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Abstract

The transition of a sector from a pollutant state to a clean one is studied. A green
technology, subject to learning-by-doing, progressively replaces an old one. The no-
tion of abatement cost in this dynamic context is fully characterized. The theoretical,
dynamic optimization, perspective is linked to simple implementation rules. The prac-
tical “deployment” perspective allows to study sub-optimal trajectories. Moreover, the
analysis of the launching date provides a definition of a dynamic abatement cost easy to
use for evaluation of real-world policy options. The case of Fuel Cell Electric Vehicles
offers an illustration of the proposed methodology.
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1 Introduction

Marginal abatement costs (MACs) are both a conceptual and practical tool used in academic
and policy discussions. The MAC is the cost to reduce polluting emissions at the margin,
by a factory, a firm, a sector or a country. In policy discussions MACs are notably used to
allocate decarbonisation efforts among sectors and arbitrage between technical options. This
apparently simple definition may hide some difficulties. Whereas the theoretical concept and
its practical use are consistent for short-term practices that reduce emissions, there might be
some discrepancies for long-term reductions that necessitate sunk investments in physical and
human capital along a dynamic process of deployment of a new technology.1 The objective
of this paper is to propose an extension of the standard concept of static abatement costs
to a dynamic one giving due consideration to the impact of learning-by-doing together with
cost convexity.

Our analysis concerns a carbon-intensive sector in which an old polluting technology is
progressively replaced by a new low-emitting technology. We shall use the substitution of
fossil fuel by zero emissions vehicles as an illustration. Such a green transition is a dynamic
process that requires to accumulate physical and human capital in several complementary
goods (e.g. network of fueling stations, hydrogen production facilities, hydrogen cars). The
pace at which this accumulation takes place is constrained, which can be explained by
costs convexity. Furthermore, new technologies benefit from learning-by-doing or induced
technical change. This latter phenomenon describes cost decrease as long as experience
is accumulated and technological innovations are spread off. Technological learning has
been observed historically for many different industries. In the basic model with a learning
mechanism, technological progress is expressed in terms of decreasing specific costs of a
technology as a function of cumulative production.

Several authors suggest learning curves as a meaningful presentation of technological
change in global energy models (Löschel, 2002). The existence of learning-by-doing in dif-
ferent renewable technologies is a central topic in the debate about CO2 abatement in elec-
tricity production. Even though the magnitude of learning-by-doing effect varies depending
on whether they are measured at the national or the international level, there are no doubts
that this phenomenon is relevant for the diffusion of carbon-free technologies.2 These dy-
namic aspects are often neglected in standard MACs calculations, as one ordinarily assumes
a stable cost environment; investment cost and life duration are dealt through the notion of
levelized costs.3

1Barker et al. (2006), Edenhofer et al. (2006), and Clapp et al. (2009) pointed out that induced techno-
logical change can significantly drive down MACs. Edenhofer et al. (2006) argues via a model comparison
that the transformation to a carbon-free energy system can become stable as renewable energy technologies
turn out to be cost-effective. Amann et al. (2009) similarly find that, as many other papers, technological
progress impacts MAC curves.

2A survey of learning-by-doing rates for different energy technology can be found in IEA (2000) and
McDonald and Schrattenholzer (2001). Learning rates varies from 25% for photovoltaics, 11% for wind
power, and 13% for fuel cell in the period 1975-2000.

3Levelized costs are defined as the present value of the total cost of building and operating a generating
plant over its economic life, converted to equal annual payments. This concept is frequently used to compare
different technologies for electricity production.
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To properly introduce the cost dynamics we formulate the transition issue as the whole
deployment phase of the new technology in substitution to an old polluting technology. We
assume that emissions are subject to an environmental regulation through an exogenous
CO2 price. We adopt a partial equilibrium framework and characterize the context in which
the transition issue can indeed be addressed. We first characterize the optimal trajectory
and highlight the difficulty to compute relevant MACs along this trajectory. Then we study
second-best situations and determine a dynamic MAC. The dynamic abatement cost we
calculate is both easy to interpret and implement for practical cases, even for sub-optimal
trajectories. The theoretical analysis allows to identify the key assumptions required for its
relevance.

The optimal trajectory, stemming from the minimization of the aggregate production
costs of the overall cars fleet, is a smooth transition in which green cars progressively replace
polluting ones. During the transition, the CO2 price should be equal to the sum of two
terms: the difference between the cost of the marginal green car and a polluting car; and the
learning benefits over the future. This result echoes the one by Goulder and Mathai (2000),
who show analytically that the presence of induced technological change, both in the form of
R&D investments or learning-by-doing, always implies a lower time profile of optimal carbon
taxes. The CO2 price should be equalized At the end of the transition the fleet is completely
green.

We then turn our analysis to our major contribution, i.e. addressing two operational
questions. The first one concerns the date at which the new technology should be launched,
and the second one the rate of its deployment. The deployment path of the carbon free
technology is decomposed in different phases, encompassing the launching date up to the
full substitution of the old polluting technology. We stress the role of cost assumptions
in the overall diffusion process. The analysis of the launching date of a given deployment
scenario, which does not necessarily coincide with the optimal scenario, provides a dynamic
MAC. This dynamic MAC could be interpreted as the levelized cost of the whole deployment
project.

We provide an application of our results to the transition from Internal Combustion
Engine (ICE) vehicles to Fuel Cell Electric Vehicle (FCEV). This illustration is calibrated
on data mainly describing the German market, where various initiatives to foster H2 cars
actually exist. The deployment under consideration would be socially beneficial with a
sequence of carbon prices starting at 53 e/t in 2015 and reaching around 200 e/t in 2050
(increasing at the social discount rate estimated at 4%).

Several papers have already analyzed the role of cost convexity and the transition dynamic
of polluting sectors. Vogt-Schilb et al. (2012) introduce convexities in the investment cost of
clean capital in a multi-sector framework. They show that this convexity incites to spread
investment in clean capital over time and comfort observed transition dynamics. Similarly,
Amigues et al. (2015) introduce convexity in the form of adjustment cost in clean capital
accumulation to study the transition from non-renewable to renewable resources. The role
of convexity has also been stressed by Bramoullé and Olson (2005) in their study of the role
of learning-by-doing in sectoral arbitrage. Without convexities, learning-by-doing alone does
not justify a ramping of the clean option and learning cost should be postponed as far as
possible. If production cost are convex, a progressive increase of the abatement in a sector
is optimal. Amigues et al. (2014) analyze the optimal timing of carbon capture and storage
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policies under increasing returns to scale. They show that the carbon capture of the emissions
should start earlier than under a constant average cost assumption. Compared to these
contributions, our perspective is more operational. We consider sub-optimal deployment
scenarios and provide a convenient generalization of the static abatement cost to a dynamic
one which encompasses the whole transition phase.

Our approach can also be related to other streams of literature, as macro models on inno-
vation and green technologies, on one side, and large scale computable models on the other.
Analytical macro models that recommend early deployment of green technologies remain
imprecise on the specific sectoral cost assumptions that would justify their conclusions (e.g.
Grimaud and Rouge, 2008; Acemoglu et al., 2012). Top-down computable general equilib-
rium (CGE) models (as for instance GEM-E3, GREEN, PACE and MITEPPA) are typically
based on exogenous technological change, where roadmaps from polluting to carbon free
technologies are used. The associated cost function of the carbon free technologies are time
dependent. They compare long term scenarios under various environmental constraints.4

Bottom-up models are almost exclusively technology snapshot models that examine a suite
of technological alternatives over time. A number of bottom-up models have integrated en-
dogenous technological change that assumes the existence of learning by doing. Examples
are MESSAGE, MARKAL and POLES. Both bottom-up and top-down large-scale models
provide valuable numerical results, but they require ad hoc solvable optimization techniques
which make them unsuitable for conceptual analysis. Our analysis and its application to
the hydrogen car deployment provides a link between these two streams of literature. It
facilitates the conceptual analysis of the main cost assumptions and its interpretability for
decision makers.

The paper is organized as follows. Section 2 presents the analytical model and develops
the first best and second best scenarios. Section 3 illustrate the application to the case of
FCEV versus ICE, whereas Section 4 briefly concludes.

2 The analytical framework

2.1 The model

We consider a simple model of a sector, say the car sector, the size of which is constant.
There are two varieties of vehicles: cars build by using an old polluting technology (ICE
vehicle) and new ones which are carbon free (FCEV vehicle). The new technology is subject
to learning by doing.

Time is continuous from 0 to +∞. The discount rate is constant equal to r. We consider
that cars last one unit of time. There are N cars among which x new “green” cars and N−x
polluting old cars. Units are normalized so that each old car emits one unit of CO2, green
cars do not pollute. The cost of a old car is constant: co. The cost of x new green cars is
a function of the knowledge capital X: C(X, x). At any time t ∈ [0,+∞[ the knowledge
capital Xt is equal to the total quantity of green cars previously built Xt =

∫ t
0
xtdt.

4See for instance Rösler et al. (2014) which relies the bottom-up energy systems ETSAP-TIAM family of
models (Loulou and Labriet, 2008; Loulou, 2008).

4



The cost C(X, x) is assumed twice differentiable and positive. It is null for x = 0, for
all X: C(X, 0) = 0,∀X, and strictly positive otherwise. The cost is increasing and convex
with respect to x, the quantity of green cars produced. Knowledge reduces the production
cost and this effect is lower for larger knowledge stock. The marginal production cost also
decreases with knowledge. All this assumptions translate formally:5

Cx ≥ 0, CX ≤ 0, Cxx > 0, CXX > 0 and CXx ≤ 0. (A1)

To ensure the convexity of the problem we assume that the cost convexity:

[CXx]
2 < CXXCxx. (A2)

Finally, we assume that the effect of knowledge on the marginal cost, −CXx, is larger for
larger production. Said differently, the derivative CX is concave with respect to x, that is,
CXxx < 0.

The price of CO2 is pCO2
t , it grows at the speed of the discount rate pCO2

t = ertp0 with
p0 = 0. This assumption will prove very useful to simplify dynamic considerations. It means
that once discounted a CO2 emissions has the same value whatever the date at which it is
emitted. Such a price dynamics could be linked to the stock nature of CO2 emissions and
the low decay of CO2 in the atmosphere. It would occur if there was a constraint on the
total cumulated emissions (it would be a CO2 Hotelling’s rule).

A notation that will prove useful is the discounted cost of a fully green fleet with a initial
knowledge stock X. This cost is the discounted sum of the costs of producing N green cars
at each time. With this production schedule the knowledge stock at time t is X + tN so this
discounted cost, denoted Ω(X), is as follows:

Ω(X) =

∫ +∞

0

e−rtC(X + tN,N)dt. (1)

2.2 The optimal trajectory

The objective of the social planner is to minimize the cost:

Γ =

∫ +∞

0

e−rt
[
(pCO2
t + co).(N − xt) + C(Xt, xt)

]
dt (2)

s.t.

Ẋt = xt λt

0 ≤ xt ≤ N θt, δt.

Greek letters are the Lagrange coefficients, in current e, associated to each constraint.
The dynamics of the optimal trajectory is qualitatively simple: there are three different
regimes whether xt is null, equal to the total number of cars N or in between.

The following Proposition describes the features of the optimal trajectory.

5Partial derivatives are denoted with indexes (except if it could be confusing) for instance CX stands for
∂C/∂X.
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Proposition 1 The production of green cars increases over time. There are two dates Ts
and Te, with Ts ≤ Te, at which the transition respectively starts and ends:

xt = 0 for t ≤ Ts

0 < xt < N for Ts < t < Te

xt = N for t ≥ Te

During the transition, that is, for t ∈ [Ts, Te) the following equation holds:

pCO2
t = [Cx(Xt, xt)− co]︸ ︷︷ ︸

static abatement cost

+

∫ +∞

t

e−r(τ−t)CX(Xτ , xτ )dτ︸ ︷︷ ︸
learning benefit (< 0)

(3)

Proof. The main step of the proof consists in proving that xt is increasing if xt ∈ (0, N).
This condition ensures that once xt > 0 the number of green cars cannot come back to zero,
and that xt does not move when xt = N . If xt is strictly positive (θt = 0) and lower than
the total car fleet (δt = 0), along an optimal deployment trajectory the following equations
hold:

Cx(Xt, xt)− co = pCO2
t + λt (4)

λ̇t − rλt = CX(Xt, xt). (5)

If xt ∈ (0, N), taking the time derivative of the first equation gives:

CxXẊt + Cxxẋt = ṗCO2
t + λ̇t

CxXxt + Cxxẋt = ṗCO2
t + rλt + CX thanks to eq. 5

Cxxẋt = ṗCO2
t + rλt + [CX(Xt, xt)− CxXx]

The last term of the right hand side of the second equation is positive because CX(X, x) is
concave with respect to x (so the derivative in the bracketed term is positive) and CX(X, 0) =
0 (since C(X, 0) = 0,∀X). Therefore, xt is increasing through time, ẋt ≥ 0.

Then, since the CO2 price increases exponentially, xt cannot be always null along an
optimal trajectory. Then either x0 = 0 or x0 > 0. In the latter case Ts = 0, whereas in the
former case Ts is the inf of the dates at which xt > 0.

The ending date is finite, Te < +∞: From the above proof, when xt is strictly positive
its time derivative is bounded below by a strictly positive number, so xt necessarily reaches
N in a finite time.

Finally, equation (3) is obtained by integrating equation (5), between t and +∞ (and
using the boundary conditions limt→+∞e

−rtλt = 0):

λt =

∫ +∞

t

e−r(τ−t)CX(Xτ , xτ )dτ (6)

and injecting this expression into equation (4).
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The optimal trajectory is a smooth transition in which green cars progressively replace
old cars. At the end of the transition the fleet is completely green. During the transition,
the fraction of the fleet that is green is determined by equation (3). According to this
equation, at a time t the price of CO2 should be equal to the sum of two terms, which
can be interpreted as the relevant marginal abatement cost in period t. The first bracketed
term is the “static” marginal abatement cost, that is the difference between the cost of the
marginal green car and an old car. The second term, the integral, is negative and represents
the learning benefits, that is, the reduction of future cost due to the production of one more
green car today.

It is important to stress that the relevant marginal abatement cost, the right hand side
of equation (3), depends on the whole time path of car production. It depends on the
number of cars previously built, via the knowledge stock, and it depends on the future
production schedule. Thus, the relevant marginal abatement cost at a particular date cannot
be computed regardless of the whole trajectory. Even in our simple model, it is difficult to
derive a simple rule, such as the comparison between abatement cost and CO2 price, for
determining the optimal production at each point in time.

Learning-by-doing plays the role of the inter-temporal glue in the present model, as the
accumulation of a knowledge stock explains that each period abatement decision cannot be
taken independently of decisions taken at other dates.

Considering two extreme cases is useful to interpret the role of our cost assumptions in
the time dependency. On the one hand, without learning-by-doing, the static abatement
cost is sufficient to determine the number of green cars at each date. There is a smooth
transition. Still, each date can be isolated from the rest of the trajectory: there is no
interdependency between past, present and future decisions. On the other hand, without
convexity, the transition takes place at once at some date to be determined which can be
determined through some generalization of the notion of abatement cost. This is pointed
out by the following corollary.

Corollary 1 If Cxx = 0 then the optimal strategy is to replace all old cars by new cars from
a date Ts = Te. At this date the CO2 price is:

pCO2
Ts =

rΩ(0)− coN
N

. (7)

in which Ω(0) is given by equation (1).

Proof. If Cxx = 0, given that C(X, 0) = 0, CX(X, x) = CXx(X, x)x. Then, we resort by
reductio ad absurdum assuming Ts < Te. Between the two dates the equation (3) is satisfied
and taking its derivative with respect to t gives:

ṗCO2
t = CXxẊt + Cxxẋt − λ̇t

= CXxxt + 0− [rλt + CX ] using eq. (5)

= CXxxt − CX(Xt, xt) + r

[∫ +∞

t

e−r(τ−t)CX(Xτ , xτ )dτ

]
from (6)

Therefore, using that CX(X, x) = CXx(X, x)x in that case,
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0 < ṗCO2
t = r

[∫ +∞

t

e−r(τ−t)CX(Xτ , xτ )dτ

]
≤ 0

a contradiction.
Therefore, the number of green cars jumps from 0 to N at date Ts = Te, and the total

discounted cost Γ could be written as a function of the date Ts:

Γ =

∫ Ts

0

e−rt
[
(pCO2
t + co).N

]
dt+ e−rTsΩ(0)

Along the optimal trajectory, Ts should minimize this function. Taking the derivative with
respect to Ts in the equation above and setting it equal to zero gives the equation (7).

The threshold of CO2 price in the equation (7) could be interpreted as a MAC for the
whole technical option: it is the ratio of the difference between the levelized (static) cost
of a fleet of green cars and a fleet of old cars to the quantity of emissions abated by the
project. In the next subsection, this rule is extended to a general cost function and a
ramping deployment scenario.

These results recall those already obtained in the literature. Vogt-Schilb et al. (2012)
have analyzed how the convexity of the investment cost may impact the transition rates in a
multi sector framework. Bramoullé and Olson (2005) also pointed out that absent convexity,
the transition is instantaneous (their Proposition 1 p. 1941).

Ordinarily the effect of learning-by-doing on the timing and costs of emissions abatement
remains unclear. Learning-by-doing clearly reduces the costs of future abatement. This
suggests delaying abatement activities. However, there is added value to current abatement.
It contributes to cumulative experience and hence helps reduce the costs of future abatement.
It is unclear which of these two effects dominates (Goulder and Mathai, 2000). For instance,
Manne and Richels (2004) and Manne and Barreto (2004), using the top down CGE model
MERGE, find that for a wide range of stabilization ceilings, a gradual transition away from
the “no policy” emissions baseline is preferable to one that requires substantial near-term
reductions.

In our model, the impact of learning by doing is analytically displayed along the opti-
mal deployment trajectory. However, the ambiguity of choosing earlier or later abatement
remains. In particular, we characterize suboptimal deployment patterns. If the deployment
cost is not minimized or the total number of green cars produced during deployment is larger
than the optimal one, the launching date of the green car should be postponed. If the total
number of green cars produced during deployment is slightly lower than the optimal one,
the launching should instead take place earlier.

2.3 The “deployment” perspective

In the optimal scenario, the whole trajectory is consistent with the CO2 price: the date at
which the deployment starts and the pace at which green cars replace old cars are jointly
determined. For a real world application, this theoretical analysis does not provide a simple
rule to evaluate a technical option and a “launching date”. Furthermore, for real world
issues there are many components in the cost (e.g. investment in infrastructure) that do not
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easily translate into a specified version of C(X, x) so that the determination of an optimal
trajectory may be out of reach. It is more realistic to discuss suboptimal trajectories.

We propose to decompose the global problem into sub-problems easier to connect to
practical examples, offering straightforward interpretations. We disentangle the choice of
the production schedule of cars during the deployment phase from the choice of a date at
which deployment should start (the date Ts in the optimal scenario). More precisely, the
global problem could be decomposed as follow. There is a “deployment scenario” of the
green option with a finite duration; during this deployment a exogenously given amount
of green cars is produced each year. The “launching date” of this deployment should be
determined. Once deployment is achieved, the whole fleet is replaced by green cars. The
optimal trajectory can be found by choosing simultaneously and consistently not only the
launching date, but also the deployment scenario characteristics. The optimal choice of the
deployment scenario is discussed in the next subsection. We consider here a given scenario,
regardless that optimal choice.

For a given deployment scenario, the only variable to be chosen is the launching date Tl
that should balance the price of CO2 with the abatement cost of the deployment. Waiting
one year to launch the deployment increases emissions by an amount proportional to the fleet
but postpones the costly deployment and implementation of the green fleet. The discounted
cost of the fleet, given by equation (2), can be decomposed to reflect this trade-off. To do so,
the costs of the deployment and the fully green fleet should be discounted to be independent
of the launching date:

• The deployment scenario takes place over D years during which a total quantity of
X̄ cars are produced. The trajectory of accumulation is (ξτ )τ∈[0,D] in which ξτ is the
number of green cars produced at stage τ of the deployment (i.e. τ years after the

launching), and X̄ =
∫ D

0
ξτdτ . The cost of this deployment is

I =

∫ D

0

e−rτ [C(X̄τ , ξτ )− coξτ ]dτ in which X̄τ =

∫ τ

0

ξudu (8)

• At the end of the deployment the fleet is completely green, and the discounted cost
of the green fleet of cars solely depends on X̄, the knowledge accumulated during the
deployment. This cost, view from the date of the end of the deployment, is Ω(X̄) given
by equation (1).

The discounted cost of the fleet, given by equation (2), can then be written (with a slight
abuse of notation):

Γ(Tl) =

∫ Tl+D

0

e−rt(co + pCO2
t )Ndt︸ ︷︷ ︸

fully old fleet

+ e−rTlI − p0X̄︸ ︷︷ ︸
deployment phase

+ e−r(Tl+D)Ω(X̄)︸ ︷︷ ︸
fully green fleet

. (9)

This cost is the sum of three terms: the cost, including the CO2 cost, of a fleet of old cars
from today to the end of the deployment; the cost of the deployment minus the gain from
abatement during deployment; once deployment is achieved the fleet is entirely green and the
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current cost of the fully green fleet only depends on the quantity of knowledge accumulated
during the deployment.

The problem is now simply to determine the date Tl at which the deployment should be
launched. The assumption that the CO2 price grows at the interest rate plays a key role here
because the precise date at which carbon reduction takes place does not influence welfare.
The emissions abated during deployment, which are precisely equal to the quantity of cars
accumulated during the deployment, do not modify the choice of the launching date. This
nicely fits our decomposition, since the choice of the launching date only influences costs via
discounting.

Proposition 2 The optimal launching date T ∗l of the deployment trajectory (ξτ ) is such
that:

PCO2
T ∗
l

=
rI

N
+
rΩ(X̄)− c0N

N
e−rD (10)

Proof. Taking the derivative of the discounted total cost Γ given by (9) with respect to the
launching date gives:

∂Γ

∂Tl
= e−r(Tl+D)(co + pCO2

Tl+D
)N − rIe−rTl − rΩ(X̄)e−r(Tl+D)

= e−rTl
[
p0e

rTlN + coe
−rD − rI − rΩ(X̄)e−rD

]
At the optimal launching date this derivative is null and, consequently, equation (10) is
satisfied.

This rule can be easily interpreted: the launching date is chosen so that the abatement
cost of the whole project is equal to the CO2 price. The abatement cost of the project is the
sum of two components: the sunk cost of the deployment that takes D years ( rI

N
); and the

relative discounted over-cost of a green car at the end of the deployment ( rΩ(X̄)−c0N
N

e−rD).
The cost rΩ(X̄) is the annualized cost of a fully green fleet, so rΩ(X̄)/N is the average
current cost of a green car over the life of the green fleet. Note that, if at the end of the
deployment the green car cost is linear and stable (C(X, x) = cx) the second component
becomes the difference between the cost of a green and an old car (c− c0).

The price obtained in Corollary 1 corresponds to the price of Proposition 2 for an extreme
deployment scenario in which there is no ramping of the production, that is when X̄ = 0
and D = 0, we have that I = 0.

2.4 The optimal trajectory revisited and some comparative statics

The deployment approach can be seen as a convenient procedure to compute to the optimal
trajectory. Indeed, in the optimal trajectory there is a deployment phase during which
green cars progressively replace old cars, and after this phase the whole fleet is green (cf
Proposition 1). If the deployment scenario is precisely similar to the optimal deployment,
then the launching dates coincide (Ts in Lemma 1 equals Tl in Proposition 2).

The optimal trajectory can be found with a deployment approach by proceeding as
follows. For any quantity X̄ and duration D there is a deployment scenario that minimizes
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the discounted cost I (given by equation 8). This deployment scenario is independent of the
CO2 price and the launching date. Let us denote I∗(X̄,D) the minimum deployment cost
which is only defined for D ≥ X̄/N :

I∗(X̄,D) = minxτ

∫ D

0

e−rτ [C(Xτ , xτ )− c0xτ ]dτ (11)

s.t. Ẋt = xτ ; 0 ≤ xτ ≤ N and XD = X̄.

The optimal solution is found by optimally choosing three variables: the launching date, the
duration of deployment D and the quantity X̄ of green cars produced during this deployment.
The optimal trajectory corresponds to the trajectory found by minimizing with respect to
Tl, X̄ and D the following cost:

Γ =

∫ Tl+D

0

e−rt(co + pCO2
t )Ndt+ e−rTlI∗(X̄,D)− p0X̄ + e−r(Tl+D)Ω(X̄). (12)

The optimal quantity of green cars produced during deployment and the optimal duration
of the deployment satisfy the pair of first order conditions:

p0e
rTl =

∂I∗

∂X̄
+ e−rD

∂Ω

∂X̄
(13)

p0e
rTlN − e−rD[rΩ− c0N ] = −∂I

∗

∂D
(14)

Consider first equation (13) that determines the choice of the optimal number of green
cars during deployment. The left-hand-side is the gain due to the reduction of emissions
during the deployment. This benefit should be equalized with the marginal cost of the
overall project. This marginal cost is the sum of the marginal cost of the deployment and
the marginal latter cost of the fully green, post-deployment, fleet. The former is positive
and the latter is negative, since an increase of the quantity of green car produced during
deployment reduces the cost of the fully green fleet.

The choice of the optimal duration as represented by equation (14), equalizes the gain
from reducing the deployment duration with the corresponding marginal cost (∂I∗/∂D <
0). Reducing the duration of deployment allows to save N additional emissions but brings
forward the replacement of the old fleet by a green one.

It is feasible to briefly examine how the sub-optimality of a deployment scenario impacts
the launching date.6

Proposition 3 An optimal trajectory can be described by an optimal deployment scenario
and the associated optimal launching date. The optimal deployment scenario consists in X̄∗,
D∗ and (ξ∗τ )τ∈[0,D∗].

If the deployment scenario is suboptimal :

• If the deployment cost is not minimized (ξτ 6= ξ∗τ ), the launching should be postponed;

6A formal proof of the following proposition is available upon request.
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Figure 1: The joint determination of the launching date (a) and the quantity of cars produced
during deployment (b).

• If the total number of green cars produced during deployment is larger than the optimal
one (X̄ > X̄∗), the launching should be postponed;

• If the total number of green cars produced during deployment is slightly lower than the
optimal one (X̄ < X̄∗), the launching should take place earlier.

If, given X̄ and duration D, the deployment cost I is not minimized, then the launching
should be postponed. Indeed, the higher the cost of the project the higher the associated
CO2 price.

If the duration is fixed and the cost is minimized, the choice of X̄ has a non monotonic
effect on the choice of the launching date. Figure 1 illustrates the joint determination of the
launching date and the quantity of accumulated cars. Figure 1(a) represents the result of
Proposition 2: the abatement cost of the whole project should be equalized to the launching
date. This is also true for a sub-optimal scenario, notably if X̄ 6= X̄∗. Figure 1(b) depicts
the choice of the quantity of green cars accumulated during deployment that should equalize
the marginal cost of such accumulation with the CO2 price at the launching date.

As illustrated by Figure 1(a), the accumulation X̄ that would minimize the launching
date is lower than the optimal accumulation. So, if more cars than optimal are accumulated,
the launching should be postponed, because of the increased cost of the whole deployment.
If the number of accumulated cars is smaller than the optimal one, but not far from it,
the cost is actually reduced and launching should start earlier than the optimal date. This
earlier deployment would partly compensates for the lower interim abatement.

The figure 1(b) also shows how the accumulation of green cars during deployment is mod-
ified by a sub-optimal launching date. The later the launching is the larger the accumulation
should be.
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3 Application to the case of FCEV versus ICE

The case of Fuel Cell Electric Vehicles (FCEV) for the substitution of the mature ignition
combustion engine (ICE) provides an interesting illustration of our methodology. FCEV have
attracted a lot of attention in view of their potential for the reduction of carbon emissions
in the transport system. There exists a number of studies on this subject. Among them
a study (McKinsey & Company, 2010) developed scenarios for the deployment of PHEV,
BEV and FCEV in Europe over the period 2013-2050. This study concludes that the total
cost of ownership (TCO) for all power-trains are expected to converge around 2040. Bruegel
and the European School for Management and Technology revisit the economic rationale
for public action for FCEV (Zachmann et al., 2012). Harrison (2014) provides an extensive
analysis of the environmental and macroeconomic impacts (growth, employment, trade) of
alternative motor ways (ICE, BEV, FCEV) at the European level at the 2050 horizon. Rösler
et al. (2014) carry an in depth investigation using the energy bottom-up model TIAM-ECN
(Loulou, 2008; Loulou and Labriet, 2008) to build scenarios up to 2100 for passenger car
transportation in Europe. They show that FCEV could achieve most of the market in 2050
if no significant breakthrough in battery is made. In contrast Oshiro and Masui (2014)
analyze the Japan market and show that BEV would take most of the passenger car market
in 2050 while the share of FCEV would remain marginal. In all these studies the relative
cost dynamics for FCEV plays a crucial role in an intricate way so the results are not easily
interpretable for decision makers.

At the other extreme comparing the TCOs of FCEV versus ICE with the respective CO2

emissions to get a first cut of the abatement cost for FCEV is quite convenient.7 However
since the cost of FCEV exhibits a sharp decrease this abatement cost will also decrease over
time this approach is too simplistic. The methodology developed in this paper provides an
extension of the static abatement cost that precisely takes into account the cost dynamics
of the trajectory. We recall the key assumptions:

• An exogenous deployment for FCEV based on industry projections; this deployment is
based on a number of technical and economic constraints such as the time to achieve
the targeted cost projections, the time to build up the network, social constraints such
as acceptability of the new technology by consumers...Once this deployment scenario
is characterized it becomes meaningful to model the associated cost dynamics based
on a limited number of parameters.

• A normative social price of carbon based on global general equilibrium models. More
precisely we assume a CO2 price sequence increasing at the social discount rate from
a given initial value.

From these two assumptions we are able to answer the following two questions:

• What should be the threshold CO2 price in 2015 so that it would be optimal to launch
the proposed deployment of FCEV over the period 2015 to 2050? We shall refer to
this price as the dynamic abatement cost of the deployment trajectory.

7Static abatement costs are routinely used in a number of policy papers. See for instance for a discussion
of the merits of hydrogen Beeker (2014).

13



• If the dynamic abatement cost is higher than the current normative cost of carbon in
2015, what is the magnitude of the changes in the key parameters in our model that
would make the abatement cost consistent with the normative value?

The corresponding results can be used to determine with industry experts the technical
feasibility and uncertainties associated with different sets of assumptions.

3.1 The data and the associated static abatement costs

Table 1 gives the data. The geographic context is Germany, a country in which some signif-
icant moves have already been made in favor of FCEV. The cost dynamics underlying the
deployment scenario involves three main components: manufacturing costs, infrastructure
costs and fuel costs. The corresponding model is detailed in Creti et al. (2015). We briefly
review the construction of the cost function.

The total passenger car fleet in Germany is assumed to increase from today’s level of
47 million vehicles to 49.5 million in 2030. It is assumed to be stable from 2030 to 2050.
Our exogenous deployment scenario assumes a very progressive ramp up starting in 2015
up to a 2.7% market share in 2030 and a targeted market share of 15% in 2050, that is
7.500 million units for the FCEV car park. Based on this scenario one constructs a unit
manufacturing cost for a FCEV. Cars are expected to have a ten year life time, so that
the actual yearly production takes account the renewal of the car park. Both ICE and
FCEV cars are running 15 000 km per year. Fuel consumption is derived based on energy
efficiency. Using unit fuel costs one gets the total fuel consumption. Fuel costs for hydrogen
depend on the technology to produce hydrogen (development and capital expenditures of
energy producers are integrated in this cost).8 The cost of infrastructure is derived from the
number of hydrogen refueling stations (HRS) which is derived from the required network to
deliver the total hydrogen consumption at every time period. Delivery cost to the stations
is added to the infrastructure cost. Gasoline price is also the delivery price at the retail
station. In the base case we assume that value added taxes on the cost components are not
included but that the excise tax on imported petroleum is, since it represents an opportunity
cost for importing oil. Note that the excise tax is in absolute value so its percentage of the
gasoline price declines over time. The untaxed gasoline price follows the oil price in the
world market, assumed to increase at a constant rate of 1.4%.9 CO2 emissions depend
both on energy efficiency (which keeps improving for ICE and FCEV) and the progressive
introduction of carbon free technologies for hydrogen production.

8In our scenario we shall consider three new technologies: carbon sequestration and capture, electrolysis
based on renewable energies, and biogas.

9The average gasoline market price per litre in Germany in 2014 was equal to 1,6 e(including all taxes).
While the recent drop in oil prices had a significant impact on this price, its long term impact for year 2030
and later is uncertain. The 1.4% annual growth rate is consistent with IEA long term projections.

14



Unit 2015 2020 2025 2030 2050

Market size
(car life time: 10 years, 15 000km/yr)

1000 cars 1 95 453 1350 7500

Vehicle manufacturing cost

FCEV ke 60.0 37.7 32.1 28.6 22.8
ICE ke 22.0 21.4 21.3 21.1 20.5
Relative price FCEV vs ICE % 173% 77% 53% 37% 13%

Fuel costs

FCEV

Hydrogen production cost
(delivery cost to HRS included)

e/kg 7.0 5.8 6.1 6.3 6.8

Hydrogen consumption per 100 km kg/100km 0.95 0.87 0.84 0.80 0.70

ICE

Gasoline price e/ l 1.30 1.35 1.40 1.46 1.71
of which state tax (w/o VAT) % 50% 48% 47% 45% 38%
Gasoline consumption per 100 km l/100km 7.04 6.2 4.97 4.88 4.8

Infrastructure costs

Number of HRS # 40 220 926 2234 9257
Capital cost per unit of car ke 62.24 2.39 2.02 1.65 1.18

CO2 emissions

Hydrogen kgCO2/100km 9.0 6.2 5.0 3.8 1.7
Gasoline kgCO2/100km 19.8 17.4 14.0 13.7 13.5

Table 1: Simplified Data Sheet

For each cost component we introduced a learning by doing parameter and calibrated the
model using costs estimates based on existing applied studies and interviews with industry
experts. In this way we can analyze how the results are affected through small changes in
the cost and environmental parameters. This will be convenient for sensitivity analysis.

Figure 2 gives the TCO at various dates with its cost components. Observe that intro-
ducing an excise tax on hydrogen in 2050 would not endanger its position relative to ICE.
Figure 3 compares our values for TCO with those obtained in Rösler et al. (2014). Figure 4
depicts fuel efficiency for FCEV and ICE.10 Figure 5 gives the respective CO2 emissions for
FCEV and ICE.11

10For ICE the sources are coming from the EIA Annual Energy Outlook 2014
(http://www.eia.gov/forecasts/aeo/pdf).

11Note that for FCEV the level of carbon free electrolysis in the portfolio of technologies grows from 15%
in 2020 to 40% in 2050 which explains the decline in CO2 emissions. The values for ICE are higher than the
EU targets. These targets apply to the average portfolio of car manufacturers while FCEV would be more
for large vehicles (C/D or J segments).
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From the respective TCOs and from the respective yearly CO2 emissions we can derive the
yearly static abatement costs (Proposition 1). They are depicted Figure 6. It starts around
1600 e/t in 2020 and decreases to zero in 2043 (the year at which the relative total cost
of ownership becomes positive for FCEV). Not much can be inferred from this sequence of
abatement costs. In contrast our methodology provides a relevant proxy for policy analysis.

3.2 The dynamic abatement cost for the FCEV deployment tra-
jectory

Recall the result of Proposition 2:

p0e
rT ∗
l =

rI

N
+

[
rΩ

N
− c0

]
e−rD (15)

Our illustration directly fits for applying this result with one exception: the TCO and the
CO2 emissions for ICE are not constant over time but slightly decreasing. Proposition 2
provides a first order estimate and a more refined approach should take this assumption into
account. To calculate our first order estimate we proceed as follows.

• Time is discrete and not continuous;

16



 
 

Figure 6 

-500

0

500

1000

1500

2000

€
/t

Fig 6: Static abatement cost (€/t)

Figure 6: Static abatement cost (e / t)

• The launching date is such that T ∗l = 2015 and the deployment is completed at T ∗l +D =
2050;

• TCOs are assumed to converge at the end of the deployment phase which implies[
rΩ
N
− c0

]
= 0;

• The CO2 avoided emissions for year 2050 and further is not N but the park times the
difference in emissions per unit of car, all values being taken at date 2050.

Altogether this gives the following result.

Corollary 2 The dynamic abatement cost pCO2
2015 for the reference scenario is such that:

pCO2
2015 = ((1− δ)/δ)I2015−2050/A2050 (16)

in which: - I2015−2050 is the total discounted cost of the trajectory over the period 2015-
2050; - A2050 denotes the yearly avoided emissions at full deployment that is in year 2050; -
δ = 1/(1 + r) with r standing for the social discount rate.

This expression can be interpreted as an extension of the static abatement cost in which a
once and for all investment with a capex of I2015−2050 at date 2050 with an infinite life time
will balance a recurring amount A2050 of avoided CO2 emissions.

Based on the data of Table 1 and using a 4 % social discount rate we obtain a numerical
value for pCO2

2015 = 53 e/t. If we assume an initial social cost of carbon around 30 e/t for
2015, as suggested by Quinet (2009) and Quinet (2013) for France, this suggests that our
reference scenario should be postponed until 2030. Since this scenario starts quite slowly it
is more meaningful to investigate how one could strengthen some parameters of our model
to achieve an optimal launching date at 2015. This leads to the following target analysis.
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3.3 Target analysis

Our methodology delivers a simple and attractive tool to explore how the change in the
parameters of our model affects the dynamic abatement cost. This exploration can be made
so as to achieve a target value for this abatement cost, say 30 e/t in 2015.

Corollary 3 To achieve a dynamic abatement cost pCO2
2015 consistent with a social cost of

carbon of 30 e/t in 2015 one may either target for

• a market share of 27 % rather than 15 % in the total car park in 2050;

• a growth rate of 2.9 % instead of 1.4 % in the increase in the oil price;

• a higher learning rate for manufacturing costs so that the unit cost of a FCEV car be
only 6.7 % instead of 13 % higher than the one of a ICE car in 2050;

• a higher learning rate for H2 production costs so that the unit cost of H2 production be
33 % lower than the expected value with the reference scenario in 2050.

Consider the following four parameters as well as a combination of changes in these four
parameters. The detailed results of this exploration are given Table 2. Note that all one
parameter changes impact the total investment cost while a change in the targeted market
size and in the hydrogen production cost (modeled as a decrease in the cost of the electrolysis
process combined with a more intensive use of this technology) also impact the level of CO2

avoided in 2050. The changes may appear quite large but the effort can be substantially
reduced if they are combined. Indeed as shown in Table 2 the targeted abatement cost could
be achieved with:

• a market share of 20 % in the total car park in 2050;

• a growth rate of 1.8 % in the increase in the oil price;

• a unit cost of a FCEV car 9.8 % higher than the one of a ICE car in 2050;

• a unit cost of H2 production 8 % lower than the expected value with the reference
scenario in 2050.

In Figure 7 the effort of the combined change relative to the one parameter changes is
depicted.
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unit
Base
Case

Market size
in % of total

car park

Gasoline
price

(yearly rate
of increase)

Manufacturing
cost (FCEV vs
ICE in 2050)

Hydrogen
production
cost in 2050

4
parameter

target

Market size
(in % of total car park)

% 15% 27% 15% 15% 15% 20%

Gasoline price
(yearly rate of increase)

% 1.4% 1.4% 2.9% 1.4% 1.4% 1.8%

Manufacturing cost
(FCEV vs ICE in 2050)

% 11.3% 11.% 11.3% 6.7% 11.3% 9.8%

Hydrogen
production cost

e/kg 6.8 6.8 6.8 6.8 4.5 6.2

avoided CO2 emissions
in 2050

Mt/year 13.2 18.9 13.2 13.2 13.8 14.1

Discounted cost
for the scenario up to 2050

Me 17 511 14 001 9 719 9 965 10 528 10 582

Dynamic
abatement cost

e/t 53 30 30 30 30 30

Table 2: Target analysis, each column correspond to a scenario in which a parameter is
changed to get a dynamic abatement cost of 30e/t, in the last column all four parameters
are changed.
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4 Conclusion

This paper considers the transition of a sector from a pollutant state to a clean one. The
sector consists of a given number of dirty units (say a car park), to be progressively replaces
by clean ones. The production cost of clean units involves learning by doing and convexities
with respect to the instantaneous rate of production. Along the optimal trajectory the CO2
price equals the static abatement cost plus some learning benefit, which is common in this
type of model. While simple as a matter of principle this result fails in delivering the optimal
deployment strategy without specifying further the cost function.
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The main contribution of the paper consists in designing a decomposition methodology
to disentangle the choice of the production schedule from the choice of launching date in
the search of the optimal trajectory. This leads to two interesting results. Firstly we extend
the standard static notion of abatement cost associated to the substitution of a dirty unit
by a clean one at some point of time to a dynamic one in which the all deployment trajec-
tory is globally considered from its launching date. Second this dynamic abatement cost is
also meaningful for a second best trajectory, which is often the case in applications where
trajectories are defined through industrial and social considerations outside the scope of the
modelling exercise. These results provide a simple framework for policy guidance. This is
illustrated through an analysis of a trajectory in which ICE are progressively replaced by
FCEV.

It would be interesting to extend this approach in several directions. We assumed sta-
tionarity of the cost function for the dirty units, a less extreme assumption may be more
appropriate to accommodate efficiency gains and changes in the associated input prices. A
more elaborate extension would consider the simultaneous deployment of alternative clean
technologies such as BEV and FCEV to be substituted to ICE. This may possibly involve
the introduction of consumers’preferences in which the role of product differentiation could
be analyzed. Another interesting extension would be to consider the decentralization issue
of the optimal trajectory to the various players (manufacturers, H2 producers, network op-
erators). These players need operate under a positive profit constraint assumptions. We
have assumed an exogenous normative CO2 price. There is no guaranty that the transfer
of externality benefit to the players can be enough to accommodate the positive profit con-
straints. Defining more operational policy instruments could be examined such as imposing
a minimal rate of clean cars in the portfolio of manufacturers. We think that some answers
to these various questions could be obtained while preserving the simplicity of our approach.
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Bramoullé, Y. and Olson, L. J. (2005). Allocation of pollution abatement under learning by
doing, Journal of Public Economics 89(9): 1935–1960.

Clapp, C., Karousakis, K., Buchner, B. and Chateau, J. (2009). National and Sectoral GHG
Mitigation Potential.

Creti, A., Kotelnikova, A., Meunier, G. and Ponssard, J.-P. (2015). A cost benefit analysis
of fuel cell electric vehicles, Report 1: 1–41.

Edenhofer, O., Lessmann, K., Kemfert, C., Grubb, M. and Köhler, J. (2006). Induced tech-
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Löschel, A. (2002). Technological change in economic models of environmental policy: a
survey, Ecological economics 43(2): 105–126.

Loulou, R. (2008). ETSAP-TIAM: the TIMES integrated assessment model. part II: math-
ematical formulation, Computational Management Science 5(1-2): 41–66.

Loulou, R. and Labriet, M. (2008). ETSAP-TIAM: the TIMES integrated assessment model
Part I: Model structure, Computational Management Science 5(1-2): 7–40.

Manne, A. and Richels, R. (2004). The impact of learning-by-doing on the timing and costs
of CO2 abatement, Energy Economics 26(4): 603–619.

Manne, A. S. and Barreto, L. (2004). Learn-by-doing and carbon dioxide abatement, Energy
Economics 26(4): 621–633.

McDonald, A. and Schrattenholzer, L. (2001). Learning rates for energy technologies, Energy
policy 29(4): 255–261.

McKinsey & Company, A. (2010). Portfolio of powertrains for Europe: a fact-based analysis.

21



Oshiro, K. and Masui, T. (2014). Diffusion of low emission vehicles and their impact on CO
2 emission reduction in Japan, Energy Policy p. In press.
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