Biosimilar Turf Wars

Toulouse Health Economics Conference

June 2025

Manuel Hermosilla University of Illinois at Chicago, College of Business and Administration <u>mher@uic.edu</u>

Joseph Levy Johns Hopkins University, Bloomberg School of Public Health jlevy@jhu.edu

Kelly Anderson University of Colorado, Skaags School of Pharmacy kelly.e.anderson@cuanschutz.edu KFF Health News Public Health Elections Race & Health Audio V INVESTIGATIONS V MORE TOPICS

Why The U.S. Remains The World's Most Expensive Market For 'Biologic' Drugs

By Sarah Jane Tribble DECEMBER 20, 2018

C REPUBLISH THIS STORY

Biologic drugs, made from living organisms, are big moneymakers partly because they have little competition from "biosimilars." It's a very different story in Europe.

0.4-2% of prescriptions, 40-46% of drug spending

High Expectations for Biosimilars

Expert insights on a timely policy issue

The Cost Savings Potential of Biosimilar Drugs in the United States

Andrew W. Mulcahy, Zachary Predmore, and Soeren Mattke

he U.S. Food and Drug Administration (FDA) is expected to release final regulations outlining lower-cost approval pathway requirements for so-called biosimilar drugs. The introduction of biosimilars is expected to reduce prices, albeit to a lesser degree than small-molecule generics. This Perspective combines prior research and recent data to estimate cost savings in the U.S. market. We predict that biosimilars will lead to a \$44.2 billion reduction in direct spending on biologic drugs from 2014 to 2024, or about 4 percent of total biologic spending over the same period, with a range of \$13 billion to \$66 billion. While our estimate uses recent data and transparent assumptions, we caution that actual savings will hinge on the specifics of the final FDA regulations and on the level of competition.

Context and Motivation

Biologics are complex, protein-based drugs including insulin, monoclonal antibodies to block inflammation in rheumatoid arthritis, and a range of drugs to treat cancer, multiple sclerosis, and other serious diseases. While biologics have revolutionized treatment for many conditions, they are often expensive in terms of cost per dose. Insurers are concerned about rising prices, acceleration in new approvals, and burgeoning pipelines for biologics compared with flat growth and few new nonbiologic "small molecule" drugs. In 2011, eight of the top 20 drugs in the United States in terms of sales were biologics, and year-on-year biologic spending grew at 6.5 percent, compared with 2.3 percent for small molecule drugs.¹ The American Society of Clinical Oncology is calling for value-focused moderation in the use of specialty drugs, many of which are biologics.² And patients—who are often asked to bear a share of the cost of expensive specialty drugs through cost sharing—

Disappointingly slow market penetration

Citation

PDF

Altmetric

POLICY FORUM AUG 2019

Why Are Biosimilars Not Living up to Their Promise in the US?

Mike Z. Zhai, Ameet Sarpatwari, JD, PhD, and Aaron S. Kesselheim, MD, JD, MPH

Abstract

Biologics are among the most expensive prescription drugs in the United States, posing significant barriers to patient access to necessary treatments. An abbreviated approval pathway for biosimilars, near-identical versions of biologics made by different manufacturers, was created by Congress in 2010 to stimulate competition in hopes of driving down costs and expanding access. However, as of February 2019, only 17 biosimilars have been approved, with only 7 currently on the market. Of the few biosimilars currently available to patients, overall utilization has been limited. This article examines the current landscape of the biosimilar market, characterizes tactics employed by biologics manufacturers to delay market entry and deter prescribing of biosimilars, and assesses ethical issues related to increasing the adoption of biosimilars.

Generics vs Biosimilars: structural market differences

1. Commercialization channels:

- Generics: mostly distributed via pharmacies (oral pills)
- **Biosimilars:** mostly administered within clinics (injectables)
- 2. Firm size/scope:
 - Generic makers: atomized fringe
 - Biosimilar makers: large, multi-product firms

Multi-product facet gives makers *commercial leverage* over clinics

Does commercial leverage shape biosimilar penetration?

Do J&J and Pfizer leverage the rest of their drug portfolios to advance their goals in the infliximab market?

Table 1: Motivating example: commercial leverage and Infliximab utilization.

Notes. Clinic C: Alan J. Kivitz MD, PA; clinic B: Houston Rheumatology Institute, TX; clinic A: Nasseri Clinic of Arthritic Rheumatoid Diseases, MD.

Biosimilar

(infliximab-dyyb)

For Injection

100 mg per vial

(Pfizer)

Inflectra[™]

For Intravenous

Discard unused portion

Infusion Only

Single-use vial -

Table 1: Motivating example: commercial leverage and Infliximab utilization.

Notes. Clinic C: Alan J. Kivitz MD, PA; clinic B: Houston Rheumatology Institute, TX; clinic A: Nasseri Clinic of Arthritic Rheumatoid Diseases, MD.

	(()	(aujacono) a		
Spending					- Cficer
Clinic	J&J	Pfizer	Others	Total	-
A	\$381,998	\$27,572	\$800,238	\$1,209,809	
В	\$146,770	\$473,447	\$619,304	\$1,239,521	For In Infusi
\mathbf{C}	\$103,809	\$97,942	\$1,027,996	\$1,229,747	Single- Discard
Leverage			(Cilinic C:	
Α	0.32	0.02			
В	0.12	0.38	•	Pfizer	lev = J&J lev
\mathbf{C}	0.08	0.08		Non o	volusivo assortment
			-		Actusive assortiment
		(b) Inflix	imab		
1 	Number	of Claims			-
Α	29	0	• 0		
В	0	17			

Table 1: Motivating example: commercial leverage and Infliximab utilization.

(a) Non-Infliximab ("adjacent") drugs

Biosimilar

(infliximab-dyyb) For Injection

100 mg per vial

(Pfizer)

Inflectra[™]

For Intravenous Infusion Only

Single-use vial – Discard unused portion

Notes. Clinic C: Alan J. Kivitz MD, PA; clinic B: Houston Rheumatology Institute, TX; clinic A: Nasseri Clinic of Arthritic Rheumatoid Diseases, MD.

27

 \mathbf{C}

30

Evidence from 7 Molecule Markets, 2015-2021

- CMS data (20% representative sample)
 - No private insurers, PBMs \rightarrow focus on vertical maker/clinic relationship
 - Leverage calculated from invoice (ASP) prices
- Exclusion prevails: 4/5 clinics administer either the reference or the biosimilar products, not both
- Conjectured mech.: foreclosure (exclusivity) inducing rebate contracts
- Shift-share IV based on clinics' differential exposure to makers' timevarying portfolio strength

Leverage Asymmetry Drives Exclusive Assortment

- Suggests widespread use of exclusivity-inducing rebate contracts
 - Asymmetric leverage → **Exclusive** (highest-leveraged maker)
 - Symmetric leverage → **Non-exclusive** (stalemate)
 - Leverage effects \rightarrow -11% to +5% of biosimilar share
- Biosimilar makers have strong leverage and use it, but face head winds
 - Biosimilar adoption implies switching costs (training, logistics)
 - Biosimilars are rarely selected under exclusive assortment
 - No leverage effects $\rightarrow +4\%$ biosimilar share

Sugartown Pediatrics v. Merck (2018)

- Incumbent Product: Merck's RotaTeq (pediatric rotavirus vaccine)
- Entrant: GSK's Rotarix
- Merck's contract:
 - Portfolio-wide loyalty rebate: 5–7% discount
 - Clinic must purchase minimum 90–95% of rotavirus vaccines from Merck

Leverage -> Loyalty Rebates -> Foreclosure Risk

- (a) Non-Infliximab ("adjacent") drugs • J&J's Foreclosure-Inducing Rebate (Pfizer): Spending • = <u>\$27,572</u> Clinic J&J Others Total Pfizer \$1,209,809 \$381,998 \$27,572 \$800,238 Α • = 6% discount on J&J's adjacent sales Leverage • Expressed through leverages: А 0.320.02 $\operatorname{FIR}_{i}^{j} = \frac{\operatorname{Leverage}_{i}^{j'} \cdot \operatorname{Total} \operatorname{Adjacent} \operatorname{Purchases}_{i}}{\operatorname{Leverage}_{i}^{j} \cdot \operatorname{Total} \operatorname{Adjacent} \operatorname{Purchases}_{i}} = \frac{\operatorname{Leverage}_{i}^{j'}}{\operatorname{Leverage}_{i}^{j}}$ $\frac{0.02}{0.32} = 0.06$
 - Foreclosure more likely the smaller min(FIR)

$$\min\{\operatorname{FIR}_{i}^{j}, \operatorname{FIR}_{i}^{j'}\} = \min\left\{\frac{\operatorname{Leverage}_{i}^{j'}}{\operatorname{Leverage}_{i}^{j}}, \frac{\operatorname{Leverage}_{i}^{j}}{\operatorname{Leverage}_{i}^{j'}}\right\} = \frac{\min\{\operatorname{Leverage}_{i}^{j}, \operatorname{Leverage}_{i}^{j'}\}}{\max\{\operatorname{Leverage}_{i}^{j}, \operatorname{Leverage}_{i}^{j'}\}} \qquad \begin{array}{c} \operatorname{Measure of} \\ \operatorname{Symmetry} \\ \end{array}$$

Table 2: Molecules, Products, and Key Dates in the Analytical Sample.

(1)	(2)	(3)	(4)	(5)	(6)
(1)	(-)	(0)	(-)	Kev date	s
Product	Type	Manufacturer	FDA	Earliest	Analysis
			approval	claim	period
		Bevacizuma	Ь		
Avastin	Reference	Genentech	2004	2015	2019-2021
Mvasi	Biosimilar	Amgen	2017	2019	2019-2021
Zirabev	Biosimilar	Pfizer	2019	2020	2020-2021
Alymsys	Biosimilar	Amneal	2022	-	-
Vegzelma	Biosimilar	Celltrion	2022	-	-
Avzivi	Biosimilar	Sandoz	2023	-	-
		Epoetin Alfa	a		
Epogen/Procrit	Reference	Amgen/J&J	1989	2016	2018-2021
Retacrit	Biosimilar	Pfizer	2018	2018	2018-2021
		Filgrastim			
Neupogen	Reference	Amgen	1991	2015	2015-2021
Zarxio	Biosimilar	Sandoz	2015	2015	2015 - 2021
Nivestym	Biosimilar	Pfizer	2018	2018	2018-2021
Releuko	Biosimilar	Kashiv	2022	-	-
Tanvex	Biosimilar	Nypozi	2024	-	-
		Infliximab			
Remicade	Reference	J&J	1998	2015	2018-2021
Inflectra	Biosimilar	Pfizer	2016	2018	2018 - 2021
Renflexis	Biosimilar	Merck	2017	2018	2018-2021
Ixifi	Biosimilar	Pfizer	2017	-	-
Avsola	Biosimilar	Amgen	2019	2020	2020-2021
		Pegfilgrastin	n		
Neulasta	Reference	Amgen	2002	2015	2018-2021
Fulphila	Biosimilar	Mylan	2018	2018	2018-2021
Udenyca	Biosimilar	Coherus	2018	2019	2019-2021
Ziextenzo	Biosimilar	Sandoz	2019	2020	2020-2021
Nyvepria	Biosimilar	Pfizer	2020	2021	2021-2021
Fylnetra	Biosimilar	Amneal	2022	-	-
		Rituximab			
Rituxan	Reference	Genentech	1997	2019	2019-2021
Truxima	Biosimilar	Teva	2018	2019	2019-2021
Ruxience	Biosimilar	Pfizer	2019	2020	2020-2021
Riabni	Biosimilar	Amgen	2020	2021	2021-2021
		Trastuzuma	b		
Herceptin	Reference	Genentech	1998	2015	2019-2020
Ogivri	Biosimilar	Mylan	2017	2020	2020-2021
Herzuma	Biosimilar	Teva	2018	2020	2020-2021
Kanjinti	Biosimilar	Amgen	2019	2019	2019-2020
Irazimera	Biosimilar	Pfizer	2019	2020	2020-2021
Ontruzant	Biosimilar	Merck	2019	2020	2020-2021
Accord	Biosimilar	Hercessi	2024	-	-

Filgrastim						
Neupogen	Reference	Amgen	1991	2015	2015-2021	
Zarxio	Biosimilar	Sandoz	2015	2015	2015-2021	
Nivestym	Biosimilar	Pfizer	2018	2018	2018-2021	

Primary analysis: aggregate "biosimilar sector"

Observation level (N=24,815):

Molecule / clinic / year / **reference v biosimilar**

Exclusive Assortment in 4/5 Clinics

 Table 1: Clinic Assortment Types and Biosimilar Use by Molecule.

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Molecule		\mathbf{E}	xclusive A	ssortmen	t	Non-exe	clusive Ass	sortment
	Ν	Preva-	Bios	imilar Sh	are	Preva-	Biosimil	ar Share
		lence	Clinics	Claims	HHI	lence	Claims	HHI
Bevacizumab	$5,\!687$	91%	5%	2%	96%	9%	56%	96%
Epoetin Alfa	$3,\!399$	75%	17%	21%	100%	25%	40%	100%
Filgrastim	$3,\!931$	83%	36%	42%	98%	17%	67%	98%
Infliximab	4,772	80%	7%	2%	98%	20%	25%	94%
Pegfilgrastim	$2,\!318$	62%	23%	11%	92%	38%	30%	90%
Rituximab	$2,\!968$	81%	8%	11%	95%	19%	56%	91%
Trastuzumab	$1,\!110$	66%	32%	29%	92%	34%	45%	94%
Total	$24,\!185$	80%	15%	12%	97%	$\mathbf{20\%}$	45%	95%

Shift-Share Identification

- Intuition:
 - Drug maker sells cancer and cardiovascular drugs
 - Launches new cardiovascular drug
 - Launch increases the maker's leverage wrt clinics that serve both cancer and cardiovascular needs, not wrt those that serve only cancer

• Formulation:
$$IV_{mit}^{j} = \sum_{k \in \mathcal{K}} \theta_{kmit} \cdot \log(1 + \text{Revenues}_{-ikjt})$$

- Shares , stable clinic emphasis on drug class k (=1,..,24)
- Shifts (Revenues), market-wide class-k portfolio strength

	(1)	(2)	(3)	(4)
	Reference	Biosimilar	Leverage	Differential
	Leverage	Leverage	Asymmetry	Leverage
$\mathrm{IV}_{\mathrm{Ref}}$	0.012	-0.004	0.037	-0.014
	(0.001)	(0.000)	(0.001)	(0.001)
	[0.000]	[0.000]	[0.000]	[0.000]
$\mathrm{IV}_{\mathrm{Biosim}}$	-0.003	0.015	0.029	0.020
	(0.000)	(0.000)	(0.001)	(0.001)
	[0.000]	[0.000]	[0.000]	[0.000]
IV_{RoI}	-0.004	-0.007	-0.005	-0.002
	(0.001)	(0.001)	(0.001)	(0.001)
	[0.000]	[0.000]	[0.000]	[0.099]
$\rm IV_{Ref} \times \rm IV_{Biosim}$			-0.004	-0.000
			(0.000)	(0.000)
			[0.000]	[0.000]
Scale	0.011	0.010	0.015	-0.002
	(0.002)	(0.001)	(0.003)	(0.003)
	[0.000]	[0.000]	[0.000]	[0.502]
# Products	0.004	0.056	0.059	0.056
	(0.002)	(0.002)	(0.006)	(0.003)
	[0.038]	[0.000]	[0.000]	[0.000]
Ν	22.411	22.411	22.411	22.411
F	86.29	2,023.39	233.34	1,604.59

Table A.2: First-Stage Regressions: Instrumental Variables for Reference and Biosimilar Leverage

Δ 1 SD Diff. Lev $\rightarrow \Delta$ Pr(Biosim | Excl. Assort) = 0.007

	(1)	(2)	(3)	(4)		
Outcome:	$\Pr(\text{Exclusi})$	ive Assort.)	$\Pr(Biosimilar)$	$\Pr(\text{Biosimilar} \mid \text{Excl. Assort.})$		
	OLS	IV	OLS	IV		
Leverage Asymmetry	0.034	0.078				
	(0.011)	(0.019)				
	[0.003]	[0.000]				
Differential leverage			0.102	0.085		
-			(0.016)	(0.029)		
			[0.000]	[0.004]		
Scale	-0.021	-0.022	0.004	0.003		
	(0.002)	(0.002)	(0.001)	(0.001)		
	[0.000]	0.000	[0.011]	[0.014]		
# Biosimilar products	-0.143	-0.145	0.002	0.003		
	(0.009)	(0.009)	(0.004)	(0.005)		
	[0.000]	[0.000]	[0.693]	[0.536]		
Ν	$22,\!431$	$22,\!431$	$16,\!850$	$16,\!850$		

 Table 2: Leverage Effects on Exclusive Assortment and Biosimilar Choice.

 Δ 1 SD Lev. Assym. $\rightarrow \Delta$ Pr(Excl. Assort) = 0.028

Leverage effects are strongest in markets with a single biosimilar competitor

Within-biosimilar choice: Leverage matters, but entry order matters more

	(1)	(2)	(3)	
	Full	Assortment		
	Sample	Non-exclusive	Exclusive-biosimilar	
Leverage	0.280	0.265	0.265	
	(0.024)	(0.086)	(0.150)	
	[0.024]	[0.086]	[0.150]	
First Mover	0.307	0.291	0.259	
	(0.000)	(0.000)	(0.028)	
	[0.000]	[0.000]	[0.028]	
Entry Lag	-0.039	-0.042	-0.048	
	(0.000)	(0.001)	(0.019)	
	[0.000]	[0.001]	[0.019]	
Ν	11,774	$6,\!975$	4,799	

Table 3: Drivers of Within-Biosimilar Product Selection.

Discussion points

- 1. The economics of biosimilars are very different to those of generics
 - Generic markets:
 - + Defensive incumbent + aggressive generic fringe
 - + After pay-for-delay, flood gates open
 - + No multi-product considerations
 - Biosimilar markets:
 - + An oligopoly
 - + Multi-product considerations are first order
 - + Flood gates never really open, penetration by drip
- 2. Commercial relationships (leverage) as a barrier of entry
 - Why is Pfizer prioritizing biosimilars over original biologics?
 + Comparative advantage in terms of leverage
 - Can any firm penetrate the biosimilar market?
 - + Unlikely. The "right" commercial capabilities are needed. We can probably predict biosimilar entry at the firm level.
 - Is the amount of biosimilar innovation a matter of clinical trial cost?
 - + It may be more about monetization (extracting value from successful launches)

Thank you