#### Free Entry and Social Inefficiency in Regulated Pharmacy Markets

Antto Jokelainen <sup>1, 4</sup> Jaakko Markkanen <sup>2</sup> Samuli Leppälä <sup>5</sup> Markku Siikanen <sup>3, 4</sup> Matti Sipiläinen <sup>5</sup> Otto Toivanen <sup>1, 4</sup> 13.6.2025

<sup>1</sup>Aalto University <sup>2</sup>ETLA <sup>3</sup>VATT <sup>4</sup>Helsinki GSE <sup>5</sup>FCCA

## Introduction

- The whole production chain from pharmaceutical innovation to drug dispense is heavily regulated in most countries.
- Reasons for regulation:
  - $\rightarrow$  Safety of products.
  - $\rightarrow~$  Providing incentives to innovate.
  - $\rightarrow$  Guarding against (excessive) market power.
  - $\rightarrow~$  Ensuring safe and equitable access to all consumers.
- Regarding pharmacies, the following regulations widely in use:
  - $\rightarrow$  Entry and location regulation.
  - $\rightarrow\,$  Price / markup regulation.
  - $\rightarrow$  Ownership regulation.
  - $\rightarrow$  Educational restrictions.

#### Objectives

- We study the effects of relaxing entry (& location) regulation in the Finnish pharmacy market, keeping other regulations in place.
  - $\rightarrow$  Wholesale price & pharmacy markup regulation.
  - ightarrow Current pharmacy taxation.
  - $\rightarrow$  Ownership regulation = no chains.
- We do this by:
  - 1. Estimating a spatial model of pharmacy choice.
  - 2. Modeling the costs of operating a pharmacy.
  - 3. Simulating a counterfactual where entry restrictions are relaxed.

#### Contributions

- We provide
  - 1. demand parameter estimates;
  - 2. production function estimates;
  - 3. a new entry algorithm which is considerably faster than existing ones; and
  - 4. counterfactual results on number of pharmacies, welfare, and its distribution.

#### Rest of the talk

#### Rest of the talk

- Institutional background.
- Data
- Demand.
- Supply.
- Counterfactual.
- Conclusions.

Institutional Background

## Relevant Regulation and Institutional Setup

- Finnish Medicines Agency (Fimea) dictates the number of pharmacies and their (detailed) locations.
  - ightarrow The objective is to ensure the availability of pharmacy services in all areas.
  - $\rightarrow$  Exact determinants not known.
- Pharmacy-markups are set in legislation.
  - $\rightarrow$  A national wholesale price for each product.
  - $\rightarrow$  Pharmacy-markup is a function of the wholesale price.
  - $\rightarrow$  Hence, no price differences across pharmacies.
  - ightarrow But no restrictions for non-pharmaceutical products (7% of turnover).
- Pharmacies are subject to a revenue-based progressive pharmacy tax.
- Online pharmacies were and are not a big thing.

#### Existing Pharmacy Network



#### Data

#### Data

- Pharmacy accounting data (Fimea).
  - $\rightarrow\,$  Data on pharmacies' sales and costs for year 2021.
- Grid database (Statistics Finland).
  - $\rightarrow\,$  Finland divided into 250m x 250m cells with data on population.
- Pharmaceutical expenditure data (the Finnish Social Insurance Institution (Kela)).
  - ightarrow Expenditure on pharmaceuticals in each postal code area.
- Other publicly available data.
  - $\rightarrow\,$  Locations of pharmacies, grocery stores, malls, etc.

#### Demand

#### Structural Model for Pharmacy Choice

- We estimate a discrete choice model for pharmacy choice, closely following Ellickson, Grieco and Khvastunov (2020).
- Basic intuition:
  - ightarrow Each cell has a representative consumer living in the cell centroid.
  - ightarrow Consumer chooses how much expenditure it allocates to pharmacies in its choice set.
  - ightarrow Aggregating the expenditures, we get predicted revenues for each pharmacy.
  - $\rightarrow\,$  We estimate the model parameters by minimizing the difference between observed and predicted revenue using non-linear least squares.

## Structural Model for Pharmacy Choice (cont'd)

- We expand the model by:
  - $\rightarrow\,$  Adding random coefficients for the distance parameter.
  - → Using travel time by car as our measurement for distance (convert to €s using avg. wage).
  - ightarrow Including demographic variation in our measurement for market potential.
- We estimate four models differing in how they treat substitution to the outside good and unobserved distance heterogeneity.

| Utility specification       | Logit                   | NL                      | RC                      | RCNL                    |
|-----------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| $\beta$ Intercept           | 10.6436 ***<br>(2.6244) |                         | 5.1818 ***<br>(1.0359)  |                         |
| $\beta$ Distance            | -0.2008 ***<br>(0.0165) | -0.0288 ***<br>(0.0062) | -0.2689 ***<br>(0.0268) | -0.0341 ***<br>(0.0082) |
| $\beta$ Dist. $	imes$ Urban | -0.0310<br>(0.0369)     | -0.0032<br>(0.0052)     | -0.0224<br>(0.0440)     | -0.0003<br>(0.0056)     |
| eta Urban                   | -9.4842 ***<br>(2.6645) | -0.4733 ***<br>(0.1170) | -5.1704 ***<br>(0.9579) | -0.5888 ***<br>(0.1245) |
| $\sigma$ Distance           |                         |                         | 0.1381 ***<br>(0.0306)  | 0.0149 **<br>(0.0049)   |
| ρ                           |                         | 0.8651 ***<br>(0.0296)  |                         | 0.8706 ***<br>(0.0312)  |
| α                           | 1.0106 ***<br>(0.0184)  | 2.0839 ***<br>(0.0371)  | 1.1220 ***<br>(0.0430)  | 2.1538 ***<br>(0.0450)  |
| MSE                         | 5.10e12                 | 5.08e12                 | 5.05e12                 | 5.03e12                 |

| Utility specification   | Logit       | NL          | RC          | RCNL        |
|-------------------------|-------------|-------------|-------------|-------------|
| eta Intercept           | 10.6436 *** |             | 5.1818 ***  |             |
|                         | (2.6244)    |             | (1.0359)    |             |
| eta Distance            | -0.2008 *** | -0.0288 *** | -0.2689 *** | -0.0341 *** |
|                         | (0.0165)    | (0.0062)    | (0.0268)    | (0.0082)    |
| eta Dist. $	imes$ Urban | -0.0310     | -0.0032     | -0.0224     | -0.0003     |
|                         | (0.0369)    | (0.0052)    | (0.0440)    | (0.0056)    |
| eta Urban               | -9.4842 *** | -0.4733 *** | -5.1704 *** | -0.5888 *** |
|                         | (2.6645)    | (0.1170)    | (0.9579)    | (0.1245)    |
| $\sigma$ Distance       |             |             | 0.1381 ***  | 0.0149 **   |
|                         |             |             | (0.0306)    | (0.0049)    |
| ρ                       |             | 0.8651 ***  |             | 0.8706 ***  |
|                         |             | (0.0296)    |             | (0.0312)    |
| $\alpha$                | 1.0106 ***  | 2.0839 ***  | 1.1220 ***  | 2.1538 ***  |
|                         | (0.0184)    | (0.0371)    | (0.0430)    | (0.0450)    |
| MSE                     | 5.10e12     | 5.08e12     | 5.05e12     | 5.03e12     |

| Utility specification   | Logit       | NL          | RC          | RCNL        |
|-------------------------|-------------|-------------|-------------|-------------|
| eta Intercept           | 10.6436 *** |             | 5.1818 ***  |             |
|                         | (2.6244)    |             | (1.0359)    |             |
| eta Distance            | -0.2008 *** | -0.0288 *** | -0.2689 *** | -0.0341 *** |
|                         | (0.0165)    | (0.0062)    | (0.0268)    | (0.0082)    |
| eta Dist. $	imes$ Urban | -0.0310     | -0.0032     | -0.0224     | -0.0003     |
|                         | (0.0369)    | (0.0052)    | (0.0440)    | (0.0056)    |
| eta Urban               | -9.4842 *** | -0.4733 *** | -5.1704 *** | -0.5888 *** |
|                         | (2.6645)    | (0.1170)    | (0.9579)    | (0.1245)    |
| $\sigma$ Distance       |             |             | 0.1381 ***  | 0.0149 **   |
|                         |             |             | (0.0306)    | (0.0049)    |
| ρ                       |             | 0.8651 ***  |             | 0.8706 ***  |
|                         |             | (0.0296)    |             | (0.0312)    |
| $\alpha$                | 1.0106 ***  | 2.0839 ***  | 1.1220 ***  | 2.1538 ***  |
|                         | (0.0184)    | (0.0371)    | (0.0430)    | (0.0450)    |
| MSE                     | 5.10e12     | 5.08e12     | 5.05e12     | 5.03e12     |

| Utility specification   | Logit       | NL          | RC          | RCNL        |
|-------------------------|-------------|-------------|-------------|-------------|
| $\beta$ Intercept       | 10.6436 *** |             | 5.1818 ***  |             |
|                         | (2.6244)    |             | (1.0359)    |             |
| eta Distance            | -0.2008 *** | -0.0288 *** | -0.2689 *** | -0.0341 *** |
|                         | (0.0165)    | (0.0062)    | (0.0268)    | (0.0082)    |
| eta Dist. $	imes$ Urban | -0.0310     | -0.0032     | -0.0224     | -0.0003     |
|                         | (0.0369)    | (0.0052)    | (0.0440)    | (0.0056)    |
| $\beta$ Urban           | -9.4842 *** | -0.4733 *** | -5.1704 *** | -0.5888 *** |
|                         | (2.6645)    | (0.1170)    | (0.9579)    | (0.1245)    |
| $\sigma$ Distance       |             |             | 0.1381 ***  | 0.0149 **   |
|                         |             |             | (0.0306)    | (0.0049)    |
| ρ                       |             | 0.8651 ***  |             | 0.8706 ***  |
| ,                       |             | (0.0296)    |             | (0.0312)    |
| α                       | 1.0106 ***  | 2.0839 ***  | 1.1220 ***  | 2.1538 ***  |
|                         | (0.0184)    | (0.0371)    | (0.0430)    | (0.0450)    |
| MSE                     | 5.10e12     | 5.08e12     | 5.05e12     | 5.03e12     |

#### Elasticities



## HHIs with the Current Pharmacy Network



Herfindahl-Hirschman index (HHI) Categories

# Supply

#### Production Function for Variable Costs

- We estimate a production function for variable costs.
  - $\rightarrow\,$  We measure inputs in terms of expenditure.
- We treat labor and material as variable inputs.
  - ightarrow Material costs consist of wholesale purchases of pharmaceuticals.
- We assume a Leontief production function.
  - ightarrow Pharmacies cannot substitute labor for material, or vice versa.
  - $\rightarrow\,$  We allow economies of scale for labor input.

#### Production Function Estimates

| Estimator:                    | 0                     | LS                | ١١                    | /                 |
|-------------------------------|-----------------------|-------------------|-----------------------|-------------------|
| Model:<br>Dependent Variable: | (1)<br>ln( <i>L</i> ) | (2)<br>M          | (3)<br>ln( <i>L</i> ) | (4)<br>M          |
| $\ln(R)$ or $R$               | 0.88***<br>(0.03)     | 0.72***<br>(0.00) | 0.94***<br>(0.03)     | 0.72***<br>(0.00) |
| Intercept                     | -0.35<br>(0.47)       |                   | -1.17***<br>(0.45)    |                   |
| Observations                  | 402                   | 402               | 402                   | 402               |
| $R^2$                         | 0.82                  | 0.99              | -                     | -                 |
| F-statistic                   | -                     | -                 | 728.45                | 2857.56           |
| Return to scale ( $\kappa$ )  | 1.14                  |                   | 1.07                  |                   |
| Productivity (A or B)         | 0.39                  | 1.39              | 1.25                  | 1.39              |

- Problem: we do not observe fixed costs of operating a pharmacy.
- To circumvent this, we follow Eizenberg (2014).
- The idea: for a pharmacy to remain in the market, their gross profits (net of variable inputs) must be at least as high as their fixed costs.
- How: simulate gross profits for all existing pharmacies by taking values from the joint distribution of the structural shocks (demand, labor & materials).
- This gives us an **upper bound** of fixed costs.

#### Fixed Costs

- We get an upper bound of the fixed costs for each pharmacy.
- We divide the pharmacies into rural and urban pharmacies and use the minimum of each.
- The fixed cost estimates are:
  - ightarrow €93,988 for rural
  - ightarrow €117,321 for urban



## Counterfactual Analysis

#### Entry Algorithm

- We simulate endogenous entry (exit) to the pharmacy market.
- Solving a full information entry game is not feasible.
- Therefore, we impose several assumptions for computational purposes:
  - 1. Entrants are fully myopic;
  - 2. entrants are identical; and
  - 3. entry is restricted to locations with a grocery store.
- Even with these restrictions we have more entry locations than in the existing literature:  $\approx 4000.$

## Entry Algorithm

- Sequential myopic entry (SME) algorithm from Seim and Waldfogel (2013) and Verboven and Yontcheva (2024):
  - 1. Begin from an empty board
  - 2. Take a candidate entrant
    - 2.1 Find the location with the highest profit
    - 2.2 Enter if profitable
  - 3. Remove all pharmacies that turn unprofitable
  - 4. Repeat until no new entries or exits.
- The SME algorithm does not guarantee a Nash equilibrium.

### Entry Algorithm – A Speed Improvement

- However, the existing algorithm is computationally expensive.
- Our contribution: the Backward sequential myopic entry (BSME) algorithm
  - 1. Fill the board with pharmacies
  - 2. Take the pharmacy with the highest loss
    - 2.1 If unprofitable, remove from the board
  - 3. Repeat until all remaining pharmacies are profitable
  - 4. Initiate the SME entry algorithm.
- BSME satisfies the same conditions as the SME algorithm
- BSME not guarantee a Nash equilibrium.

## Entry Algorithm – A Speed Improvement

- The backward step quickly reaches the aggregate number of pharmacies that is close to the final number.
- Why is it faster?
  - 1. Set of existing stores is smaller than the set of possible entry locations
  - 2. We need to update fewer choice probabilities
  - 3. Each iteration is cheaper than the one before, unlike for the SME
- For large problems, BSME is at least an order of magnitude faster.
  - $\rightarrow\,$  In our application, 90min vs. 3 900min, a reduction of 98%.
- BSME does not produce an order of entry.

#### Counterfactual Results

## Counterfactual Results

- We end up with 2276 pharmacies, an increase of 180% from initial 818
- Most of new pharmacies are located in urban areas. Two factors drive this result:
  - 1. More population (market potential) in catchment areas
  - 2. Stronger under-service
- Not quite a Nash equilibrium: 1.4% of pharmacies want to switch locations



#### Pre- and Post-deregulation HHIs Categories



#### Post Deregulation $\Delta$ CS



consumer surplus (CS) changes

| Variable                       | Absolute            | Relative |
|--------------------------------|---------------------|----------|
|                                | Panel A: Consumers  |          |
| $\Delta$ Consumer surplus (CS) | 67.94               | 14%      |
|                                | Panel B: Pharmacies |          |
| $\Delta$ Number of pharmacies  | 1459                | 178%     |
| $\Delta$ Revenue               | 197.55              | 8%       |
| $\Delta$ Labor costs           | 57.54               | 20%      |
| $\Delta$ Fixed costs           | 162.07              | 188%     |
| $\Delta$ Gross profits         | 120.25              | 51%      |
| $\Delta$ Net profits           | -41.73              | -28%     |

| Variable                       | Absolute            | Relative |
|--------------------------------|---------------------|----------|
|                                | Panel A: Consumers  |          |
| $\Delta$ Consumer surplus (CS) | 67.94               | 14%      |
|                                | Panel B: Pharmacies |          |
| $\Delta$ Number of pharmacies  | 1459                | 178%     |
| $\Delta$ Revenue               | 197.55              | 8%       |
| $\Delta$ Labor costs           | 57.54               | 20%      |
| $\Delta$ Fixed costs           | 162.07              | 188%     |
| $\Delta$ Gross profits         | 120.25              | 51%      |
| $\Delta$ Net profits           | -41.73              | -28%     |

| Variable                       | Absolute            | Relative |
|--------------------------------|---------------------|----------|
|                                | Panel A: Consumers  |          |
| $\Delta$ Consumer surplus (CS) | 67.94               | 14%      |
|                                | Panel B: Pharmacies |          |
| $\Delta$ Number of pharmacies  | 1459                | 178%     |
| $\Delta$ Revenue               | 197.55              | 8%       |
| $\Delta$ Labor costs           | 57.54               | 20%      |
| $\Delta$ Fixed costs           | 162.07              | 188%     |
| $\Delta$ Gross profits         | 120.25              | 51%      |
| $\Delta$ Net profits           | -41.73              | -28%     |

| Variable                       | Absolute            | Relative |
|--------------------------------|---------------------|----------|
|                                | Panel A: Consumers  |          |
| $\Delta$ Consumer surplus (CS) | 67.94               | 14%      |
|                                | Panel B: Pharmacies |          |
| $\Delta$ Number of pharmacies  | 1459                | 178%     |
| $\Delta$ Revenue               | 197.55              | 8%       |
| $\Delta$ Labor costs           | 57.54               | 20%      |
| $\Delta$ Fixed costs           | 162.07              | 188%     |
| $\Delta$ Gross profits         | 120.25              | 51%      |
| $\Delta$ Net profits           | -41.73              | -28%     |

| Variable                       | Absolute            | Relative |
|--------------------------------|---------------------|----------|
|                                | Panel A: Consumers  |          |
| $\Delta$ Consumer surplus (CS) | 67.94               | 14%      |
|                                | Panel B: Pharmacies |          |
| $\Delta$ Number of pharmacies  | 1459                | 178%     |
| $\Delta$ Revenue               | 197.55              | 8%       |
| $\Delta$ Labor costs           | 57.54               | 20%      |
| $\Delta$ Fixed costs           | 162.07              | 188%     |
| $\Delta$ Gross profits         | 120.25              | 51%      |
| $\Delta$ Net profits           | -41.73              | -28%     |

| Variable                       | Absolute            | Relative |
|--------------------------------|---------------------|----------|
|                                | Panel A: Consumers  |          |
| $\Delta$ Consumer surplus (CS) | 67.94               | 14%      |
|                                | Panel B: Pharmacies |          |
| $\Delta$ Number of pharmacies  | 1459                | 178%     |
| $\Delta$ Revenue               | 197.55              | 8%       |
| $\Delta$ Labor costs           | 57.54               | 20%      |
| $\Delta$ Fixed costs           | 162.07              | 188%     |
| $\Delta$ Gross profits         | 120.25              | 51%      |
| $\Delta$ Net profits           | -41.73              | -28%     |

| Variable                 | Absolute                              | Relative |
|--------------------------|---------------------------------------|----------|
|                          | Panel C: Government and Total Surplus |          |
| $\Delta$ Pharmacy tax    | -122.38                               | -71%     |
| $\Delta$ Value-added tax | 19.76                                 | 8%       |
| $\Delta$ Total surplus   | -76.41                                | -7%      |

| Variable                 | Absolute                   | Relative    |
|--------------------------|----------------------------|-------------|
|                          | Panel C: Government and To | tal Surplus |
| $\Delta$ Pharmacy tax    | -122.38                    | -71%        |
| $\Delta$ Value-added tax | 19.76                      | 8%          |
| $\Delta$ Total surplus   | -76.41                     | -7%         |

| Variable                 | Absolute                     | Relative   |
|--------------------------|------------------------------|------------|
|                          | Panel C: Government and Toto | al Surplus |
| $\Delta$ Pharmacy tax    | -122.38                      | -71%       |
| $\Delta$ Value-added tax | 19.76                        | 8%         |
| $\Delta$ Total surplus   | -76.41                       | -7%        |

### Descriptives for Moving Pharmacies

| Variable                         | Mean  | Std. Dev. | P10    | P50   | P90   | N  |
|----------------------------------|-------|-----------|--------|-------|-------|----|
| $\Delta$ Profit                  | 6067  | 6895      | 456    | 2904  | 14144 | 32 |
| City area                        | 0.03  | O.18      | 0.00   | 0.00  | 0.00  | 32 |
| Distance (minutes)               | 8.34  | 8.81      | 0.38   | 6.72  | 22.02 | 32 |
| Distance (km)                    | 8.98  | 10.61     | O.14   | 4.42  | 26.85 | 32 |
| $\Delta$ Closest rival (minutes) | -4.83 | 7.32      | -16.68 | -0.39 | 0.46  | 32 |
| $\Delta$ Closest rival (km)      | -5.89 | 8.81      | -17.26 | -0.39 | 0.37  | 32 |

**Notes**: This table presents descriptive statistics of the pharmacies that wish to change location. A total of 32 (1.4%) pharmacies wished to move. Their share of total profits is 1.50%.

#### Conclusions

- In the counterfactual with entry deregulation without other regulatory changes:
  - ightarrow (Almost all) Consumers gain through shorter distances and more options.
  - $\rightarrow$  Increased # pharmacies  $\Rightarrow$  lost economies of scale.
  - ightarrow Even more important: Aggregate fixed costs increase substantially.
  - $\rightarrow \Rightarrow$  aggregate pharmacy profits decrease.
  - ightarrow Government loses tax revenue as it is tied to pharmacy revenue.
- $\Rightarrow$  entry is excessive from a welfare point of view
- Current entry regulation "compensates" for the inefficiencies caused by other regulatory measures (e.g. fixed markups, pharmacy taxation).
- Deregulation of entry should not be pursued without considering other regulatory changes at the same time.

#### References I

Eizenberg, Alon. 2014. 'Upstream Innovation and Product Variety in the U.S. Home PC Market'. *The Review of Economic Studies* 81, no. 3 (July): 1003–1045.

Ellickson, Paul B., Paul L.E. Grieco and Oleksii Khvastunov. 2020. 'Measuring competition in spatial retail' [in en]. *The RAND Journal of Economics* 51 (1): 189–232.

Seim, Katja and Joel Waldfogel. 2013. 'Public Monopoly and Economic Efficiency: Evidence from the Pennsylvania Liquor Control Board's Entry Decisions' [in en]. *American Economic Review* 103, no. 2 (April): 831–862.

Verboven, Frank and Biliana Yontcheva. 2024. 'Private Monopoly and Restricted Entry—Evidence from the Notary Profession'. *Journal of Political Economy* 132, no. 11 (November): 3658–3707.

# Appendix

## Markups

| Wholesale price (WP)                                                                                                                      | Retail price (2003)                                                                                                                                                              | Retail price (2014)                                                                                | Retail price (2023)                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 0-9.25 / 0-7.49<br>9.26-46.25 / 7.50-39.99<br>46.26-100.91 / 40.00-99.99<br>100.92-420.47 / 100.00-399.99<br>over 420.47 / 400.00-1499.99 | $\begin{array}{l} 1.5\times WP+0.50 \Subset\\ 1.4\times WP+1.43 \Subset\\ 1.3\times WP+6.05 \Subset\\ 1.2\times WP+16.15 \Subset\\ 1.125\times WP+47.68 \blacksquare\end{array}$ | 1.45 × WP<br>1.35 × WP + 0.92 €<br>1.25 × WP + 5.54 €<br>1.15 × WP + 15.63 €<br>1.1 × WP + 36.65 € | 1.42 × WP<br>1.35 × WP + 0.52 €<br>1.24 × WP + 4.92 €<br>1.15 × WP + 13.92 €<br>1.10 × WP + 33.92 € |
| over 1 500                                                                                                                                |                                                                                                                                                                                  |                                                                                                    | 1 × WP + 183.92 €                                                                                   |

| Variable                          | Mean | Std. Dev. | P10  | P50  | P90  | Ν   |
|-----------------------------------|------|-----------|------|------|------|-----|
| Pharmaceutical sales (€M)         | 3.32 | 3.21      | 0.72 | 2.45 | 6.61 | 818 |
| Inner city (1/0)                  | 0.35 | 0.48      | 0.00 | 0.00 | 1.00 | 818 |
| Outer city (1/0)                  | 0.13 | 0.33      | 0.00 | 0.00 | 1.00 | 818 |
| Rural center (1/0)                | 0.08 | 0.27      | 0.00 | 0.00 | 0.00 | 818 |
| Supermarket nearby (1/0)          | 0.59 | 0.49      | 0.00 | 1.00 | 1.00 | 818 |
| Mall nearby (1/0)                 | 0.21 | 0.41      | 0.00 | 0.00 | 1.00 | 818 |
| Healthcare nearby (1/0)           | 0.26 | 0.44      | 0.00 | 0.00 | 1.00 | 818 |
| Public transport nearby (1/0)     | 0.07 | 0.25      | 0.00 | 0.00 | 0.00 | 818 |
| Population density (pop. in cell) | 2.14 | 2.70      | 0.28 | 0.99 | 6.12 | 818 |
| Jobs density (jobs in cell)       | 1.82 | 4.24      | 0.11 | 0.53 | 4.23 | 818 |
| Main pharmacy (1/0)               | 0.79 | 0.41      | 0.00 | 1.00 | 1.00 | 818 |
| YA (1/0)                          | 0.02 | 0.15      | 0.00 | 0.00 | 0.00 | 818 |