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Introduction

Prescription drugs in the US can be:

1. Branded drugs: New molecules, protected by market

exclusivities (e.g. patents).

2. Generic drugs: Bioequivalent to the branded drug.

After loss of market exclusivity (LOE) of branded drug:

� Generics enter.

� Key driver of lower drug prices and spending.

Generic entry faces two hurdles (among others):

1. Regulatory delays

2. Competition from Authorized Generic
1
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Introduction: Entry delays

Generics cannot exactly control entry timing.

� Need FDA approval for product launch.

� Approval time = lengthy + stochastic.

� Entry delays blamed for high drug prices post-LOE.

� FDA has sped up the approval process, more mixed results

recently.

� Impact of faster approval rates on market outcomes?
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Introduction: Authorized Generics

Brand drug maker releases second product = “Authorized Generic”

(AG).

� Chemically identical to branded drug

� Without brand label attached

� Priced lower than brand drug.

� Does not need FDA approval, can be launched anytime.

� “Fighting brand strategy”

Impact of AGs on market outcomes and deterring generic

entry?

� FTC report in 2011.

� Generics advocated for AG ban, claiming entry deterrence.
3



Introduction Data Structural model Estimation Counterfactuals

Dynamics

Pricing pattern:

- Brand price: high

- AG and generic price: low

- Continuing generic entry → lower prices.

Figure 1: Market shares and prices for Diclofenac-Misoprostol-oral.
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Research questions

We study:

� Entry deterrence in this setting.

� Reduced generic entry delays → market outcomes.

� AGs → short/long-term market outcomes.

Method:

� Structural model of generic entry and AG release:

- Simple model capturing key mechanisms.

� Simulate impact of entry delays and AG presence.

5
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Contributions

Contributions:

1. Literature on modeling generic entry decisions: Ching (2010),
Starc and Wollmann (2023), etc.

- Tractable easy-to-solve model of generic entry.

- Can be used to study generic entry deterrence via post-LOE

actions of brand drug maker (e.g. product line extensions).

2. Small literature on Authorized Generics: Appelt (2015), FTC
(2011), Fowler et al (2023).

- First to build structural model of entry and competition

between generics and AG.

3. Nascent empirical IO literature on fighting brands: Bourreau

et al (2021)
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Data

Data from IQVIA for 2004-2016 on the US.

� Quarterly sales of each drug in US

� Revenue of each drug (gives us average price)

� Formulation of product (oral, injectable, etc.)

� Active ingredients/molecule composition

Data on Authorized Generics hand-collected.
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Descriptive statistics

Define markets at the molecule-formulation (molform) level.

After data-cleaning:

� Prescription drugs.

� 241 molforms.

� 109 molforms see AG released.

� 53% of AGs released within one quarter of first generic

entrant.

� Most markets have 1-11 generics, with a maximum of 19.

Each molform has one brand and can have at most one AG.

Loss-of-Exclusivity (LOE) for a molform: earliest quarter with

generic presence in that molform.
8
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Generic entry rates

(a) Fraction of total generics

launching in every quarter since

LOE.

(b) Cumulative fraction of total

generics launching in every quarter

since LOE.

� Over 30% enter on LOE (anticipation + defn of LOE).

� However, majority of generic entry after LOE.

� By LOE + 20 qtrs, about 93% generics have entered.
9
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AG release timing

Figure 3: Histogram of time-difference between first generic entry and

AG release period.
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Structural model: Demand

Stage 1: Consumer chooses a group – brand, nonbrand, or

outside option.

The utility of consumer i for group g in molecule-formulation m at

time t is given by:

uigmt = γ
(1)
m + λ

(1)
t + α

(1)
i ln pgt + β

(1)
1i brandg+

β
(1)
2 brandg · time-since-loet + ξ

(1)
gt + ϵigt

where α
(1)
i ∼ N (α(1), σ2

α) and β
(1)
i ∼ N (β

(1)
1 , σ2

1)
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Structural model: Demand

If consumer chose nonbrand group in Stage 1, next chooses from

all the nonbrand drugs available.

Stage 2: The consumer chooses a specific non-brand product.

The utility of consumer i choosing non-brand product j in market

m at time t is given by:

uijt = γ
(2)
m(j) + α(2)ln pjt + β

(2)
1 AGj + ξ

(2)
jt + ϵijt

Given our assumptions, the market share of a single good can be

expressed as:

sj = sg(j)sj |g(j)
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Structural model: Supply

Model with two stages:

1. First stage: Generic firms decide whether to apply for entry
into a molecule-formulation.

� Static game of entry application, uncertain entry timing.

2. Second stage: LOE happens, then every period:

� Stochastic number of generics gain FDA approval.

� Brand drug maker decides whether to release AG.

� Price competition between brand, generics and AG.

� AG release: Single-agent dynamic timing decision.
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Supply: Second stage

Branded drug maker’s per-period profit:

πb(smt) = [Pb
mt −MCb

m]sb(smt)Mm+

1(AGmt = 1)

[
[PAG

mt −MCAG
m ]sAG (smt)Mm

]
Generic firm l ’s per-period profit:

πg (slmt) = (Pg
mt −MC g

m)sg (slmt)Mm

Per-period price competition:

� This paper: Regression predicting prices in different states.

� Reasons: US-quarter average price data; Nash-Bertand likely

an inaccurate approximation of complex multilateral

bargaining. 14



Introduction Data Structural model Estimation Counterfactuals

Supply: Second stage

nem = total generics that applied for FDA approval in market m.

� Determined in First Stage.

� Assumption: nem is known to everyone in t = 1.

At t = 2, LOE happens.

For every t ≤ T :

� Stochastic number of generics gain FDA approval.

� AG enters (irreversible) or stays out.

We set T = 32 quarters.

15



Introduction Data Structural model Estimation Counterfactuals

Supply: Second stage

Value function for branded drug maker:

V b(smt , εmt) = max
AGmt+1∈{0,1}

πb(smt)−1(AGmt = 0,AGmt+1 = 1)κAGm +

βE [V b(smt+1, εmt+1)|smt , εmt ] + εmt(AGmt+1)

Value function for generic l :

V g (slmt) = πg (slmt) + βE [V g (slmt+1)|slmt ]

After period T , per-period profits = 0.
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Supply: Second stage

Suppose by period t in market m, Nmt generics have already

received approval.

The probability that of the nem −Nmt remaining entrants, k will

receive approval in period t is given by:

Pe(k , nem,Nmt , t;λ) =

(
nem −Nmt

k

)
λ(t)k(1− λ(t))nem−Nmt−k

where λ(t) is estimated from data.

λ(t) measures regulatory frictions slowing down generic entry.
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Supply: First stage

In the First Stage, generic makers decide if they want to apply for

FDA approval.

For computational simplification, assume generic firms are ex-ante

identical.

Equilibrium generic entrants nem determined by:

V g (sgm0, nem) ≥ κgm > V g (sgm0, nem + 1)

where κgm is generic’s entry cost.
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Estimation

Demand: Berry et al (1995) and Maggio et al (2022)

Full supply-side model is solved by backward induction + checking

generic entry condition.

Generic entry costs: calibrated from publicly reported cost ranges.

($3m-$15m)

Marginal cost:

� Set MCm = ϑp̄gm, where p̄gm is the avg generic prices in m

� Estimate ϑ to match observed generic numbers.

� ϑ ↑ =⇒ profits ↓ =⇒ generic entry ↓
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Estimation

AG parameters:

� Logit scaling parameter: Maximum likelihood.

� AG entry cost: calibrated to 0, robust to sensitivity analysis.

Demand:

� Demand increases with: price ↓, brand, AG, brand x

time-since-LOE ↓
� RC variance ≈ 0.0 (true for a wide variety of specs)

Supply: ϑ ∈ [0.54 to 0.65], Logit scaling parameter = 586497.139

Demand: Stage 1 Demand: Stage 2 Price prediction regression
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Counterfactuals

Counterfactuals:

1. Reduced generic entry delays.

2. Ban on AG.

Method: Solve model for AG policy function and nem, simulate,

report average outcomes.

Profitability in post-LOE lifecycle:

� Early quarters after LOE most profitable.

� Few firms in the market → high markups and profits.

� With time, more generics enter, markups and profits ↓.
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Counterfactuals: Reduced entry delays

“Reduced entry delays” = Faster generic approval rates

Two opposing forces on a generic’s entry decision:

1. Launch earlier → more time to make profits.

2. Greater rival presence upon entry → prices ↓ → profits ↓.

In simulations: (2) dominates.

� Faster generic approval → weakly less generic entrants.

� Yet, prices lower in early periods.

� Prices may be higher in later periods.

Faster generic approval → weakly less AG entry.

� (1) not present for AG, only (2). 22
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Counterfactuals: AG ban

AG generally released soon after LOE. If AG banned:

1. One fewer competitor in early stages of market.

2. Greater generic entry.

Effect on prices due to AG ban:

� Early periods: Prices higher since AG no longer competing.

� Later periods: Ambiguous, could be lower if AG deters

multiple generics.

Why can AG ban incentivize > 1 additional generic?

� Less competition in most profitable stages of market.

23



Conclusion

Study interactions between generics and AG using a structural

model of entry timing.

Model may be used to study generic entry deterrence for a wider

variety of post-LOE actions by brand drug maker:

� Product line extensions/pruning

� Late-stage lifecycle indications

� Settlements, etc.



Results: Price prediction regression

Patient-facing: Channels where patient + insurer + physician

make product choice.

Non-patient-facing: Channels where the patient does not generally

get a say in the product being chosen.



Results: Price prediction regression

Patient-facing Non-patient-facing

formulation: Injectable 2.118 –

(0.136) (–)

formulation: Oral -1.308 –

(0.112) (–)

No. of nonbrand drugs -0.269 -0.298

(0.009) (0.016)

No. of nonbrand drugs squared 0.008 0.010

(4.843e-04) (0.001)

Brand 0.123 -0.076

(0.031) (0.041)

Brand * time-since-generic-entry 0.017 -0.005

(0.001) (0.002)

Brand * No. of nonbrand drugs 0.232 0.231

(0.004) (0.008)

Brand * Authorized generic present 0.041 0.774

(0.031) (0.064)

Results



Results from demand estimation Results

Patient-facing Non-patient-facing

ln(price) -1.004 -2.781

(0.033) (0.244)

Brand 0.799 1.033

(0.069) (0.250)

Brand * time-since-generic-entry -0.095 -0.008

(0.007) (0.014)

RC std: Brand -5.946e-07 -1.812e-07

(6.120) (6.598)

RC std: Price 3.434e-07 -2.025e-07

(4.778) (11.838)

Table 1: Results of demand estimation for Stage 1.



Results from demand estimation Results

Patient-facing Non-patient-facing

Authorized Generic 0.857 0.067

(0.077) (0.186)

ln(price) -0.647 -1.286

(0.023) (0.068)

Table 2: Results of demand estimation for Stage 2.



Estimation of generic entry rates Results

� For each molecule-formulation and quarter-since-LOE,

calculate the number of generics waiting to enter, i.e. final

number of generics observed in that molecule-formulation

minus the current number of generics present in the

molecule-formulation.

� Sum this number across all molecule-formulations at a given

quarter-since-LOE to get the remaining entrants for every

quarter since loss-of-exclusivity in our dataset.

� Find the total generic entry that happens in every each

molecule-formulation and quarter since loss-of-exclusivity.



Estimation of generic entry rates Results

� Sum this number across all molecule-formulations at a given

quarter-since-LOE to get the total generic entry for every

quarter-since-LOE in our dataset.

� Taking the ratio of total generic entry by remaining entrants

at every quarter-since-LOE gives us the average generic

launch rates at every quarter-since-LOE.

� In our calculation of generic entry rates, we limit the generic

entries to those happening on or before 17 quarters.

� Given how we calculate generic entry rates, this mechanically

imposes that as a market moves very close to 17 quarters, the

generic entry rate rises up to 1.0.

� For instance, in the 17th quarter, the total generic entry must

equal the total remaining generics.
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