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Background

This work began with climate change policy, and the view
that what matters is the possibility of a catastrophic
outcome.

Most (all?) studies of climate change treat it in isolation.

I There are other potential catastrophes: nuclear or
bio-terrorism, a mega-virus, extreme earthquake, . . .

I These may be as likely as a climate catastrophe, and could
occur sooner and with less warning (so less time to adapt).

I Can we ignore them and just focus on climate?
I No. WTPs are not independent and not additive. Impacts and

costs are not “marginal.”
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Motivation: Two Examples
Suppose society faces five major potential catastrophes, and
the benefit of averting each exceeds the cost.

I You’d probably say we should avert all five.
I You might be wrong.
I It may be that we should avert only three of the five.

Suppose we face three potential catastrophes. The first has a
benefit much greater than the cost. The other two have
benefits greater than the costs, but not that much greater.

I Naive reasoning: Eliminate the first and then decide about
the other two. Wrong.

I If only one is to be eliminated, we should indeed choose the
first; and we do even better by eliminating all three.

I But we do best of all by eliminating the second and third and
not the first: the presence of the second and third
catastrophes makes it suboptimal to eliminate the first.
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Outline
We present a simple but general model of catastrophe
avoidance.

Use WTP to measure the benefit of avoidance, and a
permanent tax on consumption, τ, to measure the cost.
We consider N “types” of independent catastrophes.

I First find WTP to avert single catastrophe, ignoring others.
I Then show how WTP changes when we account for two

potential catastrophes rather than one.
I Which ones to eliminate? #2 increases hurdle rate for #1.
I Next, WTPs when there are N potential catastrophes.
I We show catastrophes are fundamentally interdependent.

Main result: A rule for determining the set of catastrophes
that should be averted.
Time permitting: Examples, partial reduction in likelihood,
rough numbers for some key catastrophes.
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WTP to Avoid One Type of Catastrophe

First consider single type of catastrophe in isolation.
(Climate change, mega-virus, your choice.)

WTP: maximum fraction of consumption, now and
throughout the future, society would sacrifice to avert
catastrophe.
Without a catastrophe, per-capita consumption grows at rate
g0, and C0 = 1.
Catastrophe is Poisson arrival, mean arrival rate λ, can
occur repeatedly.
When it occurs, catastrophe permanently reduces
consumption by a random fraction φ.
CRRA utility function used to measure welfare, with RRA =
η and rate of time preference = δ.
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Event Characteristics and WTP
Assume impact of nth arrival, φn, is i.i.d. across realizations
n. So process for consumption is:

ct = log Ct = g0t−
N(t)

∑
n=1

φn (1)

N(t) is a Poisson process with arrival rate λ, so when nth
event occurs, Ct is multiplied by the random variable e−φn.

Encode the effects of risk using the cumulant-generating
function (CGF),

κt(θ) ≡ log E ectθ ≡ log E Cθ
t .

ct is a Lévy process, so κt(θ) = κ(θ)t, where κ(θ) means
κ1(θ),

κ(θ) = g0θ + λ
(

E e−θφ1 − 1
)

(2)
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Event Characteristics and WTP (Continued)

With CRRA utility, welfare is:

E

∫ ∞

0

1
1− η

e−δtC1−η
t dt =

1
1− η

∫ ∞

0
e−δteκ(1−η)t dt =

1
1− η

1
δ− κ(1− η)

This equation applies to any distribution for impact φ. We
sometimes assume z = e−φ follows a power distribution
with parameter β > 0:

b(z) = βzβ−1 , 0 ≤ z ≤ 1 . (3)

(A large value of β implies a small expected impact.) Then,

κ(θ) = g0θ − λθ

β + θ
. (4)
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Event Characteristics and WTP (Continued)
Averting catastrophe sets λ = 0. Then CGF is

κ(1)(θ) = g0θ. (5)

If we sacrifice a fraction w of consumption to avert
catastrophe, welfare is

(1−w)1−η

1− η

1
δ− κ(1)(1− η)

. (6)

WTP to avert catastrophe is value of w that solves

1
1− η

1
δ− κ(1− η)

=
(1−w)1−η

1− η

1
δ− κ(1)(1− η)

.
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Event Characteristics and WTP (Continued)

Should we avoid this catastrophe? With only one
catastrophe to worry about, we can apply standard
cost-benefit analysis.

Benefit is w and cost is permanent tax, τ, needed to
eliminate the risk. Avoid the catastrophe as long as w > τ.
So far, nothing new. But now let’s introduce multiple
catastrophes. Start with two.
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Two Types of Catastrophes

Two independent types of catastrophes, arrival rates λ1 and
λ2 and impact distributions φ1 and φ2. So

ct = log Ct = g0t−
N1(t)

∑
n=1

φ1,n −
N2(t)

∑
n=1

φ2,n (7)

CGF is

κ(θ) = g0θ + λ1

(
E e−θφ1 − 1

)
+ λ2

(
E e−θφ2 − 1

)
(8)

If neither catastrophe has been eliminated, welfare is

E

∫ ∞

0

1
1− η

e−δtC1−η
t dt =

1
1− η

∫ ∞

0
e−δteκ(1−η)t dt =

1
1− η

1
δ− κ(1− η)

.
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Two Types of Catastrophes (Continued)
If catastrophe i has been averted, welfare is

1
1− η

1
δ− κ(i)(1− η)

where (i) means λi = 0. If both averted, then κ(1,2)(1− η),
i.e., λ1 = λ2 = 0.

So WTP to avert catastrophe i satisfies
(1−wi)

1−η

1− η

1
δ− κ(i)(1− η)

=
1

1− η

1
δ− κ(1− η)

and hence

wi = 1−
(

δ− κ(1− η)

δ− κ(i)(1− η)

) 1
η−1

. (9)

WTP to avert both catastrophes is

w1,2 = 1−
(

δ− κ(1− η)

δ− κ(1,2)(1− η)

) 1
η−1

. (10)
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Interrelationship of WTPs
How is WTP to avert #1 affected by existence of #2?

I Think of Catastrophe 2 as “background risk.” Two effects:
I It reduces expected future consumption;
I and thereby raises future expected marginal utility.

Each event reduces consumption by some percentage φ. So
first effect reduces WTP: with less (future) consumption
available, event causes smaller drop in consumption.
Second effect raises WTP: loss of utility is greater when total
consumption is lower.
If η > 1, second effect dominates. Existence of #2 raises
WTP to avert #1. (Opposite if η < 1.)
Linking w1,2 to w1 and w2:

1 + (1−w1,2)
1−η = (1−w1)

1−η + (1−w2)
1−η

This implies w1,2 < w1 + w2. WTPs are not additive.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 12 / 37



Interrelationship of WTPs
How is WTP to avert #1 affected by existence of #2?

I Think of Catastrophe 2 as “background risk.” Two effects:

I It reduces expected future consumption;
I and thereby raises future expected marginal utility.

Each event reduces consumption by some percentage φ. So
first effect reduces WTP: with less (future) consumption
available, event causes smaller drop in consumption.
Second effect raises WTP: loss of utility is greater when total
consumption is lower.
If η > 1, second effect dominates. Existence of #2 raises
WTP to avert #1. (Opposite if η < 1.)
Linking w1,2 to w1 and w2:

1 + (1−w1,2)
1−η = (1−w1)

1−η + (1−w2)
1−η

This implies w1,2 < w1 + w2. WTPs are not additive.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 12 / 37



Interrelationship of WTPs
How is WTP to avert #1 affected by existence of #2?

I Think of Catastrophe 2 as “background risk.” Two effects:
I It reduces expected future consumption;

I and thereby raises future expected marginal utility.
Each event reduces consumption by some percentage φ. So
first effect reduces WTP: with less (future) consumption
available, event causes smaller drop in consumption.
Second effect raises WTP: loss of utility is greater when total
consumption is lower.
If η > 1, second effect dominates. Existence of #2 raises
WTP to avert #1. (Opposite if η < 1.)
Linking w1,2 to w1 and w2:

1 + (1−w1,2)
1−η = (1−w1)

1−η + (1−w2)
1−η

This implies w1,2 < w1 + w2. WTPs are not additive.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 12 / 37



Interrelationship of WTPs
How is WTP to avert #1 affected by existence of #2?

I Think of Catastrophe 2 as “background risk.” Two effects:
I It reduces expected future consumption;
I and thereby raises future expected marginal utility.

Each event reduces consumption by some percentage φ. So
first effect reduces WTP: with less (future) consumption
available, event causes smaller drop in consumption.
Second effect raises WTP: loss of utility is greater when total
consumption is lower.
If η > 1, second effect dominates. Existence of #2 raises
WTP to avert #1. (Opposite if η < 1.)
Linking w1,2 to w1 and w2:

1 + (1−w1,2)
1−η = (1−w1)

1−η + (1−w2)
1−η

This implies w1,2 < w1 + w2. WTPs are not additive.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 12 / 37



Interrelationship of WTPs
How is WTP to avert #1 affected by existence of #2?

I Think of Catastrophe 2 as “background risk.” Two effects:
I It reduces expected future consumption;
I and thereby raises future expected marginal utility.

Each event reduces consumption by some percentage φ. So
first effect reduces WTP: with less (future) consumption
available, event causes smaller drop in consumption.

Second effect raises WTP: loss of utility is greater when total
consumption is lower.
If η > 1, second effect dominates. Existence of #2 raises
WTP to avert #1. (Opposite if η < 1.)
Linking w1,2 to w1 and w2:

1 + (1−w1,2)
1−η = (1−w1)

1−η + (1−w2)
1−η

This implies w1,2 < w1 + w2. WTPs are not additive.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 12 / 37



Interrelationship of WTPs
How is WTP to avert #1 affected by existence of #2?

I Think of Catastrophe 2 as “background risk.” Two effects:
I It reduces expected future consumption;
I and thereby raises future expected marginal utility.

Each event reduces consumption by some percentage φ. So
first effect reduces WTP: with less (future) consumption
available, event causes smaller drop in consumption.
Second effect raises WTP: loss of utility is greater when total
consumption is lower.

If η > 1, second effect dominates. Existence of #2 raises
WTP to avert #1. (Opposite if η < 1.)
Linking w1,2 to w1 and w2:

1 + (1−w1,2)
1−η = (1−w1)

1−η + (1−w2)
1−η

This implies w1,2 < w1 + w2. WTPs are not additive.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 12 / 37



Interrelationship of WTPs
How is WTP to avert #1 affected by existence of #2?

I Think of Catastrophe 2 as “background risk.” Two effects:
I It reduces expected future consumption;
I and thereby raises future expected marginal utility.

Each event reduces consumption by some percentage φ. So
first effect reduces WTP: with less (future) consumption
available, event causes smaller drop in consumption.
Second effect raises WTP: loss of utility is greater when total
consumption is lower.
If η > 1, second effect dominates. Existence of #2 raises
WTP to avert #1. (Opposite if η < 1.)

Linking w1,2 to w1 and w2:

1 + (1−w1,2)
1−η = (1−w1)

1−η + (1−w2)
1−η

This implies w1,2 < w1 + w2. WTPs are not additive.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 12 / 37



Interrelationship of WTPs
How is WTP to avert #1 affected by existence of #2?

I Think of Catastrophe 2 as “background risk.” Two effects:
I It reduces expected future consumption;
I and thereby raises future expected marginal utility.

Each event reduces consumption by some percentage φ. So
first effect reduces WTP: with less (future) consumption
available, event causes smaller drop in consumption.
Second effect raises WTP: loss of utility is greater when total
consumption is lower.
If η > 1, second effect dominates. Existence of #2 raises
WTP to avert #1. (Opposite if η < 1.)
Linking w1,2 to w1 and w2:

1 + (1−w1,2)
1−η = (1−w1)

1−η + (1−w2)
1−η

This implies w1,2 < w1 + w2. WTPs are not additive.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 12 / 37



Interrelationship of WTPs
How is WTP to avert #1 affected by existence of #2?

I Think of Catastrophe 2 as “background risk.” Two effects:
I It reduces expected future consumption;
I and thereby raises future expected marginal utility.

Each event reduces consumption by some percentage φ. So
first effect reduces WTP: with less (future) consumption
available, event causes smaller drop in consumption.
Second effect raises WTP: loss of utility is greater when total
consumption is lower.
If η > 1, second effect dominates. Existence of #2 raises
WTP to avert #1. (Opposite if η < 1.)
Linking w1,2 to w1 and w2:

1 + (1−w1,2)
1−η = (1−w1)

1−η + (1−w2)
1−η

This implies w1,2 < w1 + w2. WTPs are not additive.
Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 12 / 37



Which Catastrophes to Avert?

Suppose wi > τi for both i = 1 and 2. We should avert at
least one catastrophe, but should we avert both?

Useful to express costs τi and benefits wi in terms of utility:

Ki = (1− τi)
1−η − 1

Bi = (1−wi)
1−η − 1

Ki is percentage loss of utility when C is reduced by τi
percent, and likewise for Bi.
Suppose B1 � K1 so we definitely avert #1. Should we also
avert #2? Only if B2/K2 > 1 + B1.

I Fact that we will avert #1 increases hurdle rate for #2.
I Also applies if B1 = B2 and K1 = K2; might be we should only

avert one of the two.
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Which Catastrophes to Avert? (Continued)

Does this seem counter-intuitive?

I What matters is additional benefit from averting #2 relative
to the cost.

I In WTP terms, additional benefit is (w1,2 −w1)/(1−w1).
I B2/K2 > 1 + B1 is equivalent to (w1,2 −w1)/(1−w1) > τ2.
I Can have w2 > τ2 but (w1,2 −w1)/(1−w1) < τ2. Why?

These are not marginal projects, so w1,2 < w1 + w2.
I To avert #1, society is willing to give up fraction w1 of C, so

remaining C is lower and MU is higher. Thus utility loss from
τ2 is increased.

Numerical example: Suppose τ1 = 20% and τ2 = 10%.
Figures show, for range of w1 and w2, which catastrophes to
avert (none, one, or both).
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Example: τ1 = .2, τ2 = .1, η = 2. What to Do?
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Example: τ1 = .2, τ2 = .1, η = 3. What to Do?
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N Types of Catastrophes
Problem: Given a list (τ1, w1), ..., (τN, wN) of costs and
benefits of averting N catastrophes, which ones to eliminate?

CGF: κ(θ) = g0θ + ∑N
i=1 λi

(
E e−θφi − 1

)
.

WTP to eliminate a subset S of the N:

(1−wS)
1−η =

δ− κ(S)(1− η)

δ− κ(1− η)
(11)

WTP to eliminate only catastrophe i:

(1−wi)
1−η =

δ− κ(i)(1− η)

δ− κ(1− η)
(12)

Interrelationship of WTPs:

(1−wS)
1−η − 1 = ∑

i∈S

[
(1−wi)

1−η − 1
]

(13)

So w1,2,...,N < ∑N
i=1 wi and w1,2,...,N < w1,2,...,M + wM+1,...,N.
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Which Catastrophes to Avert?
Ki = (1− τi)

1−η − 1 and Bi = (1−wi)
1−η − 1

Key result: (Benefits add, costs multiply.) The optimal set, S,
of catastrophes to be eliminated solves the problem

max
S⊆{1,...,N}

V =

1 + ∑
i∈S

Bi

∏
i∈S

(1 + Ki)
(14)

I Proof: Using (11), (12) and (13), welfare if we avert S is

∏i∈S(1− τi)
1−η

(1− η) (δ− κ(1− η))
(
1 + ∑i∈S

[
(1−wi)1−η − 1

])
I In terms of Bi and Ki:

∏i∈S(1+Ki)
(1−η)(δ−κ(1−η))(1+∑i∈S Bi)

I (1− η)(δ− κ(1− η)) < 0, so pick S to maximize (15).
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Which Catastrophes to Avert? (Continued)
Key result: (Benefits add, costs multiply.) The optimal set, S, of
catastrophes to be eliminated solves the problem

max
S⊆{1,...,N}

1 + ∑
i∈S

Bi

∏
i∈S

(1 + Ki)
(15)

Unusual optimization problem!

Equivalently: maxS log(1 + ∑i∈S Bi)−∑i∈S log(1 + Ki)

So, if ∑i Bi and all Ki are very small: maxS ∑i∈S Bi − Ki

I Leads to the conventional intuition: the problem is separable,
and we should avert catastrophe i iff Bi > Ki (or, iff wi > τi)

But more generally, the problem is non-separable:
catastrophes are interdependent
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Example: Many Small Catastrophes
Suppose we have a large number of identical small potential
catastrophes, each with Bi = B and Ki = K.

Naive intuition: eliminate all if B > K and none if B ≤ K.

Wrong. Must pick the number to avert, m, to solve

max
m

1 + mB
(1 + K)m . (16)

Solution: m∗ = 1/ log(1 + K)− 1/B.

I If w = .020, τ = .015 and η = 2, B ≈ .020, K ≈ .015, and
m∗ = 17.

I If η = 3, m∗ = 9. If η = 4, m∗ = 6.
I Larger η implies smaller m∗ because percentage drop in C,

1− (1− τ)m, results in larger increase in MU, and thus
greater loss of utility from averting one additional
catastrophe.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 20 / 37



Example: Many Small Catastrophes
Suppose we have a large number of identical small potential
catastrophes, each with Bi = B and Ki = K.
Naive intuition: eliminate all if B > K and none if B ≤ K.

Wrong. Must pick the number to avert, m, to solve

max
m

1 + mB
(1 + K)m . (16)

Solution: m∗ = 1/ log(1 + K)− 1/B.

I If w = .020, τ = .015 and η = 2, B ≈ .020, K ≈ .015, and
m∗ = 17.

I If η = 3, m∗ = 9. If η = 4, m∗ = 6.
I Larger η implies smaller m∗ because percentage drop in C,

1− (1− τ)m, results in larger increase in MU, and thus
greater loss of utility from averting one additional
catastrophe.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 20 / 37



Example: Many Small Catastrophes
Suppose we have a large number of identical small potential
catastrophes, each with Bi = B and Ki = K.
Naive intuition: eliminate all if B > K and none if B ≤ K.

Wrong. Must pick the number to avert, m, to solve

max
m

1 + mB
(1 + K)m . (16)

Solution: m∗ = 1/ log(1 + K)− 1/B.

I If w = .020, τ = .015 and η = 2, B ≈ .020, K ≈ .015, and
m∗ = 17.

I If η = 3, m∗ = 9. If η = 4, m∗ = 6.
I Larger η implies smaller m∗ because percentage drop in C,

1− (1− τ)m, results in larger increase in MU, and thus
greater loss of utility from averting one additional
catastrophe.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 20 / 37



Example: Many Small Catastrophes
Suppose we have a large number of identical small potential
catastrophes, each with Bi = B and Ki = K.
Naive intuition: eliminate all if B > K and none if B ≤ K.

Wrong. Must pick the number to avert, m, to solve

max
m

1 + mB
(1 + K)m . (16)

Solution: m∗ = 1/ log(1 + K)− 1/B.

I If w = .020, τ = .015 and η = 2, B ≈ .020, K ≈ .015, and
m∗ = 17.

I If η = 3, m∗ = 9. If η = 4, m∗ = 6.
I Larger η implies smaller m∗ because percentage drop in C,

1− (1− τ)m, results in larger increase in MU, and thus
greater loss of utility from averting one additional
catastrophe.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 20 / 37



Example: Many Small Catastrophes
Suppose we have a large number of identical small potential
catastrophes, each with Bi = B and Ki = K.
Naive intuition: eliminate all if B > K and none if B ≤ K.

Wrong. Must pick the number to avert, m, to solve

max
m

1 + mB
(1 + K)m . (16)

Solution: m∗ = 1/ log(1 + K)− 1/B.
I If w = .020, τ = .015 and η = 2, B ≈ .020, K ≈ .015, and

m∗ = 17.

I If η = 3, m∗ = 9. If η = 4, m∗ = 6.
I Larger η implies smaller m∗ because percentage drop in C,

1− (1− τ)m, results in larger increase in MU, and thus
greater loss of utility from averting one additional
catastrophe.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 20 / 37



Example: Many Small Catastrophes
Suppose we have a large number of identical small potential
catastrophes, each with Bi = B and Ki = K.
Naive intuition: eliminate all if B > K and none if B ≤ K.

Wrong. Must pick the number to avert, m, to solve

max
m

1 + mB
(1 + K)m . (16)

Solution: m∗ = 1/ log(1 + K)− 1/B.
I If w = .020, τ = .015 and η = 2, B ≈ .020, K ≈ .015, and

m∗ = 17.
I If η = 3, m∗ = 9. If η = 4, m∗ = 6.

I Larger η implies smaller m∗ because percentage drop in C,
1− (1− τ)m, results in larger increase in MU, and thus
greater loss of utility from averting one additional
catastrophe.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 20 / 37



Example: Many Small Catastrophes
Suppose we have a large number of identical small potential
catastrophes, each with Bi = B and Ki = K.
Naive intuition: eliminate all if B > K and none if B ≤ K.

Wrong. Must pick the number to avert, m, to solve

max
m

1 + mB
(1 + K)m . (16)

Solution: m∗ = 1/ log(1 + K)− 1/B.
I If w = .020, τ = .015 and η = 2, B ≈ .020, K ≈ .015, and

m∗ = 17.
I If η = 3, m∗ = 9. If η = 4, m∗ = 6.
I Larger η implies smaller m∗ because percentage drop in C,

1− (1− τ)m, results in larger increase in MU, and thus
greater loss of utility from averting one additional
catastrophe.

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 20 / 37



Two Examples with Three Catastrophes

Example 1: Suppose there are three catastrophes with
(τ1, w1) =

(1
3 , 1

2

)
and (τ2, w2) = (τ3, w3) =

(1
5 , 3

8

)
.

Also, η = 2. Then (K1, B1) = (0.5, 1) and
(K2, B2) = (K3, B3) = (0.25, 0.6).

I If only one is eliminated, it should be the first (so V = 1.33).
I We do better by eliminating all three (so V = 1.37).
I But we do best by eliminating the second and third and not

the first (so V = 1.41).

Example 2: Now three potential catastrophes with
τ1 = 20%, τ2 = 10%, and τ3 = 5%. Figures show, for
various values of w3 and η, which ones should be averted as
w1 and w2 vary between 0 and 1.
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Example: η = 1.01, w3 = 7%
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Example: η = 2, w3 = 7%
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Example: η = 2, w3 = 20%
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Example: η = 3, w3 = 20%
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Example: Many Small, One Large
Suppose we face many small catastrophes with cost and
benefit (k, b), and one large one with (K, B). Must compare

max
m

1 + mb
(1 + k)m with max

m

1 + B + mb
(1 + K)(1 + k)m .

Assuming it is optimal to avert at least one small
catastrophe, optimized values of these problems are

b(1 + k)1/b

e log(1 + k)
and

b(1 + k)
1+B

b

e(1 + K) log(1 + k)
.

It follows we should avert large catastrophe if and only if

B
log(1 + K)

>
b

log(1 + k)
. (17)

Thus presence of small catastrophes raises hurdle rate to
prevent a large one.
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prevent a large one.
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wi = 1%, τi = 0.5% (blue dot), η = 4
If large catastrophe lies in shaded region it should not be
averted:
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Choosing Among Eight Catastrophes, η ∈ [1, 1.1]

è è

è

è

è

è

�

�

10 20 30 40
Τi H%L

10

20

30

40

wi H%L

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 29 / 37



Choosing Among Eight Catastrophes, η ∈ [1.2, 1.4]

è

è

è

è

è

�

�

�

10 20 30 40
Τi H%L

10

20

30

40

wi H%L

Martin and Pindyck (LSE and MIT) Scylla and Charybdis December 2014 29 / 37



Choosing Among Eight Catastrophes, η ∈ [1.5, 2.8]
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Choosing Among Eight Catastrophes, η ∈ [2.9, 3.9]
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Choosing Among Eight Catastrophes, η ∈ [4.0, 4.6]
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Choosing Among Eight Catastrophes, η ∈ [4.7, ∞)
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Extensions

Related Catastrophes: We can allow for projects that lower
the risk of one type of disaster (eg nuclear terrorism) to
lower the risk of a related type of disaster (eg bio-terrorism)

Bonanzas: Results also apply to projects such as blue-sky
research that increase the probability of events that raise
consumption (as opposed to decreasing the probability of
events that lower consumption).
Partial Alleviation: Results also apply if catastrophe arrival
rate can be adjusted on a continuous spectrum.
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Partial alleviation
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Where Might the Numbers Come From?

To apply this framework, need to identify the universe of
potential catastrophes.

For each type of catastrophe, need numbers for the λi’s and
(assuming power distribution for outcomes) βi’s.

I For some catastrophes (major floods, earthquakes, tsunamis)
these numbers can be estimated from data.

I For others (climate, nuclear terrorism), little or no data.

Subjective estimates of likelihood and impact might suffice
(and might be the best we can do).
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Some Rough Numbers

Characteristics of Seven Potential Catastrophes:

Potential η = 2 η = 4
Catastrophe λi βi τi wi Bi Ki wi Bi Ki

Mega-Virus .02 5 .02 .159 .189 .020 .309 2.030 .062
Climate .004 4 .04 .048 .050 .042 .180 .812 .130
Nuclear Terrorism .04 17 .03 .086 .095 .031 .141 .580 .096
Bioterrorism .04 32 .03 .047 .049 .031 .079 .280 .096
Floods .17 100 .02 .061 .065 .020 .096 .356 .062
Storms .14 100 .02 .051 .053 .020 .082 .293 .062
Earthquakes .03 100 .01 .011 .011 .010 .020 .063 .031

Avert all Seven .339 .513 .188 .442 4.415 .677
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Which to Avert? (η = 2)
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Which to Avert? (η = 4)
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Which to Avert? (a range of δ and η)
Virus; Climate; Nuclear terrorism; Bioterrorism; Floods; Storms; Quakes.
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Conclusions

Studies usually treat catastrophes in isolation.
This can lead to policies that are far from optimal.
Projects to avert major catastrophes are not marginal.

I So they are inherently interdependent, which can lead to
optimal policies that are counter-intuitive, even “strange.”

I Even small catastrophes can be non-marginal in aggregate.

We show how to find the set of catastrophes to be averted.
I Our framework is quite flexible.
I Applies to any distribution for impact φi.
I Can accommodate catastrophes (or Brownian shocks) in the

background that cannot be averted, catastrophes that cause
death, and catastrophes that can only be partially averted.
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