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Abstract 
 
We propose herein to test an extension of the traditional Fama and French (1993) 
extended Capital Asset Pricing Model (three-factor CAPM), in which is added a 
factor represented by an Index of Systemic Risk Measures (ISRM), built thanks to 
a Sparse Principal Component Analysis (SPCA) of a large set of systemic risk 
measures, as recently proposed by Giglio et al. (2016). The empirical tests of the 
CAPM with Systemic risk (CAPMS) we run on the American market, show that 
the new systemic risk factor is highly significant when pricing assets. We lastly 
propose an original application of the CAPMS related to a new methodology for 
designating and ranking Systemically Important Financial Institutions (SIFI), 
based on ordered significant sensitivities to the ISRM: the more sensitive, the most 
important. 
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1. Introduction 

 

 The recent financial crisis of 2008 was characterized both by the speed of 

financial contagion and by its strong negative impact on the real sector - with the 

consequent contraction of economic activity in many developed countries. One of the 

major issues in financial economics as a result of these turbulent events was, first, to try 

to agree on one (or more) definition(s) of systemic risk, multifaceted by nature, when 

emphasizing one or such essential characteristic of financial institutions. Indeed, the 

intention was to highlight the different aspects of this risk: size of the financial 

institution in shock, leverage risk and extreme market liquidity shortage phenomenon 

of interconnections between actors and contagion shock, have been identified as key 

elements of a systemic crisis. Once these aspects were identified, the objective was to 

build relevant analysis tools for measuring the systemic risk. Many authors have 

proposed measures reflecting both the general state of the system to distinguish the 

main institutions contributing to the overall risk. The academic literature also 

accompanied the new imperative by banking regulatory authorities, proposing a number 

of systemic risk or metric measurements. Indeed, there are two types of measures: the 

individual measures that assess systemic risk institutions in isolation and those that are 

designed to measure the overall systemic risk. In the first category, we can find for 

instance the Conditional Value-at-Risk (CoVaR) of Adrian and Brunnermeier (2016), the 

Marginal Expected Shortfall (MES) of Acharya et al. (2013) and Brownlees and Engle 

(2017), and the SRISK by Acharya et al. (2012) and Brownlees and Engle (2017). In the 

second group of measures, we find, among the main, the Spillover Index (SI) of Diebold 

and Yilmaz (2009) and the Dynamic Causality Index (DCI) of Billio et al. (2012). 

 However, recent works showed that the definition of a “good” measure of 

systemic risk still remains unresolved, 1) because of the observed empirical redundancies 

in the various measures of systemic risk, 2) because of the model risk associated with 

their estimates and 3) due to the absence of an objective criterion to tell us about the 

relevance of the different approaches. Thus, recent articles have focused on the implied 

model risk in the implementation of these different metrics. Daníelsson et al. (2016) and 

Benoit et al. (2017a) show that a large majority of individual measures of systemic risk 

strongly depends upon extreme percentiles of returns, and therefore inheriting the risk 

of such uncertain quantities. Actually, model risk seems to be largely underestimated in 

practice (Boucher et al., 2014 and 2016), and it is heterogeneous in the different steps, 

leading to significant discrepancies in the rankings of systemic institutions (Benoit et 

al., 2017a; Nucera et al., 2016; Kouontchou et al., 2015). Consequently, measures of 
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overall systemic risk constructed as a weighted sum of individual measures are also 

subject to model risk (see Moreno and Peña, 2013). 

A solution that recently appeared in the literature on systemic risk to mitigate 

the model risk is to construct aggregate indexes from different metrics existing systemic 

risk. The objective is to obtain a risk index which diversifies the model risk. As part of 

the quantification of the overall systemic risk, this approach is retained by Giglio et al. 

(2016) who identify an aggregate index at a given date as the common signal extracted 

from time-series of various metrics of systemic risk, recovered through a Principal 

Component Analysis (PCA). In their empirical investigations, it appears that this index 

predicts periods of sharp slowdown in economic activity - which is ultimately the 

economic criterion that should be the most important. Regarding the individual 

measures, Nucera et al. (2016) adopt a similar technical approach and they infer a rating 

issued from other noisy and divergent rankings of competing measures. Beyond the 

diversification of the model risk, it should be noted that the aggregation also allows us 

to synthesize the different dimensions of systemic risk (size, leverage, interconnections, 

liquidity etc.). 

Once the overall level of systemic risk is established, the objective of this article 

was consequently to provide a simple theoretical framework to illustrate several 

channels through which systemic risk could affect asset prices. This model is a useful 

first step in understanding how a number of recent empirical findings could be 

explained. Indeed, systemic risk intuitively seems to play a role in the assessment of 

asset prices, although this role is not easily identified due to the nonlinear relationship 

between systemic risk to asset prices. Also, the role of interconnections between 

institutions has been highlighted since the 2008-2009 crisis. We try to show in the 

following how systemic risk alters the equilibrium relationship of the Capital Asset 

Pricing Model (CAPM; see Sharpe, 1964), and the estimations of risk premia related to 

other factors. We thus show that a portfolio with a high systematic risk has also a 

significant systemic risk. More specifically, our methodology proceeds in three steps. 

 In the first step, we retain as a construction tool for the aggregate index: the 

“Sparse” Principal Component Analysis (SPCA). This method of dimension reduction, 

as opposed to the standard PCA used in Giglio et al. (2016) in the building of systemic 

risk indexes, allows us to select a predefined number of active components in the index. 

In this case, it has the advantage to retain, for the construction of the aggregated risk 

index, the measures that best explain some output targeted data observations. 

The second step is devoted to the endogenization of the smoothing parameter 

that governs the scarcity of the SPCA. In our case, the optimal value of this parameter 
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is obtained by retaining the aggregate index that Granger causes extreme variations in 

economic activity. The inference is here performed using the nonparametric test of 

causality in extreme risks of Hong et al. (2009). This approach has the advantage to test 

for a large number of time windows in the causal relation, with higher discounting the 

longest horizons. 

The third step concerns the pricing of financial assets. Whether the systemic risk 

related to some extent to each asset, has an impact or not on prices is hereafter our first 

question. If so, the CAPM does not take into account the existence of a so-called 

"systemic risk premium". Indeed, the Capital Asset Pricing Model (CAPM), based on 

the definition of two parameters (see Sharpe, 1964; Lintner, 1965; Mossin, 1966), is the 

reference model for the valuation of financial assets and premiums related to factors of 

risk. However, recent experience of financial crises highlighted the importance systemic 

risk; in other words, the risk that the financial system as a whole collapses should enter 

into the global picture. This has led some economists to question the validity of such a 

model, merely because it does not explicitly take into account the existence of systemic 

risk. Intuitively, it seems that the existence of potential systemic shocks, particularly 

marked for financial institutions in the last crisis, is expected to have an impact on asset 

prices and should allow investors to differentiate securities. Holding a portfolio of 

systemic institutions should in fact lead to the revelation of a specific premium. It thus 

seems now important to consider studying the impact of systemic risk in terms of 

valuation of financial assets. According to our empirical analysis conducted in the US 

market, the systemic risk revealed to be a significant component of compensation on 

certain securities. 

Furthermore, protecting the financial system is the main aim of some regulatory 

bodies. Detection and surveillance of the most important institutions, called 

Systemically Important Financial Institutions (SIFI), is one of their main objective. Our 

intuition is that sensitivities of financial institutions to a global systemic risk indicator, 

measured in a sound asset pricing model such as the proposed Capital Asset Pricing 

Model with Systemic risk (CAPMS), can help to better designate and control such 

important institutions, based on an objective valuation criterion. This leads to an 

original application of the CAPMS regarding the designation and ranking of SIFI, as a 

final added-value and by-product of our proposal for asset pricing with systemic risk. 

 The rest of this article is organized as follows. In the first part, we present the 

construction method of systemic risk index with an illustration on the US market. In 

the second part, we present the CAPM and its extension (Fama and French, 1993), and 

we present the Capital Asset Pricing Model with Systemic risk (CAPMS), as well as our 
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main empirical results on the US Equity market. Finally, we elaborate a proposition for 

a methodology when designating and ranking SIFI, based on sensitivities of financial 

institutions. The last section ultimately concludes. 

 

 

2. On an Index of Systemic Risk Measures (ISRM) 

 

To integrate systemic risk as another factor, complementary to the systematic 

and specific risk, it is necessary to use a precise measurement of risk. In recent years, a 

strong literature has been developed on identification of Systemically Important 

Financial Institutions by quantitative measures to characterize the conditional link 

between different financial institutions and the market as a whole. However, given the 

many dimensions of systemic risk, these individual measures hardly detect 

systematically the potentially systemic institutions. 

The use of factor analysis as information aggregation tool from a set of systemic 

risk measures is a new approach. Moreno and Peña (2013) use a Principal Component 

Analysis (PCA) on a set of companies for building a systemic risk index. Giglio et al. 

(2016) use principal component analysis to build a systemic risk index and test its 

predictive power of future shocks on macroeconomic variables using quantile regression. 

Nucera et al. (2016) run principal component analysis on a set of six systemic risk 

measures. However, their study differs from Giglio et al. (2016) as they apply a PCA on 

the ranking of 113 companies in the financial sector through a series of systemic risk 

measures and not on a set of companies over a period of time as in Giglio et al. (2016) in 

their study from a set of 19 measures of systemic risk. We hereafter summarize, 

complement and extend the work by Giglio et al. (2016) and Nucera et al. (2016), mainly 

considering the databases first used in Brownlees and Engle (2017) and, secondly, by 

Giglio et al. (2016). 

 

 

2.1. About Systemic Risk Measures  

 

 The financial literature has proposed numerous quantitative measures that can 

be used to identify potentially systemic institutions. We can group them into several 

categories. 

First, the individual systemic risk measures are defined from econometric models of 

specific risk to the institution. This is the Conditional Value-at-Risk (CoVaR) and Delta 
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Conditional Value-at-Risk (ΔCoVaR) by Adrian and Brunnermeier (2016), and the 

Marginal Expected Shortfall (MES) of Acharya et al. (2013) and Brownlees and Engle 

(2017), and SRISK of Acharya et al. (2012) and Brownlees and Engle (2017), and Amihud 

Illiquidity Measure proposed by Amihud (2002). 

Secondly, other measures focus specifically on an important aspect of systemic 

risk, i.e. the level of interconnection of financial institutions or the financial system 

concentration. In this category, we select the Spillover Index (SI) by Diebold and Yilmaz 

(2009), the Dynamic Causality Index (DCI) of Billio et al. (2012), the measurement of 

Turbulence by Kritzman and Li (2010), the Absorption Ratio of Kritzman et al. (2011), 

and the concentration Herfindahl-Hirschman Index. Thirdly, some macro-financial 

variables are generally used to complement the analysis, serving as leading indicators 

of economic activity (see Estrella and Trubin, 2006; Chen et al., 2009). We retain 

hereafter in our analysis: the Credit Default Yield Spread which measures the difference 

between the yield on corporate bonds rated BAA and the rated AAA by Moody's, as 

Chen et al. (2009) show that this variable is an aggregate measure of the risk of robust 

credit frictions (tax and liquidity) in the bond market; the TED Spread, which measures 

the difference between the LIBOR three-month rate and sovereign interest rates in three 

months: an increase of this variable is the sign that lenders expect an increase in credit 

risk in the interbank lending market; and finally the Term Spread measures the slope of 

the yield curve, and corresponds to the yield spread between 10-year Treasury bonds 

and three months money market maturities, since this variable may serve as a leading 

indicator of the economic activity (e.g. Estrella and Trubin, 2006). 

We consider also the volatility (Vol) and the Value-at-Risk (VaR) aggregated across the 

system to take into account the evolution of its variability. 

We illustrate the dynamics of these different systemic risk indicators in the 

following Figure 1 from daily data financial institutions from the US market over the 

period from the 09/03/2003 to the 02/26/2016. We see in this Figure a significant 

increase in all global systemic risk measures over the period 2007-2008 which is the 

period of the financial crisis. Similarly, although a common trend seems to emerge from 

the dynamics of the series, there are still some disparities between these measures. These 

differences may stem from the fact that systemic risk is multidimensional, each of the 

different metrics is modelling a specific dimension. 

This result is confirmed by the analysis of correlations between different risk 

measures.  
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Figure 1: Dynamics of global systemic risk measures 
 

 

 

Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' computation. 
Note: These measures (without considering the macroeconomic variables) are estimated from rolling windows of one 
year. Here are presented the z-scores of these measures and are in the following order: TED Spread, Term Spread, 
Default Yield Spread, Amihud Illiquidity Measure, Turbulence, Herfindahl-Hirschman Index, Absorption Ratio, 
Spillover, Dynamical Causality Index, SRISK Agg, Vol Agg, MES95 Agg, CES95 Agg, VaR95 Agg, CoVaR95 Agg, 

CoVaR95 Agg. 

 

 

Indeed, from the matrix of the correlations presented in Table 1 below, we can 

note that all correlations are statistically significant at a nominal risk level of 5%, except 
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for the correlations between the Amihud Illiquidity Measure and the TED Spread and 

between the Dynamical Causality Index and the Default Yield Spread for the Pearson 

correlations. The exception of the correlations for the Spearman correlations are 

between the TED Spread, the aggregate SRISK and the aggregate volatility, between 

the Turbulence Index and the aggregated SRISK, between the Herfindahl-Hirschman 

Index and the Dynamical Causality Index and between the aggregated CoVaR and the 

Dynamical Causality Index. 

 

 

Table 1: Pearson and Spearman correlations of systemic measures 
 

 
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 

M1 1.00 -.11 .55 .00 .65 -.19 .06 .26 .21 .16 .28 .69 .69 .67 .57 .68 

M2 -.49 1.00 .18 .54 -.09 .68 .54 .45 -.01 .44 .47 .24 .24 .31 .33 .25 

M3 .41 .08 1.00 .52 .40 .39 .34 .61 .09 .56 .74 .88 .87 .87 .89 .85 

M4 -.29 .63 .54 1.00 -.05 .60 .45 .61 -.22 .56 .93 .49 .48 .57 .62 .43 

M5 .48 -.28 .17 -.20 1.00 -.11 .09 .23 .20 .15 .16 .52 .53 .52 .45 .56 

M6 -.39 .63 .29 .64 -.24 1.00 .41 .43 .03 .47 .51 .35 .33 .38 .43 .35 

M7 -.19 .33 .32 .64 .05 .30 1.00 .84 -.24 .83 .37 .36 .37 .37 .31 .42 

M8 .08 .32 .71 .76 .14 .40 .72 1.00 -.23 .84 .61 .57 .58 .59 .60 .66 

M9 .17 -.05 -.21 -.39 .25 .02 -.17 -.21 1.00 -.31 -.07 .13 .13 .11 .17 .14 

M10 -.01 .28 .61 .84 .02 .38 .67 .75 -.36 1.00 .53 .60 .61 .59 .50 .59 

M11 -.03 .61 .65 .88 -.05 .47 .48 .76 -.32 .74 1.00 .72 .70 .79 .82 .64 

M12 .26 .26 .66 .61 .23 .26 .49 .72 -.13 .74 .74 1.00 1.00 .97 .92 .94 

M13 .26 .25 .66 .60 .22 .25 .49 .73 -.11 .74 .72 .99 1.00 .97 .91 .94 

M14 .15 .44 .70 .75 .16 .36 .48 .79 -.23 .76 .89 .91 .89 1.00 .94 .93 

M15 .34 .38 .68 .46 .22 .35 .23 .67 .01 .40 .67 .71 .71 .77 1.00 .94 

M16 .25 .34 .67 .54 .27 .33 .55 .81 -.02 .62 .67 .81 .82 .82 .85 1.00 

Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' computation. 

Note: M1 to M16 represent the 16 systemic risk measures and are in the following order: M1 = TED Spread, M2 = Term 

Spread, M3 = Default Yield Spread, M4 = Amihud Illiquidity Measure, M5 = Turbulence, M6 = Herfindahl-Hirschman 

Index, M7 = Absorption Ratio, M8 = Spillover Index, M9 = Dynamical Causality Index, M10 = SRISK, M11 = Vol, 

M12  =  MES95, M13 = CES95, M14 = VaR95, M15 = CoVaR95, and M16 = CoVaR95.  Above, the off-diagonal elements 
are the Pearson correlations, the Spearman correlations are below. Non-significant correlations at a nominal risk 
level of 5% are in grey. 

 

 

The strongest correlations (above .90) are those related to global systemic risk 

measures corresponding to average data instant time-series of individual measures 

(CoVaR, ΔCoVaR, MES). It is therefore necessary to propose an indicator that 

integrates all dimensions of risk (aggregated model). 
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2.2. An Aggregated Index of Systemic Risk Measures 

 

We present in this section the methodology for the construction of the 

aggregated index of overall systemic risk (see Kouontchou et al., 2015). First, we present 

the PCA sparse approach for dimension reduction, and secondly, we present the optimal 

choice of systemic risk index through the causality test in extreme risks of Hong et al. 

(2009) for selecting the most parsimonious index. 

 

 

2.2.1. The Sparse PCA Method 
 

The PCA is a decomposition of a data set on the basis of orthogonal functions 

which are determined from the data. These functions, which are linear combinations of 

the original variables, are supposed to reproduce a large extent of the existing variability 

in the data, and they correspond to the most important main axes or components. From 

a statistical point of view, if we consider a matrix M of dimension (𝑇, 𝑝) of the initial 

normalized data (see Benoit et al., 2017b on the importance of this point in the context 

of detecting SIFI)), the first component (main axis) is denoted by a vector of dimension 

p as the solution of the following program: 

max
𝑥∈ℝ𝑝

 {𝑥′𝐴𝑥}

𝑠. 𝑡. ‖𝑥‖2 = 1,
 (1) 

where 𝐴 = 𝑇−1𝑀′𝑀 is the covariance matrix of 𝑀 of dimension (𝑝, 𝑝), 𝑀′ is its 

transpose, T the size of the sample and ∥ 𝑥 ∥2 stand for the 2-norm of vector 𝑥. 

 The first component is obtained by minimizing the empirical variance of the 

projected data in an identification constraint associated with a specific norm. The 

projection data on this component makes it possible to obtain a factor noted 𝐹 of 

dimension (𝑇, 𝑝), with 𝐹 = 𝑀𝑥 whose variance, called eigenvalue, is equal to  𝜆 =

𝑇−1𝐹′𝐹, is the criterion in the optimization program (1). In the construction of 

aggregated systemic risk indices, the index is generally associated with the factor 𝐹 

(Moreno et Peña, 2013; Giglio et al., 2016).  

 The previous optimization program that provides the first component and the 

dominant factor has an equivalent representation in terms of linear regression (Zou et 

al., 2006). Indeed, it is shown that in the linear regression that reads:  

𝐹 = 𝑀𝛽 + 𝑈, (2) 
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where the dependent variable 𝐹 (respectively, the explanatory variables 𝑀) is the 

dominant factor of the PCA (initial data matrix respectively) and 𝑈 is the error term. 

The normalized value of the Ordinary Least Square (OLS) estimator of the parameter 

vector 𝛽 is equal to the first component, that is: 

𝑥 =
�̂�

‖�̂�‖
2

, (3) 

with 
2

.  the 2-norm. 

Zou et al. (2006) propose to modify the linear regression represented by Eq. (2) 

in order to obtain the main sparse component from the expression (3). Indeed, if 𝑥𝑠 is 

this component, it is equal to:  

𝑥𝑠 =
�̂�𝑠

‖�̂�𝑠‖
2

, (4) 

where �̂�𝑠 is the solution of the constrained following regression (or penalized) 

below:     

𝐹 = 𝑀𝛽𝑠 + 𝑈 

𝑠. 𝑡. ‖𝛽𝑠‖1 =∑|𝛽𝑗
𝑠|

𝑝

𝑗=1

≤ 𝛿. 
(5) 

The parameter 𝛿 ≥  0 defines the upper limit of norm 1 of the parameter vector 

𝛽𝑠. Regression (5) introduced by Tibshirani (1996) is known as the Least Absolute 

Shrinkage and Selection Operator (LASSO), and its primary goal is to make a variable 

selection. The limit behaviour of this regression can be summarized as follows. When 𝛿 

tends to zero, the number of active elements (different from zero) in �̂�𝑠, and therefore 

in the "sparse" component 𝑥𝑠, also approaches zero - the degenerated limit case being 

when 𝛿 =  0, where �̂�𝑠 and 𝑥𝑠 correspond to the zero vector; in the opposite case when 

𝛿 tends to infinity, the regression (5) is the unrestricted regression (2), and 𝑥𝑠 is exactly 

equal to 𝑥, i.e. the main component of a conventional PCA and the number of active 

elements then takes its maximum value𝑝. 

This method applied in our systemic risk framework has the advantage of 

providing a main component that summarizes the variability in systemic risk indicators, 

using only a few of them. Beyond the parsimony that brings the SPCA, it should be 

mentioned that the variable selection is made using the usual trade-off between bias and 

variance. Indeed, under the usual conditions of exogeneity of the error term 𝑈 in the 

regression (2), the estimator �̂� is unbiased. The additional constraint in regression (5) 
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helps to reduce the variance of the estimator by introducing bias.3  Therefore the main 

factor from a SPCA has a more stable temporal dynamic. As highlighted above, this 

property is desirable since the implementation of regulatory policies should not be based 

on noisy and erratic metrics of systemic risk. Finally, note that the dominant factor of 

the SPCA is obtained by projecting the data matrix 𝑀 on the sparse component 𝑥𝑠, with 

𝐹𝑠 = 𝑀𝑥𝑠. 

 

 

 Table 2: Variable decomposition of the sparse principal components 
 

 

 

Table 2 shows the dominant principal component derived from the SPCA 

methodology for different values of the parameter 𝛿. When 𝛿 =  1, which corresponds 

to the strongest constraint in regression (5), the number of active global systemic risk 

measures in the dominant component is equal to 𝑘 =  1, and corresponds to the M8 

measure, namely the Spillover Index of Diebold and Yilmaz (2009). When 𝛿 increases, 

the constraint becomes lighter and other additional systemic risk measures enter into 

the dominant component. For illustration, when 𝛿 =  1.933, six measures are active in 

the index, namely the concentration Herfindahl-Hirschman Index, the Absorption Ratio 

                                                 
3. Here we find a compromise between bias and variance in the so-called regression “RIDGE”. Arbitrage 

nonetheless addresses the norm 1 and not the norm 2 of the “LASSO” regression. 
 

δ 1.000 1.309 1.402 1.711 1.834 1.933 2.017 2.022 2.050 2.125 2.139 2.199 2.249 2.304 2.327 2.388 
Idk Id1 Id2 Id3 Id4 Id5 Id6 Id7 Id8 Id9 Id10 Id11 Id12 Id13 Id14 Id15 Id16 

k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15 k=16 

M1 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .04 

M2 .00 .00 .00 .00 .00 .00 .02 .02 .03 .04 .05 .05 .06 .06 .06 .07 

M3 .00 .00 .00 .00 .00 .00 .00 .00 .01 .03 .04 .05 .05 .07 .07 .08 

M4 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 

M5 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .03 .03 .04 

M6 .00 .39 .41 .49 .51 .53 .54 .54 .54 .55 .55 .55 .55 .56 .57 .57 

M7 .00 .00 .00 .17 .24 .30 .34 .34 .35 .38 .39 .40 .40 .40 .41 .41 

M8 1.00 .92 .91 .83 .79 .75 .73 .73 .72 .70 .70 .70 .70 .69 .69 .68 

M9 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .03 .04 .06 .06 .07 

M10 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .02 .03 .04 .05 .06 

M11 .00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01 .03 .04 .08 .10 .06 

M12 .00 .00 .00 .00 .00 .02 .06 .06 .06 .05 .04 .05 .05 .04 .04 .05 

M13 .00 .00 .00 .00 .00 .00 .00 .00 .01 .05 .06 .05 .06 .06 .05 .05 

M14 .00 .00 .08 .23 .24 .23 .20 .19 .19 .16 .15 .15 .13 .10 .08 .05 

M15 .00 .00 .00 .00 .05 .10 .13 .13 .14 .14 .14 .13 .12 .07 .06 .07 

M16 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .05 .06 .05 
Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' computation. 

Note: M1 to M16 represent the 16 systemic risk measures and are in the following order:  M1 = TED Spread, M2 = Term 

Spread, M3 = Default Yield Spread, M4 = Amihud Illiquidity Measure, M5 = Turbulence, M6 = Herfindahl-Hirschman Index, 

M7 = Absorption Ratio, M8 = Spillover Index, M9 = Dynamical Causality Index, M10 = SRISK, M11 = Vol, M12 = MES95, M13 

= CES95, M14 = VaR95, M15 = CoVaR95, and M16 = CoVaR95.   
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of Kritzman et al. (2011), the Spillover Index of Diebold and Yilmaz (2009), the 

aggregated MES4 by Acharya et al. (2010), the aggregated Value-at-Risk and the 

aggregated CoVaR of Adrian and Brunnermeier (2016). For the highest value, all 

measures are active in the dominant component, and it is the first component of a classic 

PCA. Note that the latest systemic risk measure to be active in component is the Amihud 

Illiquidity Measure. 

 

 

Figure 2: Dynamics of the various SPCA indexes (as functions of δ) 

 
 
Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' computation. 

Note: Are presented the dynamics of all the aggregate indexes obtained from SPCA for a specific value of δ. 

 

 

Figure 2 shows the dynamics of all 16 aggregate indexes of systemic risk 

obtained through the analysis of the main sparse components for a given value of the 

truncation parameter 𝛿, varying from 𝛿 =  1.000 to 𝛿 =  2.388. For the first value, 

when 𝛿 =  1.000, the aggregate index is nothing else than the Spillover Index of 

Diebold and Yilmaz (2009) and is the most stable. For the last value, where 𝛿 =  2.388, 

the aggregate index corresponds to the aggregation of all systemic risk measures (the 

16 measures are included in the analysis). The dynamics of the other indices are between 

these two limit case indexes. Indeed, the addition of any extra factor in the index 

                                                 
4 For some authors, and since its definition relies on the effect on a financial institution of an extreme market 

movement, the MES should not be taken as a systemic risk measure... We see here that the information 

content of such a statistic is singular and different from the one in other measures. 
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increases its variability, which will be between the variability of the two indexes included 

in the limiting cases as displayed in the following Figure. 

Figure 3 below, displays the dynamics of the SPCA and PCA cases of the 16 

factors (or aggregate indexes) from the sparse components of Table 1. Indeed, although 

the dynamics of the two aggregate indices are very similar, the temporal variability is 

not equal. The most stable index obviously corresponds to the case with a variance equal 

to 1. This index is identical to the Spillover Index of Diebold and Yilmaz (2009). The 

most volatile aggregate index is obtained for 𝛿 =  2.388 and is equal to the dominant 

factor of a conventional PCA, with an estimated variance of 3.195. Other unrepresented 

aggregated indexes show variances between these two values. We thus find, with this 

analysis, the primary objective of the SPCA, namely the temporal stabilization of factors, 

is to define our aggregate index. However, as already mentioned, this stabilization is 

achieved via a bias-variance arbitrage, and thus induces a decrease in the quality of the 

representation (explained variance).  

 

 

Figure 3: Dynamics of the SPCA and PCA indexes 

 
 
Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' computation. 
Note: Are plotted the two limit cases of the set of indexes. The optimal choice is in bold and the index obtained by 
the PCA is in dashed line.  

 

 

The following section is dedicated to the optimal choice of the aggregate index 

of systemic risk among the 16 competing indices which are all special combinations of 

our 16 systemic risk measures. 
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2.2.2. Optimal Choice within the Set of the Competing Sparse Principal Components 

 

Our aim in this section is to assess to what extent the aggregate index can be 

considered a leading indicator of economic activity. This approach is the one used by 

Giglio et al. (2016) to measure the predictive power of their aggregate index extracted 

from a classical PCA. Indeed, these authors, via a quantile regression, test whether 

extreme variations in the industrial production is explained by the lagged value of the 

index of systemic risk - compared to a non-conditional specification excluding the index. 

The method we adopt in this section is, however, different, in the sense that we 

assess to what extent the positive extreme movements of the aggregate index of 

systemic risk (when systemic risk is high) Granger-cause the negative extreme 

movements in the industrial production. As highlighted above, this approach is 

consistent with the intuition that only the extreme movements of the aggregate index 

can explain systemic events, inducing strong slowdowns in the future economic activity. 

We use for this purpose the causality test in distributions tails developed by Hong et al. 

(2009). 

For a brief description of the test, let us note 
 
𝑦1,𝑡 = Δ𝑃𝑡 the monthly change in 

industrial production, and 𝑄1,𝑡(𝛼; 𝜃1) the quantile at the order 𝛼 of the distribution of 

𝑦1,𝑡, with 𝜃1 a vector of parameters associated with the specification of the dynamic of 

𝑦1,𝑡. Here we follow Giglio et al. (2016) by setting 𝛼 to 20%. For monthly data, note 

here this is a reasonable choice since it allows to have samples with limited sizes and a 

significant number of observations in the left tail of the distribution 𝑦𝑡. Let 𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) 

the dummy variable defined as: 

 

𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) = {
1   𝑖𝑓  𝑦1,𝑡 ≤ 𝑄1,𝑡(𝛼; 𝜃1)

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
.  

(6)
 

 

         This variable equals 1 when the change in industrial production is extreme and 

negative, corresponding to a severe contraction of economic activity. In the same 

manner, let us denote 𝑦2,𝑡 = −Δ𝐹𝑡
𝑠 the opposite of the monthly change in the aggregate 

index of systemic risk5 obtained via the PCA « sparse » methodology, and 𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) 
the dummy variable defined as: 

                                                 
5. Monthly data for each aggregate index are obtained as averages of daily data of Figure 2. In total, we have 130 
observations for competitor aggregate indices, and 130 monthly observations for industrial production. 
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𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) = {
1   𝑖𝑓  𝑦2,𝑡 ≤ 𝑄2,𝑡(𝛼; 𝜃2)

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             
.  

(7)
 

 
         Note that this variable equals 1 when the change in aggregated systemic index is 

extreme and positive indicating a systemic event. The null hypothesis testing in Hong 

et al. (2009) is: 

𝐸[𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1)|Ω𝑡−1] = 𝐸[𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1)|Ω1,𝑡−1], (8)
 

 
wherein the sets of information on the date t-1 are defined respectively by: 
 

{
Ω𝑡−1 = {(𝑦1,𝑠, 𝑦2,𝑠), 𝑠 ≤ 𝑡 − 1 }

Ω1,𝑡−1 = {𝑦1,𝑠, 𝑠 ≤ 𝑡 − 1} .          
 

(9)
 

 
         Under the null hypothesis, the positive extreme movements of the aggregate index 

of systemic risk have no predictive power on the negative extreme movements in 

industrial production. The test statistic proposed by the authors depends on a weighted 

sum of the estimated correlations between 𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) and 𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) where 𝜃1 and 

𝜃2 are consistent estimators of 𝜃1and 𝜃2. This weighted sum is defined by: 

𝑍 = 𝑇∑𝜅2(𝑗/𝑑)�̂�(𝑗)

𝑇−1

𝑗=1

, (10)
 

 

With the function 𝜅(. ) of the type decreasing kernel6, 𝑑 the truncate parameter7 and 

�̂�(𝑗) the cross-correlation of order j between 𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) and 𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) equals to: 

�̂�(𝑗) =
�̂�(𝑗)

�̂�1�̂�2
, (11)

 

 

where �̂�1 and �̂�2 refer to the standard deviation of 𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) and 𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) 

respectively and �̂�(𝑗) cross-covariance of order 𝑗 defined by: 

 

�̂�(𝑗)

{
 
 

 
 
𝑇−1 ∑ {[𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) − �̂�1][𝐻𝑖𝑡2,𝑡−𝑗(𝛼; 𝜃2) − �̂�2]}

𝑇−1

𝑡=𝑙+𝑗

 𝑓𝑜𝑟 0 ≤ 𝑗 ≤ 𝑇 − 1

𝑇−1 ∑ {[𝐻𝑖𝑡1,𝑡+𝑗(𝛼; 𝜃1) − �̂�1][𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) − �̂�2]}

𝑇−1

𝑡=𝑙−𝑗

 𝑓𝑜𝑟 1 − 𝑇 ≤ 𝑗 ≤ 0,

 (12)
 

 

                                                 
6. We use the kernel function from Daniell that induces optimal properties for causality test. Cf. Hong et al. (2009) 
for further details. 
 
7. When this parameter d increases, the value of the function that plays in the formula (10) as weighting is higher 
for low values of j lags. 
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with �̂�1 and �̂�2 the empirical means of 𝐻𝑖𝑡1,𝑡(𝛼; 𝜃1) and 𝐻𝑖𝑡2,𝑡(𝛼; 𝜃2) respectively. We 

therefore denote that the particularity of the 𝑍 statistic is the fact that all possible lags 

are considered, with a discount of the most distant lags. Also, in the current context of 

applying this test, the inclusion of a high number of lags, helps to capture the stronger 

or weaker inertia in the reaction of the economy to a systemic event. Under the null 

hypothesis of no causality in extreme movements, Hong et al. (2009) demonstrate that: 

𝑈 =
𝑍 − 𝐶𝑇(𝑑)

[𝐷𝑇(𝑑)]
1/2
, (13) 

 

follows a standard normal distribution, with: 

𝐶𝑇(𝑑) = ∑(1 − 𝑗/𝑇)𝜅2(𝑗/𝑑)

𝑇−1

𝑗=1

, (14) 

and:
 

𝐷𝑇(𝑑) = 2∑(1 − 𝑗/𝑇)(1 − (𝑗 + 1)/𝑇)

𝑇−1

𝑗=1

𝜅4(𝑗/𝑑). (15) 

 

The statistical 𝑈 is therefore used for inference. The Monte Carlo simulations 

carried out by Hong et al. (2009) show that the test has good properties at a finite 

distance. It is important here to note that the minimum sample size considered by the 

authors in the simulations is  𝑇 =  500, and the minimum quantile is 5% (approximately 

25 observations in the tails of distributions). We have here with our monthly data of the 

changes in industrial production and changes in competitors aggregated indices only 

129 observations. With a 20% quantile, this leaves us also 25 cases. It is close to the test 

application conditions, namely the existence of a relatively not too small number of data 

in the tails of distributions. 

The results of causality tests for the different competing indices (denoted Id1 to 

Id16) are summarized in Table 3, for two values of truncation parameter 𝑑, ranging from 

𝑑 =  15 and   𝑑 =  20. The null hypothesis of no causality from positive and extreme 

monthly variations of each aggregate index of systemic risk to the negative and extreme 

monthly variations in industrial production, is rejected in all configurations at a nominal 

5% threshold. When closely reading this Table, the optimal index derived from the 

SPCA methodology is the aggregate index 14. Indeed, whatever the value of 𝑑, this 

index appears to be the most parsimonious: it is constructed from only 14 systemic risk 

measures, and is relatively stable over time, whist it has the highest predictive power 

(high test statistic) on severe contractions in the economic activity. We note here the 
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analogy between our approach to identify the optimal aggregate index and the 

traditional model selection criteria (AIC, BIC). 

The optimal aggregate index (that we are going to name the ISRM from now 

on) is thus, based on the results of Table 3, entirely determined by: the Default Yield 

Spread, the Term Spread, the Herfindahl-Hirschman Index, the Absorption Ratio by 

Kritzman et al. (2011), the Spillover Index by Diebold and Yilmaz (2009), the SRISK by 

Acharya et al. (2012) and Brownlees and Engle (2017), the Aggregated Vol, the MES of 

Acharya et al. (2010), the Component Expected Shortfall of Banulescu and Dumitrescu 

(2015), the Value-at-Risk and the CoVaR and the CoVaR of Adrian and Brunnermeier 

(2016), the Dynamical Causality Index of Billio et al (2012) and the turbulence index of 

Kritzman and Li (2010). 

 The largest contributor to the aggregate index is the Spillover Index of Diebold 

and Yilmaz (2009) with a weight of .69; conversely, the one with the lowest impact is 

the Turbulence index of by Kritzman and Li (2010) with a weight of .03. Finally, three 

complementary dimensions of systemic risk are taken into account in our aggregate 

index: the liquidity (Amihud Illiquidity Measure), the contagion effect measure (the 

Spillover Index) and the concentration risk component (measured by the Herfindahl-

Hirschman Index), in addition to the size of the institution and leverage effect 

encompassed in the SRISK. 

 

 

Table 3: Causality tests in extreme movements 
 

 
SPCA PCA 

δ 
1,000 1,309 1,402 1,711 1,834 1,933 2,017 2,022 2,050 2,125 2,139 2,199 2,249 2,304 2,327 2,388 

Idk Id1 Id2 Id3 Id4 Id5 Id6 Id7 Id8 Id9 Id10 Id11 Id12 Id13 Id14 Id15 Id16 

k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12 k=13 k=14 k=15 k=16 

U(15) 4,77 1,61 1,61 5,54 4,08 4,08 4,08 4,08 4,08 5,07 5,07 6,90 6,90 10,43 7,60 7,60 

                 

U(20) 5,48 1,48 1,48 5,66 3,91 3,91 3,91 3,91 3,91 5,06 5,06 7,22 7,22 11,04 7,75 7,75 

Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' computation. 

Note: The Table shows the value of the 𝑈(. ) statistic of Hong et al. (2009) in Eq. (13) for inference on causality from 
monthly variations of each aggregate index to the monthly change in industrial production. Id1 to Id16 correspond to 
the various aggregated indices of systemic risk. The threshold for significance at nominal risk level of 5% is 1.96. 
 

 

 In the following, we continue our analysis on the relationship between the GDP 

and the ISRM to see if the ISRM can explain future variations of the GDP. We also 
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conduct the same analysis between the market index and the ISRM using the indexes 

obtained by SPCA and by PCA.  

We start by computing quarterly series of the ISRM, the GDP and the market 

index (the S&P500 here). With Ordinary Least Squares (OLS) and Quantile Regression 

(QR), we estimate the relationship between the GDP/market index and the systemic 

risk index (lagged) from the Q1-06 to the Q4-15 following the equation: 

�̇�𝑡+1 = 𝜇 +  𝜆𝐼𝑆𝑅𝑀̇ 𝑡 + 𝜉𝑡 , (16) 

where �̇�𝑡+1 = (𝑦𝑡+1 − 𝑦𝑡/𝑦𝑡) is either the variation rate of the macroeconomic variable 

or later the variation rate of the market index, 𝐼𝑆𝑅𝑀̇ 𝑡 = (𝐼𝑆𝑅𝑀𝑡 − 𝐼𝑆𝑅𝑀𝑡−1/𝐼𝑆𝑅𝑀𝑡−1)  

is the variation rate of the systemic risk index and 𝜉𝑡 is the residual at time 𝑡. 

 

 

Figure 4: R² dynamic for the GDP-ISRM relationship 

 
Source: Bloomberg, quarterly GDP series from the Q1-06 to the Q4-15; authors' computation. 

Note: The Figure shows the dynamic of the 𝑅² for the relationship between GDP and systemic risk index using 

ordinary least squares (OLS) and Quantile Regression (QR) with a 20th percentile for a given 𝑡+1 horizon (dynamic 
evolution of the link according to t); 

  

 

Figure 4 shows the dynamic of the 𝑅² for the relationship between the one ahead 

period GDP and systemic risk index (lagged) using Ordinary Least Squares (OLS) and 

Quantile Regression (QR) at the present period. The explicative power seems to increase 

during the financial crisis of 2008-2009. We can distinguish three change in regime 

periods along the entire sample. Here are plotted the two 𝑅² dynamics that represents 

in fact the two estimation methods (OLS) and (QR) for the index obtained by Sparse-

Principal Component Analysis (SPCA). 
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We continue our analysis by looking for what is the better forecast horizon of 

the ISRM to predict changes in the GDP growth rate. Figure 5 represents the 𝑅² of the 

relationship between GDP and ISRM at the 𝑡 + ℎ period ahead from 1 to 10 periods. 

Here, the 𝑅² seems to goes down slowly as the forecast horizon increases. 

 

 

Figure 5: R² dynamic for the GDP-ISRM relationship with respect to t+h period ahead 

 
Source: Bloomberg, quarterly GDP series from the Q1-06 to the Q4-15; authors' computation. 

Note: The Figure shows the dynamic of the 𝑅² for the relationship between GDP and systemic risk index using ordinary 

least squares (OLS) and Quantile Regression (QR) with a 20th percentile for a given 𝑡+ℎ horizon (mean general relation 

according to ℎ). 

 

 

Now we do the same analysis for the relationship between the market index 

represented here by the S&P500 and the ISRM.   

As previously viewed with the GDP, Figure 6 shows the dynamic of the 𝑅² for 

the relationship between the one ahead period market index and systemic risk index 

(lagged) using OLS and Quantile Regression at the present period. The explicative 

power seems to increase during the financial crisis of 2008-2009 again and there is also 

at least two change in regime periods along the entire sample. 

Then, we also continue the analysis by looking for again what is the better 

forecast horizon of the ISRM to predict changes in the market index.  Figure 7 

represents the R² of the relationship between the market index and ISRM at the 𝑡 +

ℎ period ahead from 1 to 10 periods. Here, the 𝑅² seems to be very low and stable along 

all the horizons. 
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Figure 6: R² dynamic for the S&P500-ISRM relationship 

 
Source: Bloomberg, quarterly market index series from the Q1-06 to the Q4-15; authors' computation. 

Note: The Figure shows the dynamic of the 𝑅² for the relationship between GDP and systemic risk index using 

ordinary least squares (OLS) and Quantile Regression (QR) with a 20th percentile for a given 𝑡+1 horizon (dynamic 
evolution of the link according to t); 
 

 

Figure 7: R² dynamic for the S&P500-ISRM relationship with respect to t+h period ahead  

 
Source: Bloomberg, quarterly market index series from the Q1-06 to the Q4-15; authors' computation. 

Note: The Figure shows the dynamic of the 𝑅² for the relationship between GDP and systemic risk index using 

ordinary least squares (OLS) and Quantile Regression (QR) with a 20th percentile for a given 𝑡+ℎ horizon (mean 

general relation according to ℎ). 

 

 

Giglio et al. (2016) use two estimators called Principal Component Quantile 

Regression (PCQR) and Partial Quantile Regression (PQR) to estimate the relationship 



21 

 

between future realizations of macroeconomic variables and a latent factor based on 

systemic risk measures.  

 

In the next section, we will use the ISRM as an additional factor in the traditional 

CAPM, but now, with Systemic risk (CAPMS). 

 

 

3. On the CAPM with Systemic risk (CAPMS) 
  
 
 In the following, we briefly come back to the traditional Capital Asset Pricing 

Model (CAPM). Then we pursue with the presentation of its extended version by Fama 

and French (1993), who deal with the existence of some market anomalies. Finally, we 

introduce an extra factor linked to the global systemic risk in the financial system that 

we add into the classical Fama and French (1993) model. This supplementary factor 

comes from the Index of Systemic Risk Measures (ISRM) built in the previous section, 

and is so based on an optimal SPCA of several systemic measures. 

 
 
 

3.1 From the canonical CAPM to the augmented CAPM with Systemic risk 

 

In the equilibrium relationship proposed by Sharpe (1964), asset returns can be 

explained by the returns of the market portfolio such as: 

𝑟𝑖 = 𝑟𝑓 + 𝛽𝑖(𝑟𝑀 − 𝑟𝑓) + 𝜀𝑖 , (17) 

where 𝑟𝑖 and 𝑟𝑀 are respectively the returns of the asset 𝑖 and the returns of the market 

portfolio, 𝑟𝑓 is the risk-free rate supposed to be a constant and 𝜀𝑖 the residual term with 

a zero mean and 𝛽𝑖 the sensitivity to the systematic risk as such: 

𝛽𝑖 =
𝐶𝑜𝑣(𝑟𝑖 , 𝑟𝑀)

𝜎2(𝑟𝑀)
. (18) 

 
This relationship allows us to determine, under certain conditions, the expected return 

of the asset i with respect to the systematic risk premium which reads: 

𝐸(𝑟𝑖) =  𝑟𝑓 + 𝛽𝑖[𝐸(𝑟𝑀 − 𝑟𝑓)], (19) 

where 𝐸(𝑟𝑖) and 𝐸(𝑟𝑀) are respectively the expected return of the asset 𝑖 and the 

expected return of the market. 

 This brings us directly to the version of the CAPM extended to the Fama-

French (1993) three-factor model, which can be written as such: 
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𝐸(𝑟𝑖) =  𝐸(𝑟𝑓) + 𝛽𝑖[𝐸(𝑟𝑀 − 𝑟𝑓)] + 𝛾𝑖[𝐸(𝑟𝑆𝑀𝐵 − 𝑟𝑓)] + 𝜃𝑖[𝐸(𝑟𝐻𝑀𝐿 − 𝑟𝑓)], (20) 

 

where rSMB is the return of the Small Minus Big factor (denoted SMB) - related to the 

profitability gap between a portfolio composed of small cap assets and a portfolio 

composed of big cap assets, and where 𝑟𝐻𝑀𝐿 is the High Minus Low factor (denoted 

HML) - linked to the profitability gap between a (value) portfolio composed of assets 

with a high ratio of Book Equity out of Market Value, and a (growth) portfolio composed 

of assets that have a low ratio. 

Thus, portfolios composed with low long-term returns (corresponding to “losers”), will 

tend to have a high ratio of Book Equity out of Market Value, whilst, conversely, 

portfolios with relatively high long-term returns (corresponding to “winners”), will tend 

to have a low ratio of Book Equity out of Market Value.  

As a supplementary explanatory variable, we add thereafter the optimal systemic 

risk index mentioned in the previous section, as an additional factor in the Fama-French 

(1993) three-factor model. We thus obtain a 4-factor model (20) below, such as (with 

previous notations): 

𝑟𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖𝑟𝑀,𝑡 + 𝜃𝑖𝑟𝑆𝑀𝐵,𝑡 + 𝛾𝑖𝑟𝐻𝑀𝐿,𝑡 + 𝜑𝑖𝑟𝐼𝑆𝑅𝑀,𝑡 + 𝜀𝑖,𝑡 , (21) 

 
where the returns of ISRM at time t denoted 𝑟𝐼𝑆𝑅𝑀,𝑡 is the fourth factor. 

 Once we have written the asset valuation relations in their simplest form, 

insisting on linear relation between return and premiums, we now have to deal with 

other financial market peculiarities.  

 In particular, we first have to take into account in the estimation technique the 

potential inter-relations between asset returns. We use Seemingly Unrelated 

Regressions Estimation (SURE, Zellner, 1962), of the proposed model (see Kraus and 

Litzenberg, 1976; Barone-Adesi et al., 2003; Galagedera and Maharaj, 2008). 

Indeed, let us consider a system of N simultaneous equations, of which the typical i-th 

equation defined in Eq. 20.  In a more compact way, the latter vectors can be stacked 

into an NT-dimensional vector r, with a corresponding arrangement for the error terms, 

coefficient vectors and regressors, as such: 

𝑟 =  [

𝑟1
𝑟2
⋮
𝑟𝑁

], 𝜀 =  [

𝜀1
𝜀2
⋮
𝜀𝑁

],   𝐹 =  [

𝐹1 0
0 𝐹2
⋮
0

⋮
0

     

⋯ 0
⋯ 0
 
…

⋮
𝐹𝐾+1

], 

with r the vector of returns of size (𝑁𝑇 × 1) where 𝑟𝑖 = (𝑟𝑖,𝑡=1, … , 𝑟𝑖,𝑡=𝑇)′ for 

𝑖 =   [1, … , 𝑁], 𝜀 the vector of error terms of size (𝑁𝑇 × 1) where 

𝜀𝑖 =  (𝜀𝑖,𝑡=1, … , 𝜀𝑖,𝑡=𝑇)′   and 𝐹 the [𝑁𝑇 × (𝐾 + 1)𝑇] matrix of factors whose diagonal 

terms are defined as such: 𝐹1 = (1, 1… ,1)
′,  𝐹2 = (𝑟𝑀,𝑡=1, … , 𝑟𝑀,𝑡=𝑇)

′
, 

𝐹3 =  (𝑟𝑆𝑀𝐵,𝑡=1, … , 𝑟𝑆𝑀𝐵,𝑡=𝑇)
′
 and 𝐹4 = (𝑟𝐻𝑀𝐿,𝑡=1, … , 𝑟𝐻𝑀𝐿,𝑡=𝑇)

′
. 
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This leads to the following equation:  

𝑟 =  𝐹Λ +  𝜀, (22) 

  

where Λ = (Λ1, Λ2, … , Λ𝑁) of size [ (𝐾 + 1)𝑇 × 1] with Λ𝑖 = (𝛼𝑖 , 𝛽𝑖 , 𝜃𝑖 , 𝛾𝑖 , 𝜑𝑖)
′

 
is the 

vector of loadings of size [1 × (K+1)], which is a system that is identical to the one 

proposed by Zellner (1962). 

Therefore, given that 
,i t
 is the error for the i-th asset in the t-th time period, the 

assumption of contemporaneous disturbance correlation, but not correlation over time, 

implies that the covariance matrix within this SURE system denoted 𝑉(𝜀) is: 

 

𝑉(𝜀) =  Σ⊗ 𝐼, (23) 

where: 

Σ = [

𝜎11 𝜎12
𝜎21 𝜎22
⋮
𝜎𝑇1

⋮
𝜎𝑇2

     

⋯ 𝜎1𝑇
⋯ 𝜎2𝑇
 
…

⋮
𝜎𝑇𝑇

], (24) 

with I the identity matrix of dimension N, Σ the covariance matrix of size (T × T) where 

𝜎𝑖𝑖 = 𝐸(𝜀𝑖𝜀𝑖)   is the variance of the residual of 𝜀𝑖 and 𝜎𝑖𝑗 = 𝐸(𝜀𝑖𝜀𝑗) for 𝑖 ≠ 𝑗  and   

the Kronecker product notation indicating that each element of Σ is multiplied by an 

identity matrix. With the previous notations, the classical Ordinary Least Squares 

estimator for the vector Λ is: 

Λ̂𝐿𝑆 = (𝐹
′𝐹)−1𝐹′𝑟, (25) 

and the Generalized Least Squares estimator (assuming that Σ is known) reads: 

Λ̂𝐺𝐿𝑆 = [𝐹′(Σ⊗ 𝐼)−1𝐹]−1𝐹′(Σ⊗ 𝐼)−1𝑟. (26) 

This system finally corresponds to the CAPMS when Λ corresponds to the 

sensitivities of the three Fama-French plus the systemic risk factors, whilst the 

following empirical results are based on the system of equations 25 and 26 leading to 

single linear relation in 20. 

Other extensions of the three-factor CAPM of Fama and French (1993) may be 

considered. Thus, Carhart (1997) proposes to add the momentum effect as an additional 

factor. This factor denoted Winners Minus Losers (WML in short) represents the 

Momentum effect, which is related to the profitability gap between yields on individual 

stocks that over-performed (corresponding to winners) and those that underperformed 

(corresponding to losers) in the market. We do not take into account yet this 

development and future research (in progress) will take this factor into account. 

In the following are reported empirical tests of CAPMS in the US market. 
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3.2 Empirical Tests and Robustness Checks of the CAPMS on the Main American 

Financial Institutions  

 

In this section, we conduct empirical tests and robustness checks of the CAPMS 

on the Main American Financial Institutions based on two samples. 

First, we compare in the following the three-factor model of Fama and French 

(1993) (model I) and the very same model but extended to systemic risk (Model II), i.e., 

by adding our systemic risk index as a fourth factor, we evaluate differences in the values 

of the parameters and coefficients of determination adjusted for the CAPM three-factor 

Fama and French (1993) with or without taking into account the systemic risk index as 

an additional factor.  

Secondly, we conduct some robustness checks in order to check the relationship 

supposing that systemic risk may contaminates the other factors. 

Unlike the literature on testing the CAPM, which involves testing the equation 

of the risk premium, we seek to test the CAPMS, and in particular the significance of 

the systemic risk factor. To do this, we refer to the work of Black et al. (1972) and resume 

their method of classification of securities in the portfolios. We first start by creating 10 

portfolios, which are constructed in two stages. Calculating β of each asset by least 

squares regression is performed first. Then assets are grouped into the 10 portfolios 

according to a sorting rule on β. At time t, the performance of each portfolio is the 

average returns of each of the securities that compose it. 

For the empirical analysis in this section, we use the daily database from a panel 

of 95 financial institutions in the US market up to the 26th of February 2016. This 

database contains the market prices of different securities and different ratios of their 

market capitalizations in daily frequency during the period of September 2, 2003 to June 

24, 2014 extracted from Bloomberg. We split our database in two samples8. The first 

sample is the same used by Brownlees and Engle (2017), based on daily data series from 

the 01/03/2005 to the 06/30/2010. The second is based on the sample of Giglio et al. 

(2016), on monthly data series from the 01/1926 to the 12/2011. For the sake of 

simplicity in comparing the results, our sample starts on the 09/03/2003 to the 

12/30/2011 in a daily basis. 

 

 

                                                 
8 The empirical test for the entire sample from the 09/03/2003 to the 02/26/2016 with robustness using 

decontaminated factors, is provided in appendix A.6. 
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3.2.1 Empirical Tests 

 

 In this subsection, we test empirically the CAPMS on the main American 

financial institutions. The following results are based on the equation system of Eq. (26) 

related to the linear relationship in Eq. (21). 

 

 

Table 5: Fama and French (1993) three-factor model with or without a systemic risk 
factor on the main American financial institutions (1st Sample – Brownlees and Engle, 
2017) 
 

We estimate the parameters’ values and their t-statistics for each portfolio according to the two 
models used: the Fama-French (1993) three-factor model (I), and the Fama-French (1993) three-factor 
model with systemic risk as a fourth factor (II) as in Eq. (21). 

{
𝑟𝑖,𝑡 = 𝛼𝑖

(𝐼)
+ 𝛽𝑖

(𝐼)
𝑟𝑀,𝑡 + 𝜃𝑖

(𝐼)
𝑟𝑆𝑀𝐵,𝑡 + 𝛾𝑖

(𝐼)
𝑟𝐻𝑀𝐿,𝑡 + 𝜀𝑖,𝑡

(𝐼)
                                        (𝐼)      

𝑟𝑖,𝑡 = 𝛼𝑖
(𝐼𝐼)

+ 𝛽𝑖
(𝐼𝐼)
𝑟𝑀,𝑡 + 𝜃𝑖

(𝐼𝐼)
𝑟𝑆𝑀𝐵,𝑡 + 𝛾𝑖

(𝐼𝐼)
𝑟𝐻𝑀𝐿,𝑡 + 𝜑𝑖

(𝐼𝐼)
𝑟𝐼𝑆𝑅𝑀,𝑡 + 𝜀𝑖,𝑡

(𝐼𝐼)
      (𝐼𝐼)      

 

 
 Model I (without systemic risk) Model II (with systemic risk) 

 𝛼𝑖
(𝐼)

 𝛽𝑖
(𝐼)

 𝜃𝑖
(𝐼)

 𝛾𝑖
(𝐼)

 𝑅²̅̅ ̅ 𝛼𝑖
(𝐼𝐼)

 𝛽𝑖
(𝐼𝐼)

 𝜃𝑖
(𝐼𝐼)

 𝛾𝑖
(𝐼𝐼)

 𝜑𝑖
(𝐼𝐼)

 𝑅²̅̅ ̅ 

Group 1 7.96 1.23 -.05 -1.14 72.76% 7.84 1.23 -.05 -1.14 -.05 72.76% 

 (2.14) (28.16) (.37) (7.29)  (2.09) (29.80) (.41) (7.44) (.16)  

Group 2 12.00 1.07 -.03 -1.09 70.91% 1.23 1.07 -.03 -1.08 -.20 70.87% 

 (3.02) (17.79) (.26) (13.39)  (2.98) (20.90) (.39) (13.54) (.56)  

Group 3 7.62 1.04 -.07 -1.05 74.73% 7.61 1.05 -.06 -1.05 .08 74.76% 

 (2.39) (20.85) (.90) (13.95)  (2.36) (23.35) (1.01) (14.48) (.24)  

Group 4 5.56 1.01 -.13 -.97 75.23% 5.84 1.00 -.14 -.96 -.24 75.28% 

 (2.66) (29.49) (1.83) (10.48)  (2.79) (27.51) (1.88) (10.68) (1.92)  

Group 5 8.86 .96 .05 -.68 63.11% 8.93 .96 .04 -.68 -.06 63.11% 

 (2.41) (22.55) (.46) (9.21)  (2.40) (22.68) (.45) (9.51) (.26)  

Group 6 3.59 .93 -.13 -.91 70.47% 3.62 .91 -.15 -.90 -.35 70.45% 

 (1.55) (18.14) (1.44) (13.93)  (1.54) (18.42) (1.61) (14.61) (1.82)  

Group 7 4.70 .90 .19 -.34 61.05% 4.78 .89 .17 -.33 -.26 61.11% 

 (2.00) (17.16) (1.50) (3.20)  (1.99) (16.58) (1.44) (3.14) (1.47)  

Group 8 3.66 .84 .01 -.80 59.93% 3.57 .81 -.02 -.78 -.71 60.20% 

 (.97) (19.36) (.10) (7.75)  (.94) (19.22) (.23) (8.10) (3.18)  

Group 9 -2.39 .79 .07 -.26 55.16% -2.69 .77 .04 -.24 -.58 55.90% 

 (1.02) (18.05) (.62) (2.78)  (1.11) (18.78) (.36) (2.64) (4.19)  

Group 10 7.98 .64 .05 -.07 39.71% 1.02 .63 .04 -.06 -.24 39.98% 

  (.41) (12.99) (1.30) (1.14)  (.53) (12.88) (1.07) (1.02) (2.31)  

Source: Bloomberg, daily data from the 01/03/2005 to the 06/30/2010 (1st Sample – Brownlees and Engle, 2017) for 
a set of 95 financial institutions; authors' computation. 
Note: The Table provides the estimated values of the parameters using the Zellner (1962) Seemingly Unrelated 
Regression Estimation (SURE) method via GLS, see Eq. (26) and their t-statistic (values in brackets) corrected by 

Newey-West (1987) for each model. The values of the parameter α are expressed in 10−4. Bold parameters’ values are 
significant at a 5% level. 
 

 

Table 5 provides the estimates, for the first sample, of the three-factor model of 

Fama and French (1993) and the model extended to systemic risk (additional factor) 

while Table 6 does the same but for the second sample. In the two Tables, the two 

competitive models are compared for 10 portfolios (Groups of stocks). 
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Most of the portfolios have a significant systemic risk factor and the effect of this 

factor on the portfolios’ returns is negative. In the next Table, we done the same exercise 

but on the second sample. 

Figure 8 shows the evolution of the empirical relationship between expected 

returns and the level of the risk premium on the market factor, the β parameter in 

various systemic risk environments for the first sample, while Figure 9 does the same 

for the second sample.  

 

 

Figure 8: Evolution of the empirical relationship between expected returns and the 
market risk factor in various systemic risk environments (1st Sample – Brownlees and 
Engle, 2017) 

 

Source: Bloomberg, daily data from the 01/03/2005 to the 06/30/2010 (1st Sample – Brownlees and Engle, 2017) for 
a set of 95 financial institutions; authors' computation. 
Note: We first create 10 portfolios based on rankings on the estimated betas relative to the market. The figure shows 
the relationship between expected returns and the market risk factor when systemic risk factor is low, medium or 

high. The Low period corresponds to a systemic risk factor 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.0227, −0.0012[ , the Medium-low period 

corresponds to 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.0012, −0.00015[, the Medium-high period to 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.00015, 0.00089[ and the 

High period corresponds to 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [0.00089, 0,0413[. The x-axis represents the level of the beta of the portfolios 
and the y-axis, the expected annualized returns. The thin line is the relationship predicted by the CAPM and the bold 
line is calculated by regression of the expected returns on the betas. 

 

 

In Figure 8, the traditional unconditional relationship between risk and return 

is reversed when systemic risk is high, and thus becomes negative gradually negative as 

systemic risk increases. In a low systemic risk environment represented by the upper 

left quadrant, a portfolio with a high β will have higher expected returns in contrast to 

a portfolio with low β. In a high systemic risk environment represented by the lower 
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right quadrant, a portfolio with a high β will have lower expected returns (even 

negative) in contrast to a portfolio with a low β. 

On the first sample, which replicates the one used by Brownlees and Engle 

(2017), based on daily data series from the 01/03/2005 to the 06/30/2010, we find that 

systemic risk is significant for almost all the portfolios, and the relationship between 

expected returns and systematic risk is inverted when systemic risk increases. We now 

turn to do the same exercise on the second sample. 

 

 

Table 6: Fama and French (1993) three-factor model with or without a systemic risk 
factor on the main American financial institutions (2nd Sample – Giglio et al., 2016) 
 

We estimate the parameters’ values and their t-statistics for each portfolio according to the two 
models used: the Fama-French (1993) three-factor model (I), and the Fama-French (1993) three-factor 
model with systemic risk as a fourth factor (II) as in Eq. (21). 

{
𝑟𝑖,𝑡 = 𝛼𝑖

(𝐼)
+ 𝛽𝑖

(𝐼)
𝑟𝑀,𝑡 + 𝜃𝑖

(𝐼)
𝑟𝑆𝑀𝐵,𝑡 + 𝛾𝑖

(𝐼)
𝑟𝐻𝑀𝐿,𝑡 + 𝜀𝑖,𝑡

(𝐼)
                                        (𝐼)      

𝑟𝑖,𝑡 = 𝛼𝑖
(𝐼𝐼)

+ 𝛽𝑖
(𝐼𝐼)
𝑟𝑀,𝑡 + 𝜃𝑖

(𝐼𝐼)
𝑟𝑆𝑀𝐵,𝑡 + 𝛾𝑖

(𝐼𝐼)
𝑟𝐻𝑀𝐿,𝑡 + 𝜑𝑖

(𝐼𝐼)
𝑟𝐼𝑆𝑅𝑀,𝑡 + 𝜀𝑖,𝑡

(𝐼𝐼)
      (𝐼𝐼)      

 

 
 Model I (without systemic risk) Model II (with systemic risk) 

 𝛼𝑖
(𝐼)

 𝛽𝑖
(𝐼)

 𝜃𝑖
(𝐼)

 𝛾𝑖
(𝐼)

 𝑅²̅̅ ̅ 𝛼𝑖
(𝐼𝐼)

 𝛽𝑖
(𝐼𝐼)

 𝜃𝑖
(𝐼𝐼)

 𝛾𝑖
(𝐼𝐼)

 𝜑𝑖
(𝐼𝐼)

 𝑅²̅̅ ̅ 

Group 1 6.64 1.18 -.03 -1.12 71.69% 6.55 1.18 -.04 -1.12 -.01 71.69% 

 (1.90) (19.72) (.24) (7.35)  (1.85) (19.00) (.26) (7.47) (.02)  

Group 2 11.30 1.05 .03 -1.03 69.61% 11.30 1.05 .03 -1.03 .02 69.61% 

 (3.10) (18.63) (.28) (10.23)  (3.00) (20.83) (.31) (10.21) (.05)  

Group 3 5.88 .99 -.10 -1.05 73.49% 6.50 1.00 -.09 -1.06 .31 73.48% 

 (1.93) (17.63) (1.42) (13.40)  (2.11) (17.88) (1.31) (13.61) (1.20)  

Group 4 5.42 .99 -.13 -.98 73.98% 5.79 .97 -.15 -.97 -.34 74.11% 

 (2.70) (21.74) (1.68) (10.39)  (2.94) (19.91) (1.83) (10.62) (2.06)  

Group 5 5.61 .96 .07 -.69 61.93% 5.77 .96 .07 -.69 .07 61.93% 

 (1.71) (17.00) (.62) (8.99)  (1.73) (16.86) (.70) (9.28) (.30)  

Group 6 1.31 .89 -.16 -.88 69.18% 1.34 .88 -.16 -.87 -.01 69.19% 

 (.50) (16.93) (1.75) (10.93)  (.52) (16.82) (1.73) (11.26) (.06)  

Group 7 3.32 .86 .14 -0.36 59.44% 2.93 .85 .13 -.35 -.12 59.49% 

 (1.41) (12.28) (1.07) (3.08)  (1.23) (12.15) (1.03) (3.04) (.92)  

Group 8 7.31 .81 .01 -.80 59.04% 6.70 .79 -.02 -.78 -.59 59.36% 

 (1.93) (17.39) (.09) (7.45)  (1.80) (17.41) (.20) (7.75) (3.10)  

Group 9 1.84 .77 .08 -0.25 54.22% 2.12 .75 .05 -.23 -.56 55.03% 

 (.81) (14.83) (.66) (2.52)  (.90) (15.23) (.42) (2.36) (4.01)  

Group 10 2.95 .63 .02 -.08 42.11% 2.97 .62 .01 -.07 -.20 42.41% 

  (1.29) (12.65) (.32) (1.32)  (1.32) (12.52) (.11) (1.21) (1.97)  

Source: Bloomberg, daily data from the 09/03/2003 to the 12/30/2011 (2nd Sample – Giglio et al., 2016) for a set of 
95 financial institutions; authors' computation. 
Note: The Table provides the estimated values of the parameters using the Zellner (1962) Seemingly Unrelated 
Regression Estimation (SURE) method via GLS, see Eq. (26) and their t-statistic (values in brackets) corrected by 

Newey-West (1987) for each model. The values of the parameter α are expressed in 10−4. Bold parameters’ values are 
significant at a 5% level. 
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As in Table 5, Table 6 provides the estimates of the three-factor model of Fama 

and French (1993) and the model extended to systemic risk (additional factor) for the 

second sample. 

Again, most of the portfolios have a significant systemic risk factor. But there 

exist some portfolios in which systemic risk has no impact. 

Like Figure 8, Figure 9 shows the evolution of the empirical relationship 

between expected returns and the level of the risk premium to the market factor, the β 

parameter in various systemic risk environments but for the second sample. Again, the 

relationship is reversed and becomes gradually negative as systemic risk increases.  

 

 

Figure 9: Evolution of the empirical relationship between expected returns and the 
market risk factor in various systemic risk environments (2nd Sample – Giglio et al., 
2016) 
 

 
 
Source: Bloomberg, daily data from the 09/03/2003 to the 12/30/2011 (2nd Sample – Giglio et al., 2016) for a set of 
95 financial institutions; authors' computation. 
Note: We first create 10 portfolios based on rankings on the estimated betas relative to the market. The figure shows 
the relationship between expected returns and the market risk factor when systemic risk factor is low, medium or 

high. The Low period corresponds to a systemic risk factor 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.0227, −0.0012[ , the Medium-low period 

corresponds to 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.0012, −0.00015[, the Medium-high period to 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.00015, 0.00089[ and the 

High period corresponds to 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [0.00089, 0,0413[. The x-axis represents the level of the beta of the portfolios 
and the y-axis, the expected annualized returns. The thin line is the relationship predicted by the CAPM and the bold 
line is calculated by regression of the expected returns on the betas. 

 

 

By doing the same exercise as on the first sample, we find the same results on 

the second sample based on the one used by Giglio et al. (2016) from the 09/03/2003 to 

the 12/30/2011 in a daily basis. In the following subsection, we propose to 
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decontaminate each factor from the systemic risk factor, to see if systemic risk can be 

more significant. 

 

 

3.2.2 Robustness checks 

 

In this subsection, we wonder if is it possible that a part of the sensitivity to the 

systemic risk is absorbed by the other Fama-French factors. 

To bring an answer to this question, we then regress the Fama-French factors 

on the systemic risk factor to obtain decontaminated or orthogonalized9 Fama-French 

factors and compare the new model specifications with respect to the previous one on 

the two samples of Brownlees and Engle (2017) and Giglio et al. (2016).  

To be more explicit, we compare in the next results, our benchmark: Model II 

(with raw factors) with two new specifications using decontaminated and 

orthogonalized factors which are respectively: Model III (with decontaminated factors) 

and Model IV (with orthogonalized factors). Their own specifications are based on 

factors’ transformations and are defined in each Table with their parameter estimations 

and t-statistics for our 10 groups previously constructed. 

In the following, we do these exercises on the first and second samples for the 

decontaminated factors. For the orthogonalized factors, we just present the results of 

the estimated relationship for each portfolio group with the explicative power and their 

t-statistic on the entire sample, i.e., from the 09/03/2003 to the 02/26/2016. 

Table 7 compares the previous model specification in Model II (raw factors) with 

the new model specification in Model III (decontaminated factors). Decontaminated 

factors are obtained by avoiding the effect of the systemic risk factor on the others. Using 

decontaminated factors from the systemic risk factors, we obtain a better significant 

systemic risk factor (with as expected, an unchanged total explicative power of the 

model). Bold parameters’ values are significant at a 5% level. We note that the φ 

coefficient related to systemic risk is significant for most portfolios. Specifically, the 

systemic risk should be considered in 9 out of 10 portfolios. The addition of systemic 

risk as an additional factor also changes slightly the estimated parameters of the 

canonical relationship CAPM extended to three-factor model of Fama and French 

(1993).  

                                                 
9 For the sake of simplicity, we just present the results based on all the sample for the orthogonalized factors 

since, as expected, they are also the same for each sample, i.e., no parameter changes and the φ coefficient 

related to systemic risk is significant for most portfolios. 
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Table 7: Fama and French (1993) three-factor model with systemic risk factor (raw or 
decontaminated) on the main American financial institutions (1st Sample – Brownlees 
and Engle, 2017) 
 

We estimate the parameters’ values and their t-statistics for each portfolio according to the two 
models used: the Fama-French (1993) three-factor model with systemic risk as a fourth factor (II), and 
the Fama-French (1993) three-factor model with systemic risk as a fourth factor as in Eq. (21) but by 
decontaminating the other factors from the ISRM factor (III) following the equation: 

𝑟𝑖,𝑡 = 𝛼𝑖
(𝐼𝐼𝐼)

+ 𝛽𝑖
(𝐼𝐼𝐼)

𝜀�̂�,𝑡 + 𝜃𝑖
(𝐼𝐼𝐼)

𝜀�̂�𝑀𝐵,𝑡 + 𝛾𝑖
(𝐼𝐼𝐼)

𝜀�̂�𝑀𝐿,𝑡 + 𝜑𝑖
(𝐼𝐼𝐼)

𝑟𝐼𝑆𝑅𝑀,𝑡 + 𝜀𝑖,𝑡
(𝐼𝐼𝐼)

  (𝐼𝐼𝐼)   

with: 

{

𝜀�̂�,𝑡 = 𝑟𝑀,𝑡 − �̂�𝑀𝑟𝐼𝑆𝑅𝑀,𝑡            

𝜀�̂�𝑀𝐵,𝑡 = 𝑟𝑆𝑀𝐵,𝑡 − �̂�𝑆𝑀𝐵𝑟𝐼𝑆𝑅𝑀,𝑡 

𝜀�̂�𝑀𝐿,𝑡 = 𝑟𝐻𝑀𝐿,𝑡 − �̂�𝐻𝑀𝐿𝑟𝐼𝑆𝑅𝑀,𝑡 .

  

 

 Model II (with raw factors) Model III (with decontaminated factors) 

 𝛼𝑖
(𝐼𝐼)

 𝛽𝑖
(𝐼𝐼)

 𝜃𝑖
(𝐼𝐼)

 𝛾𝑖
(𝐼𝐼)

 𝜑𝑖
(𝐼𝐼)

 𝑅²̅̅ ̅ 𝛼𝑖
(𝐼𝐼𝐼)

 𝛽𝑖
(𝐼𝐼𝐼)

 𝜃𝑖
(𝐼𝐼𝐼)

 𝛾𝑖
(𝐼𝐼𝐼)

 𝜑𝑖
(𝐼𝐼𝐼)

 𝑅²̅̅ ̅ 

Group 1 7.84 1.23 -.05 -1.14 -.05 72.76% 7.32 1.23 -.05 -1.14 -2.65 72.76% 

 (2.09) (29.80) (.41) (7.44) (.16)  (1.96) (29.80) (.41) (7.44) (5.57)  

Group 2 1.23 1.07 -.03 -1.08 -.20 70.87% 11.18 1.07 -.03 -1.08 -2.57 70.87% 

 (2.98) (20.90) (.39) (13.54) (.56)  (2.87) (20.90) (.39) (13.54) (5.96)  

Group 3 7.61 1.05 -.06 -1.05 .08 74.76% 7.16 1.05 -.06 -1.05 -2.21 74.76% 

 (2.36) (23.35) (1.01) (14.48) (.24)  (2.21) (23.35) (1.01) (14.48) (5.53)  

Group 4 5.84 1.00 -.14 -.96 -.24 75.28% 5.44 1.00 -.14 -.96 -2.30 75.28% 

 (2.79) (27.51) (1.88) (10.68) (1.92)  (2.60) (27.51) (1.88) (10.68) (12.73)  

Group 5 8.93 .96 .04 -.68 -.06 63.11% 8.56 .96 .04 -.68 -1.94 63.11% 

 (2.40) (22.68) (.45) (9.51) (.26)  (2.31) (22.68) (.45) (9.51) (5.88)  

Group 6 3.62 .91 -.15 -.90 -.35 70.45% 3.25 .91 -.15 -.90 -2.22 70.45% 

 (1.54) (18.42) (1.61) (14.61) (1.82)  (1.37) (18.42) (1.61) (14.61) (7.78)  

Group 7 4.78 .89 .17 -.33 -.26 61.11% 4.48 .89 .17 -.33 -1.80 61.11% 

 (1.99) (16.58) (1.44) (3.14) (1.47)  (1.87) (16.58) (1.44) (3.14) (7.35)  

Group 8 3.57 .81 -.02 -.78 -.71 60.20% 3.23 .81 -.02 -.78 -2.47 60.20% 

 (.94) (19.22) (.23) (8.10) (3.18)  (.85) (19.22) (.23) (8.10) (7.16)  

Group 9 -2.69 .77 .04 -.24 -.58 55.90% -2.92 .77 .04 -.24 -1.74 55.90% 

 (1.11) (18.78) (.36) (2.64) (4.19)  (1.20) (18.78) (.36) (2.64) (11.26)  

Group 10 1.02 .63 .04 -.06 -.24 39.98% .86 .63 .04 -.06 -1.05 39.98% 

  (.53) (12.88) (1.07) (1.02) (2.31)  (.45) (12.88) (1.07) (1.02) (13.08)  
Source: Bloomberg, daily data from the 01/03/2005 to the 06/30/2010 (1st Sample – Brownlees and Engle, 2017) 
for a set of 95 financial institutions; authors' computation. 
Note: The Table provides the estimated values of the parameters using the Zellner (1962) Seemingly Unrelated 
Regression Estimation (SURE) method via GLS, see Eq. (26) and their t-statistic (values in brackets) corrected by 

Newey-West (1987) for each model. The values of the parameter α are expressed in 10−4. Bold parameters’ values 
are significant at a 5% level. 

 

 

Like on the first sample, results on the second sample are better than when 

compared to the raw model. We obtained a better significant systemic risk factor (with, 

once again, an unchanged total explicative power of the model for all portfolios). 
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Table 8: Fama and French (1993) three-factor model with systemic risk factor (raw or 
decontaminated) on the main American financial institutions (2nd Sample – Giglio et 
al., 2016) 

 
We estimate the parameters’ values and their t-statistics for each portfolio according to the two 

models used: the Fama-French (1993) three-factor model with systemic risk as a fourth factor (II), and 
the Fama-French (1993) three-factor model with systemic risk as a fourth factor as in Eq. (21) but by 
decontaminating the other factors from the ISRM factor (III) following the equation: 

𝑟𝑖,𝑡 = 𝛼𝑖
(𝐼𝐼𝐼)

+ 𝛽𝑖
(𝐼𝐼𝐼)

𝜀�̂�,𝑡 + 𝜃𝑖
(𝐼𝐼𝐼)

𝜀�̂�𝑀𝐵,𝑡 + 𝛾𝑖
(𝐼𝐼𝐼)

𝜀�̂�𝑀𝐿,𝑡 + 𝜑𝑖
(𝐼𝐼𝐼)

𝑟𝐼𝑆𝑅𝑀,𝑡 + 𝜀𝑖,𝑡
(𝐼𝐼𝐼)

  (𝐼𝐼𝐼)   

with: 

{

𝜀�̂�,𝑡 = 𝑟𝑀,𝑡 − �̂�𝑀𝑟𝐼𝑆𝑅𝑀,𝑡            

𝜀�̂�𝑀𝐵,𝑡 = 𝑟𝑆𝑀𝐵,𝑡 − �̂�𝑆𝑀𝐵𝑟𝐼𝑆𝑅𝑀,𝑡 

𝜀�̂�𝑀𝐿,𝑡 = 𝑟𝐻𝑀𝐿,𝑡 − �̂�𝐻𝑀𝐿𝑟𝐼𝑆𝑅𝑀,𝑡 .

  

 

 Model II (with raw factors) Model III (with decontaminated factors) 

 𝛼𝑖
(𝐼𝐼)

 𝛽𝑖
(𝐼𝐼)

 𝜃𝑖
(𝐼𝐼)

 𝛾𝑖
(𝐼𝐼)

 𝜑𝑖
(𝐼𝐼)

 𝑅²̅̅ ̅ 𝛼𝑖
(𝐼𝐼𝐼)

 𝛽𝑖
(𝐼𝐼𝐼)

 𝜃𝑖
(𝐼𝐼𝐼)

 𝛾𝑖
(𝐼𝐼𝐼)

 𝜑𝑖
(𝐼𝐼𝐼)

 𝑅²̅̅ ̅ 

Group 1 6.55 1.18 -.04 -1.12 -.01 71.69% 6.08 1.18 -.04 -1.12 -2.38 71.69% 

 (1.85) (19.00) -(.26) -(7.47) -(.02)  (1.73) (19.00) -(.26) -(7.47) -(5.83)  

Group 2 11.3 1.05 .03 -1.03 .02 69.61% 10.91 1.05 .03 -1.03 -2.20 69.61% 

 (3.00) (20.83) (.31) -(10.21) (.05)  (2.89) (20.83) (.31) -(10.21) -(5.84)  

Group 3 6.50 1.00 -.09 -1.06 .31 73.48% 6.09 1.00 -.09 -1.06 -1.77 73.48% 

 (2.11) (17.88) -(1.31) -(13.61) (1.20)  (1.98) (17.88) -(1.31) -(13.61) -(5.73)  

Group 4 5.79 .97 -.15 -.97 -.34 74.11% 5.42 .97 -.15 -.97 -2.24 74.11% 

 (2.94) (19.91) -(1.83) -(10.62) -(2.06)  (2.75) (19.91) -(1.83) -(10.62) -(10.99)  

Group 5 5.77 .96 .07 -.69 .07 61.93% 5.41 .96 .07 -.69 -1.73 61.93% 

 (1.73) (16.86) (.70) -(9.28) (.30)  (1.63) (16.86) (.70) -(9.28) -(5.53)  

Group 6 1.34 .88 -.16 -.87 -.01 69.19% 1.01 .88 -.16 -.87 -1.70 69.19% 

 (.52) (16.82) -(1.73) -(11.26) -(.06)  (.39) (16.82) -(1.73) -(11.26) -(7.59)  

Group 7 2.93 .85 .13 -.35 -.12 59.49% 2.65 .85 .13 -.35 -1.51 59.49% 

 (1.23) (12.15) (1.03) -(3.04) -(.92)  (1.12) (12.15) (1.03) -(3.04) -(7.26)  

Group 8 6.70 .79 -.02 -.78 -.59 59.36% 6.37 .79 -.02 -.78 -2.21 59.36% 

 (1.80) (17.41) -(.20) -(7.75) -(3.10)  (1.71) (17.41) -(.20) -(7.75) -(7.42)  

Group 9 2.12 0.75 .05 -.23 -.56 55.03% 1.91 .75 .05 -.23 -1.63 55.03% 

 (.90) (15.23) (.42) -(2.36) -(4.01)  (.81) (15.23) (.42) -(2.36) -(10.55)  

Group 10 2.97 .62 .01 -.07 -.20 42.41% 2.83 .62 .01 -.07 -0.92 42.41% 

  (1.32) (12.52) (.11) -(1.21) -(1.97)  (1.26) (12.52) (.11) -(1.21) -(10.65)  

Source: Bloomberg, daily data from the 09/03/2003 to the 12/30/2011 (2nd Sample – Giglio et al., 2016) for a set of 95 
financial institutions; authors' computation. 
Note: The Table provides the estimated values of the parameters using the Zellner (1962) Seemingly Unrelated 
Regression Estimation (SURE) method via GLS, see Eq. (26) and their t-statistic (values in brackets) corrected by Newey-

West (1987) for each model. The values of the parameter α are expressed in 10−4. Bold parameters’ values are significant 
at a 5% level. 

 

 

In Table 9, we use orthogonalized factors (rather than decontaminated factors 

from the ISRM factor) on all the sample. Rather than just avoid the effect of the systemic 

risk factor on the other factors, we now turn to avoid the effect of each factor on the 

others.  
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Table 9: Fama and French (1993) three-factor model with systemic risk factor (raw or 
orthogonalized) on the main American financial institutions (All Sample)  

 
We estimate the parameters’ values and their t-statistics for each portfolio according to the two 

models used: the Fama-French (1993) three-factor model with systemic risk as a fourth factor (II), and 
the Fama-French (1993) three-factor model with systemic risk as a fourth factor as in Eq. (21) but with 
orthogonalized factors from the ISRM factor (IV) following the equation: 

𝑟𝑖,𝑡 = 𝛼𝑖
(𝐼𝑉)

+ 𝛽𝑖
(𝐼𝑉)

𝜀�̂�,𝑡
 

 
+ 𝜃𝑖

(𝐼𝑉)
𝜀�̂�𝑀𝐵,𝑡
∗∗

 
+ 𝛾𝑖

(𝐼𝑉)
𝜀�̂�𝑀𝐿,𝑡
∗∗∗

 
+ 𝜑𝑖

(𝐼𝑉)
 𝑟𝐼𝑆𝑅𝑀,𝑡 +  𝜀𝑖,𝑡

(𝐼𝑉)
   (𝐼𝑉)    

with: 

{

 𝜀�̂�,𝑡
 = 𝑟𝑀,𝑡 − �̂�𝑀𝑟𝐼𝑆𝑅𝑀,𝑡                                                                   

𝜀�̂�𝑀𝐵,𝑡
∗∗ = 𝑟𝑆𝑀𝐵,𝑡 − (�̂�𝑆𝑀𝐵

∗ 𝑟𝑀,𝑡 + �̂�𝑆𝑀𝐵
∗∗ 𝑟𝐼𝑆𝑅𝑀,𝑡)                              

𝜀�̂�𝑀𝐿,𝑡
∗∗∗ = 𝑟𝐻𝑀𝐿,𝑡 − (�̂�𝐻𝑀𝐿

∗ 𝑟𝑀,𝑡 + �̂�𝐻𝑀𝐿
∗∗ 𝑟𝑆𝑀𝐵,𝑡 + �̂�𝐻𝑀𝐿

∗∗∗ 𝑟𝐼𝑆𝑅𝑀,𝑡).  

 

 

 Model II (with raw factors) Model IV (with orthogonalized factors) 

 𝛼𝑖
(𝐼𝐼)

 𝛽𝑖
(𝐼𝐼)

 𝜃𝑖
(𝐼𝐼)

 𝛾𝑖
(𝐼𝐼)

 𝜑𝑖
(𝐼𝐼)

 𝑅²̅̅ ̅ 𝛼𝑖
(𝐼𝑉)

 𝛽𝑖
(𝐼𝑉)

 𝜃𝑖
(𝐼𝑉)

 𝛾𝑖
(𝐼𝑉)

 𝜑𝑖
(𝐼𝑉)

 𝑅²̅̅ ̅ 

Group 1 5.83 1.12 -.06 -1.15 -.12 70.12% 5.53 1.49 .28 -1.15 -2.31 70.12% 

 (2.27) (14.02) (.86) (8.02) (.45)  (2.16) (17.23) (2.84) (8.02) (6.88)  

Group 2 5.77 1.01 .00 -1.06 -.18 68.67% 5.49 1.35 .31 -1.06 -2.22 68.67% 

 (1.99) (18.68) (.02) (12.92) (.81)  (1.89) (21.36) (5.15) (12.92) (8.18)  

Group 3 3.93 .95 -.04 -1.05 .12 72.10% 3.67 1.29 .27 -1.05 -1.83 72.10% 

 (1.73) (14.57) (.81) (14.80) (.54)  (1.62) (18.15) (5.10) (14.80) (7.71)  

Group 4 . 82 .94 -.07 -.94 -.30 71.71% .58 1.24 .20 -.94 -2.09 71.71% 

 (.43) (16.55) (1.24) (11.90) (1.92)  (.30) (20.22) (3.11) (11.90) (12.02)  

Group 5 6.42 .88 .03 -.71 -.05 60.41% 3.40 1.14 .15 -.86 -1.81 66.61% 

 (2.95) (14.15) (.54) (11.32) (.26)  (1.63) (23.12) (2.47) (14.52) (9.75)  

Group 6 3.62 .86 -.11 -.86 -.20 66.61% 6.19 1.11 .24 -.71 -1.66 60.41% 

 (1.74) (17.82) (1.57) (14.52) (1.34)  (2.86) (18.54) (3.97) (11.32) (7.40)  

Group 7 3.69 .78 .10 -.41 -.32 57.12% 3.09 1.00 .21 -.73 -1.97 57.07% 

 (2.33) (9.87) (1.21) (4.34) (2.06)  (1.09) (18.86) (3.58) (8.34) (8.09)  

Group 8 3.30 .76 -.01 -.73 -.50 57.07% 3.49 .91 .21 -.41 -1.57 57.12% 

 (1.16) (17.71) (.10) (8.34) (2.90)  (2.20) (12.02) (3.36) (4.34) (8.73)  

Group 9 -1.51 .71 .00 -.29 -.53 52.54% -1.67 .80 .08 -.29 -1.51 52.54% 

 (.87) (14.10) (.05) (3.92) (3.89)  (.96) (15.64) (1.67) (3.92) (10.08)  

Group 10 3.20 .61 .04 -.09 -.26 32.58% 3.06 .64 .06 -.09 -.98 32.58% 

  (.97) (12.99) (1.12) (1.39) (2.91)  (.93) (13.82) (1.66) (1.39) (13.79)  

Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016 (All Sample) for a set of 95 financial 
institutions; authors' computation. 
Note: The Table provides the estimated values of the parameters using the Zellner (1962) Seemingly Unrelated 
Regression Estimation (SURE) method via GLS, see Eq. (26) and their t-statistic (values in brackets) corrected by 

Newey-West (1987) for each model. The values of the parameter α are expressed in 10−4. Bold parameters’ values are 
significant at a 5% level. 

 

 

Table 9 strengthens our previous results, since, as expected, the effect of systemic 

risk, now isolated, is still very significant10. Another interesting result is that the SMB 

factor becomes significant when using orthogonalized factors rather than raw or 

decontaminated factors from the ISRM factor, meaning that the SMB factor has some 

information content as well as the HML factor. 

                                                 
10 Compared to the model (II), expressions of the SMB and HML factors differ in Models (III) and (IV). 
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By testing the CAPMS and doing some robustness checks, we find the same 

results on the two samples and on the all sample. Systemic risk is significant for most 

portfolios. However, the relationship between expected returns and systematic risk 

tends to be inverted when systemic risk is high. In the following section, we propose an 

original application of the CAPMS, that is, designating and ranking SIFI. 

 

 

4. An application of the CAPMS: designating and ranking SIFI 

 

 We hereafter propose an original application of the CAPMS, attempting to 

measure the systemically importance of financial institutions by the sensitivities to the 

global systemic risk factor. 

 

 

4.1. What is a SIFI?  
 

The systemic importance of an institution should be explained by the potential 

threat to the economy that the collapse of this specific identified institution would 

generate. Large banks, insurance companies, clearing houses, finance companies and 

investment funds are natural examples of potential candidates to be considered as 

Systemically Important Financial Institutions (SIFI). However, in order to determine 

which institutions can actually be designated as SIFI, it is necessary to define what are 

the key features of systemic risk and how to quantify it. 

Until recently the principle of the too-big-to-fail was prevalent. A large 

institution was considered systemic by this simple fact. But too-interconnected-to-fail, 

leverage, market exposures, conditional states of the market, size and complexity of the 

institution have to be taken into account to judge if an institution is a SIFI or not. These 

various aspects are crucial and this is the reason why several measures have been 

recently developed in the academic literature. Indeed, Bisias et al. (2012), already report 

31 measures of systemic risk in which their analysis focuses on critical themes in 

systemic risk measurement and management, whilst the literature is still growing with 

the number of systemic risk measures. This growth is extensive because of the different 

sources of public or private data now available. In this perspective, Benoit et al. (2017a) 

review the extensive literature on systemic risk and connect it to the current regulatory 

debate and identify a gap between two main approaches. The first one studies different 
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sources of systemic risk in isolation, uses confidential data, and inspires targeted but 

complex regulatory tools. The second approach uses market data to produce global 

measures which are not directly connected to any particular theory, but could support a 

more efficient regulation. They argue that bridging this gap will require encompassing 

theoretical models and improved data disclosure. Building systemic risk measures that 

can fill this gap must include a comprehensive view of systemic risk in order to be used 

as a baseline for financial and monetary policies to maintain a stable financial system. 

De Bandt et al. (2000), argue that a comprehensive view of systemic risk has to integrate 

bank failure contagion with financial markets spillover effects and payment and 

settlement risks. Until recently, these measures were implemented separately, even 

though systemic risk is a clearly multidimensional phenomenon. In Giglio et al. (2016), 

several measures are used together in order to build a set of systemic risk indexes with 

the use of a reduction dimension technique, namely a classical PCA. 

More generally, there are two main traditional approaches for identifying a SIFI: 

indicator methods and modelling methods. The first approach relies on factors related 

to an entity’s contribution to systemic risk, and on an ad hoc score that is used to decide 

whether it is a SIFI. For example, measures of an entity’s size and reliance on short-

term debt may be weighted and combined to produce a systemic risk score. If the entity 

scores above a certain threshold, then it is identified as a SIFI. Important questions 

include how such criteria should be selected, measured and weighted for different types 

of financial institutions. The second approach attempts to mathematically model the 

interconnections among firms. The models are calibrated using available data and 

simulated future crisis scenarios to estimate the size of potential losses and Spillover 

effects between institutions. Those estimates are then used to determine an institution’s 

contribution to systemic losses and its status as a SIFI. 

At present, regulatory bodies typically employ indicator approaches to identify 

SIFI. They are considered to be more straightforward and simple to administer (in the 

sense of operational costs and delivering a flexible and efficient regulation). While a full 

modelling approach is not yet considered practical at this time, combining the 

techniques, or incorporating a model’s output as a factor in an indicator method, may 

help to bridge the gap (see also Benoit et al., 2017b). 

When we compare our actual framework to other current approaches used to 

define SIFI, the first similarity is in the use of indicator and modelling methods to 

establish a score. Secondly, we base our approach in a set of systemic risk measures and 

use a reduction dimension technique in order to obtain a single output. Our approach, 
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however, differs from the current ones since we propose to combine indicator and 

modelling methods and use them altogether. In this methodology, we use the Sparse-

PCA to define a systemic risk factor, then the canonical Fama-French (1993) three-

factor CAPM, extended to the previously defined systemic risk factor, for ultimately 

determine a ranking based on the impact of the different institutions on the global 

systemic risk. Thus, we incorporate a model’s output as a factor in an indicator method. 

 

 

4.2. Methodology for Designating SIFI according to the CAPMS 
 

Our proposed methodology ultimately contains 5 steps. First, a panel of systemic 

risk measures is computed (Cf. Bisias et al., 2012, for the main ones), all focusing on the 

various aspects of the systemic risk that characterize financial institutions. Since this 

phenomenon is multidimensional per nature, we also use other measures such as credit 

spreads, VaR, book and market leverage, in order to take into account market conditions, 

size, leverage, interconnections, instability and credit conditions in the system. All 

measures use publicly available data. Of course, several adaptations will reside on the 

definition of appropriate systemic risk measures for specific types of financial 

institutions. 

Secondly, we aggregate the information extracted from the panel of systemic 

risk measures defined at the first step, by using reduction dimension technique, namely 

a Sparse-PCA, where sparseness implies a smaller number of the signal samples that are 

significantly different from zero. This approach identifies the aspects of the systemic risk 

that represent the components leading to a potential market collapse over a given period. 

Moreover, this approach gives us the visibility on which of the relevant variables may 

cause a systemic event, and provide an assessment on these variables. Once we have 

identified the principal components from the model, we proceed to the construction of 

an aggregated Index of Systemic Risk Measures (ISRM) using the specific weighted 

sum of these components, connecting the final choice of the Sparse-PCA nuisance 

parameter (the smoothness parameter) and the variations of the future GDP (Cf. step 2 

in appendix A.3). More precisely, we evaluate which of the potential indexes (amongst 

the various potential Sparse-PCA candidates) can be considered as an advanced indicator 

of economic activity. We use for this purpose the truncation parameter - which governs 

the smoothness and the sparseness of the components, that leads to the most 

parsimonious ISRM (via the statistical test of Hong et al., 2009, that introduces a 
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Granger causality-in-risk test - choosing what are the variations that best explain the 

extreme variations of the GDP in various horizons). 

Thirdly, we add the parsimonious ISRM in the Fama-French (1993) three-factor 

model and we obtain a new risk premium level: the systemic risk premium level. That is 

its level and also its relevance through the corrected t-statistic that gives us an objective 

ranking criterion. The higher the systemic risk sensitivity, the more Systemically 

Important the Financial Institution.  

Of course, distinctions between firms of national versus global systemic 

importance should be expected and can be obtained both 1) by selecting institutions (and 

market index) from a national, a global market or a specific economic sector, and 2) by 

building an index of systemic risk measures that are relevant for the related market. 

Note also here that reverse SIFI designation based on our approach is always feasible, 

since the methodology is dynamic, flexible and easy to understand. Moreover, all the 

data is publicly available and the methodology is easy to compute, just by updating the 

ISRM index, the return series and the GDP growth rate. The model and the 

methodology could thus be run on every quarter, year…, and rankings adapted to new 

market and financial institution conditions. 

Ranking potential SIFI by their sensitivities to the systemic risk has, obviously, 

to take into account in some way the significance level of these sensitivities. But, the 

severity of the assessment should be adapted to market conditions and resources of 

regulators. Should be selected in our proposal a certain percentile (60% in our 

illustrative test) of the main SIFI ranked according to the significance of their 

sensitivities to the systemic risk. For example, if the confidence threshold is set to .1%11, 

and the given percentile is 60% of the significant financial institutions, we find 32 SIFI 

in our preliminary studies. In this case, all Office of Financial Research (OFR) detected 

SIFI12 are present in the sample of SIFI signalled by our proposal. 

The main idea behind the methodology is that if regulator bodies can impose a 

decrease on systemic risk measures for the (main) SIFI - ranked according to their 

sensitivities to the systemic risk to which they contribute themselves, then, the Index of 

Systemic Risk Measures will be constrained, and thus the global systemic risk reduced. 

The number of  defined SIFI, in our opinion, should be 1) large enough in order to avoid 

missing an important player; 2) large enough for being able to control the global risk 

                                                 
11 There is no difference for a range of .1% to 1% significance levels while there is a little difference for 

5% to 10% significance levels (see Table 12). 
12 With the important difference for HSBC (see Figure 10). 
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when imposing marginal restrictions on entity systemic risk measures; 3) time-varying 

in some rational ways in order to reduce the moral hazard strategic game of being 

considered as protected, since designated as a stamped-and-protected SIFI, and 4) not 

too large for being able to use efficiently the scarce resources of regulators. 

 

 

4.3. Empirical Results: Designating and Ranking American Financial Institutions 

 

In this part, we conduct our ranking methodology on the 12 selected SIFI 

according to the ranking published by the OFR in 2013. These SIFI are the 12 Bank 

Holding Companies (BHC) listed by the OFR in 2013 that have assets over $250 billion.  

Table 10 presents the estimation results of the three-factor model of Fama-

French (1993) extended to an additional systemic risk factor for the 12 Bank Holding 

Companies (BHCs) on two samples: from 09/03/2003 to 06/24/2014 and from 

09/03/2003 to 02/26/2016. The results are particularly interesting. Indeed, the 

coefficient affected to the systemic risk factor is significant for all the banks on the first 

sample but this coefficient seems to become less significant in the time.  This evolution 

can be related with the regulation settlement and the first publication of the SIFI 

ranking by the OFR. 

Table 11 below provides the ranking of 12 BHCs ordered with respect to their 

systemic risk score of the OFR ranking established in 2013. The eight grey-shaded 

BHCs were Global Systemically Important Banks (-SIBs) as of 2013. We establish the 

ranking obtained from the systemic-risk extended Fama-French (1993) three-factor 

model on four periods: over the year 2013, over the period 2003-2013, over the period 

2003-2014 and over the period 2003-2016. 

 In Table 12 below, the proposed methodology is used on a database of 60 

financial institutions using both the Ordinary Least Squares (OLS) technique and the 

Zellner (1962) Seemingly Unrelated Regression Estimation (SURE) method, to 

estimate the Fama-French (1993) three-factor model extended to the systemic risk 

factor, in order to find whether they are SIFI or not. This Table represents the 60% of 

the most important financial institutions related to systemic risk. For example, in Panel 

A, we find 32 SIFI (if we use OLS) and 46 SIFI (if we use the SURE method) respectively 

at .1% significance level (extremely severe threshold), that correspond in fact to 27 and 

19 SIFI of the percentile (60% here) of significant Financial Institutions. In other words, 
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these percentiles represent 45% and 32% respectively of the total number of Financial 

Institutions. 

 

 

Table 10: Estimates of the Fama-French (1993) three-factor model with an additional 
Systemic Risk Factor on the 12 OFR-selected SIFI 

 
In the Table below are presented the estimation of the Fama-French (1993) three-factor model 

with systemic risk, following the equation: 

𝑟𝑖,𝑡 = 𝛼𝑖
(𝐼𝐼)

+ 𝛽𝑖
(𝐼𝐼)
𝑟𝑀,𝑡 + 𝜃𝑖

(𝐼𝐼)
𝑟𝑆𝑀𝐵,𝑡 + 𝛾𝑖

(𝐼𝐼)
𝑟𝐻𝑀𝐿,𝑡 + 𝜑𝑖

(𝐼𝐼)
𝑟𝐼𝑆𝑅𝑀,𝑡 + 𝜀𝑖,𝑡

(𝐼𝐼)
   (𝐼𝐼).  

where the factors are the market returns denoted 𝑟𝑀,𝑡, the Small Minus Big portfolio returns 

denoted  𝑟𝑆𝑀𝐵,𝑡, and the High Minus Low portfolio returns, denoted  𝑟𝐻𝑀𝐿,𝑡 and where the systemic risk 

factor denoted  𝑟𝐼𝑆𝑅𝑀,𝑡 is the additional fourth factor.  
 

  From 09/03/2003 to 06/24/2014 From 09/03/2003 to 02/26/2016 

 𝛼𝑖
(𝐼𝐼)

 𝛽𝑖
(𝐼𝐼)

 𝜃𝑖
(𝐼𝐼)

 𝛾𝑖
(𝐼𝐼)

 𝜑𝑖
(𝐼𝐼)

 𝑅²̅̅ ̅ 𝛼𝑖
(𝐼𝐼)

 𝛽𝑖
(𝐼𝐼)

 𝜃𝑖
(𝐼𝐼)

 𝛾𝑖
(𝐼𝐼)

 𝜑𝑖
(𝐼𝐼)

 𝑅²̅̅ ̅ 

JPM 1.62 1.30 -.31 -.11 -2.76 59.09% 3.30 .71 -.07 -.84 .07 52.23% 

 (.33) (61.15) (6.68) (2.19) (27.45)   (.84) (32.96) (3.22) (3.66) (.76)  

C 1.56 1.64 -.37 .06 -2.48 45.36% 3.71 .71 -.07 -.28 -.23 44.02% 

 (3.13) (76.35) (8.06) (1.31) (25.19)   (.83) (21.55) (2.23) (7.27) (1.83)  

BAC -2.16 1.64 -.11 -.05 -3.17 47.79% 7.40 .90 -.23 -1.27 .44 58.66% 

 (.44) (79.06) (2.38) (1.05) (32.68)   (1.88) (41.44) (1.19) (46.14) (4.92)  

WFC 1.34 1.28 -.25 -.34 -2.98 48.34% 4.30 .57 -.08 -.11 -.25 26.72% 

 (.27) (61.44) (5.52) (6.91) (29.63)   (1.34) (26.12) (3.43) (4.08) (2.79)  

GS 3.62 1.21 -.14 .03 -1.34 54.87% 1.50 .81 -.09 -.57 -.58 47.01% 

 (.73) (55.31) (3.06) (.66) (13.79)   (.38) (37.89) (4.22) (2.95) (6.40)  

MS -.56 1.88 .08 .18 -1.70 52.54% 1.20 .83 -.12 -1.76 -.11 58.53% 

 (1.13) (88.34) (1.76) (3.70) (17.30)   (2.58) (39.34) (5.13) (64.45) (1.21)  

USB -.22 1.09 -.23 -.31 -2.26 51.42% 5.76 .97 .04 -.93 -.09 33.75% 

 (.04) (50.42) (5.01) (6.54) (22.43)   (1.28) (29.42) (1.22) (22.76) (.71)  

PNC -9.10 1.14 -.29 -.16 -2.18 45.40% 2.70 .49 2.23 -1.30 -2.28 17.47% 

 (1.83) (53.77) (6.37) (3.37) (21.92)   (4.60) (15.99) (71.58) (32.59) (16.23)  

BK .64 1.35 -.05 -.35 -1.69 58.45% 6.96 .55 -.15 -2.19 -3.13 34.60% 

 (.13) (61.94) (1.14) (7.31) (16.95)   (1.55) (17.31) (4.27) (56.16) (22.76)  

HSBC 7.21 1.00 -.12 .01 -.46 59.33% 9.78 1.13 .08 -.48 -.43 55.71% 

 (1.45) (48.04) (2.57) (.23) (4.52)   (2.18) (33.83) (2.19) (11.46) (3.51)  

STT -3.58 1.47 -.09 -.26 -.85 47.74% 5.70 .77 -.12 -1.68 -.05 57.36% 

 (.87) (67.66) (2.04) (5.45) (8.58)   (1.45) (36.39) (5.36) (6.76) (.56)  

COF -2.73 1.50 -.23 .02 -2.18 49.16% 2.52 1.17 .21 -.98 -.72 33.50% 

 (.67) (67.59) (5.08) (.43) (21.77)   (.56) (38.65) (6.73) (24.32) (5.43)  
 Source: Bloomberg. Net Asset Values in USD; cylindrical sample of American financial institutions (Cf. Brownlees 
and Engle, 2017); authors’ computations. 
Note: This Table reports the estimates of the Fama-French (1993) three-factor model in which we add a fourth factor 
of systemic risk for the 12 BHCs listed by the OFR in 2013. We estimate the relation for each SIFI by using the 
Zellner (1962) SURE method via GLS, see Eq. (26) and their t-statistic (values in brackets) corrected by Newey-
West (1987). There are two estimation periods. In the left part of the Table, the estimation period starts from the 

09/032003 to the 06/24/2014. In the right part, it starts form 09/03/2003 to 23/02/2016. The α are expressed in 
10-4 terms.  

 

 

Figure 10 below provides the comparison between SIFI designated by the OFR 

ranking in 2013, and the choice of a percentile (60% here) of the SIFI ranked by their 
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sensitivities to systemic risk given a significance level fixed here to .1%. In dark-grey 

are the percentile (60% here corresponds to 32 financial institutions) of SIFI detected 

by the three-factor model extended to systemic risk, and in white are the Financial 

Institutions (FI) not belonging to this percentile (i.e. not significant). The dark-grey-

bars are the SIFI detected following our proposal, the light-grey-bars are the SIFI 

detected by the OFR and the solid-mid-grey-bars are the SIFI detected both by the 

three-factor model extended to systemic risk and the OFR. Panel A is based on the 

estimation period started from the 09/03/2003 to the 06/24/2014 and Panel B is based 

on the same starting date until 02/26/2016.  

 

 

Table 11: Comparative rankings of SIFI 
 

Panel A: Comparative rankings over three periods 

BHCs 
OFR ranking Fama-French (1993) three-factor with ISRM (ranking) 

2013 2013 2003-2013 2003-2014 2003-2016 

JPM 1 4 4 3 3 

C 2 1 3 4 7 

BAC 3 7 1 1 11 

MS 4 3 10 8 12 

GS 5 2 8 10 5 

WFC 6 8 2 2 1 

BK 7 9 9 9 10 

STT 8 11 11 11 6 

HSBC 9 12 12 12 2 

USB 10 10 6 5 8 
PNC 11 6 7 6 4 
COF 12 5 5 7 9 

 
Panel B: Correlations with the 2013 OFR ranking 

 

 
Source: OFR. This Table shows BHCs with assets over $250 billion. The eight grey-shaded BHCs were G-SIBs as of 
2013; authors’ computations. 
Note: In Panel A, the column named “OFR 2013 ranking” represents the ranking of the OFR. The last column named 
“Fama-French (1993) three-factor with ISRM ranking” provides the ranking for 4 periods 2013 (01/2013-12/2013), 
then 2003-2013 and 2003-2014 and 2003-2016. In Panel B, the correlations for each ranking period based on the 
Fama-French (1993) three-factor with ISRM are presented. Panel B shows the corresponding correlation coefficients 

(*ρ: Spearman; τ: Kendall; γ: Pearson). Authors computations. 

 01/2013-12/2013  2003-2013  2003-2014  2003-2016 

Correlations* ρ τ γ  ρ τ γ  Ρ τ γ  ρ τ γ 
The Sample .52 .36 .52  .38 .21 .38  .42 .33 .42  -.07 -.03 -.07 



Table 12: Number of detected SIFI for a given significance level 
 

Panel A: For the estimation period starts from the 09/03/2003 to the 06/24/2014 
 

 SIFI at .1%  
significance level 

SIFI at .5%  
significance level 

SIFI at 1%  
significance level 

SIFI at 5%  
significance level 

SIFI at 10%  
significance level 

Estimation Method OLS SURE OLS SURE OLS SURE OLS SURE OLS SURE 

Significant Financial 
Institutions  

46 32 49 32 51 32 53 34 54 34 

Percentile (60%) of significant 
Financial Institutions 

27 19 29 19 30 19 31 20 32 20 

In percent of the total number 
of Financial Institutions 

45% 32% 48% 32% 50% 32% 52% 33% 53% 33% 

 

 

 
Panel B: For the estimation period starts from the 09/03/2003 to the 02/26/2016 

 
 SIFI at .1%  

significance level 
SIFI at .5%  

significance level 
SIFI at 1%  

significance level 
SIFI at 5%  

significance level 
SIFI at 10%  

significance level 
Estimation Method OLS SURE OLS SURE OLS SURE OLS SURE OLS SURE 

Significant Financial 
Institutions  

23 36 26 38 29 38 37 45 40 49 

Percentile (60%) of significant 
Financial Institutions 

13 21 15 22 17 22 22 27 24 29 

In percent of the total number 
of Financial Institutions 

22% 35% 25% 37% 28% 37% 37% 45% 40% 48% 

Source: Bloomberg. Net Asset Values in USD; cylindrical sample of American Financial Institutions (Cf. Brownlees and Engle, 2017).  

Note: This Table reports the number and the percentage of SIFI over a sample of 60 potential SIFI using the OLS and SURE methods. Each row is decomposed into five columns 

according to the significance level also decomposed into two main columns according to the method used. The first row gives the estimation method, the second gives the number of 

significant financial institutions, the third provides the retained number of these institutions according to a selected percentile (60% here) and the last row gives the percentage of 

retained financial institutions on the total number of financial institutions. Each Panel provides the detections respectively for a threshold of .5%, 1%, 5% and 10%. For Panel A, the 

estimation period starts from the 09/03/2003 to the 06/24/2014. For Panel B, the estimation period starts from the 09/03/2003 to the 02/26/2016. Authors’ computations. 
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Figure 10: Comparison of SIFI detection 

 

Panel A: Comparison on the period from the 09/03/2003 to the 06/24/2014 

Source: Bloomberg. Net Asset Values in USD; cylindrical sample of American financial institutions (Cf. Brownlees and Engle, 2017).  

Note: This Figure reports the ranked SIFI according to their sensitivities to systemic risk given a significance level of .1%. In dark-grey are the percentile (60% here) of SIFI detected 

by the three-factor model extended to systemic risk and in dashed white-bar are the other FI not belonging to the percentile. The grey-bars are the SIFI detected by a methodology. 

The estimation period starts from the 09/03/2003 to the 06/24/2014. The sensitivities are expressed in absolute values. Authors’ computations. 
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Panel B: Comparison on the period from the 09/03/2003 to the 02/26/2016 

 
Source: Bloomberg. Net Asset Values in USD; cylindrical sample of American financial institutions (Cf. Brownlees and Engle, 2017).  

Note: This Figure reports the ranked SIFI according to their sensitivities to systemic risk given a significance level of .1%. In dark-grey are the percentile (60% here) of SIFI detected 

by the three-factor model extended to systemic risk and in dashed white-bar are the other FI not belonging to the percentile. The grey-bars are the SIFI detected by a methodology. 

The estimation period starts from the 09/03/2003 to the 02/26/2016. The sensitivities are expressed in absolute values. Authors’ computations. 
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Conclusion 

 

Following Giglio et al. (2016) and from a set of quantitative measures of systemic 

risk, we begin our study with the construction of a systemic risk index on the US equity 

market. The rationality of the exercise lies in the multiplicity of global systemic risk 

metrics introduced in the literature since the last global financial crisis, and existing 

differences between these metrics. These emerge as each metric evaluates a particular 

facet of systemic risk, but with a model risk attached to each measure. Our methodology 

is based on a Sparse Principal Component Analysis (SPCA), which, at the difference of 

a traditional PCA, selects a small number of systemic risk measures for the construction 

of some aggregate indices. Consequently, the resulting indices are more parsimonious 

and have, by construction, a more stable dynamic. We then analyse each of these indices 

and their components, and select the index that best predicts the extreme variations of 

the future GDP in the sense of the Hong et al. (2009) causality test in extreme 

movements. Then we proceed first by assessing the relationship between the optimal 

systemic risk index and the future real activity or the market index. Second, we compare 

our approach with the one used by Giglio et al. (2016). As expected, we also find a 

significant relationship between the optimal systemic risk index and the future real 

activity. 

Then, we test a new model, called Capital Asset Pricing Model with Systemic 

risk (CAPMS), as the three-factor model of Fama and French (1993) to which we add 

our systemic risk index. Using the Black et al. (1972) portfolio sorting methodology, we 

obtain significant coefficients for most portfolios in the US market. This new illustration 

thus helps to better explain variations in asset returns, while essentially finding, 

however, the original relationship generated by the three-factor model of Fama and 

French (1993). Robustness tests using decontaminated factors from the additional 

systemic risk factor and orthogonalized ones strengthen our results. 

Finally, we propose an original application of the CAPMS that could also be used 

for detection of SIFI, with the underlying idea of being able to estimate the sensitivities 

of various financial institutions to systemic risk. Thus, a ranking of these institutions, 

according to the most statistically significant parameters, might be based on the 

CAPMS: the importance of financial institutions would be determined by the level of 

their link to the global systemic risk. Our approach could contribute to the definition 

and detection of SIFI, within an explicit and rational framework based on a traditional 

pricing model. This is, in our opinion, of major interest for macro-prudential regulation 
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and the stability of the financial system as a whole, especially if the developed model 

allows us to develop an Early Warning Signal based on forecasts of the various 

components of the systemic risk. 

Beyond our approach, it could be interesting, first, to try to better complement the 

panel of systemic risk measures used in the construction of our systemic risk index, for 

extracting even more information. Second, to verify further the robustness of CAPMS, 

we should extend this study to other markets. Indeed, such studies would increase the 

number of assets that make up our portfolio, increasing the explanatory power of 

CAPMS through the significance of the estimated parameters. Indeed, the Office of 

Financial Research (OFR) and the regulators like the Financial Stability Board (FSB) 

with the Basel Committee on Banking Supervision (BCBS) update and rank the 

Systemically Important Financial Institutions (SIFI) in order to apply to them higher 

capital requirement. It appears that many SIFI are European financial institutions.  In 

addition, other extensions are also possible such as, for instance, adding additional 

factors (Carhart, 1997). Finally, in the framework of the recent approach by Billio et al. 

(2015), it may be interesting to consider the evolution of connections between 

institutions to better reflect the micro-structural market changes and connections in 

terms of sector, credit and liquidity. One can also imagine a systemic impact coefficient 

that is no longer a scalar but a vector, each element being attached to a stock or portfolio.  

To conclude on the improvements, a novel approach will be to build systemic early 

warning systems on the basis of the recent improvements in early warning signals 

proposed by Candelon et al. (2014) and on a set of systemic risk measures to predict 

potential systemic crisis in the future. 
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Appendices 

 

In these Appendices, we provide the systemic risk measures used in the building 

of the systemic risk index (Section A.1) on a set of American financial institutions 

(Section A.2) and we provide the sketch of the algorithm to finally rank the SIFI (Section 

A.3). We provide also some robustness checks using Independent Component Analysis 

(Section A.4) and complementary theoretical following Giglio et al. (2016) in the next 

appendix (Section A.5). We also provide the results of the estimated CAPMS based on 

the entire sample (Section A.6). 

 

A.1. Systemic risk measures 

 

In the building of the ISRM, we use the following systemic risk measures in 

order to capture the instability, the economic activity, the degree of interconnection and 

concentration and the liquidity conditions in the system (Cf. Giglio et al., 2016). These 

measures can be classified in four categories: 

 Financial macroeconomic variables used as advanced indicators of the economic activity: 

Credit Default Yield Spread, TED Spread and Term Spread. 

 Aggregated systemic risk measures among the financial institutions: the Conditional 

Value-at-Risk (CoVaR) and the Delta Conditional Value-at-Risk (ΔCoVaR) of Adrian 

and Brunnermeir (2016) and the Marginal Expected Shortfall (MES) of Acharya et al. 

(2013) and Brownlees and Engle (2017). 

 Systemic risk measures used to take into account degree of interconnection and the 

concentration in the system: the Spillover Index of Diebold and Yilmaz (2009), the 

Dynamic Causality Index (DCI) of Billio et al. (2012), the Turbulence Measure of 

Kritzman and Li (2010), the Absorption Ratio (AR) of Kritzman et al. (2011) and the 

Herfindahl-Hirschman Index. 

 We also use the Amihud Illiquidity Measure (AIM) of Amihud (2002) to take into account 

the liquidity conditions in the system. 
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A.2. American financial institutions database  
 

From a database that contains NAV and characteristics of 95 (large) financial 

institutions (e.g., Brownlees and Engle, 2017), we build two cylindrical databases of Net 

Asset Values in USD for 60 financial institutions from the 01/03/2005 to the 

06/30/2010 for the first sample (same sample used by Brownlees and Engle, 2017) and 

from the 09/03/2003 to the 12/30/2011 also in a daily basis in order to replicate the 

sample used by Giglio et al. (2016). 

 

Table 13. Tickers of Financial Institutions 
Banques (30) Assurance (32) Courtiers (10) Autres (23) 

BAC Bank of America ABK Ambac Financial Group AGE A.G. Edwards ACAS American Capital 
BBT BB&T AET Aetna BSC Bear Stearns AMP Ameriprise Financial 
BK Bank of New York Mellon AFL Aflac ETFC E-Trade Financial AMTD TD Ameritrade 
C Citigroup AIG American International Group GS Goldman Sachs AXP American Express 
CBH Commerce Bancorp AIZ Assurant LEH Lehman Brothers BEN Franklin Resources 
CMA Comerica inc ALL Allstate Corp MER Merrill Lynch BLK Blackrock 
HBAN Huntington Bancshares AOC Aon Corp MS Morgan Stanley BOT CBOT Holdings 
HCBK Hudson City Bancorp WRB W.R. Berkley Corp NMX Nymex Holdings CBG C.B. Richard Ellis Group 
HSBC Hong Kong & Shanghai Banking 

Corporation 
BRK Berkshire Hathaway SCHW Schwab Charles CBSS Compass Bancshares 

JPM JP Morgan Chase CB Chubb Corp TROW T. Rowe Price CIT CIT Group 
KEY Keycorp CFC Countrywide Financial   CME CME Group 
MI Marshall & Ilsley CI CIGNA Corp   COF Capital One Financial 
MTB M & T Bank Corp CINF Cincinnati Financial Corp   EV Eaton Vance 
NCC National City Corp CNA CNA Financial corp   FITB Fifth Third Bancorp 
NTRS Northern Trust CVH Coventry Health Care   FNM Fannie Mae 
NYB New York Community Bancorp FNF Fidelity National Financial   FRE Freddie Mac 
PBCT Peoples United Financial GNW Genworth Financial   HRB H&R Block 
PNC PNC Financial Services HIG Hartford Financial Group   ICE Intercontinental Exchange 
RF Regions Financial HNT Health Net   JNS Janus Capital 
SNV Synovus Financial HUM Humana   LM Legg Mason 
SOV Sovereign Bancorp LNC Lincoln National   NYX NYSE Euronext 
STI Suntrust Banks MBI MBIA   SEIC SEI Investments Company 
STT State Street MET Metlife   SLM SLM Corp 
UB Unionbancal Corp MMC Marsh & McLennan     

USB US Bancorp PFG Principal Financial Group     

WB Wachovia PGR Progressive     

WFC Wells Fargo & Co PRU Prudential Financial     

WM Washington Mutual SAF Safeco     

WU Western Union TMK Torchmark     

ZION Zion TRV Travelers     

  UNH Unitedhealth Group     

  UNM Unum Group     

 

Source: Bloomberg. Cylindrical sample of 60 American financial institutions (Cf. Brownlees and Engle, 2017).  

Note: This Table reports the tickers of the institutions. 
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A.3.  Methodological Details on SIFI Detection based on the CAPMS 
 

The proposal methodology is defined in five steps. In step one, we build the time 

series of a set of systemic risk measures and use their z-score as the input for the building 

of the Index of Systemic Risk Measures (ISRM). In step two, we use the SPCA method 

to obtain the weights and the components of each measure in order to build the index 

using a specific sum of these components weighted by their weights. In step 3, conduct 

the statistical test of Hong et al. (2009) to obtain the most parsimonious ISRM that 

based on a Granger causality-in-risk, i.e., which parameters leads to changes in the 

components that best explain the extreme drawdowns of the GDP. In step 4, we add the 

ISRM as an additional factor in the Fama-French (1993) three-factor model and estimate 

parameters of the model using the Zellner (1962) Seemingly Unrelated Regression 

Estimation (SURE) that considers the inter-relations between securities. Finally, in step 

5, choose a percentile (60% here) of the most sensitive financial institutions to systemic 

risk given a specific significance level (.1% in our test). 

 

Table 14: Sketch of the algorithm for SIFI detection based on the CAPMS 

Step 1: Systemic Risk Measures 
Select and compute the time-series of the systemic risk measures and gather their 

z-score in a matrix that is the input to build the Index of Systemic Risk Measure (ISRM). 
Step 2: Reduction dimension techniques and ISRM 

Use Sparse-PCA to obtain the components and the weights of each measures and 
compute the specific weighted sum of them to obtain several ISRM. Among them, we 
have to choose the most parsimonious index in the next step. 
Step 3: ISRM and the Macroeconomy 

Choose the optimal Sparse-PCA is guided by the statistical test of Hong et al. 
(2009). Indeed, the truncation parameter which determines the smoothness and the 
sparseness of the components provides the most parsimonious ISRM via the statistical 
test of Hong et al. (2009), that introduces a new concept of Granger causality in risk i.e., 
which changes of the components explain the extreme drawdowns of the GDP. 
Step 4: Fama-French three-factor with ISRM 

Add the most parsimonious ISRM as an additional factor in the Fama-French 
(1993) three-factor model and estimate it using Newey-West corrected t-statistics of the 
Zellner (1962) Seemingly Unrelated Regression Estimation (SURE) method that takes 
into account the inter-relations between equities. 
Step 5: Final ranking of SIFI 

Conclude by choosing a percentile (60% here) of the most sensitive financial 
institutions to systemic risk from a specific significance level (.1% in our example). Then, 
finally, rank the SIFI with respect to their systemic risk sensitivities and name the 
sample of them as SIFI. 
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A.4 Robustness check with Independent Component Analysis 
 

This appendix is devoted to the ISRM computed with the Independent 

Component Analysis and its use in the CAPMS.  

Independent component analysis (ICA) implies equal weights (i.e. same 

importance) among the systemic risk measures in the building of the index. ICA 

methodology implies equal weights since components are independent in the sense of 

their all moments.  

Figure 11 compares the ISRM indexes computed from PCA and the SPCA 

methodologies with the ISRM computed by ICA. ISRM computed by ICA is more stable 

with a low volatility than the two other competitive methodologies since equal weights 

are accorded to each retained systemic risk measure rescaled to have equal variances. 

 
 
 

Figure 11: Three different methodologies to obtain ISRM 

 
Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016; authors' computation. 
Note: Are plotted three indexes following three different methodologies. 

 
 
 
 With this new index in hand, we estimate the Fama-French three-factor model 

where the systemic factor is computed from ICA and serves as an additional fourth 

factor. 

 Table 15 provides the estimation parameters for the CAPMS with systemic risk 

computed from SPCA (Model II) and the same model where systemic risk is computed 

from ICA (Model VIII).  
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Table 15: Estimates of the Fama-French (1993) three-factor model with an additional 
Systemic Risk Factor on the 12 OFR-selected SIFI 
 

In the Table below are presented the estimation of the Fama-French (1993) three-factor model 
with systemic risk, following the equation (21): 

𝑟𝑖,𝑡 = 𝛼𝑖
(𝑉𝐼𝐼𝐼)

+ 𝛽𝑖
(𝑉𝐼𝐼𝐼)

 𝑟𝑀,𝑡 + 𝜃𝑖
(𝑉𝐼𝐼𝐼)

𝑟𝑆𝑀𝐵,𝑡 + 𝛾𝑖
(𝑉𝐼𝐼𝐼)

 𝑟𝐻𝑀𝐿,𝑡 + 𝜑𝑖
(𝑉𝐼𝐼𝐼)

 𝑟𝐼𝑆𝑅𝑀,𝑡  +  𝜀𝑖,𝑡
(𝑉𝐼𝐼𝐼)

       (𝑉𝐼𝐼𝐼) 

where the factors are the market returns denoted 𝑟𝑀,𝑡, the Small Minus Big portfolio returns 

denoted  𝑟𝑆𝑀𝐵,𝑡, and the High Minus Low portfolio returns, denoted  𝑟𝐻𝑀𝐿,𝑡 and where the systemic risk 

factor denoted  𝑟𝐼𝑆𝑅𝑀,𝑡 is the additional fourth factor. The ISRM index is compute following two 
methodologies: SPCA (Model II) and ICA (Model VIII). 
 

 Model II (with systemic risk by SPCA) Model VIII (with systemic risk by ICA) 

 𝛼𝑖
(𝐼𝐼)

 𝛽𝑖
(𝐼𝐼)

 𝜃𝑖
(𝐼𝐼)

 𝛾𝑖
(𝐼𝐼)

 𝜑𝑖
(𝐼𝐼)

 𝑅²̅̅ ̅ 𝛼𝑖
(𝑉𝐼𝐼𝐼)

 𝛽𝑖
(𝑉𝐼𝐼𝐼)

 𝜃𝑖
(𝑉𝐼𝐼𝐼)

 𝛾𝑖
(𝑉𝐼𝐼𝐼)

 𝜑𝑖
(𝑉𝐼𝐼𝐼)

 𝑅²̅̅ ̅ 

Group 1 5.83 1.12 -.06 -1.15 -.12 70.12% 6.18 1.11 -.04 -1.11 .02 70.18% 

 (2.27) (14.02) (.86) (8.02) (.45)  (2.85) (57.53) (1.85) (46.00) (.71)  

Group 2 5.77 1.01 .00 -1.06 -.18 68.67% 5.12 1.01 -.03 -1.07 -.07 68.68% 

 (1.99) (18.68) (.02) (12.92) (.81)  (2.36) (52.37) (1.27) (44.26) (2.52)  

Group 3 3.93 .95 -.04 -1.05 .12 72.10% 5.47 .96 -.07 -1.01 .03 72.19% 

 (1.73) (14.57) (.81) (14.80) (.54)  (2.52) (50.04) (3.51) (41.87) (1.14)  

Group 4 . 82 .94 -.07 -.94 -.30 71.71% 2.45 .95 -.08 -.93 -.02 71.52% 

 (.43) (16.55) (1.24) (11.90) (1.92)  (1.13) (49.34) (4.13) (38.49) (.73)  

Group 5 6.42 .88 .03 -.71 -.05 60.41% 5.18 .88 .04 -.68 .02 60.44% 

 (2.95) (14.15) (.54) (11.32) (.26)  (2.39) (45.90) (1.96) (28.27) (.57)  

Group 6 3.62 .86 -.11 -.86 -.20 66.61% 2.99 .85 -.10 -.84 -.07 66.61% 

 (1.74) (17.82) (1.57) (14.52) (1.34)  (1.38) (44.41) (5.16) (34.94) (2.51)  

Group 7 3.69 .78 .10 -.41 -.32 57.12% 3.93 .80 .09 -.42 -.02 56.90% 

 (2.33) (9.87) (1.21) (4.34) (2.06)  (1.81) (41.71) (4.69) (17.44) (.72)  

Group 8 3.30 .76 -.01 -.73 -.50 57.07% 4.24 .77 -.01 -.74 -.14 56.90% 

 (1.16) (17.71) (.10) (8.34) (2.90)  (1.95) (40.25) (.51) (3.73) (4.98)  

Group 9 -1.51 .71 .00 -.29 -.53 52.54% .13 .72 .02 -.31 -.09 51.65% 

 (.87) (14.10) (.05) (3.92) (3.89)  (.06) (37.55) (1.04) -(12.73) (3.18)  

Group 10 3.20 .61 .04 -.09 -.26 32.58% 4.67 .61 .05 -.14 -.02 32.46% 

  (.97) (12.99) (1.12) (1.39) (2.91)  (2.15) (31.81) (2.72) (5.90) (.78)  
Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016 for a set of 95 financial institutions; authors' 
computation. 
Note: The Table provides the estimated values of the parameters using the Zellner (1962) SURE method via GLS and 

their t-statistic (values in brackets) for each model. The values of the parameter α are expressed in 10−4. Bold 
parameters’ values are significant at a 5% level. 

 
 

Figure 12 shows the evolution of the empirical relationship between expected 

returns and the level of the risk premium to the market factor, the β parameter in various 

systemic risk environments. The relationship becomes positive gradually as systemic 

risk increases. In a low systemic risk environment represented by the upper left 

quadrant, a portfolio with a high β will have less (even negative) expected returns in 

contrast to a portfolio with low β. In a high systemic risk environment represented by 

the lower right quadrant, a portfolio with a high β will have higher expected returns in 

contrast to a portfolio with low β. 
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Figure 12:  Evolution of the empirical relationship between expected returns and 
the market risk factor in various systemic risk environments using a systemic risk 
factor computed by ICA 

 

 
Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016 for a set of 95 financial institutions; authors' 
computation. 
Note: We first create 10 portfolios based on rankings on the estimated betas relative to the market. The figure shows the 
relationship between expected returns and the market risk factor when systemic risk factor is low, medium or high. The 

Low period corresponds to a systemic risk factor 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.662, −0.0303[ , the Medium-low period corresponds to 

𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.3023,−0.0015[, the Medium-high period to 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.0015, 0.027[ and the High period corresponds to 

𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [0.027, 1.804[. The x-axis represents the level of the beta of the portfolios and the y-axis, the expected annualized 
returns. The thin line is the relationship predicted by the CAPM and the bold line is calculated by regression of the expected 
returns on the betas. 
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A.6 CAPMS estimation based on the whole estimation period  

 

The Table 16 provides the estimates of the three-factor model of Fama and 

French (1993) and the model extended to systemic risk (additional factor).  

Table 16 compares the previous model specification in Model II (raw factors) 

with the new model specification in Model III (decontaminated factors). Using 

decontaminated factors, we obtained a better significant systemic risk factor with an 

unchanged total explicative power of the model. 

 

 

Table 16: Fama and French (1993) three-factor model with or without a systemic risk 
factor on the main American financial institutions 
 

We estimate the parameters’ values and their t-statistics for each portfolio according to the two 
models used: the Fama-French (1993) three-factor model (I), and the Fama-French (1993) three-factor 
model with systemic risk as a fourth factor (II) as in Eq. (22). 

{
𝑟𝑖,𝑡 = 𝛼𝑖

(𝐼)
+ 𝛽𝑖

(𝐼)
𝑟𝑀,𝑡 + 𝜃𝑖

(𝐼)
𝑟𝑆𝑀𝐵,𝑡 + 𝛾𝑖

(𝐼)
𝑟𝐻𝑀𝐿,𝑡 + 𝜀𝑖,𝑡

(𝐼)
                                        (𝐼)      

𝑟𝑖,𝑡 = 𝛼𝑖
(𝐼𝐼)

+ 𝛽𝑖
(𝐼𝐼)
𝑟𝑀,𝑡 + 𝜃𝑖

(𝐼𝐼)
𝑟𝑆𝑀𝐵,𝑡 + 𝛾𝑖

(𝐼𝐼)
𝑟𝐻𝑀𝐿,𝑡 + 𝜑𝑖

(𝐼𝐼)
𝑟𝐼𝑆𝑅𝑀,𝑡 + 𝜀𝑖,𝑡

(𝐼𝐼)
      (𝐼𝐼)      

 

 
 Model I (without systemic risk) Model II (with systemic risk) 

 𝛼𝑖
(𝐼)

 𝛽𝑖
(𝐼)

 𝜃𝑖
(𝐼)

 𝛾𝑖
(𝐼)

 𝑅²̅̅ ̅ 𝛼𝑖
(𝐼𝐼)

 𝛽𝑖
(𝐼𝐼)

 𝜃𝑖
(𝐼𝐼)

 𝛾𝑖
(𝐼𝐼)

 𝜑𝑖
(𝐼𝐼)

 𝑅²̅̅ ̅ 

Group 1 6.17 1.11 -.04 -1.11 70.17% 5.83 1.12 -.06 -1.15 -.12 70.12% 

 (2.84) (57.48) (1.91) (45.97)  (2.27) (14.02) (.86) (8.02) (.45)  

Group 2 5.16 1.01 -0.02 -1.07 68.63% 5.77 1.01 .00 -1.06 -.18 68.67% 

 (2.37) (52.36) (1.06) (44.22)  (1.99) (18.68) (.02) (12.92) (.81)  

Group 3 5.45 .96 -.07 -1.01 72.18% 3.93 .95 -.04 -1.05 .12 72.10% 

 (2.51) (49.99) (3.62) (41.84)  (1.73) (14.57) (.81) (14.80) (.54)  

Group 4 2.46 .95 -.08 -.93 71.51% . 82 .94 -.07 -.94 -.30 71.71% 

 (1.13) (49.31) (4.08) (38.46)  (.43) (16.55) (1.24) (11.90) (1.92)  

Group 5 5.18 .88 .04 -.68 60.44% 6.42 .88 .03 -.71 -.05 60.41% 

 (2.38) (45.86) (1.91) (28.24)  (2.95) (14.15) (.54) (11.32) (.26)  

Group 6 3.03 .85 -.10 -.84 66.54% 3.62 .86 -.11 -.86 -.20 66.61% 

 (1.39) (44.41) (4.97) (34.91)  (1.74) (17.82) (1.57) (14.52) (1.34)  

Group 7 3.94 .80 .09 -.42 56.89% 3.69 .78 .10 -.41 -.32 57.12% 

 (1.81) (41.70) (4.76) (17.43)  (2.33) (9.87) (1.21) (4.34) (2.06)  

Group 8 4.31 .78 .00 -.74 56.60% 3.30 .76 -.01 -.73 -.50 57.07% 

 (1.98) (40.29) (.10) (30.70)  (1.16) (17.71) (.10) (8.34) (2.90)  

Group 9 .17 .72 .03 -.31 51.44% -1.51 .71 .00 -.29 -.53 52.54% 

 (.08) (37.57) (1.31) (12.72)  (.87) (14.10) (.05) (3.92) (3.89)  

Group 10 4.68 .61 .06 -.14 32.45% 3.20 .61 .04 -.09 -.26 32.58% 

  (2.15) (31.80) (2.79) (5.89)  (.97) (12.99) (1.12) (1.39) (2.91)  

Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016 for a set of 95 financial institutions; authors' 
computation. 
Note: The Table provides the estimated values of the parameters using the Zellner (1962) SURE method via GLS. and 

their t-statistic (values in brackets) for each model. The values of the parameter α are expressed in 10−4. Bold parameters’ 
values are significant at a 5% level. 

 

 

 Most of the portfolios have a significant systemic risk factor. But is it possible 

that a part of the sensitivity to the systemic risk in absorbed in the other Fama-French 

factors? We then regress the Fama-French factors on the systemic risk factor in order 
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to obtain decontaminated Fama-French factors and compare the new model specification 

with respect to the previous one. 

 

 

Table 17: Fama and French (1993) three-factor model with or without a systemic risk 
factor on the main American financial institutions 
 

We estimate the parameters’ values and their t-statistics for each portfolio according to the two 
models used: the Fama-French (1993) three-factor model with systemic risk as a fourth factor (I), and the 
Fama-French (1993) three-factor model with systemic risk as a fourth factor as in Eq. (21) but by 
decontaminating the other factors from the ISRM factor (II) following the equation: 

𝑟𝑖,𝑡 = 𝛼𝑖
(𝐼𝐼𝐼)

+ 𝛽𝑖
(𝐼𝐼𝐼)

𝜀�̂�,𝑡 + 𝜃𝑖
(𝐼𝐼𝐼)

𝜀�̂�𝑀𝐵,𝑡 + 𝛾𝑖
(𝐼𝐼𝐼)

𝜀�̂�𝑀𝐿,𝑡 + 𝜑𝑖
(𝐼𝐼𝐼)

𝑟𝐼𝑆𝑅𝑀,𝑡 + 𝜀𝑖,𝑡
(𝐼𝐼𝐼)

  (𝐼𝐼𝐼)   

with: 

{

𝜀�̂�,𝑡 = 𝑟𝑀,𝑡 − �̂�𝑀𝑟𝐼𝑆𝑅𝑀,𝑡            

𝜀�̂�𝑀𝐵,𝑡 = 𝑟𝑆𝑀𝐵,𝑡 − �̂�𝑆𝑀𝐵𝑟𝐼𝑆𝑅𝑀,𝑡 

𝜀�̂�𝑀𝐿,𝑡 = 𝑟𝐻𝑀𝐿,𝑡 − �̂�𝐻𝑀𝐿𝑟𝐼𝑆𝑅𝑀,𝑡 .

  

 

 Model II (with raw factors) Model III (with decontaminated factors) 

 𝛼𝑖
(𝐼𝐼)

 𝛽𝑖
(𝐼𝐼)

 𝜃𝑖
(𝐼𝐼)

 𝛾𝑖
(𝐼𝐼)

 𝜑𝑖
(𝐼𝐼)

 𝑅²̅̅ ̅ 𝛼𝑖
(𝐼𝐼𝐼)

 𝛽𝑖
(𝐼𝐼𝐼)

 𝜃𝑖
(𝐼𝐼𝐼)

 𝛾𝑖
(𝐼𝐼𝐼)

 𝜑𝑖
(𝐼𝐼𝐼)

 𝑅²̅̅ ̅ 

Group 1 5.83 1.12 -.06 -1.15 -.12 70.12% 5.39 1.12 -.06 -1.15 -2.31 70.12% 

 (2.27) (14.02) (.86) (8.02) (.45)  (2.11) (14.02) -(.86) -(8.02) -(6.88)  

Group 2 5.77 1.01 .00 -1.06 -.18 68.67% 5.36 1.01 .00 -1.06 -2.22 68.67% 

 (1.99) (18.68) (.02) (12.92) (.81)  (1.85) (18.68) -(.02) -(12.92) -(8.18)  

Group 3 3.93 .95 -.04 -1.05 .12 72.10% 3.55 .95 -.04 -1.05 -1.83 72.10% 

 (1.73) (14.57) (.81) (14.80) (.54)  (1.56) (14.57) -(.81) -(14.80) -(7.71)  

Group 4 . 82 .94 -.07 -.94 -.30 71.71% .47 .94 -.07 -.94 -2.09 71.71% 

 (.43) (16.55) (1.24) (11.90) (1.92)  (.24) (16.55) -(1.24) -(11.90) -(12.02)  

Group 5 6.42 .88 .03 -.71 -.05 60.41% 6.10 .88 .03 -.71 -1.66 60.41% 

 (2.95) (14.15) (.54) (11.32) (.26)  (2.82) (14.15) (.54) -(11.32) -(7.40)  

Group 6 3.62 .86 -.11 -.86 -.20 66.61% 3.30 .86 -.11 -.86 -1.81 66.61% 

 (1.74) (17.82) (1.57) (14.52) (1.34)  (1.58) (17.82) -(1.57) -(14.52) -(9.75)  

Group 7 3.69 .78 .10 -.41 -.32 57.12% 3.44 .78 .10 -.41 -1.57 57.12% 

 (2.33) (9.87) (1.21) (4.34) (2.06)  (2.18) (9.87) (1.21) -(4.34) -(8.73)  

Group 8 3.30 .76 -.01 -.73 -.50 57.07% 3.00 .76 -.01 -.73 -1.97 57.07% 

 (1.16) (17.71) (.10) (8.34) (2.90)  (1.06) (17.71) -(.10) -(8.34) -(8.09)  

Group 9 -1.51 .71 .00 -.29 -.53 52.54% -1.70 .71 .00 -.29 -1.51 52.54% 

 (.87) (14.10) (.05) (3.92) (3.89)  -(.98) (14.10) -(.05) -(3.92) -(10.08)  

Group 10 3.20 .61 .04 -.09 -.26 32.58% 3.05 0.61 .04 -.09 -.98 32.58% 

  (.97) (12.99) (1.12) (1.39) (2.91)  (.93) (12.99) (1.12) -(1.39) -(13.79)  
Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016 for a set of 95 financial institutions; authors' 
computation. 
Note: The Table provides the estimated values of the parameters using the Zellner (1962) SURE method via GLS.  

and their t-statistic (values in brackets) for each model. The values of the parameter α  are expressed in 10−4. Bold 
parameters’ values are significant at a 5% level. 

 

Bold parameters’ values are significant at a 5% level. We note that the φ coefficient 

related to systemic risk is significant for most portfolios. Specifically, the systemic risk 

should be considered in nine out of ten portfolios. The addition of systemic risk as an 

additional factor also changes slightly the estimated parameters of the canonical 

relationship CAPM extended to three-factor model of Fama and French (1993). 

Figure 13 shows the evolution of the empirical relationship between expected 

returns and the level of the risk premium to the market factor, the β parameter in various 
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systemic risk environments. The relationship is reversed and becomes negative 

gradually as systemic risk increases. In a low systemic risk environment represented by 

the upper left quadrant, a portfolio with a high β will have higher expected returns in 

contrast to a portfolio with low β. In a high systemic risk environment represented by 

the lower right quadrant, a portfolio with a high β will have lower expected returns 

(even negative) in contrast to a portfolio with low β. 

 
 
Figure 13: Evolution of the empirical relationship between expected returns and the 
market risk factor in various systemic risk environments 
 

 

Source: Bloomberg, daily data from the 09/03/2003 to the 02/26/2016 for a set of 95 financial institutions; authors' 
computation. 
Note: We first create 10 portfolios based on rankings on the estimated betas relative to the market. The figure shows 
the relationship between expected returns and the market risk factor when systemic risk factor is low, medium or 

high. The Low period corresponds to a systemic risk factor 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.0227, −0.0012[ , the Medium-low period 

corresponds to 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.0012, −0.00015[, the Medium-high period to 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [−0.00015, 0.00089[ and 
the High period corresponds to 𝑟𝐼𝑆𝑅𝑀,𝑡 ∈ [0.00089, 0,0413[. The x-axis represents the level of the beta of the 
portfolios and the y-axis, the expected annualized returns. The thin line is the relationship predicted by the CAPM 
and the bold line is calculated by regression of the expected returns on the betas. 
 


