
Human-AI Collabora�on in Healthcare
Nikhil Agarwal (MIT)

Health Economics Conference, TSE

June 19, 2025

1/36



AI in Healthcare
Rapid development of Ar�ficial Intelligence (AI) tools for Healthcare
I Clinical decision support [diagnos�c and treatment recommenda�ons]
I Opera�onal efficiency [ER triage, alloca�on of resources]
I Drug discovery [vaccine and gene therapy design]
. . .
I New Applica�ons [personalized medicine, virtual assistants]

X Interest in Medicine, CS, and Economics [Mullainathan & Obermeyer, 2021;
Rajpurkar et al., 2017; Lakkaraju & Farronato, 2023; Goh et al., 2024 . . . ]

Classifica�on problems are common in medicine
I Radiology is an iconic example:

“We should stop training radiologists now. It’s just completely obvious that
within five years, deep learning is going to do be�er than radiologists”—Geoffrey Hinton (in 2016)

[see also Obermeyer and Emmanuel, NEJM 2016]
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Will AI Replace Radiologists?
“The right answer is: Radiologists who use AI will replace radiologists who
don’t.” — Cur�s Langlotz (2019)
I Par�al task automa�on [radiologists can diagnose the “long-tail” of diseases]
I Radiologists can master new imaging technology
I AI assistance can help radiologists

“Focus is placed on the performance of the human-AI team”
– Joint statement by US FDA, and Canada and UK MHRA

I Approval of autonomous diagnos�c AI is rare
I Presump�on of human oversight, except for low-risk applica�ons
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Humans vs AI, or Collabora�on?
Ques�ons:

1. What are the rela�ve strengths and weaknesses of humans and AI?

2. How should we design human-AI collabora�on?
Humans’ poten�al strengths in diagnos�c imaging

1. Have access to valuable informa�on (non-systema�c) data
2. Diagnosing the “long-tail”

Designing Human-AI Collabora�on
I How do humans incorporate AI informa�on?
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An Experiment on Human-AI Collabora�on
I Largest experiment with radiologists’ use of AI [Agarwal et.al., 2023; R&R ECMA]

− 227 radiologists, approx 90 cases with X-rays
− AI assistance from CheXperT [Irvin et al., 2019]
− 2 x 2 design varying AI assistance and clinical history

Alex Moehring (Purdue) Pranav Rajpurkar (HMS) Tobias Salz (MIT)

I Collaborators:
− Radiologists at Mt. Sinai (NYC), Stanford, VINBrain
− Three US teleradiology companies
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Research Ques�ons
1. Today’s Focus: How should human-AI collabora�on be designed? [Agarwal

et.al., 2023; R&R ECMA]
i. Measure predic�ve value of contextual informa�onii. Measure biases in belief upda�ng rela�ve to Bayesian benchmarkiii. Solve op�mal collabora�on between humans and machines

τ : sA → {Human, AI, Human+AI}

2. Other Results:
i. Which types of radiologists use AI assistance well? [Yu et al., 2024; Nature

Medicine]
ii. Are humans be�er at predic�ng the long tail? [Agarwal et al., 2024; AEA:

P&P]
iii. A public dataset [Moehring et al., 2025; Scien�fic Data]
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Outline
Experiment Design
Effects on Predic�ve Performance
Biased Belief Upda�ng and Op�mal Delega�on
Heterogeneity Across Radiologists
Long Tail
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Overview of the Experimental Design
2 x 2 (x 2) Design

Treatment Dimension 1: Access to AI predic�on (AI)
Treatment Dimension 2: Clinical History (CH)
(Treatment Dimension 3: Incen�ves for Accuracy [BSR: Hossain and Okui, 2013])

Radiologists par�cipate remotely through tailormade interface
I Mimics clinical prac�ce but generates structured quan�fiable report
I In collabora�on with radiologists at Stanford and Mt. Sinai (NYC)
I 324 historical cases from Stanford Healthcare System with Chest-X-ray andclinical history, manually reviewed for public release
X Structured data entry v. free text report

9/36



Interface
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Treatment Dimension 1: AI Algorithm
CheXperT
I Trained on reports from
≥ 250, 000 chest X-rays

I Probabili�es for 14 pathologies
I Performance matches boardcer�fied Stanford radiologists

→ AI treatments: access to CheXperT’s probability of disease presence.
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Treatment Dimension 2: Clinical history
Provided informa�on
I Vitals
I Demographic variables
I Indica�ons
I Labs
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Diagnos�c Standard
Diagnos�c standard ωi constructed using aggregate assessment of experts
I Five board cer�fied chest radiologists from Mount Sinai Health Care System
I Follows the medical AI literature [Irving et al., 2019; McCluskey et al., 2021]

Defini�ve diagnos�c test typically unavailable
I Selec�ve labels problem when administered [e.g. Mullainathan and Obermeyer,

2022]

Baseline uses cutoff at p̄ = 0.5 [Wallsten and Diederich, 2001]
I Robust to log-odds averaging Defini�on
I Robustness to comparisons with p̄
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Experimental Design
Challenges:
I Compare w/ Bayesian benchmark→ need linked assessments w/ and w/o AI
I Power→ Expensive subject pool (≈ $10 a case)

Approach: Hybrid design that collects both within and across subject data
1. All radiologists are exposed to all treatments

X Enables within comparisons
X Across-radiologist comparison based on first treatment

2. Subset of radiologists read the same case both with and without AI
X Allows es�ma�ng and comparing with Bayesian benchmark
X Two-week wash-out period to address memory
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Primary Across Design
Simple across design with a within subject component
X Clear across design
X Within subject comparison hedges power
I Two varia�ons targeted for es�ma�ng biases in belief upda�ng

XO

Set 1

CH

Set 2

AI

Set 3
AI + CH

Set 4
Track 1

CH

Set 1
...Track 2

AI

Set 1
Track 3

AI + CH

Set 1

Track 24

Initial randomization into tracks

60 reads per track

15 reads per set

Within subject comparison,

no image encountered twice

... ...

... ... ...

... ... ...

Random assignment to

remaining treatments and sets.
.
.
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AI Performance
Radiologists and AI performance:
I Algorithm performs be�er than most radiologists in our sample
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Treatment Effect — Devia�on from Diagnos�c Standard
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Devia�on from GT — CATE of AI
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Biases in Belief Upda�ng
Describe via [building on Grether 1980, 1992]:
Decision-relevant posterior log-odds︷ ︸︸ ︷

ln
p(ω = 1|sA, sE)

p(ω = 0|sA, sE)
= b ·

Update from AI︷ ︸︸ ︷
ln
π(sA|ω = 1, sE)

π(sA|ω = 0, sE)
+

Own-informa�on log-odds︷ ︸︸ ︷
ln
π(sE |ω = 1)

π(sE |ω = 0)
+ k

I Bayesian with correct beliefs =⇒ b = 1

Terminology:
I Automa�on bias/neglect: b ≶ 1

I Neglect signal dependence: Update term doesn’t condi�on on sE
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Biases in Belief Upda�ng
Analysis in the paper

1. Theore�cal
i. AI improves performance if only automa�on neglect is at playii. Op�mal delega�on problem sensi�ve to signal distribu�ons in other cases

2. Empirical methods
i. Solve challenges in es�ma�ng empirical analog in observa�onal se�ngii. Develop model selec�on method to iden�fy type of bias

3. Results
i. Two biases: Automa�on neglect and signal dependence neglectii. Selected model replicates treatment effect pa�erns

X Poten�al gains from human-AI collabora�on undercut by biases
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Op�mal Delega�on Problem
Op�mal delega�on solu�on τ∗(sA,i) ∈ {Full Auto, No AI, AI assist} to

min
τ∈{H,H+AI,AI}

Decision Loss in $︷ ︸︸ ︷
mVτ (sA,i) +

Effort cost in $︷ ︸︸ ︷
wCτ (sA,i)

I Measure C(·) in minutes from experiment
I Opportunity cost of radiologist �me w = $4 per minute

Unknowns
I m – calculate fron�er of Viτ∗ and Ciτ∗

I Virτ – experiment allows es�ma�ng (central) crel for each pathology
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Delega�on Solu�on

Bayesians
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→ Humans are more likely to work alongside AI than with AI [Goh et al., 2024;
Agarwal. Moehring, Wolitzky, 2025]

I Poten�al benefits from training→ See Bayesian solu�on
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Which radiologists benefit from AI assistance?
Yu, Moehring, Banerjee, Agarwal, Salz, Rajpurkar, Nature Medicine, 2024

Hypothesis: Large benefits from personalized delega�on
X Predict which radiologists do be�er with AI

Experiment collects data on
I Experience
I Prior experience with AI
I Board cer�fica�ons and subspecialty

Caveat: 227 radiologists
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(Un-)Predictability of Benefits from AI
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Is AI an equalizer?
I Do lower-skilled radiologists benefit more? [e.g. Noy and Zhang, 2023]

Yi(AI)− Yi(No AI) = βYi(No AI) + εi

I Measurement error in Yi(No AI) biases β →Mean reversion
I Split samplemeasure of Yi(No AI) finds no rela�onship
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The Long Tail Hypothesis
Agarwal, Huang, Moehring, Rajpurkar, Salz, Yu, AEA: P&P, 2024

Supervised deep learning requires large labeled training datasets [see LeCun,
Bengio, Hinton, 2015, for a review]
I Few annotated examples of rare cases even in very large datasets

Humansmay be able to learn from limited examples [e.g. Kühl et al, 2020;
Malaviya et al., 2022]
I Training data used in supervised learning outstrips human experience

− CheXpert model is trained on≈ 220, 000 radiographs
X Assuming three mins per case, a human review would take> 6.5 years ofFTE work

Zero-shot learning algorithms a�empt to bridge this gap
I Self-supervised, mimics human inputs and outputs
I Do not require annotated labels
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CheXpert vs CheXzero
CheXpert is a supervised learning algorithm
I Predicts 12 binary labels

CheXzero is self-supervised that uses text reports [Tiu et al., 2022]
I Predic�ons based on comparing a posi�ve and a nega�ve prompt
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Performance by Prevalence

Low Prevalence 
[0, 0.02)

Medium Prevalence 
 [0.02, 0.055)

High Prevalence 
 [0.055, 1)

0.4

0.5

0.6

0.7

0.8

M
ea

n 
Co

nc
or

da
nc

e

Radiologists
CheXzero
CheXpert

I CheXpert is substan�ally more accurate when prevalence is high
I CheXzero and radiologists have more similar performance across prevalence
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The Long Tail
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I Zero-shot algorithms match or surpass human performance throughout
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Concluding: Human-AI in Healthcare
Main findings in Radiology:

1. Biased upda�ng undercuts human-AI collabora�on→ Human or AI
2. AI capabili�es con�nue to improve

Humans do more than classifica�on in Healthcare:
I Example: Diagnosis versus treatment
I Where are there complementari�es?

Beyond Healthcare:
I Organiza�onal incen�ves
I Training humans to use AI
I Specializa�on and complementari�es
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Thank You

email: agarwaln@mit.edu
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