## Physician labor supply, financial incentives, and access to healthcare

#### Lionel Wilner (CREST) Philippe Choné (CREST)

3rd Health Economics Conference (TSE)

June 2025

## Outline

#### 1 Motivation

2 Institutional background

3 Data

4 Identification strategy

#### 5 Results

## Outline

#### 1 Motivation

Institutional background

3 Data

4 Identification strategy

#### 5 Results

## Why do we (health)care?

#### The access to healthcare

- (OECD) Policy objective: Improving the access to healthcare
- Problems: Medical deserts, primary care provider shortages
- Extensive margin: Entry (numerus clausus), exit (later retirement), migration (foreign doctors)
- Intensive margin: Increasing labor supply with higher financial incentives?

#### Do physicians respond to financial incentives?

- Mixed evidence (to say the least), depending on country and time
- No: Small elasticities (in the U.S.: Rizzo and Blumenthal 1994, Showalter and Thurston 1997)
- Yes... but in which direction? Income vs. substitution effects
  - Positive price elasticity of the provision of care (Substitution effects dominate): Clemens and Gottlieb (2014) in the U.S. (Medicare) find 1.5
  - ► Negative price elasticity of the provision of care (*Income effects dominate*): Early ('70s-'80s) U.S. studies based on time series, Coudin et al. (2015) in France, Fortin et al. (2021) in Canada

## This paper

- Estimates the price elasticity of the provision of healthcare by French general practitioners (GPs) between 2016 and 2018
- Exploits a policy-induced shock on financial incentives
- The regulator, namely the French public health insurance (Cnam), agreed to revalue sector 1 GPs' visits from May 1, 2017 onward
- Reimbursement rate increased from €23 to €25 (+8.7%)
- Claims data: Système National des Données de Santé (SNDS)
  - Comprehensive information on claim files for the universe of French patients and physicians
- Identification strategy: DiD
  - Treatment: Sector 1 GPs
  - Various possible comparison groups: Direct access specialists, Sector 2 GPs, Sector 1 GPs in 2016, etc.

## Preview of results

- Elasticity of GPs' activity wrt price: 1, on average
- Heterogeneity in response to financial incentives: Early-career (30-39) doctors most price-sensitive (price-elasticity of 2) while old-age physicians (60-69) almost inelastic
  - Consistent with stronger income effect at older ages (life-cycle)
- Mechanisms:
  - Essentially **no change in** the number of visits per patient (Intensity of care)
  - Higher number of patients (Access to healthcare)
    - \* Physicians work more days (+4%)
    - \* Physicians see more patients per day (+5%)
  - ▶ The number of patients for whom they are *médecin traitant* increased (about +4%)
    - \* Consistent with doctors admitting **new patients**, and becoming their *médecin traitant*
  - Decrease in drug prescription (per patient), especially antibiotics
  - Little change in travel times from patients to doctors

**Cost for public health insurance: about**  $\in 0.5bn/yr$ , hence a rather cost-effective policy to enhance the access to healthcare, with limited adverse effects on the intensity of care

## Outline

#### **1** Motivation

#### 2 Institutional background

#### 3 Data

4 Identification strategy

#### 5 Results

## French GPs

About 60% of the 100,000 GPs in France are self-employed

They choose either sector 1 or sector 2 upon start of a new practice

- Sector 1: Regulated fees but reduced social contributions
- Sector 2: Unregulated fees (Free-billing within 'ethical' limits, i.e. with *tact et mesure*, e.g. not allowed to charge extra fees to low-income patients)

Tightened access to sector 2 since 1990 (Coudin et al. 2015): Eligibility conditions include

- Qualifying university teaching for at least 2 years
- Some hospital practice

Cannot switch from sector 1 (absorbing state) to sector 2

## Regulated fees

May 1, 2017: Increase in sector 1 GPs' visit fees from  ${\in}23$  to  ${\in}25$ 

- A +8.7% policy-induced shock on financial incentives
- Publicly disclosed at the end of the *Convention médicale* (August 25, 2016), at the end of a bargaining session between Cnam and physicians' unions (MG France, etc.)

Other shocks (coming soon?):

- November 1, 2023: €26.5 (+6%)
- December 22, 2024: €30 (+13.2%)

Comparison with other OECD countries:  $\in$ 46 on average

- UK: €0 (public), €95-€315 (private)
- Spain: €0 (public), €30-€40 (private)
- Germany, Italy, the Netherlands: about  $\in$ 75
- Switzerland: about €100
- Portugal: €40-€70
- Belgium: €25

## Patients

Patients choose their GPs freely based on public information (sector and fees)

Copayment scheme:

- 70% of the service reference price is reimbursed by public health insurance
- 30% of that price may be reimbursed by private health insurance
- Extra fees (sector 2): either (partly) covered by private health insurance or out-of-pocket (OOP)
- In 2017, 4% of population is deprived of private health insurance

## Specialists

Direct access specialists:

- Gynecologists
- Ophthalmologists
- Pediatricians
- Stomatologists

can be consulted without any referral as opposed to other specialists (e.g., dermatologists, endocrinologists, etc.)

The latter experienced a €2 increase in their specific surcharges from July 1, 2017 onward

Reimbursed fees of some specialists also increased from July 1, 2017 onward:

- Cardiologists
- Psychiatrists
- Pediatricians (according to some price scheme that depends on the child's age)

In what follows: Direct access specialists at the exclusion of pediatricians

## Outline

#### **1** Motivation

Institutional background

#### 3 Data

4 Identification strategy

#### 5 Results

## Comprehensive database

Universe of French patients and physicians observed from 2016 to 2018

• Unique wrt to the U.S., for instance (Medicare: 65+ patients only)

Granularity: Claims files at the visit level with information on fees, drug prescription, etc. Sample restrictions:

- Non-missing information on physicians' gender, age, and location
- Non-missing information on population, density, and *Accessibilité Potentielle Localisée* (APL) of municipality of practice
- Mainland France (Metropolitan France at the exclusion of Corsica)
- Healthcare providers: GPs and direct access specialists

Aggregation of the data: Physician-month level (mostly)

## Working sample

- Self-employed physicians
- General practitioners (GPs), either sector 1 or sector 2
- Direct access specialists (gynecologists, ophthalmologists, stomatologists)
- Aged 30 to 79
- Period: January 2016-October 2018
  - ► Excluding November and December 2018 because of right-censoring
  - Processing time for claim files may last up to 40 days

About 55,000 GPs in January 2016

• NB Practices for now, but ultimately doctors

Aggregation at the physician-month(-day) level: about 1.8M (33M) observations Activity Number of active GPs (Share of sector 1 GPs) (Heterogeneity among GPs)

## Evolution of GPs' activity between January 2016 and October 2018



## Outline

#### **1** Motivation

Institutional background

3 Data

#### 4 Identification strategy

#### 5 Results

## DiD

Identification strategy

- Treatment (T): Sector 1 GPs
- Comparison (C): Direct access specialists

#### Alternate identification strategies

- T: Sector 1 GPs, C: Sector 2 GPs
- T: Sector 1 GPs in 2017, C: Sector 1 GPs in 2016

Rely on

- SUTVA (see later)
- CTA

## Summary statistics (Doctors)

Possible to (fully) match sector 1 GPs and direct access specialists in January 2016 on the basis of age, gender, and location (namely, density and classification into categories of medical deserts)

|                                   | Sector 1 GPs | Sector 2 GPs | Direct access specialists (Matched) | Direct access specialists (Unmatched) |
|-----------------------------------|--------------|--------------|-------------------------------------|---------------------------------------|
| Women                             | 0.357        | 0.287        | 0.315                               | 0.471                                 |
| Age                               | 53.2         | 62.2         | 52.8                                | 57.2                                  |
| Paris region                      | 0.133        | 0.406        | 0.149                               | 0.238                                 |
| Dense area                        | 0.367        | 0.658        | 0.369                               | 0.612                                 |
| Intermediate density              | 0.337        | 0.264        | 0.387                               | 0.349                                 |
| Weakly dense                      | 0.290        | 0.075        | 0.242                               | 0.039                                 |
| Not dense                         | 0.006        | 0.003        | 0.002                               | 0.001                                 |
| Medical desert (ZIP)              | 0.173        | 0.191        | 0.165                               | 0.113                                 |
| ZAC                               | 0.528        | 0.561        | 0.543                               | 0.548                                 |
| Not a medical desert              | 0.299        | 0.248        | 0.291                               | 0.339                                 |
| Share of female patients          | 0.580        | 0.647        | 0.600                               | 0.655                                 |
| Share of 65 <sup>+</sup> patients | 0.297        | 0.312        | 0.324                               | 0.295                                 |
| Observations                      | 50630        | 4750         | 6474                                | 6474                                  |

#### Table 1: Summary statistics - Balancing checks

Note. Sample means computed in January 2016.

- Identification strategy

## Evolution of fees (Sector 1 GPs)



Identification strategy

Evolution of doctors' fees - Comparison group: Direct access specialists



### Evolution of doctors' fees - Comparison group: Sector 2 GPs



## The plausibility of the CTA - Activity (C: Direct access specialists)



## Estimating equation

Notations: Doctor j, calendar month t, treatment dummy T, Post a dummy equal to 1 after May 1, 2017

$$Y_{jt} = \beta T_j \times \mathsf{Post}_t + \alpha_j + \gamma_t + \varepsilon_{jt} \tag{1}$$

Heterogeneity of TE: Possible to allow for  $\beta$  to depend on j or/and t:

- Time (to event): Event study
- Observed characteristics of physician

N.B. Same timing of treatment for all units (physicians) here

Clustering of standard errors: Physician level

Identification strategy #3 on the sole sector 1 GPs:

$$Y_{jmy} = \beta T_y \times \text{Post}_m + \alpha_{jy} + \gamma_m + \varepsilon_{jmy}, \qquad (2)$$

where

- $m = 1, \ldots, 12$  indexes months within year y = 2016, 2017
- $T_y = 1$  if y = 2017
- $\mathsf{Post}_m = 1$  if  $m \ge 5$

## Outline

#### **1** Motivation

Institutional background

3 Data

4 Identification strategy

#### 5 Results

## Impact of the reform on activity (GPs)

#### Table 2: Impact of the reform on activity (C: Direct access specialists)

|                                          | (1)       | (2)       | (3)       |
|------------------------------------------|-----------|-----------|-----------|
| $Post \times Treatment$                  | 0.0905*** | 0.0965*** | 0.0879*** |
|                                          | (0.00540) | (0.00572) | (0.00583) |
| Physician FE                             | Yes       | Yes       | Yes       |
| Month-year FE                            | Yes       | Yes       | Yes       |
| Excluding April and May 2017             | No        | Yes       | Yes       |
| Present in January 2016 and October 2018 | No        | No        | Yes       |
| Observations                             | 1920379   | 1806757   | 1539472   |
| R <sup>2</sup>                           | 0.886     | 0.884     | 0.885     |

Note. Dependent variable: Number of medical services per GP and per month (log).

\* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01

## Robustness checks

#### Table 3: Impact of the reform on activity - Robustness checks

| Robustness check             | $Post \times Treatment$ |           | Comparison group     | Unit FE        | Time FE    | Observations | $\mathbb{R}^2$ |
|------------------------------|-------------------------|-----------|----------------------|----------------|------------|--------------|----------------|
| Activity (Sector 1 GPs)      | 0.0879***               | (0.00488) | Sector 2 GPs         | Physician      | Month-year | 1742230      | 0.874          |
| Activity (Sector 1 GPs)      | 0.0686***               | (0.00165) | Sector 1 GPs in 2016 | Physician-year | Month      | 1004277      | 0.877          |
| Activity (Sector 2 GPs)      | 0.00803                 | (0.00736) | DA specialists       | Physician      | Month-year | 336834       | 0.873          |
| Pre-matching                 | 0.120***                | (0.0257)  | DA specialists       | Physician      | Month-year | 1673711      | 0.876          |
| Placebo reform (May 1, 2016) | 0.0317                  | (0.0196)  | DA specialists       | Physician      | Month-year | 823477       | 0.906          |
| Placebo reform (May 1, 2016) | 0.0199                  | (0.0138)  | Sector 2 GPs         | Physician      | Month-year | 798915       | 0.902          |
| Balanced panel               | 0.0804***               | (0.00523) | DA specialists       | Physician      | Month-year | 1428580      | 0.871          |
| Trimming                     | 0.0961***               | (0.00602) | DA specialists       | Physician      | Month-year | 1779080      | 0.882          |
| Paris seasonality            | 0.0941***               | (0.00872) | DA specialists       | Physician      | Month-year | 1806757      | 0.886          |

\* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01

## Impact of the reform on various outcomes

| Dependent variable                                        | $Post \times Treatment$ |            | Comparison group     | Unit FE        | Time FE    | Observations | R <sup>2</sup> |
|-----------------------------------------------------------|-------------------------|------------|----------------------|----------------|------------|--------------|----------------|
| Activity (per month, log)                                 | 0.0965***               | (0.00572)  | DA specialists       | Physician      | Month-year | 1806757      | 0.884          |
| Health insurance spending (per month, log)                | 0.172***                | (0.00584)  | DA specialists       | Physician      | Month-year | 1806529      | 0.885          |
| # of patients (per month, log)                            | 0.105***                | (0.00573)  | DA specialists       | Physician      | Month-year | 1806757      | 0.885          |
| # of services (per patient, log)                          | 0.00239***              | (0.000677) | Sector 2 GPs         | Physician      | Month-year | 1742230      | 0.806          |
| # of patients (per day, log)                              | 0.0506***               | (0.00364)  | DA specialists       | Physician      | Day-year   | 33826817     | 0.507          |
| # of workdays (per month, log)                            | 0.0418***               | (0.00278)  | DA specialists       | Physician      | Month-year | 1806757      | 0.723          |
| Probability of retirement                                 | -0.00593***             | (0.00204)  | Sector 1 GPs in 2016 | Physician-year | Month      | 344600       | 0.812          |
| # of patients as <i>médecin traitant</i> (per month, log) | 0.0398***               | (0.00154)  | Sector 1 GPs in 2016 | Physician-year | Month      | 922795       | 0.932          |
| Share of home visits                                      | -0.00443***             | (0.000214) | Sector 1 GPs in 2016 | Physician-year | Month      | 1004277      | 0.943          |
| Share of women among patients                             | -0.00190***             | (0.000244) | Sector 1 GPs in 2016 | Physician-year | Month      | 1004277      | 0.714          |
| Share of 65+ among patients                               | -0.0138***              | (0.000262) | Sector 1 GPs in 2016 | Physician-year | Month      | 1004277      | 0.892          |
| Share of patients living in same city                     | -0.00174***             | (0.000282) | Sector 1 GPs in 2016 | Physician-year | Month      | 1004277      | 0.951          |
| All drugs (per patient, log €)                            | -0.0442***              | (0.00554)  | Sector 2 GPs         | Physician      | Month-year | 1742208      | 0.856          |
| Antibiotics (per patient, log €)                          | -0.0925***              | (0.00611)  | Sector 2 GPs         | Physician      | Month-year | 1685289      | 0.735          |
| Antidepressants (per patient, log €)                      | -0.0318***              | (0.00664)  | Sector 2 GPs         | Physician      | Month-year | 1623056      | 0.818          |
| Opioids (per patient, log €)                              | -0.0367***              | (0.00910)  | Sector 2 GPs         | Physician      | Month-year | 1640372      | 0.771          |
| All drugs + reimbursed fees (per patient, log $\in$ )     | -0.0154***              | (0.00308)  | Sector 2 GPs         | Physician      | Month-year | 1742230      | 0.792          |
| All drugs + reimbursed fees (log €)                       | 0.0701***               | (0.00381)  | Sector 2 GPs         | Physician      | Month-year | 1742230      | 0.939          |

#### Table 4: Impact of the reform on various outcomes

Note. DA: Direct access. April and May 2017 are excluded from estimation samples.

\* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01

### Impact on travel times

| Dependent variable          | mean     | sd       | p10       | p25      | p50      | p75      | p90     |
|-----------------------------|----------|----------|-----------|----------|----------|----------|---------|
| $Post \times Treatment$     | -0.0652  | -0.174** | -0.0599** | -0.0342  | -0.00367 | -0.0283  | -0.106  |
|                             | (0.0399) | (0.0802) | (0.0298)  | (0.0302) | (0.0360) | (0.0551) | (0.105) |
| Physician FE                | Yes      | Yes      | Yes       | Yes      | Yes      | Yes      | Yes     |
| Month-year FE               | Yes      | Yes      | Yes       | Yes      | Yes      | Yes      | Yes     |
| Observations $\mathbb{R}^2$ | 1101847  | 1095290  | 1101847   | 1101847  | 1101847  | 1101847  | 1101847 |
|                             | 0.726    | 0.685    | 0.527     | 0.644    | 0.719    | 0.616    | 0.575   |

#### Table 5: Impact of the reform on travel times between patients and GPs (in minutes)

\* p < 0.1, \*\* p < 0.05, \*\*\* p < 0.01

## Heterogeneity of TE - 1



(a) Gender



(c) Age  $\times$  gender



(b) Age



(d) Income (in 2016)

## Heterogeneity of TE - 2







(b) Medical deserts





Physician labor supply and access to healthcare

## Impact of the July 1, 2017 reform on activity (Specialists)

Table 6: Impact of the reform on activity for psychiatrists and cardiologists (T: Sector 1, C: Sector 2)

|                         | Cardiologists      | Psychiatrists          |
|-------------------------|--------------------|------------------------|
| $Post \times Treatment$ | 0.0118<br>(0.0132) | -0.0199**<br>(0.00863) |
| Physician FE            | Yes                | Yes                    |
| Month-year FE           | Yes                | Yes                    |
| Observations $R^2$      | 125740<br>0.863    | 183473<br>0.817        |

Note. Dependent variable: Number of medical services per physician and per month (log).

April and May 2017 are excluded from estimation samples.

 $^{\ast}$  p < 0.1,  $^{\ast\ast}$  p < 0.05,  $^{\ast\ast\ast}$  p < 0.01

## Who are the 'new patients'? (Preliminary)

Patient-level analysis:

$$\mathsf{Visit}_{it} = \beta_i \mathsf{Post}_t \times T_{c(i)} + \alpha_i + \gamma_t + \varepsilon_{it} \tag{3}$$

Treatment dummy  $T_{c(i)}$  equal to 1 when patient i resides in a city c with at least one sector 1 GP

(Preliminary) Results (based on a random 1/100 subsample of French patients):

- Zero impact on monthly probability of visiting sector 1 GPs after May 1, 2016 (Placebo)
- Positive impact on monthly probability of visiting sector 1 GPs after May 1, 2017
- Decreasing effect with patients' age:
  - Children (0-9) visit more often
  - Seniors (60<sup>+</sup>) visit less often
- No significant difference for patients with chronic disease
- Amplified spatial inequality in access to healthcare ('Mathew effect')?
  - > Patients living in under-served areas (ZIP, i.e. medical deserts) visit less
  - To a smaller extent, also true for less deprived areas (ZAC)
  - Patients living in non under-served areas visit more

Other outcome: Emergency<sub>it</sub> (annual probability of visiting emergency department after May 1, 2017)

Zero effect

## Conclusion

Summary

- Exogenous variation in sector 1 GPs' fees on May 1, 2017
  - Quasi-experimental research design
  - Comprehensive, granular data at the physician-month(-day) level
  - High external validity
- Physicians respond to financial incentives with a unitary price elasticity of care provision, on average
- Heterogeneity of response: Early-career doctors, mostly

Policy implications

- Cost-effective policy to enhance the access to healthcare
- Limited adverse effects on the intensity of care
- Targeting: Newly graduates at the exit of medical schools

Extensions

- Other outcomes: Quality of care? Referrals to other healthcare providers?
- Future increases in doctors' fees (2023: €26.5 per visit, 2024: €30)

## Appendix

## Activity (Number of medical services per month) in January 2016



### Number of active GPs in sample



## Share of sector 1 GPs in sample



## Heterogeneity among GPs





(c) Density of area

Figure 3: GPs' activity, depending on various dimensions







The plausibility of the CTA - Activity (C: Matched direct access specialists)



## The plausibility of the CTA - Activity (C: Sector 2 GPs)



## The plausibility of the CTA - Activity (C: Sector 1 GPs in 2016)



The plausibility of the CTA - Health insurance spending (C: Direct access specialists)



## The plausibility of the CTA - Number of patients per month (C: Direct access specialists)



## The plausibility of the CTA - Intensity of care (C: Sector 2 GPs)



The plausibility of the CTA - Workload (C: Direct access specialists)



## The plausibility of the CTA - Probability of retirement (C: Sector 1 GPs in 2016)



## The plausibility of the CTA - Number of patients seen as a *médecin traitant* (C: Sector 1 GPs in 2016)



## The plausibility of the CTA - Share of home visits (C: Sector 1 GPs in 2016)



The plausibility of the CTA - Share of women among patients (C: Sector 1 GPs in 2016)



The plausibility of the CTA - Share of 65+ among patients (C: Sector 1 GPs in 2016)



The plausibility of the CTA - Share of patients living in the same city (C: Sector 1 GPs in 2016)



The plausibility of the CTA - Drug prescription (per patient) (C: Sector 2 GPs)



The plausibility of the CTA - Antibiotics prescription (per patient) (C: Sector 2 GPs)



## Physician labor supply and access to healthcare

The plausibility of the CTA - Antidepressants prescription (per patient) (C: Sector 2 GPs)



The plausibility of the CTA - Opioids prescription (per patient) (C: Sector 2 GPs)



The plausibility of the CTA - Mean travel time from patient to physician (C: Sector 1 GPs in 2016)



# The plausibility of the CTA - Variance of travel times from patient to physician (C: Sector 1 GPs in 2016)



## The plausibility of the CTA - P10 of travel time from patient to physician (C: Sector 1 GPs in 2016)



The plausibility of the CTA - P25 of travel time from patient to physician (C: Sector 1 GPs in 2016)



# The plausibility of the CTA - P50 of travel time from patient to physician (C: Sector 1 GPs in 2016)



# The plausibility of the CTA - P75 of travel time from patient to physician (C: Sector 1 GPs in 2016)



# The plausibility of the CTA - P90 of travel time from patient to physician (C: Sector 1 GPs in 2016)



## Heterogeneity of TE - Ceteris paribus

Table 7: Heterogeneity of the response to financial incentives (Activity)

| Paul - Tengiment                                             | 1.277              |
|--------------------------------------------------------------|--------------------|
| Underal shearing = Paul = Tanatement                         | 1.428***           |
|                                                              | (3.078)            |
| ga pen 2029)<br>D.38 × Pent = Tenziment                      | 8.179~~            |
|                                                              | (5 86 764)         |
| 0.09 - Peak - Treatment                                      | (5.00724)          |
| 0.59 = Paul = Tradiment                                      | 0.000              |
| 0.88 - Pest - Trainest                                       | E.0448             |
| (ender (sel man)                                             | [2.000             |
| Saman - Paul - Teudmant                                      | 4-0024             |
| tensity of any (ref. dense)                                  | [1820]             |
| timmediate - Peak - Dealerant                                | 0.00943            |
|                                                              | (2 10 12 4)        |
| and y and it has it interest                                 | (3.8697)           |
| lat dense - Paul - Teudoneti                                 | 0.02011            |
| Indeal deart dassification (wit not a medical deart)         | (mm)               |
| IP = Pasi = Teuteeni                                         | 0.0220             |
| AC - Peak - Dealerant                                        | 6-30/22            |
|                                                              | (3.8279)           |
| wares (n. 2016, nel: Group 2)<br>henne L - Berl - Terrinent  | 1.0007             |
|                                                              | (0.0004)           |
| rasp I - Pasi - Traineni                                     | (0.0273<br>(0.0373 |
| Insup 6 - Paul - Trainant                                    | (5.037)<br>(5.037) |
| Irmp 5 + Peak + Tracinent                                    | 0.000"             |
| inap 6 - Paul - Trainent                                     | 0.087-             |
|                                                              | (3 mer)            |
| Iraup 7 - Paul - Tradmani                                    | (2.014)            |
| Iraup II - Paul - Trainent                                   | 0.060***           |
| Interp 9 - Paul - Traineni                                   | 0.047              |
| inun 12 - Paul - Teutenni                                    | 4961               |
|                                                              | (2.014)            |
| nare at stoppers (etc. screep 2)<br>beau 1 = Paul = Tradment | 4228               |
|                                                              | (2.0.43)           |
| Ironp I - Paul - Trainant                                    | 0.00982*           |
| Iroup 6 - Paul - Trainent                                    | 0.00940***         |
| inun 1 - Peri - Instanti                                     | 0.0062-            |
|                                                              | (2.0071)           |
| lenop 6 - Peal - Tradmeni                                    | (3.00007*          |
| Imap 7 - Paul - Tradment                                     | 0.0014***          |
| Imp I - Paul - Tradment                                      | 0.0030             |
|                                                              | (5.004)            |
| rap v - ras - counters                                       | (3.004m)           |
| Imap 13 = Paul = Taulmani                                    | 0.001***           |
| Nyarismeni FE - Pasi - Teutmeni                              | (canto)<br>No.     |
| lendari                                                      | 5.427***           |
| Security                                                     | (5.86267)          |
|                                                              |                    |

return

## Change in specialists' fees



Figure 4: Change in specialists' fees (T: Sector 1, C: Sector 2)

### Evolution of specialists' activity



Figure 5: Evolution of specialists' activity (T: Sector 1, C: Sector 2)