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Abstract 

This paper present a different perspective in the debate on energy efficiency and energy 

demand by classifying the impact of efficiency measures into direct and indirect effect 

(rebound effect). It examines the potential direct effect of energy efficient R&D capital on 

energy demand. Irrespective of the “rebound effect” associated with energy efficiency, it is 

possible to have a negative direct effect from efficiency measures. Using a sample of 

OECD countries, we find evidence in support of negative own-R&D capital elasticity with 

respect to energy demand. Further, we find evidence of heterogeneity in the predicted 

impact of energy efficient R&D capital, with the USA having the largest accumulated 

reduction in energy demand and Portugal with the smallest. Overall, our empirical results 

suggest a reasonable reduction in energy demand and associated CO2 emissions from an 

increase in energy efficient R&D investment base on the direct effect and this varies across 

the countries.  
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1. Introduction 

After the commencement of the Kyoto protocol in 2005, there has been increasing 

attention by policy makers, academia and firms across various countries, especially 

industrialized countries on a share burden in meeting the targets set by the Kyoto protocol 

and their respective national and regional block’s targets.  Despite the global awareness on 

the negative consequences of CO2 emissions, global CO2 emissions still increased to 35.3 

Gigatonnes in 2013, a 0.7 Gigatonne higher than the 2012 figure (about 2% increase in 

2013 relative to 2012). The three top ranked emitters in 2013 accounts for 55% of global 

CO2 emission, and are China (29%), United States (15%) and the European Union (EU28) 

(11%).  In 2011, OECD countries contributed 38% of global CO2 emissions and energy 

combustions accounts for close to 99% of the emissions (IEA, 2013). On individual 

country level, China is the leading CO2 emitting country, followed closely by USA, while 

India occupies the third sport in absolute values (IEA, 2013). 

 

Arguably, one potential channel to reducing the negative impact of energy on the 

environment is through energy efficiency. However, this is true if the benefits from 

efficiency measures are taxed and invest in R&D that can produce new technologies that 

will enable a shift away from fossil based energy. This type of policy mix will reduce or 

eliminate the potential rebound effect associated with efficiency measures. A potential 

channel to increase energy efficiency is through research and development (R&D). In 

most, if not all energy policy packages for OECD countries, there is a great element or 

requirement for energy efficiency and hence increasing expenditure in energy efficient 

related R&D’s. Energy efficient R&D is therefore seen as a crucial channel among policy 

makers, at least in decoupling energy use from GDP growth  and consequently reducing 

global CO2 emissions in general, if combine with a well design tax scheme. For instance 

the OECD countries that are members of the European Union (EU), under the 20/20/20 

directive are required to contribute their respective national targets to reducing energy use 

by 20% via energy efficiency measures by the year 2020.Such a policy calls for energy 

efficient R&D investment and other measures that could influence energy efficiency 

among member countries.  

 

There is however very little empirical studies that examine the potential contribution from 

energy efficiency measures on aggregate energy demand in general, particularly energy 
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efficient R&D investment on aggregate energy demand, at least for OECD countries. Most 

of the studies on R&D are rather based on its impact on output via Griliches (1979) type of 

analysis that focus on a knowledge production within a more general production theory 

framework, Hall et al. (2009) provides a recent review of the literature in this area. The 

few studies based on energy for instance Metcalf and Hassett (1999), which measures 

energy savings from home improvement investment, Geller et al. (2006) reviews energy 

intensity trends for major OECD countries from 1973 to 2002, assessing how much of the 

declining trend is due to energy efficiency and what share is attributable to structural 

change, Gillingham et al. (2006) provides estimates for cumulative savings from energy 

efficiency policies for the USA, Aroonruengsawat et al. (2012) examined the impact of 

building codes on electricity consumption at the household level for the USA
1
. Others tend 

to focus on assessing programs that identify and promote energy-efficient products as in 

Webber et al. (2000), while Meyers et al. (2003) focus on energy efficiency standards for 

appliances on energy and environmental impacts for the USA among others. Given the few 

empirical evidence on the impact of energy efficient R&D investment on energy demand 

couple with the increasing interest among policy makers on the possible contribution of 

energy efficiency in at least decoupling energy use from economic growth, there is the 

need to provide more empirical evidence on the potential impacts, especially from energy 

efficient R&D investment for inform policy formulation. 

 

The objective of this paper is to address the following key questions; what is the “own”-

energy efficient R&D capital elasticity if the usual imposition of the additive separability 

assumption in the empirical literature to enable the identification of “own/private” R&D 

elasticity from spillover
2
 effect is wrong? What is the potential contribution of energy 

efficient R&D investment on aggregate energy demand reduction if spillover effects are 

excluded? Is there a diminishing return to energy efficient R&D investment? Which 

countries in the sample are likely to benefit more from a policy that increase energy 

efficient R&D investment? Answers to these questions are very important to clearly 

understand the dynamics between energy demand and R&D investment in energy 

                                                 

1
 Others studies on the impact of efficiency measures such as building codes on electricity consumption 

includes; Bion and William (1991), Costa and Kahn(2011), Jocobsen and Kotchen(2013). 

2
 A transfer of knowledge from one actor to another in which the receiving actor does not pay for the full cost 

of accessing and the use of such knowledge.  It therefore involves unintentional knowledge transfer from one 

actor to another. 
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efficiency in order to inform policy designs focusing on such issues. In answering these 

questions we focus on the direct effect of energy efficient R&D capital. We classify the 

effect of energy efficient R&D capital on energy demand into two-the direct effect and the 

indirect effect (rebound effect). The idea for the classification is to enable us focus on only 

the direct effect. 

 

Our paper makes the following contribution to the literature. First it provide the first 

empirical evidence to the best our knowledge on R&D capital elasticity with respect to 

aggregate energy demand for a sample of OECD countries without imposing the a priori 

additive separability assumption between “own”- energy efficient R&D capital elasticity 

and spillover effect as well as other unobserved common factors that could conflate the 

elasticity estimate for the energy efficient R&D capital (henceforth called own R&D 

capital). It also provide the policy effect of an increase in energy efficient R&D investment 

on energy demand across the countries, which will highlight the countries that are likely to 

achieve the greatest reduction in energy demand from such a policy which is likely to be 

very informative for policy makers. 

 

The key finding from this study include the following; that when no efforts are made to 

correctly account for spillover effects and other unobserved common factors, the “own” 

R&D capital elasticity and its associated private return is bias upwards, implying that the 

linear separability assumption usually imposed for the identification of R&D capital might 

be wrong. Further, the results provided evidence of a negative impact of R&D capital on 

energy demand, with a higher cumulated impact from the USA in the sampled countries, 

while Portugal has the least impact. However based on percentage contribution of an 

increase in energy efficient R&D investment on percentage reduction in energy demand, 

Portugal is top ranked and USA the least ranked among the countries in the sample. 

 

The rest of the paper is organized as follows. Section 2 presents the theoretical background 

of the study, the econometric model and data is presented in Section 3. Section 4 discussed 

the results, while section 5 presents the conclusion of the study. 

 

2. Theoretical background 

The general background on economic analysis on energy efficiency issues usually stem 

from cost-minimization/ utility or profit maximization behavior of households and firms.  
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The general idea on energy efficiency is what it represents, since energy is not an end in 

itself but rather the services it provides for instance heating, lighting, motion among others. 

It is therefore important to conceptualized energy as an input into the production of energy 

services and as a consequence, energy efficiency can generally be define as energy services 

per unit of energy input. Based on this we can use the production theory framework to 

derive and understand energy efficiency. In the production theory perspective, capital and 

energy are the inputs into the production of energy services (Gillingham et al., 2009). In 

this framework, energy efficiency is located at the point of tangency between an isoquant 

(that specify a given level of energy service) and ratio of prices between capita and energy. 

However investment in new capital in the quest to improve energy service per unit of 

energy input involves comparing the current and future returns from the investment to the 

cost. This makes relative prices (capital and energy) to depend on the cost of capital 

incurred in energy service improvement, the discount rate that links the current and future 

cost and returns on energy efficient investment, future energy prices, and equipment 

utilization. 

Achieving significant improvement in capital and energy using equipment performance in 

terms of energy use depend almost exclusively on technological development, which is 

greatly influence by R&D activities. There is large literature on knowledge development 

and its impact on output, influenced by Griliches (1979) seminar paper that incorporated a 

knowledge production function into a standard Cobb-Douglas production function. In this 

framework, output depends on capital and labor inputs in addition to knowledge capital, 

precisely R&D capital. The unique feature of knowledge capital (non-excludability and 

non-rivalry) as noted by Arrow (1962), makes it difficult to estimate precisely “own”-

knowledge capital elasticity. This is because of the inherent spillover effects associated 

with knowledge capital and the difficulty associated in quantifying spillovers. In the 

applied literature, researchers generally impose linear separability assumption on 

Griliches’s type of production function to enable estimation of “own” –knowledge capital 

elasticity (as well as private return to knowledge capital) or a set-up in which an attempt is 

made to quantify spillover effect via ad-hoc weights. The weights are constructed based on 

the relative interaction of actors (industries, countries etc.). Given the difficult in 

separating spillover effects from “own”-knowledge effect, makes it more important to try 

to estimate own-R&D capital by methods that are able to eliminate the potential spillover 

effect in the estimation process. 
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In the energy literature, most of the studies on energy efficiency tend to focus more on 

either behavioral inefficiencies in energy demand or market failures and the appropriate 

policy design to correct these inefficiencies and market failures. This has led to many 

studies looking at the so call “rebound effect” with less studies looking at the direct effect 

of knowledge capital on energy demand, especially the energy savings potentials of 

investment in knowledge accumulation that result in energy efficient capital and direct 

effect of that on energy savings or potential energy savings. 

3. Empirical approach and the Data 

Formally we specify the basic empirical model as: 

                                                             (1) 

Where the variables are in natural logs and  is aggregate energy consumption per capita, 

 is the energy price, is real income per capita,  is heating degree days, 

 is energy efficient R&D capital and  is a composite term that includes a 

random error, country fixed effects and possibly unobserved common factors. The above 

model is a variant to the model used in Ryan and Ploure (2009), Filippini and Hunt (2011), 

Karimu and Brännlund (2013), in the sense that it also included energy efficiency policy 

variable in the form of energy efficient R&D capital similar to the model used by 

Aroonruengsawat et al. (2012). The theoretical background for the above models is from 

the utility framework as done in Karimu and Brännlund (2013). 

 

Move over, in order to appropriately estimate the own R&D capital elasticity, we apply an 

econometric modelling approach based on the “unobserved common factor framework” 

that will enable stripping off potential unobserved factors including spillovers on the 

estimated parameters of interest. The approach is briefly presented below, in which for 

easy exposition we restrict to a model with one explanatory variable – a simplify version of 

equation (1) is presented as follows:  

it i it ite x u                                                                                                                        (2) 

1it i i t itu f                                                                                                                    (3) 
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it i i t i t itx f g                                                                                                          (4) 
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Where  is the explanatory variable, itu  is a composite term that is composed of country 

fixed effects ( 1i ), unobserved common factors ( tf  ) and a random error term ( it ). The 

explanatory variable ( itx ) is also driven by unobserved common factors ( tg and s

tf , a 

subset of tf  that also affect itx ) and a stochastic error term ( it ). Whereas i , i  and i  are 

the factor loading parameters that vary across panel units. The overlap of common factors 

in Eq.(3) and (4) creates endogeneity problems that render the identification of i  very 

difficult in the usual panel estimators such as fixed effects, dynamic GMM estimators and 

variant of them that are not design within the context of unobserved common factor 

framework as described above. The estimators that are design to accommodate this type of 

endogeneity are the common correlated mean group (CCEMG) and augmented mean 

group (AMG) estimators proposed by Pesaran (2006) and Eberhardt and Teal (2010), 

respectively. The intuition is that, it is assumed latent processes drive both the dependent 

variable via equation (3) and the explanatory variable via equation (4) with possible 

different strength via i , i  and i . If on average the factor loading parameters are zero, 

then the usual panel data estimators such as fixed effect, dynamic panel estimators and 

variants of them produce consistent and unbiased estimator for the parameter  if the 

assumption that 
 
is true. However, if on average the factor loading parameters are 

not zero, then the usual panel estimators will be biased and inconsistent as shown in 

Eberhardt et al. (2013). We can generalize equation (1) to a multivariate case if we assume 

that  is a vector of explanatory variables and  is a vector of parameters corresponding 

to the vector of regressors. The expression as in Eq. (2) to (4) is estimated for each panel 

unit and the average panel coefficient for  is calculated as , hence given 

a long time period we can have estimates for each panel unit as well as the average over all 

the panel units to assess if the parameters vary across countries. In specific reference to this 

study,  denote aggregate per capita energy consumption, the vector  comprises 

energy price, real income, heating degrees days and energy efficient R&D capital.  

 

The econometric strategy is to apply a non-heterogeneous panel estimator (fixed effect 

model) and three variants of the heterogeneous estimators – Pesaran and Smith (1995) 

mean group (MG), Pesaran (2006) CCMG and the Eberhardt and Teal (2010) AMG 

estimator, where the last two heterogeneous estimators are based on the unobserved 

itx
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common factor framework described above. Further, we assess the different estimators on 

how each fit the data generation process based on diagnostic testing to choose the best 

model among them, and base our analysis and policy implications on the chosen estimator, 

details on the three heterogeneous estimators is presented in the appendix.  

 

Each of the three heterogeneous estimators differs in their modelling approach. Whereas 

the MG-estimator is designed in a way that allows for heterogeneity in parameters across 

the panel units, it however does not account for possible common unobservable factors. 

The AMG and CCMG estimators on the other hand account for common unobservable 

factors in addition to allowing for heterogeneity in the parameters. The above framework is 

therefore the appropriate approach that will help answer the key questions that the paper 

intends to answer as enumerated in the introduction. These heterogeneous estimators 

relative to the homogeneous estimators (e.g., the fixed effect estimator) are able to address 

the following. First, they relax the constant parameter assumption in a sense that they allow 

for variability in the parameters across the panel units. Second, both the AMG and CCMG 

estimators also accounts for cross sectional dependence (effects of common unobservable 

factors, such as energy/oil crisis, global financial crisis, spillover effects of improvement in 

technology, etc.) and hence account for possible spillover effects which allows for 

estimating the own R&D capital elasticity by stripping-off the possible confounding effects 

from spillovers akin to the work by Eberhardt et al. (2013).  

 

This is particularly important for our study, since our focus is on estimating the own R&D 

capital elasticity and in the obscene of an approach that can reliably estimate social returns 

(spillovers), it becomes handy to apply this approach that strip-off potentially all the effects 

of spillover in addition to other unobservable factors from the estimates. Lastly, both the 

AMG and CCMG estimators, relaxes the constant effects of common shocks such as global 

recession by allowing these factors to vary across country via factor loading approach 

unlike the conventional technique of using time dummies to try and capture unobservable 

that are assumed to affect all panel units albeit with the same “strength”.  

 

Data 

The consumption, price and income data series for this paper were all taken from Adeyemi 

et al. (2010), Karimu and Brännlund (2013) - an annual data set for a panel of OECD 
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countries covering the period 1960 to 2006; however we limited the coverage for this paper 

to the period 1980 to 2006. The reason for this limitation is that, the data on our interest 

variable (energy efficient R&D expenditures) starts from 1974 but to be able to calculate 

R&D capital from the expenditure series, we used the first 6 years to build the R&D  

capital that takes effect from 1980 (how this is done is explain below). The variables 

comprise of aggregate energy consumption (E) for each country expressed in thousand tons 

of oil equivalent (ktoe), GDP (Y) in billions of 2,000 US$ using PPP for the entire period 

and the real energy price index (P) at 2,000 US dollars. Both Y and E are converted into 

per capita terms by dividing each country's Y and E by their respective populations.  We 

used heating degree days to proxy for the effects of climate on energy demand and the data 

were retrieved from Eurostat - Statistical Office of the European Union  site  for all the 

countries except that of the USA, which was taken from National Oceanic and 

Atmospheric Administration ( NOAA).  

Data on energy efficient R&D expenditures are retrieved from the International Energy 

Agency (IEA) energy technology RD&D statistics for OECD countries. These 

expenditures are used to calculate the R&D capital, constructed by applying the perpetual 

inventory model, in which R&D capital is derived as: 

1& (1 ) & &it it itR Dcap R Dcap R D                                                                              (5) 

Where R&D denotes real R&D expenditures,   is the depreciation rate which we follow 

previous literature (Hall, 2007 and Eberhardt et al., 2013) and assume a 12% rate. The 

initial capital stock is calculated as:  

0&

1& i

i

R D

i g
R Dcap

 
                                                                                                                (6) 

where 1& iR Dcap  is the initial capital, ig  is the country specific growth rate, which we 

used the first 6 years of the observed R&D expenditures to compute. The calculated R&D 

capital calculated via equation (5) to (6) revealed variations across the sampled countries 

based on the boxplot presented in figure1. The country with the least median value is 

Portugal (16.78 express in logarithms) and the U.S has the highest median value (21.66). 

The countries with the highest R&D capital in the sample include; Sweden, UK, 

Netherland, Italy and the US, however these values are not in per capita terms. From the 

boxplot, one can identify few countries with potential outliers for the R&D capital series, 
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in a whole, these few outliers are due to the usual periodic increases in energy efficient 

R&D expenditures in these countries and not due to errors. Further, given the estimation 

methodology, these outliers will not significantly influence the parameter estimates and 

hence likely not to bias the estimates.  

The boxplot in figure A2 in the appendix indicate some variability for each of the other 

variables in our data set across the sampled countries. Both the heating degree day’s series 

and energy consumption per capita series have the highest variation relative to real price 

and income series. The Countries in the study are: Austria, Belgium, Denmark, France, 

Greece, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, the UK 

and the USA.  

 

Figure 1: Boxplot showing the variability of the median value for R&D capital across 13 

OECD countries. (Note: the Country-ID, 1=Austria, 2=Belgium, 3= Denmark, 4=France, 

5=Italy,6=Netherland,7=Norway,8=Portugal, 9=Spain, 10=Sweden,11=Switzerland, 12=UK, 13=USA) 

 

4. Results 

Table 1 shows the results from cross-sectional dependence test based on the raw series. 

The results indicate each of the series in our data could not pass the null hypothesis of 

cross-sectional independence, implying that each of the data series are correlated across 

panel units and therefore the econometric strategy should incorporate this into the 

estimation process, in order to reduce the potential problem of producing bias estimates. 
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This first step in our estimation strategy therefore means that both the AMG and CCMG 

estimators are likely to be the best estimators for this study as they are purposely design to 

handle data with cross sectional dependence/common factors. We also tested for the time 

series properties of the data, specifically unit root test, which show evidence of (1)I
3
 as 

presented in Table A1 in the appendix.  However to be sure the estimators based on the 

common factor frame work are appropriate relative to say fixed effect model in fitting the 

data generating process, we also estimated a fixed effect model and used various diagnostic 

tests of the residuals to assess which of the models fit the data generating process (DGP). 

Specifically we estimated four different estimators – fixed effect, MG, AMG and CCMG. 

 

Table 1: Cross sectional dependence test 

Variable CD-test P-value Correlation 

e 28.17 0.000 0.614 

p 24.97 0.000 0.544 

y 44.94 0.000 0.979 

R&Dcap             5.72 0.000 0.125 

hhd 29.54 0.000 0.644 

Notes: Under the null hypothesis of Cross-section independence CD ~ N (0, 1), R&Dcap and hhd denotes 

R&D capital and heating degree days, respectively. 

 

The results for each of the four estimators indicated above is presented in Table 2 and 

reveal that the estimates from the homogeneous fixed effect model are bigger in magnitude 

relative to the heterogeneous estimators (except the estimates for heating degree days) and 

this is particularly evident for our interest variable – R&D capital.  Another observation 

from the results is that, the estimated coefficient for R&D capital is approximately the 

same across the three heterogeneous models. Further, each of the estimators indicates a 

negative own R&D capital elasticity, implying a negative response of aggregate energy 

demand to energy efficient R&D capital. The estimated value is statistically significant at 

the 5% for all except the CCMG model. Additionally, all the estimates from the four 

estimators have the expected signs from theory.  

 

                                                 
3
 Two different panel unit root tests are implemented, specifically Pesaran (2007) CIPS test that allows for 

heterogeneity as well as cross-sectional dependency and Maddala and Wu Panel Unit Root test that does not 

allow for cross-sectional dependence in the testing procedure. Details on the CIPS unit root test specification 

are in Pesaran (2007). We also tested for cointegration and the results are reported in Table A1 in the 

appendix. 
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In discriminating between the estimators, we relied on the models diagnostics, especially if 

the models residuals pass the cross sectional independence test (Pesaran, 2006 CD-test) 

and are stationary – I(0). The diagnostic test results as reported in Table 2, favor both the 

AMG and CCMG models. Their respective residuals are stationary implying non-spurious 

regression and also pass the CD-test at the 5% level. While the MG model is also non-

spurious, it however fails the CD-test. The FE model’s residuals follow an I (1) process 

and also fails the CD-test. The diagnostic tests therefore provide strong support for the 

heterogeneous models relative to the fixed effect model. We can conclude that, the 

estimates from the fixed effect model are bias upward due to failing to correctly model 

common factor effects. More importantly, given the nature of R&D with inherent 

spillovers, it is impossible to precisely estimate private R&D elasticity from non-common 

factor models such as a fixed effect model. 

 

Both the AMG and the CCMG models have approximately the same level of performance 

based on the two diagnostic tests, however we decided to based our discussion on the 

estimates from the AMG model on the grounds that it produces a significant income 

variable that is also within range of values usually found in the literature, whereas in the 

case of the CCMG the income estimate is statistically not differ rent from zero at the 5% 

level of significance, which intuitively does not make sense, since income is a key variable 

that influence energy demand and even on the evolution of energy use from pre-industrial 

error to modern economic systems of production and consumption (Stern and Kander, 

2012). 

 

The AMG estimates shows that price elasticity is rather low but consistent with findings 

from previous studies such as Adeyemi and Broadstock, 2009; Karimu and Brännlund, 

2013; Welsch, 1989. This implies less response to prices across the sample countries which 

can be due to many things including high income levels which make price increases less 

painful for the average person within these countries. It could also be the case that, 

overtime, the average stock of appliances and equipment that relies on the use of energy 

services has increased and couple with the wealth effect, consumers and producers are 

becoming less and less responsive to price increases and also because of less available 

substitutes for energy which tend to make energy more of a necessity in the modern 

economy. 
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Table 2: Regression Results 

 FE MG        AMG CCMG 

p -0.251
**

 -0.125
***

 -0.120
***

 -0.158
** 

 (0.098) (0.035) (0.034) (0.073) 

y 0.906
**

 0.593
***

 0.537
***

 0.265 

 (0.413) (0.095) (0.106) (0.170) 

R&Dcap -0.087
*** 

-0.041
** 

-0.034
** 

-0.036 

 (0.025) (0.020) (0.016) (0.032) 

hhd 0.036 0.224
***

 0.123
**

 0.123
***

 

 (0.023) (0.035) (0.044) (0.033) 

Trend yes yes yes yes 

Constant 14.27 -0.959 -0.561 -0.158 

 (12.391) (0.769) (0.698) (1.077) 

Diagnostics     

CD-test 2.44 2.28 -1.61 -1.83 

 [0.015] [0.022] [0.108] [0.067] 

Integration I(1) I(0) I(0) I(0) 

N 351 351 351 351 

Note: Standard errors in parentheses (robust standard errors), 
*
 p < 0.10, 

**
 p < 0.05, 

***
 p < 0.01,  CD-test is 

the cross-sectional dependence test base on Pesaran (2004) test for the Null of cross-sectional independent 

residuals, N is the number of observations, hhd is the heating degree days and R&Dcap denote R&D capital. 

Numbers in square bracket are the p-values for CD-test. 

 

The estimated income elasticity have the expected sign and significant but low in 

magnitude compare to some of estimates from previous studies (Fillipini and Hunt, 2011; 

Atkinson and Manning, 1995) but consistent with the estimates from Adeyemi and 

Broadstock, 2009 and Welsch, 1989. The implication is that, people on average demand 

more energy as their income level rises. The estimated hhd elasticity is positive and 

significant, which shows that outside temperatures below which heating is required tend to 

increase energy demand. Further, the estimated R&D capital elasticity is -0.03 and 

significant at the 5% level. 

 

Next we calculate the effect of the share of R&D capital on energy demand by using the 

average estimated elasticity ( 1

4,i

1

N

i

N 



 ) multiple by the R&D capital. This can be 

interpreted as the predicted effect of R&D capital on energy demand based on the AMG 

model, which will give us the share predicted impact of R&D capital for each of the 

countries in our sample. The average impact of R&D capital across the countries in our 

sample as reported in figure A1 in the appendix range from approximately 15% to 20% 

(cumulated over 1980 to 2006). The US is the country that has the largest energy savings 

(predicted) from R&D investments, whilst Portugal has the least savings. This shows that 

policies targeting energy efficiency investments are having the intended effects (reduced 
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energy demand). However the effects are relatively modest given that the values are the 

averages over the period 1980 – 2006, implying an annual reduction of approximately 1%. 

This smaller contribution to energy savings from energy efficient investment means that 

we need to combine energy efficiency policies with other policies such as taxes to have a 

reasonable reduction in energy demand and consequently on CO2 reduction. 

 

Policy implications of R&D investment 

In assessing the effect of a given change in energy efficient R&D investment on energy 

demand, we follow the approach implemented in Davis and Killian (2011) by expressing 

the percentage reduction in energy demand from an x  million US$ increase in energy 

efficiency R&D investment evaluated at a chosen base of R&D capital (taken as the 

volume-weighted mean of R&D capital at 2006), this is formulated as 

                                                    
1

4,i

1

ˆ ( )*100
&

N

i i

x
N

R Dcap




 , 

where 1

4,i

1

ˆ
N

i

N 



 is the estimated average R&D capital elasticity, R&Dcap is the base for 

the evaluation of the change which is the volume-weighted mean in year 2006.To 

demonstrate this policy effect of an increase in energy efficient R&D investment, we 

consider a 100 million US$ increased in R&D investment, however the choice of size of 

the investment is irrelevant. The key idea is to show the likely percentage change in energy 

demand from a given increase in energy efficient R&D investment in order to assess the 

likely efficacy of energy efficient policy/policies related to energy efficient capital. Table 3 

present these effects for each of the countries in the data set and show varied differences in 

energy demand response to the policy. Portugal stands out with the highest (34.8%) 

reduction in energy demand from a 100 million US$ increased in R&D investment, while 

the USA has the least reduction (0.08%). This complement the results on predicted energy 

savings from energy efficient R&D investment in the sense that the country with the least 

savings from 1960 to 2006 tends to have the highest reduction in energy demand from a 

policy that will increase energy efficient R&D investment relative to a country/countries 

that has/have the highest savings. This is in line with the economic principle of 

diminishing returns (in this case to R&D investment). The reduction in energy demand is 

minimal for countries such as Netherland, Italy, France and the UK. This result indicates 

significant heterogeneity in the impact of an increase in R&D investment in energy 

efficiency policy. 
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Table 3: The effects of 100 million US$ increase in R&D investment in energy efficiency 

on energy demand. 

Country Austria Belgium Denmark France Italy Netherland Norway 

%Energy 

Reduction 

-3.34 -2.62 -5.08 -0.84 -0.69 -0.67 -8.09 

        

Country Portigal Spain Sweden Switzerland UK USA  

%Energy 

Reduction 

-34.8 -4.13 -1.19 -1.98 -0.79 -0.08  

 

Table 4: Carbon dioxide emission reduction from 100 million US$ increase in energy 

efficient R&D investment. 

Country Austria Belgium Denmark France Italy Netherland Norway 

%CO2 

Reduction -1.28 -1.0 -1.94 -0.32 -0.26 -0.26 -3.10 

        

Country Portigal Spain Sweden Switzerland UK USA  

%CO2 

Reduction -13.32 -1.58 -0.46 -0.76 -0.30 -0.03 
 

 

Further we extended the above policy analysis to carbon reduction from the effect of 

energy efficient R&D investment and this is done via using the energy reduction from the 

policy as presented in Table 3 and the conversion rate (0.3827 from OECD countries in 

2010) of energy to CO2 emission. The carbon dioxide reduction from this is reported in 

Table 4 and show CO2 reduction that vary from 0.03% for the USA to 13.3% for Portugal. 

 

Robustness Analysis 

As a robustness check on our key results reported in Table 2, we also relax the static 

structure for each of the three heterogeneous estimators by applying a dynamic model. The 

result for this analysis is reported in Table A2 in the appendix. Generally, there is no 

significant difference in the size of the long-run estimates from both the dynamic and static 

model based on the AMG and MG estimators, especially on our variable of interest (R&D 

capital). The CCEMG estimates tend to vary greatly between static and dynamic version of 

the model for the variable of interest, however none of dynamic long-run estimates for 

R&D capital is statistically significant at the 5% level.  
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6. Conclusion 

 

The main objective of this study is to examine the impact of energy efficient R&D 

investment on aggregate energy demand for  OECD countries, the possible differences in 

the impact across the countries in the sample and how this translate to CO2 emission 

reduction across the countries.  

 

Our analysis implemented both homogeneous and heterogeneous panel estimators with 

different estimation assumption. The estimators that are based on the unobserved common 

factor framework allow for both heterogeneity in the parameters and unobserved common 

factors. This approach (unobserved common factor models) enables a “proper” estimation 

of the own-R&D capital elasticity. The reason for focusing on the “private/own” elasticity 

rather than the social or both is because the current econometric methods do not provide 

accurate way/s to precisely estimate the spillover effect, the component that accounts for 

the difference between “private/own” and “social” elasticity, hence the choice of the 

unobserved common factor framework to help strip-off all the unobserved common factors 

including spillovers in order to at least estimate the “private” elasticity more precisely. 

 

Our key result indicate a negative “own” R&D capital elasticity which is however small in 

our preferred model relative to estimates based on the fixed effect model, which we argue 

that the difference between the fixed effect estimates and AMG estimates is due to the 

inability of the fixed effect model to strip-off spillover effects as well as not allowing for 

possible heterogeneity in the parameter estimates. This conclusion is based on the 

diagnostic test that indicates non-stationarity in the residuals from the fixed effect model 

and the inability to deal with cross-sectional dependency. The poor diagnostics from the 

fixed effect model, specifically the inability to correct for cross-section dependence 

provide evidence to support the argument that the additive separability assumption usually 

imposed to enable estimating private elasticity and return to R&D capital is likely 

inappropriate as indicated in Eberhardt et al.(2013). This result is in line with those from 

Eberhardt et al. (2013) albeit with different application (production in Eberhardt et al. and 

energy demand in our study), time frame and countries in the sample. 

 

Further, our result indicate that a policy of increasing energy efficient R&D investment 

result in reduction in aggregate energy demand that varies significantly across the sampled 
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countries from a relatively low change for the USA to a high change for Portugal, which we 

argue is due to a relatively high investment in energy efficient R&D capital in the USA relative to 

Portugal, such that an additional increase in such investments tend to contribute less and less to the 

total impact in the USA than it  does in Portugal. This argument is supported by the higher 

cumulated (1980-2006) predicted impact of energy efficient R&D capital on energy demand of 

approximately -20% for the USA relative to -15% for Portugal. 

 

Our analysis shed light on the impact of energy efficient R&D capital on energy demand 

which can be important for policies focusing on energy efficiency measures in reducing 

energy demand, where the focus of the policy is on energy efficient R&D investment. It 

also highlight the importance of spillover effects and other unobserved common factors in 

influencing the estimates if we only rely on the separability assumption for identification 

of “private/own” R&D capital elasticity and return as usually done in the literature on 

knowledge production. It also shows that while energy efficiency measures are important, 

we need other measures to complement efficiency measures to achieve sizeable reduction 

in energy demand and the associated CO2 reduction.  

 

Irrespective of the evidence of a negative effect of energy efficient R&D capital, it is 

important to stress that this is only the direct effect. It is possible that the indirect effect of 

energy efficient R&D capital could be negative as a result of the rebound effect via lower 

energy prices. As a consequence, the total effect from energy efficient R&D investment on 

energy demand could as well be positive depending on which of the effects dominates (the 

direct or the indirect effect). This study only focused on the direct effect. Further it is 

important to recognize that, promoting only efficiency measures without implementing 

other measures such as taxes and regulation might not lead to a significant reduction in 

CO2 emissions if the goal is to reduce CO2 emissions.  
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Appendix 

Abrief account of the heterogeneous estimators: 

Suppose we have two set of variables, ity  the dependent variable and an explanatory 

variable, itx , which are related via the expression: 

1

2

it i it it

it i i t it

s

it i i t i t it

y x u

u f

x f g



  

   

 

  

   

                                                                                                   A1 

Where itu  is a composite term that comprises both unobserved common factors ( tf ,a 

country fixed effects, 1i ) and a random error term, it . Further, itx  is also influence by 

unobserved common factors ( ,s

t tf g ).  

 

The Pesaran (1995) mean group estimator (MG) allows for heterogeneity in the i  but 

assumes cross-section independence, as a consequence, the MG estimator is implimented 

by estimating N  country regression as follows: 

1
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                                                                                                     A2 

Where t  is a linear trend to capture unobserved factors that are time-invariant and by 

construction, the MG estimator allows for parameters to vary or differ across panel units 

(countries in this study). 

 

The Pesaran (2006) common correlated mean group (CCEMG) estimator, unlike the MG 

estimator, does not assume cross-section independence. It however allows for 

heterogeneity in the parameters as does in the MG estimator. The CCEMG accounts for 

cross-section dependence via cross-section average of both the dependent ( ity ) and 

explanatory variable ( itx ) as additional covariates as follows: 

1 2
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where the cross-section averages ( ,it ity x ) are to account for the unobserved common 

factors ( ,,s

t t tf f g ). 

 

The augmented mean group estimator (AMG) is a variant of the CCEMG estimator that 

accounts for both heterogeneous parameters and cross-section dependency. The cross-

section dependency is accounted for by the inclusion of a “common dynamic effect” in the 

country specific regressions (Eberhardt and Teal, 2010). The estimation is done in two 

stages, where the first stage is to obtain the common dynamic variable which is included in 

the second stage as an additional covariate to account for the “common dynamic effect”. 

The two stages can be express as: 

2

(1)

ˆ ˆ

T

it it k k it

k

k t

stage y x c D

c

 





     




                                                                      A4 

1
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ˆ(2)

ˆ ˆ

it i i it i t i it
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stage y x t
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                                                                     A5 

where the first stage is based on first difference (FD)-OLS regression with 1T   first 

difference year dummies denoted by kD  to get the estimated common dynamic variable  

( ˆ
t ). The estimated common dynamic variable is included in the second stage regression 

to capture the effects of potential unobserved common factors. 

 

 

 

 

 

 

 

 

 



21 

 

Table A1: Unit root and cointegrating test for each of the series  

Unit root test 

Variable lags CIPS p-value MW p-value 

e 0 -0.094 0.463 67.741 0.000 

e 1 -0.884 0.188 71.779 0.000 

e 0 -9.084 0.000 174.845 0.000 

e 1 -3.798 0.000 148.238 0.000 

y 0 1.778               0.962 13.187      0.982 

y 1 -0.103              0.459 61.226 0.000 

y 0 -4.667              0.000 75.268 0.000 

y 1 -3.867              0.000 79.598 0.000 

p 0 -0.012 0.495 1.861 1.000 

p 1 0.335 0.631 4.296 1.000 

p 0 -8.380 0.000 173.744 0.000 

p 1 -3.581 0.000 106.775 0.000 

hhd 0 -7.759 0.000 132.857 0.000 

hhd 1 -0.661 0.254 71.276 0.000 

hhd 0 -15.895 0.000 462.704 0.000 

hhd 1 -4.413 0.000 169.058 0.000 

R&Dcap 0 1.917 0.972 109.976 0.000 

R&Dcap 1 2.565 0.995 100.009 0.000 

 R&Dcap 0 -7.741 0.000 203.677 0.000 

 R&Dcap 1 -1.135 0.128 48.850 0.004 

The null hypothesis is that of a unit root, the Pesaran (2007) CIPS test allows cross-sectional dependency in 

the testing procedure, while Maddala and Wu (MW) Panel Unit Root test does not allow for cross-sectional 

dependence. The first difference (change) is denoted by  and the numbers in parenthesis are the P-values for 

the unit root test statistic.  

 

Cointegration test (pedroni residual base cointegration) 

  Test Stats   Panel     Group 

  0.676 . 
  1.195 2.137 

t  -2.422 -3.915 

ADF -2.071 -1.944 

All test statistics are distributed N (0, 1), under a null of no cointegration, and diverge to negative infinity.  

There are two groups of the test statistics –panel and group. The group statistics average over the individual 

country test statistics, while the panel statistics pool the test statistics over the time dimension. The  and t  

are nonparametric test statistics, while ADF and   are parametric statistics. The estimations for the seven 

test statistics (  ,  , t , ADF) are done with the inclusion of common time dummies to correct for potential 

simple cross-sectional dependence. 
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Figure A1: Predicted impact (cumulated over 1980-2006) of Eneregy Efficiency R&D 

investment on energy demand for 13 OECD countreis. 

Note: the Country-ID, 1=Austria, 2=Belgium, 3= Denmark, 4=France, 5=Italy,6=Netherland, 

7=Norway,8=Portugal, 9=Spain, 10=Sweden,11=Switzerland, 12=UK, 13=USA 
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Figure A2: Boxplot showing the variability of the median value for energy 

consumption(e), income(y), price (p) and heating degree days (hhd) across 13 OECD 

countries. 

Note: the Country-ID, 1=Austria, 2=Belgium, 3= Denmark, 4=France, 5=Italy,6=Netherland, 

7=Norway,8=Portugal, 9=Spain, 10=Sweden,11=Switzerland, 12=UK, 13=USA 
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Table A2: Heterogeneous estimates (dynamic) and respective long-run elasticity 

 MG AMG CCEMG 

e lag 0.180
*
 0.177

**
 0.158

*
 

 (0.095) (0.071) (0.096) 

p -0.0817
**

 -0.110
***

 -0.131
**

 

 (0.033) (0.030) (0.059) 

p lag -0.068
***

 -0.061
***

 -0.108 

 (0.026) (0.023) (0.077) 

y 0.518
***

 0.526
***

 0.697
**

 

 (0.125) (0.138) (0.253) 

y lag -0.124 0.048 0.139 

 (0.128) (0.088) (0.197) 

lnrndstock -0.024 -0.024 -0.002 

 (0.023) (0.015) (0.044) 

lhhd 0.247
***

 0.136
**

 0.098
**

 

 (0.017) (0.048) (0.040) 

Trend yes yes yes 

Const -0.656
***

 -0.615 -0.194 

 (0.093) (0.431) (1.269) 
Diagnostics    

CD-test 1.22 -1.19 -2.01 

 [0.224] [0.232] [0.045] 

Integration I(0) I(0) I(0) 
N 338 338 338 

Note: Standard errors in parentheses (robust standard errors), 
*
 p < 0.1, 

**
 p < 0.05, 

***
 p < 0.01,  CD-test is 

the cross-sectional dependence test base on Pesaran (2004) test for the Null of cross-sectional independent 

residuals and N is the number of observations, hhd is the heating degree days and R&Dcap denote R&D 

capital. Numbers in square bracket are the p-values for CD-test. 

 

Long-run eslasticity estimates 

 MG             AMG CCMG 

p -0.182***
 -0.207***

 -0.283**
 

 (0.055) (0.049) (0.119) 
y 0.481**

 0.698***
 0.993**

 

 (0.226) (0.206) (0.397) 
R&Dcap -0.029 -0.029 -0.002 

 (0.028) (0.018) (0.052) 
hhd  0.301***

 0.165***
 0.116**

 

 (0.040) (0.060) (0.049) 

 


