
A Finite Mixture Approach to Cost-Function Estimation
Economies of Density in Home-Care Services:

Solen Croiseta, Robert Gary-Boboa,b,c
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Introduction

Introduction

The present research is devoted to the micro-econometric study of the
costs of providing home care services to the elderly (or the disabled)
(services d’aide à domicile)

This is both an important and growing sector and a highly regulated,
highly subsidized industry (in France).

We more precisely present here an econometric analysis of
transportation costs in the home care sector.

Using a unique dataset, we show the existence of economies of
density (related to transportation) in this activity.

Economies of density are a particular form of the economies of scale
(a property of the production function).
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Introduction

Economies of Density : an Important Phenomenon

Where do we find economies of density ? Cable television is a
well-known example. The cost of the cable per customer clearly
decreases with the density of population in the city served by the
cable TV provider.

Other examples : postal services ; garbage collection ; package
deliveries (Amazon, UPS, ...)

Economies of density are tied to geographical space.

Behind the economic and statistical facts, there is an Operations
Research problem : Home Healthcare Routing and Scheduling of
Multiple Caregivers... (is related to the Traveling Salesman Problem
in Operations Research).
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Introduction

Organization of Home Care Services

How do these Home Care Services work ?

Every morning, in each district, an operator produces a planning of
tours and a schedule of visits for employees (caregivers). Employees
are mostly women who drive cars across the countryside or suburbs to
visit seniors.

There are various constraints : hours of visit (lunch time, dinner time,
etc.) ; clients are accustomed to the carer (they want the same carer
to come back every day or week).

The operator must adjust to different kinds of random shocks :
absenteeism and sick leaves of employees ; changes in the demands of
clients ; various kinds of accidents.

So, production is inherently stochastic...
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Introduction

Transportation Costs in Home Care Services

Kilometers traveled generate costs for two reasons :

Hours of work spent travelling between two clients are paid by the
employer.
Distance traveled is reimbursed to employees by the employer. There is
a conventional rate per kilometer (an agreement with unions, i.e., a
convention collective).

The employer tries to minimize costs by improvements in routing and
scheduling (Operations Management Problem).

The home care services being heavily subsidized by the government
and local governments (i.e., counties or départements), public
authorities have a stake in the minimization of these costs.

There are important consequences for Regulation (Natural Monopoly
Properties).
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Introduction

Economies of Density : Definition

On a given territory with given land surface area and given
characteristics,...

... the density of clients may vary (due, in essence, to variations in
market share).

If kilometers traveled per hour of service decrease when the density of
clients increases on the territory,...

... then, by definition, we have economies of density (a purely
technological property).

A territory being given, and all other things being equal (like service
quality), an increase in demand for the service is typically always
triggered by an increase in the density of clients.
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Introduction

Consequences for Public Policy

This empirical fact may have important consequences in terms of
optimal regulation : the home care services constitute a natural
monopoly.

It is then possible to advocate that a system of franchise bidding,
supervised by the government, would be more efficient than the
current system (displaying a mix of competition and regulation that
poses many problems).

The territory of the country should be divided into districts (or
constituencies). Each district should be awarded to a single operator
for a term, by means of a competitive auction (franchise bidding).
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Introduction

Literature on Economies of Density

A classic topic in the IO/ Regulation literature.

In Airlines : Caves, Christensen, Tretheway (1984) ;
Braeutigam, Daughety, Turnquist (1984) ; Brueckner Spiller (1994) ;

In Postal Services, Parcel Delivery, Garbage Collection :
Houde, Newberry, Seim (2017) ; Cazals et al. (2001) ; Dubin, Navarro
(1988) ;

In Railroad Freight Transportation, Container Shipping, International
Trade :
Bitzan, Keeler (2007) ; Xu, Itoh (2018) ; Mori, Nishikimi (2002),
Behrens, Gaigné, Ottaviano, Thisse (2006).

In Network Industries (electricity, telephone, water utilities) :
Roberts (1986) ; Guldmann (1990) ; Torres, Morrison-Paul (2006) ;

In Personal Service Industries, Chain Stores, Retail Banking :
Morikawa (2011) ; Holmes (2011) ; Aguirregabiria et al. (2016) ;
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Introduction

Literature, ctd. Agglomeration Economies.

More generally, economies of density are related to the theme of
agglomeration economies (see e.g., the surveys of Combes and
Gobillon (2015) ; Rosenthal and Strange (2020)) ;

The present research shows a pure case of density economies, i.e., the
direct result of the interaction of a production technology with
geographical space, in the presence of random shocks, without any
need for the presence of externalities (on this problematic, see e.g.,
Ciccone and Hall (1996)).

To the best of our knowledge, the literature on Home Care Services
(and Health Economics) has not focused on economies of density.
Papers on the French Home Care Services are due to Gramain and
Xing (2012) ; Roquebert and Tenand (2017) but do not address the
same questions.
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Introduction

Outline

1 Economies of Density : the Kilometers/Hours (i.e., L/H) ratio.
2 Log-Linear Models

Panel-data, Fixed Effects : Within-group and First-differences
Estimates.

3 Unobserved Heterogeneity and Finite Mixture Model

Unobserved Heterogeneity : the Quadratic Model with Latent Types.
The U-shaped Average Transportation-Cost Curves.
Probabilities of Unobserved Types : Quality of Classification of
Employees.

4 Appendix

OLS results on Pooled Data
Log-linear model at the district level
The Travelling Salesman Problem and the
Beardwood-Halton-Hammersley Theorem.
Likelihood Function and Maximum Likelihood Estimation.
Choice of the Number of Types, Entropy and Information Criteria.
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Kilometers Traveled per Hour of Service

Fig. 1. Distance Between Two Patients and Population
Density

Note : The square depicts a territory. Points are the addresses of patients (seniors
needing assistance). In the right-hand square, the number of patients doubled as
compared to the left-hand square. Distance to the nearest neighbor decreases by 30%...
The area of a disk including the nearest neighbor with (any) probability p is divided by 2
when the number of clients doubles, when points are uniformly distributed.
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Kilometers Traveled per Hour of Service

Ratio of Kilometers Traveled over Hours of Service

The ratio of kilometers travelled over hours of service at the senior’s
home allows us to measure the real importance of the economies of
density.

This ratio happens to vary substantially between employees and
between the local branches (i.e., agences) of the Home Care Service.

The ratio km/hours is higher in counties (i.e., départements) in which
the senior population is sparse.

The ratio km/hours is smaller when the market share of a given home
care service is high.
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Kilometers Traveled per Hour of Service

Fig. 2. Km/Hours of Service Ratio at the Employee Level

13 / 50



Kilometers Traveled per Hour of Service

The Simplest Log-linear Model

Let L be the traveled distance (in km, per month, of an employee, or
in a district).

Let H be the number of hours of care at home (per month) of an
employee (or in a district).

A is an expression depending on a number of local (district level)
factors X , i.e., A = A(X ).

Then we have, approximately,

L

H
=

A

Hγ
, and γ ≥ 0.

Km/hours ratio decreases with the hours of service.

If γ = 0, we have “constant returns to scale” L = AH.

If γ = 1 we have L = A, i.e., transportation cost is fixed.

Economies of density exist as soon as γ > 0.
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Kilometers Traveled per Hour of Service

Data

We have a panel with employees indexed by i = 1, . . . ,N observed
during τi periods t = 1, . . . , τi .

The panel is unbalanced (some employees appear only in a subset of
periods).

Each employee i appears only in one district (i.e., secteur) s. Districts
partition the set of employees.

The panel has the following characteristics

Number of counties (i.e., départements) : 16.
Number of branches (i.e., agences) : 53.
Number of districts (i.e., secteurs) : 98.
Number of employees : 3688.
Mean number of observed months, i.e., mean value of τi ' 29.
Number of observations (i.e., number of (i , t)) : 56 830.

All observations come from the payrolls of the Avec nextwork of Home
Care services. A network of nonprofit organizations (i.e., associations).
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Kilometers Traveled per Hour of Service

Econometrics 101 : the Simplest Model

We denote `it = log(Lit) et hit = log(Hit).

Taking logarithms we have,

`it = α + βhit + Xitδ + λs + vit ,

where i = employee, t = month and λs is a district fixed effect.
Districts are indexed by s = 1, . . . ,S . We can add controls Xit , and
vit is a random error term.

There are economies of density iff β < 1, since

β = 1− γ.

If we run this regression, we find, in essence, β̂OLS ' 1 : “constant
returns”.
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Kilometers Traveled per Hour of Service

Econometrics 2 : Group Synergies ; Model A

Ast is the subset of agents active in district s during month t.

We aggregate at the district level. Define the average hours per
month in district s during month t,

h̄st =
1

nst

∑
i∈Ast

hit

We propose the following specification, i.e., Model A,

`it = α + β1hit + β2h̄st + Xitδ + λs + vit ,

with employee fixed effects,

vit = ui + εit .
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Kilometers Traveled per Hour of Service

Econometrics 2 : Group Synergies ; District Level

Interpretation : if we aggregate over all i in subset Ast , we find,

¯̀
st = α + (β1 + β2)h̄st + X̄stδ + v̄st ,

If we measure economies of density at the level of the employee, we
have γ = 1− β1.

To measure economies of density at the district level, we have

γ = 1− β1 − β2.

Table 2 below shows that γ = 1− β1 − β2 ' 0.42.
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Kilometers Traveled per Hour of Service

Table 1 : OLS and Fixed Effects Estimation. Model A

(1) (2) (3) (4)
OLS OLS OLS FE

hit 1.447∗∗∗ 1.404∗∗∗ 1.451∗∗∗ 1.109∗∗∗

(0.020) (0.021) (0.020) (0.018)

h̄st -0.795∗∗∗ -0.767∗∗∗ -0.867∗∗∗ -0.522∗∗∗

(0.032) (0.042) (0.044) (0.028)

Constant 1.828∗∗∗ 2.457∗∗ 1.261 2.128∗∗∗

(0.168) (0.696) (0.252) (0.137)

Controls NO YES NO NO
District Indicators NO YES YES NO

β1 + β2 0.652 0.637 0.584 0.587

Observations 56,878 56,830 56,878 56,878
Groups . . . 3,688
R2 0.268 0.553 0.488 .

Dependent variable : Log-Kilometers `it . Column (4) gives the within-group, fixed effects
estimation, with employees i as groups.
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Kilometers Traveled per Hour of Service

Econometrics 3 : IVs and Arellano-Bond GMM estimates

We push the analysis further : estimate the model in first differences
and use lagged hours as IVs. To take care of possible correlations of
first-differenced shocks with hours.

We estimate a model with two lags of the dependent variable,

`it = ρ1`i ,t−1 + ρ2`i ,t−2 +β1hit + δ1hi ,t−1 +β2h̄st + δ2h̄s,t−1 + ui + εit ,

We measure economies of density at the long-run stationary
equilibrium. We have,

γ = 1− β1 + β2 + δ1 + δ2

1− ρ1 − ρ2
.

Table 3 below shows that γ ' 0.7.

We find ρ1 ' .1 and ρ2 ' .02. Autocorrelation is not strong. hi ,t−1 is
not significant.
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Kilometers Traveled per Hour of Service

Table 2 : Arellano-Bond GMM estimates

(1) (2) (3) (4)

`it−1 0.112∗∗∗ 0.111∗∗∗ 0.085∗∗∗ 0.090∗∗∗

(0.021) (0.019) (0.020) (0.020)
`it−2 0.020∗ 0.023∗∗ 0.010 0.011

(0.010) (0.009) (0.009) (0.009)

hit 1.159∗∗∗ 1.268∗∗∗ 1.216∗∗∗ 1.140∗∗∗

(0.054) (0.068) (0.062) (0.066)
h̄st −1.089∗∗∗ −1.261∗∗∗ −1.194∗∗∗ −1.1097∗∗∗

(0.070) (0.089) (0.085) (0.087)
h̄st−1 0.249∗∗ 0.202∗ 0.209∗∗ 0.258∗∗

(0.085) (0.094) (0.087) (0.088)

γ 0.662 0.706 0.737 0.716
lags of `it used as IV all 3 10 10

lags of hit and h̄st used as IV 3 3 3 10

Autocorr. test order 1 (p-value) 0.000 0.000 0.000 0.000
Autocorr. test order 2 (p-value) 0.693 0.340 0.635 0.825
GMM Steps 1 1 2 2
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U-shaped Curves and Unobserved Heterogeneity

Motivation for the Use of a Finite Mixture Model

We suspect that the average transportation-cost functions L/H may
in fact be U-shaped, as textbook AC curves.

These curves can be fitted by a quadratic model in logs.

If we try to estimate a quadratic extension of our model, we find that
quadratic terms are non-significant and useless.

If we try to model unobserved heterogeneity by assuming the
existence of a finite number of latent types, then, we find that the
quadratic model is relevant.

22 / 50



U-shaped Curves and Unobserved Heterogeneity

Latent Types Reveal Unobserved Heterogeneity and Treat
Endogeneity Problems

The estimation of a model with latent groups of employees reveals the
unobserved heterogeneity of the workers.

Some unobservable employee types, but not all, are responsible for the
economies of density observed in the aggregate.

Adding observable controls to the model is not enough. For instance,
latent types are still relevant, both in rural and urban districts. Types
are not simply capturing the impact of rural vs. urban location.

In other words : A classification of employees based on observable
characteristics would not uncover the structure of density economies.

Finally, the use of latent types is a way of treating potential
endogeneity problems : we assume that error terms are independent of
hours conditional on the latent type.
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U-shaped Curves and Unobserved Heterogeneity

Econometrics 4. A Quadratic Model with Unobserved
Types (Finite Mixture)

We assume that each individual i at date t may belong to one of K
unobservable groups indexed by k = 1, . . . ,K .

For an (i , k) in group k, we assume that the following model, called
MODEL B, describes traveled distance,

`it = αk + βk h̄st + νk h̄2
st + δkhit + ρk(1/nst) + εitk ,

and εitk ∼ N (0, σ2
k).

We want to estimate parameters (αk , βk , νk , δk , ρk , σk) for each k,
and the prior probability of type k, denoted pk .

So `it is distributed like a mixture of normal distributions.

nst is the number of employees in district s at time t.

Key assumption : E(ε | h, n, k) = 0.
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U-shaped Curves and Unobserved Heterogeneity

Econometrics 4. Interpretation of Model B

Define the log-ratio of kilometers to hours of service of district s at
time t as follows : κ̄st = ¯̀

st − h̄st .

We aggregate the model over all i ∈ Ast (for a fixed type k) and we
find,

κ̄st = α + (β + δ − 1)h̄st + νh̄2
st + ρ(1/nst) + ε̄st ,

dropping index k to lighten notation.

For each type k = 1, . . . ,K , we compute the expectation of the
average ratio L/H = exp(κ̄), using the estimated values of the
parameters.
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U-shaped Curves and Unobserved Heterogeneity

Computation of the L/H-curves (i.e., U-shaped curves)

If we assume that the εitk are normal, i.i.d., with mean zero and
variance σ2

k , we have,

E
(
eκ̄
∣∣ h̄, k, n

)
= exp

{
αk + (βk + δk − 1)h̄ + νk h̄2 +

(
ρk +

σ2
k

2

)
1

n

}
,

We see that κ̄ is given by a quadratic curve in h̄.

To obtain the average L/H curve, we just use the estimated values of
pk to compute,

E
(
exp(κ̄)|h̄, n

)
=
∑
k

pkE
(
exp(κ̄)|h̄, n, k

)
.
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U-shaped Curves and Unobserved Heterogeneity

Figure 3. L/H Curves Conditional on Type k and Average
L/H Curve, for K = 2
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a. Type 1 (solid line) ; Type 2 (dotted line) b. Average L/H curve
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U-shaped Curves and Unobserved Heterogeneity

Figure 4. L/H Curves Conditional on Type k , for K = 3
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U-shaped Curves and Unobserved Heterogeneity

Figure 5. 3D Plots of L/H surfaces conditional on type k ,
for K = 2

a. Type 1 b. Type 2
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U-shaped Curves and Unobserved Heterogeneity

Figure 6. L/H Surfaces in Rural Districts, K = 2
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U-shaped Curves and Unobserved Heterogeneity

Figure 7. L/H Surfaces in Urban Districts, K = 2
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U-shaped Curves and Unobserved Heterogeneity

Figure 8. L/H curves in Rural Districts and K = 6
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Choice of K ; Information Criteria and Quality of Classification

Choice of the Number of Types
Quality of Classification (Visual Inspection)

The log-likelihood always increases with K (but the curve is concave
as a function of K ).

To assess the quality of classification, we focus on the posterior
probabilities of types, computed with the help of the likelihood
function and ML estimates. We define,

pitk = Pr[it ∈ k | `it , hit ,Xit ].

Visual inspection of the distribution (histogram) of p̂itk for each type
k gives a good idea of the quality of classification...
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Choice of K ; Information Criteria and Quality of Classification

Figure 9. Posterior Probabilities of Types : Density of
Estimated Posterior Probabilities of Types p̂it1 for K = 2
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a. Distribution of pit1 (Type 1) b. Distribution of pit2 (Type 2).

The classification of types is reasonably good for K = 2 in the Rural and Urban districts
sub-samples. This is also true in the full sample including all districts.
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Choice of K ; Information Criteria and Quality of Classification

Fig. 10. Estimated Posterior Probabilities of Types, K = 3
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Choice of K ; Information Criteria and Quality of Classification

Conclusion

We studied observations of a network of Home Care Services (in panel
form).

Standard econometric techniques have revealed the existence of
economies of density : transportation cost per hour of service
decreases when hours of service increase at the district level.

Economies of density are the result of group synergies at the level of
local branches (i.e., districts).

The finite mixture approach to estimation shows that the observed
U-shaped average cost curves are in fact an average of
type-dependent curves.

We find that the best modelling choice is to keep only two types.

One of the two types only is responsible for the economies of density
observed in the aggregate.
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Appendix 1 : Simplest Model. OLS

Fig. A1. Km/Hours of Service Ratio at the County (i.e.,
département Level
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Appendix 1 : Simplest Model. OLS

Table A1 : OLS. Pooled Data. Log-Travelled Kilometers `it

(1) (2) (3) (4∗)

hit 1.013∗∗∗ 1.049∗∗∗ . .
(0.025) (0.025)

hit ∗ Full Time . . 1.127∗∗∗ 1.255∗∗∗

(0.037) (0.045)
hit ∗ 80%Time . . 1.046∗∗∗ 1.113∗∗∗

(0.022) (0.027)
hit ∗ Part Time . . 0.972∗∗∗ 0.973∗∗∗

(0.040) (0.052)

Full Time 0.663∗∗∗ 0.642∗∗∗ -0.070 -0.692∗

(0.023) (0.024) (0.250) (0.307)
80%Time 0.470∗∗∗ 0.392∗∗∗ 0.146 -0.222

(0.018) (0.018) (0.197) (0.262)
Constant (ref. Part Time) -0.259∗ -0.259 -0.093∗∗∗ 0.601

(0.104) (0.572) (0.168) (1.784)
District dummies & controls NO YES NO YES

Observations 56,878 56,830 56,878 56,830
∗Clusters no no no 3686
R2 0.28 0.57 0.28 0.57
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Appendix A2 : Simplest Panel Analysis at the District Level

A2 Econometrics : Panel Analysis at the District Level

If we aggregate (take averages of) all kilometers and hours at the
district level (i.e., we average variables over all employees i belonging
to district s at time t), we obtain the model,

¯̀
st = α + β3h̄st + X̄stδ + ūst ,

where ¯̀
st denotes the average traveled kms of employees, per month,

in district s, month t.

and where h̄st is the average hours of service of employees, per
month, in district s, month t...

Interpretation : β3 ' β1 + β2, and β3 represents team synergies at the
district level.
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Appendix A2 : Simplest Panel Analysis at the District Level

Table A2 : District-Level Panel-Data Estimates

(1) (2) (3) (4)
OLS OLS Fixed Effects First Differences

hs 0.774∗∗∗ . . .
(0.110) (.) (.) (.)

hst . 0.498∗∗∗ 0.515∗∗∗ .
(.) (0.046) (0.051) (.)

hst − hs 0.502∗∗∗ . . .
(0.097) (.) (.) (.)

∆h̄st . . . 0.429∗∗∗

(.) (.) (.) (0.057)
Constant 1.265∗∗ 1.641∗∗∗ 2.465∗∗∗ -0.000

(0.513) (0.217) (0.237) (0.005)
District Dummies NO YES NO NO

Observations 3,117 3,117 3,117 3,065
Groups . . 98 .
R2 0.027 0.891 . 0.072

Note : Regressions (1), (2) and (4) are weighted, with weights nst equal to the number
of employees in district s in period t. The within estimator of column (3) is also
weighted, by the average number n̄s of employees in district s.
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Appendix 3 : The Beardwood-Halton-Hammersley Theorem

A3. The Beardwood-Halton-Hammersley Theorem (1959)

The Beardwood-Halton-Hammersley Theorem is a famous result in
Applied Probability and Combinatorial Optimization.

Suppose there are ν points, (x1, . . . , xν) drawn at random and i.i.d.
on [0, 1]2. Let L(x1, . . . , xν) denote the minimal length in the set of all
tours joining the ν points.

BHH Theorem. If (xi ), i = 1, . . . , ν are i.i.d. and distributed on
X ⊂ [0, 1]2 with a nonzero area, then there exists a constant ρ s.t.,
with probability 1,

L(x1, . . . , xν)√
ν

→ ρ as the number of visits→∞.

This suggests that if the carers’ tours are organized efficiently, then,

L

H
' A(X )√

H
or, taking logs, ` = α(X ) +

h

2
+ ε.
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Appendix 3 : The Beardwood-Halton-Hammersley Theorem

Table A3 : “Test” of the BHH Theorem. Total hours and
Km

(1) (2) (3)
OLS OLS FE

Dependent Variable : ln(
∑

t∈Ti
Lit) ln(

∑
i∈Ast

Lit) ln(
∑

i∈Ast
Lit)

ln(
∑

t∈Ti
Hit) 0.987∗∗∗ . .

(0.016) (.) (.)
ln(

∑
i∈Ast

Hit) . 0.438∗∗∗ 0.561∗∗∗

(.) (0.035) (0.090)
Constant -0.504∗ 4.130∗∗∗ 3.897∗∗∗

(0.195) (0.274) (0.699)
District Dummies YES YES NO

Observations 3,687 3,117 3,117
Groups . . 98
R2 0.831 0.950 .

Note : Regressions (2) and (3) are weighted. Weights are nst for (2) and n̄s for (3).
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Appendix 4. Likelihood, EM and ML Estimation

Econometrics A4. Log-Likelihood

First we write the contribution to likelihood of (i , t) with avatar k,

Λitk =

(
1

σk

)
f

(
εitk
σk

)
,

where f is the standard normal density.

(i , t)’s contribution to likelihood is then

Λit =
K∑

k=1

pkΛitk .

The log-likelihood can be written,

ln Λ =
N∑
i=1

∑
t∈Ti

ln

(
K∑

k=1

pkΛitk

)
,

where Ti is the set of dates t such that i is observed.
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Appendix 4. Likelihood, EM and ML Estimation

Econometrics A4. Estimation by EM and ML

We use a sequential EM algorithm to obtain preliminary estimates of
all parameters. The model is then estimated by straightforward
Maximum Likelihood.

The EM algorithm is of the type discussed in the work of Jean-Marc
Robin and others. (See e.g., Arcidiacono and Jones (2003),
Bonhomme and Robin (2009), Gary-Bobo, Goussé and Robin (2016).)

A side-product of the algorithm is the classification of each (i , t),
given by pitk . We apply Bayes’s rule to obtain the posterior
probabilities :

pitk =
pkΛitk∑K
j=1 pjΛitj

= Pr[it ∈ k|hit , `it ,Xit ].

We find that it is not useful to estimate more than three types : we
have K = 2 or K = 3.
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Econometrics A4. ML estimates of the quadratic model

To estimate prior probabilities, we use a classic parametrization.
Define (r1, . . . , rK ) such that

pk =
erk∑K
j=1 erj

with r1 = 0.

We present first ML estimates for one two or three types. A huge
increase in the likelihood is achieved when we move from K = 1 to
K = 2.

We also estimated the model with two distinct sub-samples : urban
and rural districts (results presented below).
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Table A4. ML Estimation of Model B with K = 1, 2, 3

(K , k) (1,1) (2,1) (2,2) (3,1) (3,2) (3,3)

h̄st −0.168 −8.125∗∗∗ 0.071 −8.666∗∗∗ −0.375 5.908∗∗

(0.600) (0.812) (0.915) (1.088) (0.670) (2.081)

h̄2
st −0.067 0.798∗∗∗ −0.127 0.830∗∗∗ −0.023 −0.786∗∗

(0.066) (0.088) (0.102) (0.119) (0.074) (0.229)

hit 1.460∗∗∗ 1.118∗∗∗ 2.268∗∗∗ 0.983∗∗∗ 1.734∗∗∗ 2.616∗∗∗

(0.010) (0.010) (0.033) (0.012) (0.025) (0.052)

1/nst −0.447∗∗∗ 0.522∗∗∗ −1.468∗∗∗ 3.220∗∗∗ −0.173 −1.857∗∗∗

(0.096) (0.105) (0.233) (0.189) (0.106) (0.329)

Constant 0.323 20.495∗∗∗ −3.987 23.076∗∗∗ −1.068 −18.901∗∗∗

(1.376) (1.876) (2.062) (2.497) (1.513) (4.774)

σk 1.057∗∗∗ 0.688∗∗∗ 1.211∗∗∗ 0.590∗∗∗ 0.679∗∗∗ 1.262∗∗∗

(0.003) (0.004) (0.009) (0.006) (0.010) (0.015)

rk . 0 −0.866∗∗∗ 0 0.069 −0.886∗∗∗

(.) (0) (0.034) (0) (0.045) (0.061)

pk 1 0.704 0.296 0.403 0.431 0.166

Log-Lik −84, 254 −79, 507 −78, 522
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Choice of the Number of Types
Quality of Classification

The choice of the appropriate number of types K is a delicate
question.

The log-likelihood always increases with K (but the curve is concave
as a function of K ).

We can use the usual information criteria : the Akaike Information
Criterion (AIC) and the Bayesian Information Criterion (BIC).

AIC tends to overestimate K (overfitting) and BIC tends to
underestimate K .

AIC and BIC do not penalize a model for a bad quality of
classification when K is large ...

so, we will also consider some Entropy Criteria (below).

Visual inspection of the distribution (histogram) of p̂itk for each type
k gives a good idea of the quality of classification...
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Entropy Criteria

The entropy of the model’s classification is defined as follows,

E(K ) = −
∑
i

∑
t∈Ti

K∑
k=1

p̂itk ln(p̂itk).

We can divide entropy by its maximum value N ln(K ), yielding

0 ≤ E(K ) =
E(K )

N ln(K )
≤ 1.

Celeux and others (e.g., Celeux and Soromenho (1996)) have
suggested the Normalized Entropy Criterion, defined for K > 1,

NEC (K ) =
E(K )

ln Λ(K )− ln Λ(1)
.
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Table A5. Information and Entropy Criteria : Choice of K

K 1 2 3 5 6 7 8

L(K) -82,468 -77,013 -75,819 -74,718 -74,497 -74,321 -74,143

BIC 165,112 154,388 152,186 150,357 150,100 149,935 149,765

AIC 164,698 154,093 151,738 149,605 149,196 148,880 148,557

E(K) 0 24,132 43,992 64,836 73,234 76,956 82,018

NEC . 4.424 6.616 8.366 9.187 9.446 9.852

E(K) 0 0.609 0.701 0.705 0.715 0.692 0.690

AHHI 1 0.733 0.529 0.397 0.345 0.330 0.306

H(K) . 0.466 0.293 0.246 0.214 0.218 0.206
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Note : Model B has been estimated by the EM algorithm repeatedly with
values of K ranging from K = 1 to K = 9. Model B has been estimated,
adding interactions of the K types with the indicators of three
subsamples : the Urban, Peri-Urban and Rural districts (that partition the
dataset). Parameters therefore vary not only with type, but also with the
three types of district.
L(K ) is the estimated Log-Likelihood with K types. BIC is the Bayesian
Information Criterion. AIC is Akaike’s Information Criterion. E(K ) is
entropy as defined above.
AHHI is the Average Hirschman-Herfindahl Index defined in the text.
H(K ) is the normalized Herfindahl index defined as follows.

AHHI(K ) =
1

N

n∑
i=1

∑
t∈Ti

K∑
k=1

p̂2
itk

In the case of Model B ; BIC seems to reach a minimum for K = 8 ; AIC
never reaches a minimum between K = 1 and K = 9 ; NEC is minimal for
K = 2. Most of the gains in terms of L(K ) are achieved with K = 2 or
K = 3.
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