Environmental Benefit Cost Analysis and The National Accounts.

N. Z. Muller

Middlebury College, NBER

December, 2014

Muller (Middlebury College, NBER) BCA Workshop - Toulouse School of Econ.

• During macroeconomic shocks aggregate measurement of performance is of heightened importance.

- During macroeconomic shocks aggregate measurement of performance is of heightened importance.
- Comprehensive mensuration should encompass private sector output and evaluation of public policy.

- During macroeconomic shocks aggregate measurement of performance is of heightened importance.
- Comprehensive mensuration should encompass private sector output and evaluation of public policy.
 - Benefit Cost Analysis (BCA) is a common tool for policy evaluation.

- During macroeconomic shocks aggregate measurement of performance is of heightened importance.
- Comprehensive mensuration should encompass private sector output and evaluation of public policy.
 - Benefit Cost Analysis (BCA) is a common tool for policy evaluation.
- Effects on GDP common way to gauge policy (CBO, 2013).

- During macroeconomic shocks aggregate measurement of performance is of heightened importance.
- Comprehensive mensuration should encompass private sector output and evaluation of public policy.
 - Benefit Cost Analysis (BCA) is a common tool for policy evaluation.
- Effects on GDP common way to gauge policy (CBO, 2013).
- Do conventional measures of performance (GDP) reflect policy?

- During macroeconomic shocks aggregate measurement of performance is of heightened importance.
- Comprehensive mensuration should encompass private sector output and evaluation of public policy.
 - Benefit Cost Analysis (BCA) is a common tool for policy evaluation.
- Effects on GDP common way to gauge policy (CBO, 2013).
- Do conventional measures of performance (GDP) reflect policy?
 - Overlap between market indicators and BCA depend on policy context.

• Environmental policy likely not captured by market indices: externality.

< 🗗 🕨

э

- Environmental policy likely not captured by market indices: externality.
 - Benefits are external to the market.

- Environmental policy likely not captured by market indices: externality.
 - Benefits are external to the market.
 - Abatement costs often within market boundary.

- Environmental policy likely not captured by market indices: externality.
 - Benefits are external to the market.
 - Abatement costs often within market boundary.
 - May lead to biased assessment of policy outcomes.

- Environmental policy likely not captured by market indices: externality.
 - Benefits are external to the market.
 - Abatement costs often within market boundary.
 - May lead to biased assessment of policy outcomes.
- Synthesis of BCA and aggregate indicator suggests augmented index.

- Environmental policy likely not captured by market indices: externality.
 - Benefits are external to the market.
 - Abatement costs often within market boundary.
 - May lead to biased assessment of policy outcomes.
- Synthesis of BCA and aggregate indicator suggests augmented index.
 - MEW (Nordhaus, Tobin, 1972), EDP (Bartelmus, 2009), EVA (Muller, 2014a, 2014b)

- Environmental policy likely not captured by market indices: externality.
 - Benefits are external to the market.
 - Abatement costs often within market boundary.
 - May lead to biased assessment of policy outcomes.
- Synthesis of BCA and aggregate indicator suggests augmented index.
 - MEW (Nordhaus, Tobin, 1972), EDP (Bartelmus, 2009), EVA (Muller, 2014a, 2014b)
- Frequent criticism (at a fever pitch during recessions) of environmental policy is as inhibitor of growth (in terms of GDP and/or labor market).

- Environmental policy likely not captured by market indices: externality.
 - Benefits are external to the market.
 - Abatement costs often within market boundary.
 - May lead to biased assessment of policy outcomes.
- Synthesis of BCA and aggregate indicator suggests augmented index.
 - MEW (Nordhaus, Tobin, 1972), EDP (Bartelmus, 2009), EVA (Muller, 2014a, 2014b)
- Frequent criticism (at a fever pitch during recessions) of environmental policy is as inhibitor of growth (in terms of GDP and/or labor market).
 - New York Times, 2011; U.S. Chamber of Commerce, 2012; Forbes, 2012; Bloomberg, 2014.

• Central research question: does investment in pollution abatement technology affect augmented measures of growth in the U.S.?

- Central research question: does investment in pollution abatement technology affect augmented measures of growth in the U.S.?
- Uses Integrated Assessment Model (IAM) to estimate air pollution damage (GED) in U.S. economy from 2005 to 2011.

- Central research question: does investment in pollution abatement technology affect augmented measures of growth in the U.S.?
- Uses Integrated Assessment Model (IAM) to estimate air pollution damage (GED) in U.S. economy from 2005 to 2011.
- Estimates augmented index EVA = GDP GED.

- Central research question: does investment in pollution abatement technology affect augmented measures of growth in the U.S.?
- Uses Integrated Assessment Model (IAM) to estimate air pollution damage (GED) in U.S. economy from 2005 to 2011.
- Estimates augmented index EVA = GDP GED.
- Conducts a rudimentary BCA focusing on adoption of flue gas desulfurization (FGD) technology between 2005 and 2011.

- Central research question: does investment in pollution abatement technology affect augmented measures of growth in the U.S.?
- Uses Integrated Assessment Model (IAM) to estimate air pollution damage (GED) in U.S. economy from 2005 to 2011.
- Estimates augmented index EVA = GDP GED.
- Conducts a rudimentary BCA focusing on adoption of flue gas desulfurization (FGD) technology between 2005 and 2011.
 - Argues that incentives embodied in Clean Air Act (broadly, air pollution policy) yield FGD installation.

- Central research question: does investment in pollution abatement technology affect augmented measures of growth in the U.S.?
- Uses Integrated Assessment Model (IAM) to estimate air pollution damage (GED) in U.S. economy from 2005 to 2011.
- Estimates augmented index EVA = GDP GED.
- Conducts a rudimentary BCA focusing on adoption of flue gas desulfurization (FGD) technology between 2005 and 2011.
 - Argues that incentives embodied in Clean Air Act (broadly, air pollution policy) yield FGD installation.
 - Compares EVA growth to GDP growth, by state, with and without FGD.

• Abatement technology that uses alkaline (usually lime) to remove acidic SO₂ that is produced in combustion of coal and oil.

- Abatement technology that uses alkaline (usually lime) to remove acidic SO₂ that is produced in combustion of coal and oil.
- Large, capital-intensive devices capital costs for retro-fits ~\$100 -\$200 million.

- Abatement technology that uses alkaline (usually lime) to remove acidic SO₂ that is produced in combustion of coal and oil.
- Large, capital-intensive devices capital costs for retro-fits ~\$100 -\$200 million.
- Removal efficiency (SO_2) on the order of 85% 95%.

- Abatement technology that uses alkaline (usually lime) to remove acidic SO₂ that is produced in combustion of coal and oil.
- Large, capital-intensive devices capital costs for retro-fits ~\$100 -\$200 million.
- Removal efficiency (SO_2) on the order of 85% 95%.
- Requires 1% 5% plant electricity to operate.

Trends in flue gas desulfurization: EGUs in the U.S.

Methods:

- Conceptual Model.
- Empirical Model.
- Results.
- Conclusions

•
$$GED_{jsit} = MD_{jst} \times E_{jsit}$$
. (1)

•
$$GED_{jsit} = MD_{jst} \times E_{jsit}$$
. (1)

• Nominal GED for: (i) sector, (t) year.

•
$$GED_{jsit} = MD_{jst} \times E_{jsit}$$
. (1)

- Nominal GED for: (i) sector, (t) year.
 - $GED_{it} = \sum_{s} \sum_{j} (MD_{jst} \times E_{jsit})$. (2)

•
$$GED_{jsit} = MD_{jst} \times E_{jsit}$$
. (1)

- Nominal GED for: (i) sector, (t) year.
 - $GED_{it} = \sum_{s} \sum_{j} (MD_{jst} \times E_{jsit}).$ (2)
- Nominal Environmentally-Adjusted Value Added (EVA) for: (i) sector, (t) year.

•
$$GED_{jsit} = MD_{jst} \times E_{jsit}$$
. (1)

- Nominal GED for: (i) sector, (t) year.
 - $GED_{it} = \sum_{s} \sum_{j} (MD_{jst} \times E_{jsit})$. (2)
- Nominal Environmentally-Adjusted Value Added (EVA) for: (i) sector, (t) year.
 - $EVA_{it} = VA_{it} GED_{it}$. (3)

Comparing Annual Rates of Change in VA, EVA, and GED.

Let: δ^v_i = annual change in market account; δ^e_i = annual change in augmented account; δ^g_i = annual change in pollution damage.

Comparing Annual Rates of Change in VA, EVA, and GED.

Let: δ^v_i = annual change in market account; δ^e_i = annual change in augmented account; δ^g_i = annual change in pollution damage.

•
$$\delta_i^v = \delta_i^e$$
, if $: \delta_i^v = \delta_i^g$

Comparing Annual Rates of Change in VA, EVA, and GED.

- Let: δ^v_i = annual change in market account; δ^e_i = annual change in augmented account; δ^g_i = annual change in pollution damage.
- $\delta_i^v = \delta_i^e$, if $\delta_i^v = \delta_i^g$
- $\delta_i^v < \delta_i^e$, if $: \delta_i^v > \delta_i^g$
Comparing Annual Rates of Change in VA, EVA, and GED.

- Let: δ^v_i = annual change in market account; δ^e_i = annual change in augmented account; δ^g_i = annual change in pollution damage.
- $\delta_i^v = \delta_i^e$, if $: \delta_i^v = \delta_i^g$ • $\delta_i^v < \delta_i^e$, if $: \delta_i^v > \delta_i^g$ • $\delta_i^v > \delta_i^e$, if $: \delta_i^v < \delta_j^g$

Methods:

- Conceptual Model.
- Empirical Model.
- Results.
- Conclusions

Muller (Middlebury College, NBER) BCA Workshop - Toulouse School of Econ.

Muller (Middlebury College, NBER) BCA Workshop - Toulouse School of Econ.

• USEPA National Emissions Inventories (1999, 2002, 2005, 2008, 2011): Annual Emissions 10,000 Sources.

- USEPA National Emissions Inventories (1999, 2002, 2005, 2008, 2011): Annual Emissions 10,000 Sources.
 - PM_{2.5}, SO₂, NO_x, VOC, and NH₃: (All emissions of 5 pollutants in the contiguous U.S.)

- USEPA National Emissions Inventories (1999, 2002, 2005, 2008, 2011): Annual Emissions 10,000 Sources.
 - PM_{2.5}, SO₂, NO_x, VOC, and NH₃: (All emissions of 5 pollutants in the contiguous U.S.)
- Air quality model: Gaussian Plume (Turner, 1994).

- USEPA National Emissions Inventories (1999, 2002, 2005, 2008, 2011): Annual Emissions 10,000 Sources.
 - PM_{2.5}, SO₂, NO_x, VOC, and NH₃: (All emissions of 5 pollutants in the contiguous U.S.)
- Air quality model: Gaussian Plume (Turner, 1994).
- Dose-response.

- USEPA National Emissions Inventories (1999, 2002, 2005, 2008, 2011): Annual Emissions 10,000 Sources.
 - PM_{2.5}, SO₂, NO_x, VOC, and NH₃: (All emissions of 5 pollutants in the contiguous U.S.)
- Air quality model: Gaussian Plume (Turner, 1994).
- Dose-response.
 - PM_{2.5} Adult mortality dose-response: Pope et al., 2002.

- USEPA National Emissions Inventories (1999, 2002, 2005, 2008, 2011): Annual Emissions 10,000 Sources.
 - PM_{2.5}, SO₂, NO_x, VOC, and NH₃: (All emissions of 5 pollutants in the contiguous U.S.)
- Air quality model: Gaussian Plume (Turner, 1994).
- Dose-response.
 - PM_{2.5} Adult mortality dose-response: Pope et al., 2002.
- Valuation:

- USEPA National Emissions Inventories (1999, 2002, 2005, 2008, 2011): Annual Emissions 10,000 Sources.
 - PM_{2.5}, SO₂, NO_x, VOC, and NH₃: (All emissions of 5 pollutants in the contiguous U.S.)
- Air quality model: Gaussian Plume (Turner, 1994).
- Dose-response.
 - PM_{2.5} Adult mortality dose-response: Pope et al., 2002.
- Valuation:
 - Premature mortality: VSL \$6 million (USEPA, 1999).

• Estimate baseline damages.

- Estimate baseline damages.
 - All source emitting at reported 2005 levels.

- Estimate baseline damages.
 - All source emitting at reported 2005 levels.
- Add 1 ton of pollutant (e.g. SO₂) to source location.

- Estimate baseline damages.
 - All source emitting at reported 2005 levels.
- Add 1 ton of pollutant (e.g. SO₂) to source location.
 - All other sources emissions held fixed.

- Estimate baseline damages.
 - All source emitting at reported 2005 levels.
- Add 1 ton of pollutant (e.g. SO₂) to source location.
 - All other sources emissions held fixed.
- Compute change in concentrations, exposures, incidence and damages in all counties.

- Estimate baseline damages.
 - All source emitting at reported 2005 levels.
- Add 1 ton of pollutant (e.g. SO₂) to source location.
 - All other sources emissions held fixed.
- Compute change in concentrations, exposures, incidence and damages in all counties.
- Sum damages across receptor counties to determine total change in damages.

- Estimate baseline damages.
 - All source emitting at reported 2005 levels.
- Add 1 ton of pollutant (e.g. SO₂) to source location.
 - All other sources emissions held fixed.
- Compute change in concentrations, exposures, incidence and damages in all counties.
- Sum damages across receptor counties to determine total change in damages.
- Repeat across other sources adding scrubbers, and over 2008, 2011 data years.

Empirical Model: PM2.5 Ambient Concentration.

Muller (Middlebury College, NBER) BCA Workshop - Toulouse School of Econ.

Image: A matrix and a matrix

Empirical Model: PM2.5 Ambient Concentration.

Muller (Middlebury College, NBER) BCA Workshop - Toulouse School of Econ.

-

Image: A matrix of the second seco

Empirical Model: PM2.5 Ambient Concentration.

Image: A math a math

Empirical Model: Marginal damages PM2.5 at RE Burger.

Empirical Model: Marginal damages PM2.5 at RE Burger.

December, 2014 20 / 51

Empirical Model: SO2 Marginal damages.

December, 2014 21 / 51

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

• Estimate emissions rate (intensity) pre-FGD installation:

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

• $E_{2005,i}$ = observed emissions of SO₂ in 2005, source (i)

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

- $E_{2005,i}$ = observed emissions of SO₂ in 2005, source (i)
- $H_{2005,i}$ = observed energy (input fuel) consumption in 2005, source (i)

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

- $E_{2005,i}$ = observed emissions of SO₂ in 2005, source (i)
- $H_{2005,i} =$ observed energy (input fuel) consumption in 2005, source (i)
- $\hat{E}_{2008,i} = (I_{2005,i}) \times (H_{2008,i}); \ \hat{A}_{2008,i} = \hat{E}_{2008,i} E_{2008,i}$

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

- $E_{2005,i}$ = observed emissions of SO₂ in 2005, source (i)
- $H_{2005,i} =$ observed energy (input fuel) consumption in 2005, source (i)
- $\hat{E}_{2008,i} = (I_{2005,i}) \times (H_{2008,i}); \ \hat{A}_{2008,i} = \hat{E}_{2008,i} E_{2008,i}$
- Estimate abatement, compute product of levelized abatement cost and abatement tonnage:

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

- $E_{2005,i}$ = observed emissions of SO₂ in 2005, source (i)
- $H_{2005,i} =$ observed energy (input fuel) consumption in 2005, source (i)
- $\hat{E}_{2008,i} = (I_{2005,i}) \times (H_{2008,i}); \ \hat{A}_{2008,i} = \hat{E}_{2008,i} E_{2008,i}$
- Estimate abatement, compute product of levelized abatement cost and abatement tonnage:
 - $TAC_{2008,i} = (\hat{A}_{2008,i}) \times (LC_{2008,i}); DOEEIA (2002), EPA (2000).$

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

- $E_{2005,i}$ = observed emissions of SO₂ in 2005, source (i)
- $H_{2005,i} =$ observed energy (input fuel) consumption in 2005, source (i)
- $\hat{E}_{2008,i} = (I_{2005,i}) \times (H_{2008,i}); \ \hat{A}_{2008,i} = \hat{E}_{2008,i} E_{2008,i}$
- Estimate abatement, compute product of levelized abatement cost and abatement tonnage:
 - $TAC_{2008,i} = (\hat{A}_{2008,i}) \times (LC_{2008,i}); DOEEIA (2002), EPA (2000).$
 - EGU >400 MW $200 500/t SO_2$ removed.

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

- $E_{2005,i}$ = observed emissions of SO₂ in 2005, source (i)
- $H_{2005,i} =$ observed energy (input fuel) consumption in 2005, source (i)
- $\hat{E}_{2008,i} = (I_{2005,i}) \times (H_{2008,i}); \ \hat{A}_{2008,i} = \hat{E}_{2008,i} E_{2008,i}$
- Estimate abatement, compute product of levelized abatement cost and abatement tonnage:
 - $TAC_{2008,i} = (\hat{A}_{2008,i}) \times (LC_{2008,i}); \text{DOEEIA} (2002), \text{ EPA} (2000).$
 - EGU >400 MW 200 500/t SO_2 removed.
 - EGU ${<}400$ MW 500 5,000/t SO_2 removed.

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

- $E_{2005,i}$ = observed emissions of SO₂ in 2005, source (i)
- $H_{2005,i} =$ observed energy (input fuel) consumption in 2005, source (i)
- $\hat{E}_{2008,i} = (I_{2005,i}) \times (H_{2008,i}); \ \hat{A}_{2008,i} = \hat{E}_{2008,i} E_{2008,i}$
- Estimate abatement, compute product of levelized abatement cost and abatement tonnage:
 - $TAC_{2008,i} = (\hat{A}_{2008,i}) \times (LC_{2008,i}); \text{DOEEIA} (2002), \text{ EPA} (2000).$
 - EGU >400 MW 200 500/t SO_2 removed.
 - EGU ${<}400$ MW 500 5,000/t SO_2 removed.
- Treatment of cost in no-scrub counterfactual?

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

- $E_{2005,i}$ = observed emissions of SO₂ in 2005, source (i)
- $H_{2005,i} =$ observed energy (input fuel) consumption in 2005, source (i)
- $\hat{E}_{2008,i} = (I_{2005,i}) \times (H_{2008,i}); \ \hat{A}_{2008,i} = \hat{E}_{2008,i} E_{2008,i}$
- Estimate abatement, compute product of levelized abatement cost and abatement tonnage:
 - $TAC_{2008,i} = (\hat{A}_{2008,i}) \times (LC_{2008,i}); \text{DOEEIA} (2002), \text{ EPA} (2000).$
 - EGU >400 MW 200 500/t SO_2 removed.
 - EGU ${<}400$ MW 500 5,000/t SO_2 removed.
- Treatment of cost in no-scrub counterfactual?
 - Add back to output (GDP).
Estimation of Counterfactual Emissions.

• Estimate emissions rate (intensity) pre-FGD installation:

•
$$I_{2005,i} = \left(\frac{E_{2005,i}}{H_{2005,i}}\right)$$

- $E_{2005,i}$ = observed emissions of SO₂ in 2005, source (i)
- $H_{2005,i} =$ observed energy (input fuel) consumption in 2005, source (i)
- $\hat{E}_{2008,i} = (I_{2005,i}) \times (H_{2008,i}); \ \hat{A}_{2008,i} = \hat{E}_{2008,i} E_{2008,i}$
- Estimate abatement, compute product of levelized abatement cost and abatement tonnage:
 - $TAC_{2008,i} = (\hat{A}_{2008,i}) \times (LC_{2008,i}); \text{DOEEIA} (2002), \text{ EPA} (2000).$

• EGU >400 MW 200 - 500/t SO_2 removed.

- EGU ${<}400$ MW 500 5,000/t SO_2 removed.
- Treatment of cost in no-scrub counterfactual?
 - Add back to output (GDP).
 - No change: already shows up as income to FGD manufacturers.

- Methods:
 - Conceptual Model.
 - Empirical Model.
- Results.
- Conclusions

э

Real GED/GDP and Rates of Growth All Sectors: 1999 - 2011.

GED/GDP	1999	2002	2005	2008	2011		
GED (Air Pollution) ^A	0.06	0.05	0.04	0.03	0.02		
GED (Air Pollution, GHG^B)	0.08	0.06	0.06	0.05	0.04		
GED (Air Pollution, GHG - 95 th) ^C	0.09	0.08	0.08	0.07	0.06		
Annual Rate of Change		2002	2005	2008	2011		
GDP		2.5	2.8	1.2	2.1		
EVA (Air Pollution ^A)		3.1	3.0	1.5	2.4		
EVA (Air Pollution, GHG ^{A,B})		3.1	3.0	1.5	2.4		
EVA (Air Pollution, GHG ^C)		3.1	2.9	1.5	2.4		
A = Results from 1999 - 2008 reported in Muller (2014a)							
B = Social cost of carbon value if \$28/ton CO2 (OMB, 2013)							
C = Social cost of carbon value if \$78/ton CO2 (OMB, 2013)							

Utility Sector: Real EVA, VA, and GED.

Muller (Middlebury College, NBER) BCA Workshop - Toulouse School of Econ.

State	Cost	GED	GED (No FGD)	Benefit	$\frac{B}{C}$	
New Jersey	3	24	131	107	39:1	
Delaware	0	154	161	7	33:1	
Ohio	24	2,080	2,830	742	31:1	
North Carolina	30	132	1,030	903	30:1	
Pennsylvania	192	1,090	6,350	5,260	27:1	
National (30 States)	892 ^A	8,700	28,470	19,770	22:1	
A - All values every and in real \$millions "high" cost scenario						

A = All values expressed in real \$millions, "high" cost scenario

Change in SO2 Emissions Due to FGD Installation: 2011.

э

・ロト ・ 日 ト ・ ヨ ト ・

Change in PM2.5 Due to FGD Installation: 2011.

Muller (Middlebury College, NBER) BCA Workshop - Toulouse School of Econ.

Change in Damage Due to FGD Installation: 2011.

FGD Installation and GDP, GED, and EVA Growth from 2008 to 2011.

State	GDP	GED	GED	EVA	Diff.
			No FGD	(No FGD)	EVA
West Virginia	4.24	-16.72	-4.81	6.86	1.20
				(5.65)	
Pennsylvania	1.72	-13.81	-7.75	2.61	0.28
				(2.33)	
North Dakota	5.48	3.44	6.24	5.66	0.24
				(5.42)	
Kentucky	2.19	-4.91	-1.11	2.68	0.24
				(2.44)	
Maryland	1.76	-12.84	-4.99	2.22	0.21
				(2.01)	
National (30 States)	1.08^{A}	-5.78	-3.58	1.27	0.06
				(1.21)	
A = Annual rates of ch		E> E ∽Q@			

Oberved and No-Scrub Counterfactual: West Virginia.

Muller (Middlebury College, NBER) BCA Workshop - Toulouse School of Econ. December, 2014

Fraction of Benefits Occurring In-State 2011.

Muller (Middlebury College, NBER) BCA Workshop - Toulouse School of Econ.

EVA Growth between 2008 to 2011 with In-State Benefits.

	Total I	Benefits	In-Stat	e Benefit			
State	EVA Diff.		EVA	Diff.			
	(No	EVA	(No	EVA			
	FGD)		FGD)				
National (30 States)	1.27	0.06	1.27	0.01			
	(1.21)		(1.26)				
West Virginia	6.86	1.20	6.86	0.01			
	(5.65)		(6.84)				
Pennsylvania	2.61	0.28	2.61	0.06			
	(2.33)		(2.55)				
North Dakota	5.66	0.24	5.66	-0.01			
	(5.42)		(5.67)				
Kentucky	2.68	0.24	2.68	0.01			
	(2.44)		(2.67)				
$\Delta - \Delta n_{null}$ rates of change (%)							

/0].

Change in Ambient Concentration and County Demographics: 2011.

Percentage Change

Benefit Per Capita and County Demographics: 2011.

Change in Ambient Concentration and County Income: 2011.

- Methods:
 - Conceptual Model.
 - Empirical Model.
- Results.
- Conclusions.

э

• Measurement important during macroeconomic shocks.

- Measurement important during macroeconomic shocks.
 - Inclusive of private sector output and public policy evaluation (BCA).

- Measurement important during macroeconomic shocks.
 - Inclusive of private sector output and public policy evaluation (BCA).
- Common for policymakers and stakeholders to frame policy effects in terms of GDP.

- Measurement important during macroeconomic shocks.
 - Inclusive of private sector output and public policy evaluation (BCA).
- Common for policymakers and stakeholders to frame policy effects in terms of GDP.
 - GDP likely biased in environmental context: externality.

- Measurement important during macroeconomic shocks.
 - Inclusive of private sector output and public policy evaluation (BCA).
- Common for policymakers and stakeholders to frame policy effects in terms of GDP.
 - GDP likely biased in environmental context: externality.
- Essential to assess growth based on an index inclusive of both benefits and costs.

- Measurement important during macroeconomic shocks.
 - Inclusive of private sector output and public policy evaluation (BCA).
- Common for policymakers and stakeholders to frame policy effects in terms of GDP.
 - GDP likely biased in environmental context: externality.
- Essential to assess growth based on an index inclusive of both benefits and costs.
 - Finding: FGD investment enhances growth.

- Measurement important during macroeconomic shocks.
 - Inclusive of private sector output and public policy evaluation (BCA).
- Common for policymakers and stakeholders to frame policy effects in terms of GDP.
 - GDP likely biased in environmental context: externality.
- Essential to assess growth based on an index inclusive of both benefits and costs.
 - Finding: FGD investment enhances growth.
 - In 30 States with new FGD between 2008 and 2011: EVA (+) 0.06% with FGD.

- Measurement important during macroeconomic shocks.
 - Inclusive of private sector output and public policy evaluation (BCA).
- Common for policymakers and stakeholders to frame policy effects in terms of GDP.
 - GDP likely biased in environmental context: externality.
- Essential to assess growth based on an index inclusive of both benefits and costs.
 - Finding: FGD investment enhances growth.
 - $\bullet\,$ In 30 States with new FGD between 2008 and 2011: EVA (+) 0.06% with FGD.
 - West Virginia state EVA (+) 1.2% with FGD; PA, ND, KY (+) 0.25% with FGD.

- Measurement important during macroeconomic shocks.
 - Inclusive of private sector output and public policy evaluation (BCA).
- Common for policymakers and stakeholders to frame policy effects in terms of GDP.
 - GDP likely biased in environmental context: externality.
- Essential to assess growth based on an index inclusive of both benefits and costs.
 - Finding: FGD investment enhances growth.
 - $\bullet\,$ In 30 States with new FGD between 2008 and 2011: EVA (+) 0.06% with FGD.
 - West Virginia state EVA (+) 1.2% with FGD; PA, ND, KY (+) 0.25% with FGD.
- Caveats: External validity and causation.

Conceptual Model.

글 > 글

Image: A mathematical states and a mathem

Marginal Damage Functions for SO2.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Empirical Model

Year	Model	mean	sd	min	max
2008	Base	10,980 ^A	3,209	3,158	16,154
2011	Base	11,534 ^{<i>B</i>}	5,996	948	38,832
2008	Roman	17,583	5,031	4,967	25,430
2011	Roman	18,384	9,470	1,493	61,204
2008	\$2M VSL	4,373	1,213	1,329	6,278
2011	\$2M VSL	4,638	2,389	425	15,291

A = (\$/ton), for plants installing scrubbers between 2005 and 2008. B = (\$/ton), for plants installing scrubbers between 2008 and 2011.

All Sectors: Regional Rates of Growth and Pollution Intensity.

		19	GED)/GDP			
Region	GED	EVA	GDP	EVA-GDP	1999	2011	
New England	-9.35 ^A	1.79	1.63	0.15	0.024	0.006	
Mideast	-8.08	2.34	1.96	0.38	0.060	0.017	
Southeast	-7.61	2.32	1.82	0.50	0.081	0.025	
Great Lakes	-6.54	1.32	0.79	0.53	0.099	0.040	
Plains	-3.80	2.41	2.08	0.32	0.071	0.034	
Rocky Mountains	-4.12	2.96	2.96	0.22	0.044	0.017	
Southwest	-3.49	3.52	3.52	0.21	0.041	0.019	
Far West	-4.45	2.07	2.07	0.18	0.039	0.017	
National	-6.63	2.32	1.96	0.36	0.064	0.023	
Λ							

A = Annualized rates of change (%).

Benefit Incidence and County Demographics: 2011.

	PM _{2.5}		Monetar	Benefit/	
Race	%	Abs.	%	Abs.	Capita
	Change	Change	Change	Change	
All Coun-	-4.5 (4.2)	-0.4 ^A	-4.2 (3.9)	11.7 ^C	125.6
ties		(0.3) ^{<i>B</i>}		(35.0)	(122.4)
White	-4.2 (4.3)	-0.3 (0.3)	-4.0 (4.0)	7.2	119.0
				(20.9)	(127.6)
Afr. Ameri-	-5.5 (3.7)	-0.5 (0.3)	-5.1 (3.5)	22.7	158.7
can				(53.2)	(105.0)
Asian	-4.8 (4.7)	-0.4 (0.4)	-4.4 (4.4)	34.3	116.8
American				(65.8)	(118.3)
Hispanic	-2.8 (3.4)	-0.2 (0.3)	-2.6 (3.2)	16.9	66.7
				(51.1)	(90.2)

 $A = \frac{ug}{m^3}$.

B = standard deviations in parenthesis.

C = (\$ millions).

		1999-2011				
State	GED	EVA	GDP	EVA-GDP	1999	2011
West Virginia	-11.87 ^A	5.68	2.30	3.38	0.364	0.061
North Dakota	-5.17	7.66	5.48	2.18	0.277	0.078
Wyoming	-4.29	7.91	6.89	1.03	0.142	0.038
Kentucky	-7.22	2.10	1.17	0.93	0.152	0.054
Indiana	-6.35	1.82	1.55	0.88	0.149	0.056
National	-6.33	2.32	1.96	0.36	0.064	0.023

A = Annualized rates of change (%).

		GED/VA				
Region	GED	EVA	VA	EVA-VA	1999	2011
New England	-11.49 ^A	1.40	-0.70	2.10	0.276	0.070
Mideast	-10.11	7.04	-0.56	7.60	0.669	0.199
Southeast	-10.20	В	-0.31	В	1.140	0.325
Great Lakes	-7.83	В	-1.41	В	1.448	0.646
Plains	-5.22	8.79	0.10	8.69	0.781	0.405
Rocky Mountains	-2.97	0.99	-0.03	1.02	0.302	0.212
Southwest	-5.07	3.60	0.83	2.77	0.427	0.207
Far West	-5.70	0.68	0.45	0.23	0.051	0.024
National	-5.75	16.06	0.42	15.64	0.860	0.284

A = Annualized rates of change (%).

B = EVA changes sign from 1999 to 2011. No growth rate reported.

Empirical Model: Comparison of Monitor Data and APEEP Prediction (PM2.5).

Empirical Model: Comparison of Monitor Data and APEEP Prediction (Ammonium Sulfate).

December, 2014 49 / 51
Empirical Model: Comparison of Monitor Data and APEEP Prediction (Ozone).

Muller (Middlebury College, NBER) BCA Workshop - Toulouse School of Econ.

Empirical Model: Comparison of Monitor Data and APEEP Prediction: 2005.

-	Pollutant/Species	MFE	MFB	Rho	n	
:	Total PM _{2.5}	0.072	-0.016	0.63	673	
	Ammonium Sulfate	0.105	0.013	0.87	153	
	Ammonium Nitrate	0.245	-0.067	0.50	153	
	Organic Carbon	0.130	0.084	0.37	153	
	Elemental Carbon	0.100	0.011	0.66	153	
Source	Muller, 2011; USEPA	A AIRS,	2011; AC	⊋S IMF	ROVE,	201
	Boylan, Russell, 2006:	MFE	\leq 50%, N	$IFB \leq$	30%.	

1