by now that the more serious threats of climate

change are associated with abrupt changes capable of in�icting losses on a

catastrophic scale (Alley et al. 2003, Field et al. 2012). Each link in the

chain leading from anthropogenic emission of greenhouse gases (GHG) to the

abrupt change in climate and the ensuing damage involves uncertain elements

(Schelling 2007, Tol 2012). An appropriate framework to analyze such situa-

tions involves discrete events triggered by conditions that are either imperfectly

understood (e.g., include unknown parameters) or involve genuine stochastic

elements. Any climate change-induced event can be categorized as one or a

combination of these two types.

Tsur and Zemel (1996), for example, studied the �rst type of climate events

� those triggered when a certain threshold is crossed (i.e., tipping point events).

While the threshold itself does not change (hence crossing it is a deterministic

event), its location depends on parameters that are unknown or only partially

known to modelers and policymakers. In contrast, the events analyzed in

Tsur and Zemel (1998) are triggered by genuinely stochastic conditions. It

turns out that the method of analysis as well as the ensuing optimal policies

di�er between these two types of events (see discussion in Tsur and Zemel

2007). Here we consider the latter type of climate events � those triggered by

stochastic conditions.

Policy measures for dealing with threats of abrupt climate change can be

categorized into two types. The �rst includes measures aimed at delaying

or even preventing the event occurrence by reducing emission of GHG or by

capturing (sequestering) carbon and storing it at harmless locations. Such
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measures are commonly referred to as mitigation policies. Measures of the

second type are aimed at reducing, or even eliminating, the damage caused by

the event once it occurs, e.g., building levees to prevent �ooding, developing

a cure or a vaccine for diseases that are likely to spread due to the arrival of

certain pathogens, or developing crop varieties that can better sustain a range

of climate conditions. These measures are commonly referred to as adaptation

policies. A comprehensive climate policy contains measures of both types and

characterizing the optimal policy requires evaluating the tradeo�s between

them (Tol 2005, Bréchet et al. 2013). In this work we present a framework

for accomplishing this goal, focusing on the long run.

To that end, we use the mitigation-adaptation framework o�ered by Zemel

(2015), which combines mitigation policies a�ecting the random occurrence

date of a detrimental event (such as in Tsur and Zemel 1998) with adaptation

policies a�ecting the damage in�icted upon occurrence (such as in Tsur and

Withagen 2013). By assuming that the costs and e�ects of adaptation invest-

ments are linear, Zemel (2015) was able to characterize the entire time pro�le

of the optimal mitigation-adaptation policy.

In this work we relax this linearity assumption and focus on characterizing

the optimal steady state, i.e., the optimal adaptation-mitigation policy in the

long run. We do this by extending the method of Tsur and Zemel (2014c) for

characterizing optimal steady states of multi-state dynamic systems to situa-

tions involving random events. In the present context the model contains two

state variables: an atmospheric GHG stock, a�ecting the occurrence prob-

ability of a detrimental event, determined by the mitigation policy; and an

adaptation capital stock whose role is to reduce the damage in�icted upon

occurrence.
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We provide necessary conditions for the location and stability of optimal

steady states. These conditions give rise to a simple method for characterizing

the optimal mitigation-adaption mix in the long run. An example illustrates

how the method works in a particular setting.

2 Setup

An abrupt climate-change induced event, capable of in�icting a severe dam-

age, may occur at some uncertain future date T . The distribution of T is gov-

erned by a hazard rate function h(Q) that depends on the atmospheric GHG

stock Q. The event in�icts a damage ψ(k) that depends on the adaptation

capital k available at T . The climate policy consists of mitigation e�orts to

curb the accumulation of GHG and of investment in adaptation capital. The

policymaker task is to set the optimal mix of these two activities over time.

The model described below addresses this problem.

2.1 Climate policy

Production activities at time t generate emissions at the rate m(t) that

accumulate to form the GHG stock Q(t) according to

Q̇(t) = m(t)− γQ(t), (2.1)

where γ is the natural GHG removal rate. Emission is bounded above by a

�nite maximal rate m̄ and mitigation at time t is measured as the di�erence

m̄ − m(t) between the maximal and actual rates. The upper bound on m

implies the maximal feasible GHG stock Q̄ = m̄/γ. Given that no event has

occurred by time t0, the GHG stock process Q(·) a�ects the distribution of

the random occurrence date T of the event through the hazard rate function
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h(Q) according to

S(t| t0) ≡ Pr{T > t|T > t0} = e
−
´ t
t0

h(Q(s))ds
(2.2)

for t ≥ t0 ≥ 0. The corresponding conditional distribution and density

functions of T are, respectively,

FT (t| t0) = 1−S(t| t0) and fT (t| t0) = F ′
T (t| t0) = h(Q(t))e

−
´ t
t0

h(Q(s))ds
. (2.3)

We assume that h(0) = 0; h′(Q) > 0; h′′(Q) ≥ 0.

Occurrence at time T in�icts the damage ψ(k(T )), where ψ(·) decreases in

the adaptation capital k at a diminishing rate: ψ(k) > 0, ψ′(k) < 0, ψ′′(k) > 0.

The adaptation capital accumulates according to

k̇(t) = a(t)− δk(t), (2.4)

where a(·) is the investment in adaptation capital and δ is a depreciation rate.

The production activities associated with emission give rise to the instan-

taneous utility u(m, a) which increases with the emission rate m and decreases

with adaptation investment rate a (since the latter comes at the expense of

consumption). More speci�cally, we assume1

um(·, ·) > 0 for 0 < m < m̄; ua(·, ·) < 0 for a > 0;

umm(·, ·) < 0; uaa(·, ·) < 0; umm(·, ·)uaa(·, ·) > u2am(·, ·). (2.5)

A climate policy consists of the action processes {m(t), a(t), t ≥ 0}. A policy

is feasible if m(t) ∈ [0, m̄] and a(t) ≥ 0 for all t ≥ 0.

1Subscripts denote partial derivatives. In typical applications, the contributions of m
and a to the utility are independent, uam = 0 and the last condition is trivially satis�ed.
The assumption on uaa represents the point of departure from the model of Zemel (2015),
since it rules out a linear dependence on the control variable a.
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2.2 Payo�

We consider recurrent events, i.e., events that may occur again and again,

where the distribution of the next occurrence date is determined by the hazard

process h(Q(t)), as de�ned in (2.2), when t0 is the previous occurrence date or

zero if no event has yet occurred (see Tsur and Zemel 1998, for a distinction

between single occurrence and recurrent events). Each time the event occurs

it in�icts the penalty ψ(k) corresponding to the adaptation capital k at the

occurrence date. Apart from in�icting the penalty, occurrence does not change

the �ow of utility or the dynamics of the stock variables, nor the probability

distribution of yet another occurrence.

Let v(Q, k) denote the value function (i.e., the value of the objective ob-

tained with the optimal policy when the initial stocks areQ and k). Assuming,

without loss of generality, that t0 = 0 and the �rst event occurs at T , the payo�

at t0 = 0 is

ˆ T

0

u(m(t), a(t))e−ρtdt+ e−ρT [v(Q(T ), k(T ))− ψ(k(T ))].

Taking expectation with respect to the distribution T , using (2.2)-(2.3), gives

the expected payo�

ˆ ∞

0

[u(m(t), a(t)) + h(Q(t))φ(Q(t), k(t))] e−
´ t
0 [ρ+h(Q(s))]dsdt, (2.6)

where

φ(Q, k) ≡ v(Q, k)− ψ(k) (2.7)

is the continuation value at the time of occurrence. The optimal policy is

the feasible process {m(t), a(t), t ≥ 0} that maximizes (2.6) subject to (2.1)

and (2.4), given Q(0) = Q0, k(0) = k0. The value v(Q0, k0) is obtained by

evaluating the objective (2.6) at the optimal policy. Note that (2.6) contains
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the value function v(·, ·) via the continuation value φ(·, ·), implying that v(·, ·)

is only implicitly de�ned. For long run analysis aimed at characterizing the

steady states, the implicit de�nition poses no di�culty, as shown below.

3 Long run properties

Let X = (Q, k)′ and C = (m, a)′ denote, respectively, the state and action

vectors (a prime over a vector or a matrix indicates the transpose operator).

For any stateX, let Ĉ(X) denote the adaptation-mitigation actions that main-

tain the state �xed at X inde�nitely. Noting (2.1) and (2.4),

Ĉ(X) = (γQ, δk)′ . (3.1)

Let W (X) denote the expected payo� obtained when the (not necessarily

optimal) steady state policy Ĉ(X) is maintained inde�nitely (before and after

occurrences). Under this policy, the state process remains �xed at X and

the T distribution (2.3) reduces to exponential (with the parameter h(Q)).

Evaluating (2.6) under the steady state policy gives

W (X) =
u(γQ, δk) + h(Q)φ(X)

ρ+ h(Q)
. (3.2)

Since the steady state policy proceeds also after occurrence, the continuation

value φ(X) reduces to W (X)− ψ(k) and (3.2) becomes

W (X) =
u(γQ, δk) + h(Q)[W (X)− ψ(k)]

ρ+ h(Q)
.

Solving for W (X), we �nd

W (X) =
u(γQ, δk)− h(Q)ψ(k)

ρ
. (3.3)

The �rst term u(γQ, δk)/ρ is the steady state value without catastrophic risk.

The second term describes the expected cumulative loss from a Poisson series
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of events when the penalty ψ associated with each event is weighted at the

discount factor corresponding to its time of occurrence.

Let X̂ denote an optimal steady state. Since W (X) ≤ v(X) with equality

holding at X̂, it follows that

v(X̂) =
u(γQ̂, δk̂)− h(Q̂)ψ(k̂)

ρ
(3.4)

and

vX(X̂) = WX(X̂), (3.5)

where vX(X) and WX(X) are, respectively, the gradient vectors of v(X) and

W (X) with respect to X = (Q, k)′.

Let f(X,C) ≡ u(m, a)+h(Q)φ(X) be the instantaneous utility associated

with the expected payo� (2.6). The gradient vector of f with respect to C,

evaluated at (X, Ĉ(X)) is given by

fC =

(
um(γQ, δk)
ua(γQ, δk)

)
. (3.6)

The state-dynamics equations (2.1) and (2.4) can be jointly expressed as

Ẋ = G(X,C), where

G(X,C) ≡ C −
(
γ 0
0 δ

)
X =

(
m− γQ
a− δk

)
.

Let JG
X and JG

C denote the Jacobian matrices with respect to X and C, re-

spectively. Then,

JG
X =

(
−γ 0
0 −δ

)
, JG

C =

(
1 0
0 1

)
. (3.7)

Next, following Tsur and Zemel (2014c) we introduce the function2

L(X) ≡
(
l1(X)
l2(X)

)
= (ρ+ h(Q))

(
[JG ′

C ]−1fC +WX(X)
)
, (3.8)

2JG
C is given in (3.7) as the identity matrix, hence including its inverse in the de�nition

of L appears redundant. We keep it here for consistency with the general theory (see
Appendix) and to allow extensions with more complicated state-dynamics equations.
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where

WX(X) =
1

ρ

(
γ um(γQ, δk)− h′(Q)ψ(k)
δ ua(γQ, δk)− h(Q)ψ′(k)

)
was de�ned above as the gradient vector of W (X). In the present setting,

noting (3.6) and (3.7), L(·) specializes to

L(X) =
ρ+ h(Q)

ρ

(
(ρ+ γ)um(γQ, δk)− h′(Q)ψ(k)
(ρ+ δ)ua(γQ, δk)− h(Q)ψ′(k)

)
. (3.9)

The signi�cance of L(·) is manifest in:

Property 1. Assume the state bounds 0 ≤ Q ≤ Q̄ and 0 ≤ k ≤ k̄. The

following conditions hold at an optimal steady state X̂ = (Q̂, k̂)′:

(i) If Q̂ ∈ (0, Q̄) and k̂ ∈ (0, k̄) then L(X̂) = 0.

(ii) If Q̂ = Q̄, then l1(X̂) ≥ 0; if k̂ = k̄, then l2(X̂) ≥ 0.

(iii) If Q̂ = 0, then l1(X̂) ≤ 0; if k̂ = 0, then l2(X̂) ≤ 0.

Property 2. If a steady state X̂ at which L(X̂) = 0 is locally stable,3 then

det(JL
X(X̂)) > 0.

With some modi�cations to account for the presence of a Q-dependent

hazard, the proofs of the properties proceed along the steps of the proofs of

Propositions 1 and 2 in Tsur and Zemel (2014c). The proof of Property 1 is

outlined in the appendix; the proof of Property 2 is omitted.

For the model at hand, Property 1 implies, noting (3.9), that at an internal

steady state (where L(X̂) = 0) the following conditions hold

um(γQ̂, δk̂) =
h′(Q̂)ψ(k̂)

ρ+ γ
; ua(γQ̂, δk̂) =

h(Q̂)ψ′(k̂)

ρ+ δ
.

The �rst condition de�nes the optimal steady state for the Q process when

the adaptation capital is constrained at k̂. The second condition de�nes the

3X̂ is locally stable if there exists some ϵ > 0 such that (along the optimal trajectory)
∥X(t0)− X̂∥ < ϵ at some t0 implies X(t) → X̂.
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optimal steady state for the k process when the GHG stock is constrained to

be �xed at Q̂. When both stocks are free to vary, an optimal steady state

requires both conditions to hold.

Evaluating the Jacobian of L at the internal steady state, we �nd

JL
X(X̂) =

ρ+ h(Q̂)

ρ
×(

γ(ρ+ γ)umm(γQ̂, δk̂)− h′′(Q̂)ψ(k̂) δ(ρ+ γ)uma(γQ̂, δk̂)− h′(Q̂)ψ′(k̂)

γ(ρ+ δ)uma(γQ̂, δk̂)− h′(Q̂)ψ′(k̂) δ(ρ+ δ)uaa(γQ̂, δk̂)− h(Q̂)ψ′′(k̂)

)
.

(3.10)

The two diagonal elements of JL
X are negative. Condition (2.5) regarding uma

ensures that the presence of this term in the o�-diagonal elements cannot, on

its own, reverse the sign of the determinant (i.e., h ≡ 0 implies that det(JL
X) is

positive). The stability condition of Proposition 2, then, depends essentially

on the magnitude of h′(Q̂)ψ′(k̂) vis-à-vis the other elements of the matrix. The

stability property is examined in more detail in terms of a speci�c example in

the following section.

4 Example

We follow Zemel's (2015) example, modifying the adaptation policy to

allow for nonlinear e�ects. Table 1 presents the speci�cations and parameter

values used in the numerical solution. Using Table 1, L(X), de�ned in (3.9),

specializes to

l1(Q, k) =
ρ+ βQ

ρ

(
(ρ+ γ)(α− γQ)− βKmψ0

k +Km

)
(4.1a)

and

l2(Q, k) =
ρ+ βQ

ρ

(
−(ρ+ δ)(1 + µ)(kδ)µ +

QKmβψ0

(k +Km)2

)
. (4.1b)

9



Table 1: Function speci�cations and parameter values.

Function Speci�cation Parameter value Description

u(m, a) αm−m2/2− a1+µ α = 2, µ = 1 utility
h(Q) βQ β = 0.005 hazard rate
ψ(k) ψ0Km/(Km + k) ψ0 = 10, Km = 50 damage function

ρ = 0.03 discount rate
γ = 0.01 GHG decay rate
δ = 0.03 capital depreciation rate
Q̄ = 200 maximal GHG stock
k̄ = 33.33 maximal adaptation capital

Viewing the solution Q of l1(Q, k) = 0 as a function of k, i.e. Q = Q1(k)

we �nd

Q1(k) = R1 −
R2

(k +Km)
where R1 ≡

α

γ
= Q̄ and R2 ≡

βKmψ0

γ(ρ+ γ)
.

The function Q1(·) is increasing. The higher is the adaptation capital k, the

lower is the in�icted damage hence the planner can increase the GHG stock

and the associated hazard. This observation re�ects an important adaptation-

mitigation tradeo�: a higher adaptation capital provides a higher insurance

coverage against the perils of a climate change catastrophe, hence reduces the

incentive to exert mitigation e�orts in order to avoid or delay occurrence.

Viewing the solution Q of l2(Q, k) = 0 as a function of k, i.e. Q = Q2(k)

we �nd

Q2(k) = R3k
µ(k +Km)

2 where R3 ≡
δµ(ρ+ δ)(1 + µ)

βKmψ0

.

The function Q2(·) is also increasing. The larger is the GHG stock, the higher

the risk and the incentive to invest in increasing k. The condition that L(·)

must vanish at an internal steady state clearly displays the tradeo�s between

the two responses to the hovering risk. Indeed, imposing this condition entails
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Q1(k) = Q2(k) which reduces to a polynomial equation in k. Using the values

in Table 1, we �nd that the conditions l1 = l2 = 0 reduce in this example to

0.00144× k(k + 50)3 − 200× (k + 50) + 6250 = 0. (4.2)

This 4th order polynomial equation in k admits two real roots, of which one

is negative hence infeasible, while the other corresponds to the feasible steady

state X̂ ≡ (Q̂, k̂) = (106.178, 16.616). At this state, the Jacobian matrix

(3.10) reduces to

JL
X(X̂) =

ρ+ h(Q̂)

ρ

(
−0.0004 0.000563
0.000563 −0.0054

)
. (4.3)

which has a positive determinant, as required by Property 2 for (Q̂, k̂) to be

locally stable.

While these considerations leave a unique candidate for an internal steady

state, one needs to investigate also the possibility of corner steady states. This

requires to check the sign of the relevant component of L(·) at each possible

corner. To consider the possibility that an optimal steady state falls on a

boundary Q̂ = Q̄ = 200 or Q̂ = 0, Figure 1 depicts the functions l1(Q̄, k)

and l1(0, k) for k ∈ [0, k̄]. It is seen that the upper curve is negative and

the lower curve is positive for all k ∈ [0, k̄], ruling out, by virtue of Property

1, the possibility that a steady state falls on one of the Q boundaries. This

means that the occurrence hazard is insu�cient to drive the GHG stock (and

the corresponding emission rate) all the way down to zero, but on the other

hand, it does not allow this stock to reach the maximal level Q̄ that would

have been obtained if the emission rate m were chosen so as to maximize the

utility u at all times.

To check the possibility that the steady state falls on a k boundary (k = 0

or k = k̄ = 33.33), Figure 2 shows l2(Q, k̄) and l2(Q, 0) for Q ∈ [0, Q̄]. The
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Figure 1: The upper panel shows l1(Q̄, k) vs. k. The lower panel shows
l1(0, k) vs. k. The upper curve is always negative and the lower curve is
always positive in the feasible range for k, ruling out a steady state with
either Q = Q̄ or Q = 0.

upper curve is negative for all Q ∈ [0, Q̄], ruling out the possibility of a steady

state falling at k = k̄ (Property 1). The lower curve is positive for all Q > 0

and crosses zero at Q = 0. Thus the same Property allows a steady state with

k̂ = 0 only if Q̂ = 0. However, Q̂ = 0 was ruled out above, implying that

the steady state cannot fall on a k boundary: in the long run some adaptation

is desirable but not at the full feasible rate. This leaves the internal state

(Q̂, k̂) = (106.178, 16.616) as the unique optimal steady state in this case.

Increasing the hazard sensitivity parameter β from 0.005 to 0.01 changes
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Figure 2: The upper panel shows l2(Q, k̄) vs. Q. The lower panel shows
l2(Q, 0) vs. Q. The upper curve is always negative and the lower curve is
always positive in the feasible range for Q, ruling out a steady state with either
k = k̄ or k = 0.

the polynomial equation (4.2) to

0.00072× k(k + 50)3 − 200× (k + 50) + 12500 = 0

and this equation does not admit any real root. It follows from Property 1

that no internal steady state (with both Q and k away from their respective

corners) can be optimal and at least one state must lie on a corner. We

investigate the various possibilities with the help of Figures 3 - 5.

Observing the upper panel of Figure 3, we see that Property 1-(ii) rules

out the possibility that Q̂ = Q̄ (because l1(Q̄, k) < 0 for all k ∈ [0, k̄]). In

contrast, the lower panel leaves open the possibility that Q̂ = 0 as long as
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Figure 3: l1(Q̄, k) (upper panel) and l1(0, k) (lower panel) vs. k under high
hazard sensitivity β = 0.01. The negative values of l1(Q̄, k) rule out a steady
state with Q̂ = Q̄. The negative values of l1(0, k) leave open the possibility
of a steady state with Q̂ = 0 and k̂ ≤ 12.5.

k̂ ≤ 12.5 (since l1(0, k) ≤ 0 for k ∈ [0, 12.5]). Setting Q = 0 in (4.1b) yields

a negative value for l2(0, k) for all k > 0 hence Property 1-(i) implies that

no internal k state can couple with Q̂ = 0 to form an optimal steady state.

However, with k = 0, we obtain from the same equation l2(0, 0) = 0 hence the

double-corner state (Q̂, k̂) = (0, 0) meets the conditions of Property 1 for an

optimal steady state.

Turning to Figure 4, the lower panel shows that Property 1-(iii) rules out

the possibility that k̂ = 0 and Q̂ > 0 (since l2(Q, 0) > 0 for Q > 0) but leaves

open the possibility Q̂ = k̂ = 0, discussed above. The interpretation of the
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Figure 4: l2(Q, k̄) (upper panle) and l2(Q, 0) (lower panel) vs. the GHG stock
Q under high hazard sensitivity β = 0.01. The positive values of l2(Q, 0) rule
out a steady state with k̂ = 0 and Q̂ > 0. The positive values of l2(Q, k̄)
leave open the possibility of a steady state with k̂ = k̄ and Q̂ ≥ 167.67.
However, the latter possibility is ruled out by considerations involving l1(Q, k̄)
(see Figure 5 below).

upper panel is somewhat more complex. First, it rules out the possibility

that k̂ = k̄ for Q < 166.67 (by virtue of Property 1-(ii), since l2(Q, k̄) < 0

for Q < 166.67). Thus, if a steady state with k̂ = k̄ is optimal, it must have

Q̂ ≥ 166.67. However, Figure 5 shows that l1(Q, k̄) < 0 in this Q range, hence

Property 1 implies that such a steady state cannot be optimal.

The above considerations leave (Q̂, k̂) = (0, 0) as the unique optimal steady

state in the case of β = 0.01. The result can be attributed to the high

hazard sensitivity. The strong dependence of the hazard rate on the GHG
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Figure 5: l1(Q, k̄) vs. the GHG stock Q under high hazard sensitivity β = 0.01.
The negative values of l1(Q, k̄) at the higher Q states rule out (by virtue of
Property 1-(ii)) a steady state with k̂ = k̄ and Q̂ in this range.

stock provides a strong incentive to reduce emissions and bring the occurrence

probability down to zero. However, eliminating the risk also removes the

motivation to invest in adaptation, hence the adaptation capital stock k is

also driven down to its lowest feasible level. The tradeo�s between mitigation

and adaptation measures are evident in this case.

5 Concluding comments

We study long-term adaptation-mitigation tradeo�s in situations involving

risk of catastrophic climate events, where the mitigation policy in�uences the

event occurrence probability and the adaptation policy a�ects the severity

of damage upon occurrence. The analysis extends Zemel (2015) to non-

linear policies and is based on the multi state L−method of Tsur and Zemel

(2014c), appropriately modi�ed to allow for uncertain discrete events. We

�nd that the method can identify a unique candidate for the optimal two-

dimensional steady state, both when this state is interior, determined by the

adaptation/mitigation tradeo�s, as well as when it is a corner state depending
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on some feasibility constraint. In both cases, the eventual steady state re�ects

the strong interaction between the adaptation and mitigation responses to the

catastrophic risk.

Although the model is presented in the context of a climate change prob-

lem, the framework can be used, with obvious modi�cations, in other multi-

dimensional resource situations involving uncertain discrete events, such as an

abrupt regime shift in the dynamics of exploited ecosystems and other regen-

erating resources (see examples in Dasgupta and Mäler 2003, Tsur and Zemel

2007, Polasky et al. 2011, de Zeeuw and Zemel 2012).

Appendix

Proof of Property 1: The following derivation combines the arguments of Tsur

and Zemel (2014a,b) to show how the properties of the L-method presented

in Tsur and Zemel (2014c) extend to the case of a multi-state system evolving

under event uncertainty. We recall the notation f(X,C) = u(C)+h(Q)φ(X)

and

W (X) =

ˆ ∞

0

f(X, Ĉ(X))e−[ρ+h(Q)]tdt =
f(X, Ĉ(X))

ρ+ h(Q)
,

and note that although the simple form adopted here for the state equation

Ẋ = G(X,C) reduces the Jacobian JG
C to the identity matrix (see 3.7), the for-

mulation holds for more general speci�cations hence we refer to this Jacobian

in its general form.

For any feasibleX, we compare the payo�W (X) obtained under the steady

state policy C = Ĉ(X) with the payo� obtained from a small feasible variation

of this policy. If the variation policy yields a payo� that exceeds W (X), then

the steady-state policy is not optimal at X and this state does not qualify as
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an optimal steady state. For small ε > 0 and ∆ = (δ1, δ2)
′, the variation

policy is de�ned by

Cε∆(t) ≡

{
Ĉ(X) + [JG

C (X, Ĉ(X))]−1∆ if t < ε

Ĉ(X(ε)) if t ≥ ε
.

While t < ε, Cε∆(t) deviates slightly from the steady-state policy Ĉ(X), then

it enters a steady state at X(ε). During the �rst period when t < ε,

Ẋ = G(X, Ĉ(X)) + JG
C (X, Ĉ(X))[JG

C (X, Ĉ(X))]−1∆+ o(δ) = ∆ + o(δ),

which brings the state at t = ε to X(ε) = X + ε∆+ o(εδ).

Let Γ(t) ≡
´ t

0
[ρ+h(Q(s))]ds. The contribution to the objective under the

variation policy Cε∆(t) during t < ε is evaluated, up to o(εδ) terms, by

ˆ ε

0

f
(
X(t), Ĉ(X) + [JG

C (X, Ĉ(X))]−1∆
)
e−Γ(t)dt =

ˆ ε

0

f
(
X(t), Ĉ(X) + [JG

C (X, Ĉ(X))]−1∆
)
e−[ρ+h(Q)]tdt +

ˆ ε

0

f
(
X(t), Ĉ(X) + [JG

C (X, Ĉ(X))]−1∆
)
[e−Γ(t) − e−[ρ+h(Q)]t]dt.

The �rst integral in the right can be expressed as

ˆ ε

0

f(X, Ĉ(X))e−[ρ+h(Q)]tdt+[fC(X, Ĉ(X))]′[JG
C (X, Ĉ(X))]−1[ε∆]+o(εδ) =

W (X)
[
1− e−[ρ+h(Q)]ε

]
+ [fC(X, Ĉ(X))]′[JG

C (X, Ĉ(X))]−1[ε∆] + o(εδ),

and the second integral is o(εδ).

The contribution of Cεδ during the in�nite period t ≥ ε is evaluated, up to

o(εδ) terms, by

ˆ ∞

ε

f(X(ε), Ĉ(X(ε)))e−[ρ+h(Q(ε))]tdt =

ˆ ∞

ε

[ρ+h(Q(ε))]W (X(ε))e−[ρ+h(Q(ε))]tdt =

ˆ ∞

ε

[ρ+h(Q(ε))]W (X)e−[ρ+h(Q(ε))]tdt+

ˆ ∞

ε

[ρ+h(Q(ε))][WX(X)]′[ε∆]e−[ρ+h(Q(ε))]tdt.
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The �rst integral on the second line can be expressed as

W (X)

ˆ ∞

ε

[ρ+h(Q(ε))]e−[ρ+h(Q(ε))]tdt =W (X)e−[ρ+h(Q(ε))]ε = W (X)e−[ρ+h(Q)]ε+o(εδ)

and the second integral is approximated by [WX(X)]′[ε∆] + o(εδ).

Summing the contributions of the two periods gives the payo� V ε∆(X)

obtained under the variation policy:

V ε∆(X) = W (X) +
[
[JG

C (X, Ĉ(X))]′ −1fC(X, Ĉ(X)) +WX(X)
]′
[ε∆] + o(εδ).

Thus, noting (3.8),

V ε∆(X)−W (X) = [L(X)]′[ε∆]/[ρ+ h(Q)] + o(εδ).

The signs of the elements of ∆ can be freely chosen, while ε > 0. Now,

if L(X) ̸= 0 we can set ∆ = δL(X), where δ is a small positive constant,

hence [L(X)]′∆ > 0. This implies V ε∆(X) > W (X) and X is not an optimal

steady state. Thus, only the roots of L(·) qualify as legitimate candidates

for an optimal steady state. The only possible exceptions are the feasibility

bounds of Q and k. Choosing δ1 > 0 is not feasible at Q̄ because this policy

would drive the Q(·) process outside the feasible domain. It follows that

X = (Q̄, k)′ cannot be excluded as an optimal steady state if l1(X) > 0. A

similar argument implies that X = (0, k)′ cannot be excluded as an optimal

steady state if l1(X) < 0. Analogous constraints on the sign of l2(X) apply

at the corner states X = (Q, k̄)′ and X = (Q, 0)′.
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