### Human-AI Collaboration in Healthcare

Nikhil Agarwal (MIT)

Health Economics Conference, TSE

June 19, 2025

. . .

#### Rapid development of Artificial Intelligence (AI) tools for Healthcare

- Clinical decision support [diagnostic and treatment recommendations]
- Operational efficiency [ER triage, allocation of resources]
- Drug discovery [vaccine and gene therapy design]

New Applications [personalized medicine, virtual assistants]

. . .

#### Rapid development of Artificial Intelligence (AI) tools for Healthcare

- Clinical decision support [diagnostic and treatment recommendations]
- Operational efficiency [ER triage, allocation of resources]
- Drug discovery [vaccine and gene therapy design]
- New Applications [personalized medicine, virtual assistants]
- ✓ Interest in Medicine, CS, and Economics [Mullainathan & Obermeyer, 2021; Rajpurkar et al., 2017; Lakkaraju & Farronato, 2023; Goh et al., 2024...]

. . .

#### Rapid development of Artificial Intelligence (AI) tools for Healthcare

- Clinical decision support [diagnostic and treatment recommendations]
- Operational efficiency [ER triage, allocation of resources]
- Drug discovery [vaccine and gene therapy design]
- New Applications [personalized medicine, virtual assistants]
- ✓ Interest in Medicine, CS, and Economics [Mullainathan & Obermeyer, 2021; Rajpurkar et al., 2017; Lakkaraju & Farronato, 2023; Goh et al., 2024...]

#### Classification problems are common in medicine

. . .

#### Rapid development of Artificial Intelligence (AI) tools for Healthcare

- Clinical decision support [diagnostic and treatment recommendations]
- Operational efficiency [ER triage, allocation of resources]
- Drug discovery [vaccine and gene therapy design]
- New Applications [personalized medicine, virtual assistants]
- ✓ Interest in Medicine, CS, and Economics [Mullainathan & Obermeyer, 2021; Rajpurkar et al., 2017; Lakkaraju & Farronato, 2023; Goh et al., 2024...]

#### Classification problems are common in medicine

Radiology is an iconic example:

"We should stop training radiologists now. It's just completely obvious that within five years, deep learning is going to do better than radiologists" — Geoffrey Hinton (in 2016)

[see also Obermeyer and Emmanuel, NEJM 2016]

# Will AI Replace Radiologists?

"The right answer is: Radiologists who use AI will replace radiologists who don't."

#### — Curtis Langlotz (2019)

- Partial task automation [radiologists can diagnose the "long-tail" of diseases]
- Radiologists can master new imaging technology
- Al assistance can help radiologists

# Will AI Replace Radiologists?

"The right answer is: Radiologists who use AI will replace radiologists who don't."

#### — Curtis Langlotz (2019)

- Partial task automation [radiologists can diagnose the "long-tail" of diseases]
- Radiologists can master new imaging technology
- Al assistance can help radiologists

"Focus is placed on the performance of the human-AI team"

- Joint statement by US FDA, and Canada and UK MHRA

- Approval of autonomous diagnostic AI is rare
- Presumption of human oversight, except for low-risk applications

**Questions:** 

1. What are the relative strengths and weaknesses of humans and AI?

#### **Questions:**

- 1. What are the relative strengths and weaknesses of humans and AI?
- 2. How should we design human-AI collaboration?

#### **Questions:**

- 1. What are the relative strengths and weaknesses of humans and AI?
- 2. How should we design human-AI collaboration?

Humans' potential strengths in diagnostic imaging

- 1. Have access to valuable information (non-systematic) data
- 2. Diagnosing the "long-tail"

#### **Questions:**

- 1. What are the relative strengths and weaknesses of humans and AI?
- 2. How should we design human-AI collaboration?

Humans' potential strengths in diagnostic imaging

- 1. Have access to valuable information (non-systematic) data
- 2. Diagnosing the "long-tail"

**Designing** Human-AI Collaboration

How do humans incorporate AI information?

# An Experiment on Human-AI Collaboration

Largest experiment with radiologists' use of Al [Agarwal et.al., 2023; R&R ECMA]

- 227 radiologists, approx 90 cases with X-rays
- Al assistance from CheXperT [Irvin et al., 2019]
- 2 x 2 design varying AI assistance and clinical history



Alex Moehring (Purdue) Pranav Rajpurkar (HMS) Tobias Salz (MIT)

# An Experiment on Human-AI Collaboration

Largest experiment with radiologists' use of Al [Agarwal et.al., 2023; R&R ECMA]

- 227 radiologists, approx 90 cases with X-rays
- Al assistance from CheXperT [Irvin et al., 2019]
- 2 x 2 design varying AI assistance and clinical history



Alex Moehring (Purdue) Pranav Rajpurkar (HMS) Tobias Salz (MIT)

#### Collaborators:

- Radiologists at Mt. Sinai (NYC), Stanford, VINBrain
- Three US teleradiology companies

## **Research Questions**

- 1. Today's Focus: How should human-AI collaboration be designed? [Agarwal et.al., 2023; R&R ECMA]
  - i. Measure predictive value of contextual information
  - ii. Measure biases in belief updating relative to Bayesian benchmark
  - iii. Solve optimal collaboration between humans and machines

 $\tau: s^A \to \{\text{Human, AI, Human+AI}\}$ 

# **Research Questions**

- 1. Today's Focus: How should human-AI collaboration be designed? [Agarwal et.al., 2023; R&R ECMA]
  - i. Measure predictive value of contextual information
  - ii. Measure biases in belief updating relative to Bayesian benchmark
  - iii. Solve optimal collaboration between humans and machines

 $\tau: s^A \to \{\text{Human, AI, Human+AI}\}$ 

#### 2. Other Results:

- i. Which types of radiologists use AI assistance well? [Yu et al., 2024; Nature Medicine]
- ii. Are humans better at predicting the long tail? [Agarwal et al., 2024; AEA: P&P]
- iii. A public dataset [Moehring et al., 2025; Scientific Data]

## Outline

**Experiment Design** 

**Effects on Predictive Performance** 

**Biased Belief Updating and Optimal Delegation** 

Heterogeneity Across Radiologists

Long Tail

## Outline

#### **Experiment Design**

Effects on Predictive Performance

Biased Belief Updating and Optimal Delegation

Heterogeneity Across Radiologists

Long Tail

# Overview of the Experimental Design

### 2 x 2 (x 2) Design

Treatment Dimension 1: Access to AI prediction (AI)

Treatment Dimension 2: Clinical History (CH)

(Treatment Dimension 3: Incentives for Accuracy [BSR: Hossain and Okui, 2013])

Radiologists participate remotely through tailormade interface

- Mimics clinical practice but generates structured quantifiable report
- In collaboration with radiologists at Stanford and Mt. Sinai (NYC)
- 324 historical cases from Stanford Healthcare System with Chest-X-ray and clinical history, manually reviewed for public release
- ✓ Structured data entry v. free text report

## Interface



#### **Airspace Opacity**



# **Treatment Dimension 1: AI Algorithm**

#### CheXperT

- Trained on reports from  $\geq 250,000$  chest X-rays
- Probabilities for 14 pathologies
- Performance matches board certified Stanford radiologists



 $\rightarrow$  AI treatments: access to CheXperT's probability of disease presence.

# **Treatment Dimension 2: Clinical history**

#### **Provided information**

- Vitals
- Demographic variables
- Indications

Labs

#### Indication

30 years of age, Female, history of hypertension, abnormal EKG, abdominal pain, evaluate for cardiomegaly or mediastinal widening.

| Vitals                 |              |      |      |
|------------------------|--------------|------|------|
| Variable               | Value        |      |      |
| Weight                 | 170 lbs      |      |      |
| BP                     | 243/166 mmHg |      |      |
| Temp                   | 99.1F        |      |      |
| Pulse                  | 99.0 bpm     |      |      |
| Age                    | 30           |      |      |
| Abnormal Labs All Labs |              |      |      |
| Variable               | Value        | Unit | Flag |
| ALT (SGPT), Ser/Plas   | 38.0         | U/L  | High |
| AST (SGOT), Ser/Plas   | 39.0         | U/L  | High |
| Eosinophil, Absolute   | 0.01         | K/uL | Low  |

# **Diagnostic Standard**

Diagnostic standard  $\omega_i$  constructed using aggregate assessment of experts

- Five board certified chest radiologists from Mount Sinai Health Care System
- Follows the medical AI literature [Irving et al., 2019; McCluskey et al., 2021]

#### Definitive diagnostic test typically unavailable

Selective labels problem when administered [e.g. Mullainathan and Obermeyer, 2022]

# **Diagnostic Standard**

Diagnostic standard  $\omega_i$  constructed using aggregate assessment of experts

- Five board certified chest radiologists from Mount Sinai Health Care System
- Follows the medical AI literature [Irving et al., 2019; McCluskey et al., 2021]

#### Definitive diagnostic test typically unavailable

Selective labels problem when administered [e.g. Mullainathan and Obermeyer, 2022]

Baseline uses cutoff at  $\bar{p} = 0.5$  [Wallsten and Diederich, 2001]

- Robust to log-odds averaging Definition
- Robustness to comparisons with  $\bar{p}$

# **Experimental Design**

#### **Challenges:**

- ▶ Compare w/ Bayesian benchmark → need linked assessments w/ and w/o AI
- Power  $\rightarrow$  Expensive subject pool ( $\approx$  \$10 a case)

Approach: Hybrid design that collects both within and across subject data

- 1. All radiologists are exposed to all treatments
  - ✓ Enables within comparisons
  - $\checkmark~$  Across-radiologist comparison based on first treatment
- 2. Subset of radiologists read the same case both with and without AI
  - ✓ Allows estimating and comparing with Bayesian benchmark
  - Two-week wash-out period to address memory

## **Primary Across Design**

Simple across design with a within subject component

- ✓ Clear across design
- Within subject comparison hedges power
- Two variations targeted for estimating biases in belief updating



## **AI Performance**

#### **Radiologists and AI performance:**

Algorithm performs better than most radiologists in our sample



## Outline

**Experiment Design** 

**Effects on Predictive Performance** 

Biased Belief Updating and Optimal Delegation

Heterogeneity Across Radiologists

Long Tail

# Treatment Effect — Deviation from Diagnostic Standard



## Treatment Effect — Deviation from AI



19/36

Table

## Deviation from GT - CATE of AI



## Outline

**Experiment Design** 

Effects on Predictive Performance

#### **Biased Belief Updating and Optimal Delegation**

Heterogeneity Across Radiologists

Long Tail

Describe via [building on Grether 1980, 1992]:

 $\overbrace{\ln \frac{p(\omega = 1|s_A, s_E)}{p(\omega = 0|s_A, s_E)}}^{\text{Decision-relevant posterior log-odds}} = b \cdot \overbrace{\ln \frac{\pi(s_A|\omega = 1, s_E)}{\pi(s_A|\omega = 0, s_E)}}^{\text{Update from AI}} + \overbrace{\ln \frac{\pi(s_E|\omega = 1)}{\pi(s_E|\omega = 0)} + k}^{\text{Own-information log-odds}}$ 

• Bayesian with correct beliefs  $\implies b = 1$ 

Describe via [building on Grether 1980, 1992]:

 $\underbrace{\ln \frac{p(\omega = 1|s_A, s_E)}{p(\omega = 0|s_A, s_E)}}_{\text{Decision-relevant posterior log-odds}} = b \cdot \underbrace{\ln \frac{\pi(s_A|\omega = 1, s_E)}{\pi(s_A|\omega = 0, s_E)}}_{\text{Update from AI}} + \underbrace{\ln \frac{\pi(s_E|\omega = 1)}{\pi(s_E|\omega = 0)} + k}_{\text{Own-information log-odds}}$ 

• Bayesian with correct beliefs  $\implies b = 1$ 

Terminology:

- Automation bias/neglect:  $b \leq 1$
- Neglect signal dependence: Update term doesn't condition on s<sub>E</sub>

Analysis in the paper

- 1. Theoretical
  - i. Al improves performance if only automation neglect is at play
  - ii. Optimal delegation problem sensitive to signal distributions in other cases

Analysis in the paper

- 1. Theoretical
  - i. Al improves performance if only automation neglect is at play
  - ii. Optimal delegation problem sensitive to signal distributions in other cases
- 2. Empirical methods
  - i. Solve challenges in estimating empirical analog in observational setting
  - ii. Develop model selection method to identify type of bias

#### Analysis in the paper

- 1. Theoretical
  - i. Al improves performance if only automation neglect is at play
  - ii. Optimal delegation problem sensitive to signal distributions in other cases
- 2. Empirical methods
  - i. Solve challenges in estimating empirical analog in observational setting
  - ii. Develop model selection method to identify type of bias
- 3. Results
  - i. Two biases: Automation neglect and signal dependence neglect
  - ii. Selected model replicates treatment effect patterns
# **Biases in Belief Updating**

#### Analysis in the paper

- 1. Theoretical
  - i. Al improves performance if only automation neglect is at play
  - ii. Optimal delegation problem sensitive to signal distributions in other cases
- 2. Empirical methods
  - i. Solve challenges in estimating empirical analog in observational setting
  - ii. Develop model selection method to identify type of bias
- 3. Results
  - i. Two biases: Automation neglect and signal dependence neglect
  - ii. Selected model replicates treatment effect patterns
- ✓ Potential gains from human-AI collaboration undercut by biases

# **Optimal Delegation Problem**

Optimal delegation solution  $\tau^*(s_{A,i}) \in \{$ Full Auto, No AI, AI assist $\}$  to



- Measure  $C(\cdot)$  in minutes from experiment
- Opportunity cost of radiologist time w = \$4 per minute

#### Unknowns

- m calculate frontier of  $V_{i\tau^*}$  and  $C_{i\tau^*}$
- $V_{ir\tau}$  experiment allows estimating (central)  $c_{rel}$  for each pathology

### **Delegation Solution**



- → Humans are more likely to work alongside AI than with AI [Goh et al., 2024; Agarwal. Moehring, Wolitzky, 2025]
  - Potential benefits from training  $\rightarrow$  See Bayesian solution

### Outline

**Experiment Design** 

Effects on Predictive Performance

Biased Belief Updating and Optimal Delegation

Heterogeneity Across Radiologists

Long Tail

# Which radiologists benefit from AI assistance?

Yu, Moehring, Banerjee, Agarwal, Salz, Rajpurkar, Nature Medicine, 2024

#### Hypothesis: Large benefits from personalized delegation

 $\checkmark~$  Predict which radiologists do better with AI

# Which radiologists benefit from AI assistance?

Yu, Moehring, Banerjee, Agarwal, Salz, Rajpurkar, Nature Medicine, 2024

#### Hypothesis: Large benefits from personalized delegation

 $\checkmark~$  Predict which radiologists do better with AI

Experiment collects data on

- Experience
- Prior experience with AI
- Board certifications and subspecialty

Caveat: 227 radiologists

# (Un-)Predictability of Benefits from AI



### Is AI an equalizer?

Do lower-skilled radiologists benefit more? [e.g. Noy and Zhang, 2023]

 $Y_i(\mathsf{AI}) - Y_i(\mathsf{No}\:\mathsf{AI}) = \beta Y_i(\mathsf{No}\:\mathsf{AI}) + \varepsilon_i$ 

### Is AI an equalizer?

Do lower-skilled radiologists benefit more? [e.g. Noy and Zhang, 2023]

 $Y_i(\mathsf{AI}) - Y_i(\mathsf{No} \mathsf{AI}) = \beta Y_i(\mathsf{No} \mathsf{AI}) + \varepsilon_i$ 



• Measurement error in  $Y_i(No AI)$  biases  $\beta \rightarrow$  Mean reversion

Split sample measure of Y<sub>i</sub>(No AI) finds no relationship

### Outline

**Experiment Design** 

Effects on Predictive Performance

Biased Belief Updating and Optimal Delegation

Heterogeneity Across Radiologists

Long Tail

# The Long Tail Hypothesis

Agarwal, Huang, Moehring, Rajpurkar, Salz, Yu, AEA: P&P, 2024

# Supervised deep learning requires large labeled training datasets [see LeCun,

Bengio, Hinton, 2015, for a review]

Few annotated examples of rare cases even in very large datasets

# The Long Tail Hypothesis

Agarwal, Huang, Moehring, Rajpurkar, Salz, Yu, AEA: P&P, 2024

# **Supervised deep learning** requires large labeled training datasets [see LeCun, Bengio, Hinton, 2015, for a review]

Few annotated examples of rare cases even in very large datasets

**Humans** may be able to learn from limited examples [e.g. Kühl et al, 2020; Malaviya et al., 2022]

- Training data used in supervised learning outstrips human experience
  - CheXpert model is trained on  $\approx 220,000$  radiographs
  - $\checkmark~$  Assuming three mins per case, a human review would take > 6.5 years of FTE work

#### Zero-shot learning algorithms attempt to bridge this gap

- Self-supervised, mimics human inputs and outputs
- Do not require annotated labels

#### CheXpert vs CheXzero

CheXpert is a supervised learning algorithm

Predicts 12 binary labels

CheXzero training with chest X-ray image report

CheXzero is self-supervised that uses text reports [Tiu et al., 2022]

Predictions based on comparing a positive and a negative prompt



b CheXzero zero-shot pathology classification

### Performance by Prevalence



CheXpert is substantially more accurate when prevalence is high

CheXzero and radiologists have more similar performance across prevalence

# The Long Tail



Zero-shot algorithms match or surpass human performance throughout

# Concluding: Human-AI in Healthcare

#### Main findings in Radiology:

- 1. Biased updating undercuts human-AI collaboration ightarrow Human or AI
- 2. AI capabilities continue to improve

### Concluding: Human-AI in Healthcare

#### Main findings in Radiology:

- 1. Biased updating undercuts human-AI collaboration ightarrow Human or AI
- 2. AI capabilities continue to improve

Humans do more than classification in Healthcare:

- Example: Diagnosis versus treatment
- Where are there complementarities?

# Concluding: Human-AI in Healthcare

#### Main findings in Radiology:

- 1. Biased updating undercuts human-AI collaboration ightarrow Human or AI
- 2. AI capabilities continue to improve

Humans do more than classification in Healthcare:

- Example: Diagnosis versus treatment
- Where are there complementarities?

#### Beyond Healthcare:

- Organizational incentives
- Training humans to use AI
- Specialization and complementarities

# Thank You

email: agarwaln@mit.edu