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1 Introduction

The US subprime financial crisis, which started in the mortgage credit market in 2007

following a sudden decrease in house prices, and finally propagated to the real sector,

has revealed the strong linkages between the credit market, the housing sector and the

real sector. Such macro-financial linkages have been accentuated since the early 2000s

with the fast development of mortgage debt contracts, in which house prices determined

how much agents could borrow. Therefore, it seems crucial to explain the dynamics of

house prices to understand credit and business cycles over the recent period. However,

as for other assets, such as stocks, patterns of excess volatility in house prices relative to

fundamentals (such as rents or interest rates) have been apparent (see for instance Gelain

and Lansing (2014) and Granziera and Kozicki (2015)).

As stated by Piazzesi and Schneider (2016), "a major outstanding puzzle is the volatil-

ity of house prices – including but not only over the recent boom-bust episode. Rational

expectations models to date cannot account for house price volatility – they inevitably run

into "volatility puzzles" for housing much like for other assets. Postulating latent "hous-

ing preference shocks" helps understand how models work when prices move a lot, but is

ultimately not a satisfactory foundation for policy analysis. Moreover, from model calcu-

lations as well as survey evidence, we now know that details of expectation formation by

households – and possibly lenders and developers – play a key role" (p. 5).

To simultaneously explain several puzzling features of the dynamics of house prices

and the volatility of standard macroeconomic and financial variables over time in the

US since the mid-1980s and also more specifically in the run-up to the Great Recession,

this paper thus presents a stylized small-scale DSGE model with capital adjustment costs

in the spirit of Iacoviello (2005), in which impatient households and entrepreneurs can

borrow from patient households against a fraction of their net worth, i.e., the expected

value of their real-estate holdings.
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The specificity of the propagation mechanism in the present model is that it relies on

subjective expectations and Bayesian learning about future house prices. Indeed, follow-

ing a rich set of recent literature dealing with learning on house prices, we assume that

agents do not understand how house prices form through the housing market clearing

equation. Agents instead believe that house price growth equals the sum of two com-

ponents: a persistent component and a normally distributed transitory component. This

perceived law of motion is motivated by the empirical behavior of house prices. Indeed,

house prices display episodes of persistent increase followed by episodes of persistent de-

crease. We assume that agents cannot separately observe the two components; therefore,

they optimally learn over time the unknown persistent time-varying component based on

past data. Such a learning mechanism seems very intuitive: when observing an increase

in house prices, agents do not know whether this increase will last or whether this in-

crease is only transitory. They thus try to evaluate the persistence of the increase based

on their past experience. Adam et al. (2012), Kuang (2014), Adam et al. (2016a) and Adam

et al. (2016b) show that such a specification for the perceived law of motion of asset prices

yields beliefs that are both nearly rational (in the sense that they are close in distribution

to the model’s outcomes) and successful in jointly explaining asset price data and survey

data.

In addition, as emphasized by Iacoviello (2015), productivity shocks, which are tradi-

tional drivers of business cycles in most DSGE models, are unlikely to fully account for the

Great Moderation dynamics and for the recent financial crisis in the US. It seems that since

the mid-1980s, and even more since the 2000s, business cycles have been mainly financial

in the US. Building on this approach, we introduce two additional shocks: loan-to-value

ratio shocks and lenders’ time preference shocks.

A positive loan-to-value ratio shock and a negative lenders’ discount factor shock can

both provide easier and less costly access to the mortgage credit market. Indeed, a positive
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shock to the loan-to-value ratio directly relaxes the tightness of the borrowing constraint.

Following the shock, impatient households and entrepreneurs can borrow a higher frac-

tion of their net worth. As for the negative lenders’ discount factor shock, it mimics a

general context of suddenly higher willingness to lend, independently of borrowers’ sit-

uations or decisions, and it generates a decrease in the endogenous mortgage rate. Thus,

many papers note the role of the decrease in the mortgage interest rates at the beginning

of the 2000s in the US in driving the steep increase in house prices observed until 2006

(see for instance Adam et al. (2012)).

In addition, in order to introduce the smallest degree of freedom into the model and

the smallest deviation from the rational expectations assumption, along with only two

new state variables (that characterize agents’ beliefs and house prices), we follow Win-

kler (2016) in assuming that expectations of all variables are rational conditional on house

price expectations. We thus adapt Winkler’s approximation method for solving the learn-

ing model – which is close to a rational expectations solving method. Such an approach

avoids the limitations of the widespread parameterized expectations method, which con-

sists in substituting expectations terms by parameterized forecast functions directly into

first order conditions, whereas in most cases, variables in expectations terms do depend

on the own decisions of agents. Our approach yields the following results.

First, the learning process generates a strong feedback mechanism between house

prices and beliefs. House price expectations are self-reinforcing: when house prices are

expected to grow faster, housing demand increases and thus house prices indeed grow

faster (due to the fixity of housing supply), which in turn makes expectations more opti-

mistic and fuels the increase in house prices. Therefore, the model with learning is able to

generate endogenously persistent booms-and-busts in real-estate prices and thus strong

volatility of house prices relative to output in response to small macroeconomic or fi-

nancial shocks. In addition, by comparison with the rational expectations version of the
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model, the learning model replicates the positive sign of the autocorrelation in house price

growth observed in US data over the 1985-2015 period.

Second, the model with learning features an amplified financial accelerator mecha-

nism. Indeed, the variation in house price expectations obtained under learning trig-

gers strong changes in the tightness of collateralized borrowing constraints. In addition,

under learning, house prices and beliefs are slow-moving state variables, which further

propagates the amplified effect. Therefore, small shocks are sufficient to simultaneously

generate strong volatility in house prices, credit and most macroeconomic variables as

observed over the 1985-2015 period in the US, and responses of variables to shocks are

hump-shaped. We show that such a strong volatility arises due to the combination of

learning with credit market frictions, rather than learning alone.

Thus, the results show that even if the small-scale DSGE model relies only on a small

number of frictions (standard real frictions – capital adjustment costs –, financial frictions

– credit market frictions related to asymmetry of information between lenders and bor-

rowers – and informational frictions – imperfect knowledge of the house price law of mo-

tion1), this is sufficient for the model with learning to explain puzzling features of house

price dynamics while simultaneously accounting for macro-financial linkages in the US

since the mid-1980s. Relying on a small quantity of new ingredients relative to a simple

and standard borrower-saver baseline model with collateralized borrowing constraints

has the advantage of making it easier to disentangle the separate and joint effects of each

ingredient and to assess how they can help explain the existence of simultaneous cycles

in credit, housing and macroeconomic variables.

The remainder of the paper is organized as follows. Section 2 presents the related

literature. Section 3 describes the baseline model with collateralized borrowing constraints,

financial frictions and capital adjustment costs. Section 4 explains the formation of beliefs

1In addition, the housing supply is fixed, which can be interpreted as an additional rigidity in the housing
market.
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about future house prices based on a specification that is standard in the recent Bayesian

learning literature and describes the equilibrium under learning. Section 5 displays the

simulated results obtained in the learning model, compares them to the rational expec-

tations model and discusses how they can help explain features of the joint dynamics of

real variables, house prices and credit since the mid-1980s in the US. Finally, Section 6

concludes.

2 Related literature

This paper is related to two strands of the literature that have for the most part remained

separate. The first strand relates to the relaxation of the rational expectations assump-

tion in standard asset pricing models, whereas the second strand relates to the role of the

housing market in the business cycle.

The first strand aims at modelling expectations that are more consistent with the results

of survey data and at better replicating house price dynamics. Relying on survey data

about house price expectations, Case et al. (2012) and Ling et al. (2015) identify patterns

that contradict the rational expectations assumption. This is hardly surprising given that

economists themselves seem to make systematic errors in forecasting future real-estate

prices in a context of strong uncertainty about the future evolution of the housing mar-

ket. Empirical evidence thus provides strong support for relying on learning about house

prices for explaining excess volatility. Thus, Gelain and Lansing (2014) and Granziera and

Kozicki (2015) explain house price volatility by introducing simple but not microfounded

extrapolative models of house price expectations.

By contrast, we directly follow Adam et al. (2012), Kuang (2014), Adam et al. (2016a)

and Adam et al. (2016b) in specifying the perceived law of motion of asset prices and we

optimally derive the beliefs’ law of motion, relying on optimal Bayesian updating.

5



Even if we follow Adam et al. (2012), Kuang (2014), Adam et al. (2016a), Adam et al.

(2016b) and Caines (2016) regarding the specification of beliefs, the latter model exchange

economies in which consumption and output streams are exogenous. Therefore, these

studies cannot account for the impact of the dynamics of house prices on the business

cycle. An exception is the recent paper by Winkler (2016) mentioned above. In contrast to

this paper, we focus on house prices rather than on stock prices and our model features

financial shocks and household debt to better explain the recent period.

The literature on the role of the housing market in the business cycle is thus the sec-

ond strand of literature this paper relates to.2 In particular, several papers investigate the

linkages between the asset market, the credit market and the real sector in production

economies with financial frictions, where consumption and production are endogenous,

featuring a well-known financial accelerator mechanism ( Kiyotaki and Moore (1997),

Bernanke et al. (1999)).

Most papers featuring a financial accelerator mechanism have focused on the produc-

tion sector, but recent papers focusing on real-estate assets rather than on other assets

have also modeled financial accelerator dynamics related to household borrowing, which

seems consistent with the role of household debt in the recent financial crisis (Aoki et al.

(2004), Iacoviello (2005), Iacoviello (2015)).

However, in most of the papers that feature housing assets as collateral, at least part

of the dynamics of house prices is driven by exogenous changes directly related to the

housing sector. The most common approach consists in introducing housing price shocks,

housing demand shocks, or housing technology shocks (Iacoviello (2005), Darracq-Paries

and Notarpietro (2008), Iacoviello and Neri (2010)). Such ingredients are not very help-

ful in understanding asset price dynamics, as the latter thus remain largely exogenous,

2See Davis and Van Nieuwerburgh (2014) for an extensive literature review on the several aspects of the
relation between housing, finance and the macroeconomy which go far beyond those investigated in the
present paper.
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and they usually require imposing high volatility in exogenous innovations. Other el-

ements of explanations resort to monetary policy shocks or financial conditions shocks

(Aoki et al., 2004) or to non-time separable preferences (Jaccard, 2012). In all cases, this

set of explanations, based on standard rational expectations specifications, is difficult to

reconcile with distinct measures of house price expectations because the latter reveal the

existence of systematic forecast errors. Even in papers modelling adaptive learning about

financial variables such as a leverage shock process, house price shocks are introduced to

replicate the boom-bust pattern observed in the 2000s (e.g. Pintus and Suda (2016)).3

By contrast, we only introduce discount factor shocks in the lending sector and loan-

to-value ratio shocks (in addition to the more standard productivity shock), such that

the dynamics of the housing market are initially driven by shocks related to the credit

market and not directly by shocks related to the housing market. The response of house

prices to exogenous shocks is thus more endogenous, less close to the shock, and more

consistent with patterns observed during the last boom-and-bust episode in the housing

market. Indeed, the steep increase in house prices that started in 2001 in the US arised as a

consequence of relaxed financial conditions and the fast development of mortgage credit

(e.g. Mian and Sufi (2009), Demyanyk and Van Hemert (2011), Dell’Arricia et al. (2012)).4

Introducing learning about asset prices in production economies with a housing market,

in accord with the successful results obtained in exchange economies, then amplifies the

response to exogenous shocks, which is much smaller under rational expectations.

In the next section, we turn to the description of the baseline model.

3Similarly to Pintus and Suda (2016), several recent papers have investigated the role of adaptive learning
about macroeconomic and credit variables in business cycle models, including Eusepi and Preston (2011),
Milani and Rajbhandari (2012) and Milani (2014). By contrast, we model optimal Bayesian learning about
asset prices and our main focus is on replicating the volatility in asset prices without introducing house
price shocks as a shortcut.

4The 2011 U.S. Financial Crisis Inquiry Commission Final Report on the Causes of the Financial and
Economic Crisis in the United States presents a similar view on the chain of events that triggered the crisis:
collapsing mortgage-lending standards fueled credit and housing demand, and thus fueled a housing boom,
which in turn fueled credit. When house prices fell, the mortgage-credit sector then collapsed.
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3 The baseline model

The baseline model is close to the extended model presented in Iacoviello (2005), except

that we focus only on real frictions. The model features a discrete-time, infinite horizon

economy with three sectors: lenders in the form of patient households and borrowers

in the form of both entrepreneurs and impatient households. The housing stock in the

economy is exogenous and normalized to 1. All variables are expressed in units of a

single consumption good, which also serves as an investment good.

3.1 Lenders

Following Iacoviello (2005), we assume that a set of households displays a high discount

factor relative to other households. Those households weight more future periods in their

intertemporal utility function; they are more patient and thus more willing to postpone

consumption and save money through lending. Their preferences take the standard fol-

lowing form:

maxE0

∞∑
t=0

βtPdt[ln(Ct,P ) + j ln(Ht,P ) + ψ ln(1−Nt,P )]. (1)

Patient households thus value consumption Ct,P , housing services provided by real-estate

holdings Ht,P
5 and leisure hours equal to 1−Nt,P , where Nt,P are working hours. Patient

households discount future periods with the discount factor βP , j is the weight allocated

to housing services in the utility function and ψ is the weight allocated to leisure. dt is a

time preference shock that follows an autoregressive process in the form of:

ln(dt) = ρd ln(dt−1) + εd,t, (2)

5Throughout the paper, we use interchangeably the terms ’houses’, ’real-estate holdings’ and ’real-estate
(or housing) assets’.
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where ρd < 1 and εd,t follows a normal distribution with mean zero and variance σd. The

interpretation of such a discount factor shock is that time preferences are time varying and

patient households can suddenly display more or less preference for current consumption,

housing services and leisure. We introduce this shock to mimic a context of higher will-

ingness to lend, independently of borrowers’ net worth. An exogenous increase in the

discount factor of lenders notably decreases the mortgage interest rate.

The intertemporal flow of funds constraint of patient households writes as follows:

Ct,P + qtHt,P +Bt = wtNt,P +Rt−1Bt−1 + qtHt−1,P , (3)

where qt is the price of houses, Bt is the debt held by patient households, Rt is the (gross)

interest rate on debt and wt is the wage. Housing assets are traded in each period.

The inter-temporal first-order conditions with respect to housing, debt and hours worked

are standard, except that the preference shock is included:

dt
1

Ct,P
qt = βPEt

[
1

Ct+1,P

qt+1dt+1

]
+ jdt

1

Ht,P

. (4)

dt
Ct,P

= βPEt

[
dt+1

Ct+1,P

Rt

]
. (5)

wt
Ct,P

=
ψ

1−Nt,P

. (6)

3.2 Entrepreneurs

Entrepreneurs own the capital stock and own the firm and maximize the intertemporal

utility of consumption streams:

maxE0

∞∑
t=0

βtF [ln(Ct,F )], (7)
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subject to the following flow of funds constraint:

Ct,F + qtHt,F +Rt−1Bt−1,F + wtNt + It = Yt +Bt,F + qtHt−1,F , (8)

where βF is the entrepreneurs’ discount factor, Ct,F is consumption, Ht,F represents real-

estate holdings, Bt,F is debt, Nt is labor demand, It is investment and Yt is output.6 The

production function is a typical Cobb-Douglas production function, with three factors of

production: labor, capital and housing. Both capital and housing become productive only

after one period:

Yt = AtK
α
t−1H

v
t−1N

1−α−v
t . (9)

At follows a standard AR(1) process in the log:

ln(At) = ρa ln(At−1) + εa,t, (10)

where εa,t follows a normal distribution with mean zero and variance σa. Adjusting capital

too fast is costly (notably because installing new machines implies temporarily not run-

ning some of the existing machines). Therefore, the capital accumulation equation takes

the standard following form under capital adjustment costs (Hayashi, 1982):

Kt = It + (1− δ)Kt−1 +
φ

2

(
It

Kt−1
− δ
)2

Kt−1, (11)

where Kt is the predetermined capital stock, δ is the capital depreciation rate and φ is a

parameter governing the size of the capital adjustment cost.

Entrepreneurs can borrow a limited amount of debt and face a collateralized borrow-

6Entrepreneurs’ consumption being residual income after investment, labor costs, housing and interest
payments have been made, the decision problem of entrepreneurs is equivalent to maximizing a concave
function of discounted dividends.
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ing constraint in which housing assets play the role of pledgeable assets:

Bt,F ≤ mFam,tEt

[
qt+1

Ht,F

Rt

]
, (12)

where the term Et[qt+1
Ht,F
Rt

] represents expected future asset value, mF is the loan-to-value

ratio and am,t is a loan-to-value ratio shock that follows the law of motion below:

ln(am,t) = ρam ln(am,t−1) + εam,t, (13)

where εam,t follows a normal distribution with mean zero and variance σam . We assume

that, due to asymmetry of information between lenders and borrowers, the lender can

recover only some fraction of the pledgeable assets in case of default, implying that mF <

1. Even though the entrepreneurs’ borrowing constraint is not directly microfounded in

the present model, it is both standard (e.g. Kiyotaki and Moore (1997), Iacoviello (2005)

and Iacoviello (2015) to mention just a few) and intuitive. Indeed, first, the borrowing

constraint (12) implies that the borrowing capacity of agents depends on the expected

future value of their assets, because assets can be seized and sold by the lender in case

of default. Second, the borrowing constraint says that transaction costs arising when the

lender seizes borrowers’ assets reduce the final recovery value.

The first-order conditions for firms with respect to labor, debt and real-estate assets

write:

wt =
(1− α− v)Yt

Nt

, (14)

1

Ct,F
= βFEt

[
1

Ct+1,F

]
Rt + µH,t, (15)
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and
qt
Ct,F

= βFEt

[
1

Ct+1,F

(
qt+1 +

vYt+1

Ht,F

)]
+ µH,tmHam,tEt

[
qt+1

Rt

]
, (16)

where µH,t ≥ 0 is the Lagrange multiplier associated with the borrowing constraint. The

complementary slackness condition writes:

µH,t

[
Bt,F −mFam,tEt

[
qt+1

Ht,F

Rt

]]
= 0. (17)

The first-order condition with respect to labor is standard, except that the share of labor

in the production function depends not only on the share of capital but also on the share

of real-estate assets in the production function.

The Lagrange multiplier µH,t associated with the borrowing constraint appears in the

previous two equations, which shows that financial frictions act as an inter-temporal

wedge in the first-order conditions by comparison to standard first-order conditions. Hous-

ing price expectations, and not only housing prices, matter for determining the entrepreneurs’

demand for housing. This feature is reinforced by the fact that the Lagrange multiplier

in the borrowing constraint enters the first-order condition with respect to another asset

(housing) because buying more of this asset today relaxes the borrowing constraint in the

future. As a consequence, learning will prove able to generate dynamics that are distinct

from rational expectations ones even for similar states of the economy.

Note also that in the non-stochastic steady state, the Lagrange multiplier associated

with the borrowing constraint of impatient households µI is equal to (βP−βF
βF

) 1
CF

. There-

fore, the discount factor of lenders must be strictly higher than the discount factor of bor-

rowers to ensure that the Lagrange multiplier associated with the borrowing constraint is

strictly positive and thus that the borrowing constraint is binding. Therefore, βF < βP is

a necessary condition for ensuring that the borrowing constraint is binding in a neighbor-

hood of the steady state.
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The combination of the first-order conditions with respect to capital and to investment

yields:

1

Ct,F

(
1− φ( It

Kt−1
− δ)

) =

βF
1

Ct+1,F

(
αYt+1

Kt

+
1

1− φ( It+1

Kt
− δ)

(1− δ − φ

2

(
It+1

Kt

− δ
)2

+ φ(
It+1

Kt

− δ)It+1

Kt

)

)
. (18)

When the capital adjustment cost parameter φ is null, this equation reduces to the stan-

dard first-order condition with respect to capital.

3.3 Impatient households

The preferences of impatient households are similar to those of patient households except

that their time preference rate βI differs (βI < βP ). This assumption, which is standard in

a borrower-saver model, makes impatient households willing to borrow rather than lend,

as evidenced below for the non-stochastic steady state equilibrium. The maximization

program of impatient households is thus the following:

maxE0

∞∑
t=0

βtI [ln(Ct,I) + j ln(Ht,I) + ψ ln(1−Nt,I)] (19)

s.t.

Ct,I +Rt−1Bt−1,I + qtHt,I = wtNt,I + qtHt−1,I +Bt,I (20)

Bt,I ≤ mIEt

[
qt+1

Ht,I

Rt

]
(1 + am,t). (21)

All variables indexed by I for impatient households are equivalent to similar variables

indexed by P for patient households that were presented above. mI < 1 is the loan-to-

value ratio of impatient households.

Impatient households face a borrowing constraint similar to that of entrepreneurs, sub-
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ject to the same loan-to-value ratio shock, which can thus be interpreted as a general finan-

cial liberalization shock when it is positive. Indeed, when a positive loan-to-value ratio

shock hits, a lower expected value of real-estate assets is required to guarantee the same

amount of borrowing; the borrowing limit mechanically increases.

The first-order conditions with respect to housing, labor supply and debt write:

qt
Ct,I

= βIEt

[
qt+1

Ct+1,I

]
+ j

1

Ht,I

+ µI,tmIam,tEt

[
qt+1

Rt

]
, (22)

wt
Ct,I

=
ψ

1−Nt,I

, (23)

1

Ct,I
= βIEt

[
1

Ct+1,I

Rt

]
+ µI,t, (24)

where µI,t ≥ 0 is the Lagrange multiplier associated with the borrowing constraint of the

impatient households. The complementary slackness condition writes:

µI,t

[
Bt,I −mIam,tEt

[
qt+1

Ht,I

Rt

]]
= 0. (25)

In the first-order condition with respect to housing, the last term is what differentiates the

impatient households’ first-order condition from that of patient households. Indeed, for

borrowers, buying real-estate assets also presents the advantage of relaxing the borrowing

constraint.

Similar to the entrepreneurs case, the Lagrange multiplier associated with the borrow-

ing constraint of impatient households µI is equal to (βP−βI
βI

) 1
CI

in the deterministic steady

state, requiring βI < βP for the borrowing constraint to bind in the steady state.
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3.4 Market clearing

Finally, the model is closed by adding market clearing conditions, and standard transver-

sality conditions are imposed. The model features four markets: a goods market, credit

market, labor market and housing market.The market clearing condition on the goods

market is:

Yt = It + Ct,P + Ct,F + Ct,I . (26)

Bonds are assumed to be in zero-net supply:

Bt = Bt,F +Bt,I . (27)

The equilibrium condition on the labor market is:

Nt = Nt,P +Nt,I . (28)

Finally, the market clearing condition on the housing market is:

HP,t +HF,t +HI,t = 1. (29)

In the rational expectations case, the model is solved relying on standard perturbation

methods. Appendix A provides a summary of the model’s equations under the assump-

tion that the borrowing constraint of both entrepreneurs and impatient households is

binding and thus that the associated Lagrange multipliers µF,t and µI,t are strictly posi-

tive. When numerically solving the model both under rational expectations and under

learning, we verify that this assumption holds true in all simulations, as in Iacoviello

(2005) and Iacoviello (2015).

We now describe the model under subjective expectations, when agents no longer form
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rational expectations about the law of motion of house prices, while still holding model-

consistent beliefs for all other variables. We then compare the results of the rational expec-

tations model and of the subjective expectations model and discuss their relative relevance

for understanding the recent joint dynamics of housing prices, credit and macroeconomic

variables.

4 The learning model

4.1 Optimal Bayesian learning

Following a recent trend in the literature on learning regarding asset prices (Adam et al.

(2012), Kuang (2014), Adam et al. (2016a), Adam et al. (2016b), Winkler (2016)), we now

assume that agents in the economy do not understand the endogenous process through

which house prices form. The actual equilibrium price results from the equalization of

the demand for housing of the three sectors in the model to the exogenous supply of

housing. However, market participants have imperfect knowledge of the market process

and do not properly understand how house prices form. Instead, agents observe house

prices realizations and try to determine whether the observed evolution is permanent or

temporary. They thus try to evaluate the persistence of a given variation in house prices

based on their past experience. Price determination is indeed a difficult task for atomistic

agents as it implies perfect knowledge of the mapping between state variables and prices

and thus perfect knowledge about other agents’ knowledge and subsequent optimal de-

cisions. Instead of taking into account the housing market clearing condition, atomistic

market participants believe that logged house prices follow an exogenous process which

takes the following form:

ln(qt)− ln(qt−1) = ln(µt) + ln(ηt), (30)
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where ηt is a temporary disturbance and where the time-varying persistent component µt

follows the process:

ln(µt) = ln(µt−1) + ln(νt), (31)

where νt is an additional disturbance. This specification for the perceived exogenous pro-

cess driving house prices is consistent with the empirical behavior of house prices. Indeed,

in the data, episodes of persistent increase in house prices are followed by episodes of per-

sistent decrease in house prices. In addition, Adam et al. (2012), Kuang (2014), Adam et al.

(2016a), Adam et al. (2016b) and Winkler (2016) show that the optimal beliefs derived from

this perceived law of motion present features that are consistent with survey data.

Agents perceive the innovations ηt and νt to be normally distributed according to the

following joint distribution:

ln(ηt)

ln(νt)

 ∼ N


−σ2

η

2

−σ2
ν

2

 ,

σ2
η 0

0 σ2
ν


 , (32)

where ση and σν are small.

Note that all sectors in the economy share common beliefs on the house price process.

Agents perfectly observe house price realizations qt, but they are not able to separately

observe the persistent component and the transitory component of what they believe to

be the exogenous process driving house price dynamics. Therefore, they face an optimal

filtering problem and come up with the best statistical estimate ln(µ̂t) of the persistent

component ln(µt) in each period t. Due to normality of residuals and the linearity of the

process, optimal Bayesian filtering amounts to standard Kalman filtering in the set-up.

Again following the related literature, we assume that the prior distribution of beliefs is a

normal distribution with mean parameter ln(µ̂0) and dispersion parameter σ0. Because we

take the deterministic steady state as a starting point in our simulations below, as is usual
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in DSGE models analyses, we set the prior mean and dispersion parameters at their steady

state values.7 The prior mean belief about house price growth is thus set at ln(µ̂0) = 0, and

prior uncertainty σ2
0 is set at its Kalman filter steady state value σ2:8

σ2 =
−σ2

ν +
√

(σ2
ν)

2 + 4σ2
νσ

2
η

2
. (33)

Agents’ subjective probability measure P is specified jointly by equations 30, 31 and 32,

by prior beliefs and by knowledge of the productivity, loan-to-value ratio and lenders’

discount factor random processes.

The posterior distribution of beliefs in time t following some history up to period t, ωt, is

ln(µt|ωt) ∼ N(ln(µ̂t), σ
2), where ln(µ̂t) is given by the following optimal updating rule:

ln(µ̂t) = ln(µ̂t−1)−
σ2
ν

2
+ g

[
ln(qt)− ln(qt−1) +

σ2
η + σ2

ν

2
− ln(µ̂t−1)

]
. (34)

This unique recursive equation – in which g is the Kalman filter gain, which optimal ex-

pression is σ2

σ2+σ2
ν

– fully characterizes agents’ beliefs about house price growth, which are

summarized in each period t by the state variable µt. The Kalman filter gain governs the

size of the updating in the direction of the last forecast error. Logically, the Kalman filter

gain increases in the signal-to-noise ratio σ2
ν

σ2
η

because a higher noise-to-signal ratio means

that changes in house prices are driven to a higher extent by changes in the persistent

component µt relative to changes in the transitory noise ηt, and thus the last forecast error

is more informative for predicting future house prices. Agents believe that house prices

in period t are such that:

ln(qt) = ln(qt−1) + ln(µ̂t−1)−
σ2
η + σ2

ν

2
+ z1t, (35)

7Note that in the steady state, agents assume both η̄ and ν̄ to be equal to zero.
8This implies that posterior uncertainty will remain at its steady state value following new house price

realizations because it is already starting at its maximal value.
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where z1t is seen by agents as an exogenous forecast error, normally distributed with mean

0 and variance σz, whereas it is actually endogenous and is equal to the difference between

the expected growth rate of house prices and the actual growth rate formed endogenously

on the housing market (up to a negligible constant).

Given the perceived law of motion for the growth rate of house prices, agents form

optimal beliefs and make optimal decisions. Therefore, agents are ’internally rational’

despite not holding rational expectations on the future dynamics of house prices.9 We

now define more specifically internal rationality in the context of our model.

4.2 Internally rational expectations equilibrium

Definition 1: Internal rationality for each sector in each period t

• Patient households are internally rational if they choose (Ct,P , Ht,P , Nt,P , Bt) to max-

imize the expected utility (1) subject to the budget constraint (3), for the given sub-

jective probability measure P .

• Entrepreneurs are internally rational if they choose (Ct,F , Ht,F , Bt,F , Nt, Kt, It) to max-

imize the expected utility (7) subject to the budget constraint (8), the production

function (9), the capital accumulation equation (11) and the complementary slack-

ness condition (17), for the given subjective probability measure P .

• Impatient households are internally rational if they choose (Ct,I , Ht,I , Nt,I , Bt,I) to

maximize the expected utility (19) subject to the budget constraint (20) and to the

complementary slackness condition (25), for the given subjective probability mea-

sure P .
9The concept of internal rationality was defined by Adam and Marcet (2011): "[i]nternal rationality re-

quires that agents make fully optimal decisions given a well-defined system of subjective probability beliefs
about payoff relevant variables that are beyond their control or "external", including prices." By contrast,
"[e]xternal rationality postulates that agents’ subjective probability belief equals the objective probability
density of external variables as they emerge in equilibrium" (p. 1225).
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We can thus define the internally rational expectations equilibrium of our model.

Definition 2: The internally rational expectations equilibrium

The internally rational expectations equilibrium is defined by:

• The subjective probability measure P over the space Ω of all possible realizations of

variables which are external to agents’ decisions.10

• A sequence of contingent choices {Ct,P , Ct,F , Ct,I , Ht,P , Ht,F , Ht,I , Bt, Bt,F , Bt,I ,

Nt, Nt,P , Nt,I , Kt, It} : Ωt → R14
+ such that the internal rationality of each agent de-

fined above is satisfied.

• A sequence of equilibrium prices {qt, Rt, wt}∞t=0 where (qt, Rt, wt) : Ωt → R3
+ such that

markets clear in each period t and all realizations in Ω are almost surely in P .

We now describe briefly how the internally rational expectations equilibrium is solved for.

4.3 Solving the model under imperfect market knowledge

For solving the model under subjective expectations, we resort to lagged beliefs updating,

which aims at avoiding the simultaneous determination of beliefs and house prices. In-

deed, according to equation 34, the mean belief about house price growth ln(µ̂t) in period

t depends on current house prices qt. At the same time, house prices in period t depend on

the expectations of future house price growth and thus on the current mean belief ln(µ̂t).

To avoid this issue due to self-referential learning, we assume lagged beliefs updating,

which means that agents only rely on lagged information when updating their beliefs.

10Note that under learning the space of realizations of variables external to agents’ decision includes the
realizations of house prices, whereas such realizations provide information redundant with that provided by
exogenous fundamental realizations under rational expectations because agents understand the mapping
of fundamentals into house prices.
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This assumption is made in all the papers that rely on the same specification of beliefs as

ours and is also standard in the general self-referential learning literature. It consists in

rewriting the beliefs updating equation rule 34 as:

ln(µ̂t) = ln(µ̂t−1)−
σ2
ν

2
+ g

[
ln(qt−1)− ln(qt−2) +

σ2
η + σ2

ν

2
− ln(µ̂t−2)

]
. (36)

The slightly modified updating rule means that in period t, agents update their mean be-

lief in the direction of the forecast error of the previous period rather than of the current

period. Consequently, the mean belief ln(µ̂t) is now predetermined at time t, and equi-

librium house prices are determined in time t by the housing market clearing condition.

Lagged beliefs updating thus ensures that the equilibrium is unique. Adam et al. (2016a)

provide microfoundations for this updating rule with delayed information. Following

Winkler (2016), we treat the lagged forecast error as an exogenous disturbance z2t in the

belief system of agents in period t to justify why agents can see their forecast error in

period t but do not adjust their beliefs in its direction until period t+ 1.

Under imperfect market knowledge, all expected future realizations are conditional on

the subjective probability measure P . The system of equations characterizing the policy

function under P includes the first-order conditions (4-6), (14-16), (18 and (22-24), the flow

of fund constraints (3), (8), and (20), the production function (9), the capital accumulation

equation (11), the complementary slackness conditions (17-25), market clearing conditions

(27) and (28), random processes (2), (10) and (13) and the beliefs’ updating equation (36).

The market clearing condition on the housing market is not included in the system under

the subjective probability measure P because agents do not understand how house prices

form.

Solving this subjective system of equations yields the subjective policy functions, ob-

tained under the probability measure P . However, subjective policy functions do not

characterize the actual equilibrium house prices, which, despite being seen as exogenous,
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arise endogenously in the model through the market clearing condition.

Therefore, to solve the model under imperfect market knowledge, we rely on two

steps, following the method proposed by Winkler (2016). First, we numerically solve for

the coefficients of the approximate subjective policy function h of the system of equations

described above in the neighborhood of the deterministic steady state, relying on stan-

dard perturbation methods. Second, we solve for the approximate actual policy function,

i.e., the objective policy function g, by deriving actual endogenous house prices from the

subjective policy function h, relying on chain rules derivation. Therefore, we obtain the

derivatives of the Taylor expansion of the actual policy function g in the neighborhood of

the deterministic steady state and we thus obtain a numerical approximation for g, which

fully characterizes the numerical solution to the learning model. The method is explained

with more details in Appendix B and closely follows that presented in Winkler (2016) (see

in particular Appendix C in Winkler’s paper).

5 Results: asset price volatility and macro-financial link-

ages

After solving for the model both under rational expectations and under imperfect market

knowledge as explained above, we show to what extent the introduction of learning about

house prices affects the housing market dynamics and the transmission of aggregate dis-

turbances in the baseline model.

We first detail the calibration strategy. The time interval in the model is a quarter.

5.1 Calibration strategy

Static parameters are calibrated to target steady state values of variables or in reference

to the literature, and dynamic parameters are either calibrated to target second-order mo-
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ments, either derived from the data, or based on the literature.11 All the data used in the

calibration process and for assessing the results are detailed in Appendix C.

The first set of parameters is static parameters (βP , βI , βF , α, ψ,m1,m2, δ, j), which af-

fect the steady state. The discount factor of patient households βP is set at 0.9934 such

that the steady state mortgage rate R̄ equals the mean of the average 1-year adjustable

mortgage rate in the US over the period 1985-2015. The discount factors of impatient

households and firms (βI , βF ) are set at 0.94, following Iacoviello (2015). Such a rather

low value ensures that the borrowing constraints are easily binding in the simulations.

The weight on leisure in the household utility function is set at ψ = 2, the weight on

housing in the household utility function is set at j = 0.075 and the share of housing in

the consumption goods production function is set at v = 0.05. The first former parame-

ter value implies that households allocate around one-third of their active time to work

and that the Frisch elasticity of labor supply is around 2, which is consistent with values

used in the macroeconomic literature (see Peterman (2016)) and with the calibration in Ia-

coviello (2015). The last two parameter values imply a steady state entrepreneurial share

of housing of 24%. From the US data over the 1985-2015 period regarding the average

labor share to output, and given that we set the housing share to v = 0.05, we get α = 0.31

for the share of capital in the production function. The capital depreciation rate δ is set at

the standard value of 0.025, corresponding to a 10% annual depreciation.

The loan-to-value ratios for entrepreneurs mF and for impatient households mI are set

at 0.5, which is consistent with the value estimated in Iacoviello (2005) and Kuang (2014).

This value implies a significant degree of financial frictions, which plays a crucial role in

the model mechanism, as will be shown below, and is such that the borrowing constraints

are always binding throughout the simulations.

11Future work will complement the analysis by separately estimating dynamic parameters of the model
through the simulated method of moments for the rational expectations model and the subjective expecta-
tions model.
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In what regards the dynamic parameters of the model, the persistence parameter of

the productivity shock ρa is estimated from the US data over the period 1985-2015, during

which the linearly detrended Solow residual displays strong persistence, with ρa = 0.9765.

For the persistence parameters of the lenders’ preference shock and of the loan-to-value

ratio shock, we rely on the literature and set ρd = 0.830 and ρam = 0.850 (see Primiceri

et al. (2006) and Iacoviello (2015)).

The only parameter related to learning is the Kalman filter gain g.12 As an initial guess

for the parameter g, we set it at the low value 0.0056, following Winkler (2016). Even if

our model is distinct from Winkler’s model, this value for g generates consistent shapes

for the impulse response functions. In addition, although this value is relatively lower

than standard values usually found in the literature on learning in exchange economies,

the learning model is able to simultaneously replicate the volatility in asset prices and

in output, as shown below. Such a result suggests that in production economies with

learning, a low degree of updating in the direction of recent forecast errors (and thus a low

noise-to-signal ratio) is sufficient to generate a strong amplification mechanism relative to

rational expectations models, even though beliefs display only small variations.13 We

provide a sensitivity analysis to the value of the Kalman gain g in subsection 5.4.

Finally, we set the values of (φ, σa, σd, σam) such that a set of second-order moments

(output, house prices, debt and investment) is equal to that in the data. In particular, the

capital adjustment cost parameter φ mainly affects the volatility of investment, whereas

the standard deviation of the productivity shock σa mainly affects the volatility of output,

the standard deviation of the lenders’ preference shock σd mainly affects the volatility of

12Indeed, in practice, the perceived variances ση and σν , which determine the perceived variance of the
forecast errors, do not affect the results as they are chosen to be very small, suggesting that even a low
degree of uncertainty gives room for a strong impact of the learning mechanism.

13Actually, the powerful propagation mechanism triggered by learning in production economies in re-
sponse to shocks can generate unstable dynamics or converging but too persistent oscillatory impulse re-
sponse functions to shocks, which imposes a trade-off between the advantage of generating strong responses
following very small shocks and the disadvantage of generating too persistent or unstable responses to
shocks.
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house prices and the standard deviation of the loan-to-value ratio shock σam mainly affects

the volatility of debt.

The calibrated capital adjustment cost φ is high, showing that the learning mecha-

nism generates strong amplification of shocks. The calibrated variance of the productivity

shock σa is slightly higher than the one obtained when estimating total factor productivity

in the data, but it allows for a better replication of output volatility and it is close to the

value estimated in Iacoviello (2015).

The calibrated variances of the two additional shocks are higher than that of the pro-

ductivity shock, consistent with the idea that financial shocks became stronger – notably

relative to productivity shocks – in the run-up to the Great Recession. The shock vari-

ances are relatively small, which shows that the model proves able to generate enough

volatility for a set of small shocks.14 Finally, in order to compare the results of the learn-

ing model and of the rational expectations model, we recalibrate the dynamic parameters

(φ, σa, σd, σam) to improve the fit with the four targeted moments under rational expec-

tations. However, the replication of the second-order moments of output, investment

and debt under rational expectations is obtained at the expense of the replication of the

volatility in house prices. Indeed, matching the volatility in house prices would require

imposing high shock variances that would lead the rational expectations model to over-

predict the volatility in other variables. Therefore, we set (φ, σa, σd, σam) such that output,

investment and debt volatility are replicated under rational expectations and such that

house price volatility is the highest possible given this constraint.

Table 1 gathers the values of all parameters used in the model simulations.

14As a comparison, over a roughly similar period, Iacoviello (2015) estimates the volatility of the housing
demand shock that he implements in his model in addition to many other shocks at 0.0346, which is even
higher than the sum of the volatility of the three shocks in our model. Our model proves anyway able
to fully replicate the dynamics of house prices while providing a more endogenous explanation of these
dynamics. This reveals the powerful amplification mechanism generated under learning.
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Parameter Calibrated value (Learning) Calibrated value (Rational expectations)
βP 0.9934 0.9934
βI 0.94 0.94
βF 0.94 0.94
ψ 2 2
j 0.075 0.075
v 0.05 0.05
α 0.31 0.31
mF 0.5 0.5
mH 0.5 0.5
δ 0.025 0.025
φ 11.3 11.8
ρa 0.9765 0.9765
ρd 0.830 0.830
ρam 0.850 0.850
σa 0.00684 0.00725
σd 0.00906 0.0118
σam 0.00859 0.02
g 0.0056 NA

Table 1: Calibration

Under rational expectations, stronger shock variances are required in comparison to

the learning case. Such a result reveals the strong amplification in the responses to shocks

generated by the learning mechanism.

5.2 Asset price moments and business cycle moments

We now look at standard business cycle moments and asset price moments in order to

assess whether the model with learning can help reconcile the two sets of moments over

the last 30 years. Table 2 compares the volatility of house prices and of standard business

cycle variables in the data with that in the learning model. Table 2 presents both the mo-

ments that were directly targeted in the calibration strategy (output, house prices, invest-

ment and debt volatility) and moments that were not directy targeted. The latter include

asset price moments – the autocorrelation of house prices, the autocorrelation of house
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price growth and the contemporaneous correlation of house prices with output –, along

with additional business cycle moments – consumption, hours worked and labor produc-

tivity. Table 2 also reports the moments obtained in the rational expectations model for

values of dynamic parameters identical to those in the learning model ("RE Calibration 1")

and for values of dynamic parameters specifically calibrated for this version of the model

("RE Calibration 2"). The empirical quarterly data and the model-generated data are both

logged (except for the mortgage rate and the house price growth rate) and hp-filtered

with parameter 1600. The model-generated consumption is the sum of patient household

consumption, impatient household consumption and entrepreneur consumption.

US Data Q1 1985-Q4 2015 Learning RE Calibration 1 RE Calibration 2
σYt 0.011 0.011 0.010 0.011
σIt

σYt
3.34 3.34 2.66 3.34

σBt

σYt
3.42 3.42 2.66 3.42

σqt

σYt
2.04 2.04 1.03 1.53

σCt

σYt
0.73 0.82 0.86 0.84

σNt

σYt
1.51 0.38 0.21 0.40

σ Yt
Nt

σYt
0.79 0.82 0.91 0.90

ρ(qt−1, qt) 0.92 0.86 0.73 0.72
ρ(ln qt

qt−1
, ln qt−1

qt−2
) 0.20 0.40 -0.02 -0.03

ρ(qt, yt) 0.53 0.62 0.85 0.72

Table 2: Business cycles and house prices moments

Regarding the business cycle moments that were not targeted in the calibration strat-

egy, they are roughly similar for the learning model and the rational expectations model

with the second calibration. Both models generate slightly too much volatility for both

consumption (due notably to high capital adjustment costs) and labor productivity rela-

tive to the data, even if the learning model overpredicts the latter to a lesser extent. Unsur-

prisingly, the model has more difficulties in replicating the volatility of hours, both under

learning and under rational expectations. This is a well-known issue in standard basic

real business cycle models due to the simplicity of labor market and labor supply deci-
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sions.15 For small values of shock variances identical to those calibrated for the learning

model, the rational expectations model performs poorly: it is unable to replicate the high

volatility in house prices, debt and investment.

Interestingly, the learning model is able to replicate additional features of the house

price dynamics that were not targeted in the calibration strategy. First, the learning model

well predicts the strong autocorrelation in house prices ρ(qt−1, qt), whereas the rational

expectations model under-predicts this autocorrelation. Second, the model with learn-

ing predicts a positive autocorrelation in house price growth ρ(ln qt
qt−1

, ln qt−1

qt−2
), whereas the

model with rational expectations predicts a negative autocorrelation. Third, the learning

model replicates the procyclicality of house prices ρ(qt, yt), whereas the rational expecta-

tions model over-predicts the positive correlation with output to a larger extent relative to

the learning model.

All in all, it appears that the learning model is able to simultaneously replicate the

high volatility in house prices relative to output and most of the volatility in standard

business cycle variables over the period 1985-2015 in addition to stylized facts regarding

the behavior of house prices, which already indicates a surprisingly good success given

the simplicity of the model.

Our quantitative results suggest that learning about house prices offers a powerful

and intuitive mechanism for explaining excess volatility in house prices in a simple and

standard production economy without resorting to too many additional assumptions and

ingredients, in a context where the empirical validity of the rational expectations assump-

tion is called into question.16 To better understand the amplification mechanism at play

15Several assumptions were made in the literature to overcome this limitation inherent to standard real
business cycle theory, such as indivisible labor or the search model of the labor market. The main focus of
the paper is not labor market dynamics, but future work will aim at completing the labor market side of the
baseline model in order to better explain the volatility of hours.

16As Glaeser and Nathanson (2015) state regarding their model of learning on house prices in an exchange
economy set-up: "Many other forms of irrationality may exist, and it may be possible to discover a ratio-
nal model that can reconcile all the facts. Yet it is remarkable that this relatively modest deviation from
rationality predicts outcomes so much closer to reality than the standard rational model."
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in the model, we now compare the impulse response functions following the three shocks

under learning and under rational expectations.

5.3 Impulse response functions analysis

The impulse response functions are log-deviations from the steady state (except for the

mortgage rate, which is in percentage point deviations) in response to a one-standard-

deviation positive productivity shock, a one-standard-deviation positive loan-to-value

shock and a one-standard-deviation negative lenders’ preference shock, both under ra-

tional expectations and under learning.17 We assess the impact of a negative lenders’

preference shock because this shock decreases the preference for the current period in the

lenders’ utility function and thus increases the willingness of patient households to lend to

other sectors of the economy. Therefore, the mortgage rate decreases, which corresponds

to what was observed in the recent housing boom-and-bust episode.
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Figure 1: Impulse response functions following a positive productivity shock

First, regarding responses to positive productivity shocks (Figure 1), contemporaneous

responses to the shock all display similar signs under both rational expectations and learn-

17To compare impulse response functions under subjective and rational expectations following similar
size of innovations, the standard deviations of shocks that we retain are those calibrated for the learning
model.
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ing (which are in line with standard results in business cycles theory). However, house

prices, debt and hours respond much more strongly to a productivity shock under learn-

ing and display clear hump-shaped responses. Output, investment, consumption, labor

productivity and the mortgage rate also display hump-shaped response functions in the

learning case in comparison to the rational expectations case. If output and consumption

increase first more strongly in response to the shock under learning, labor productivity

and the mortgage rate increase less. The results are in line with Winkler (2016), who also

finds hump-shaped responses to productivity shocks under learning.
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Figure 2: Impulse response functions following a positive loan-to-value ratio shock

Positive shocks to the loan-to-value ratio (Figure 2) increase the borrowing capacity of

borrowers in the context of binding borrowing constraints. Borrowers thus increase their

debt (and the mortgage rate increases). Equilibrium debt then gradually decreases as the

shock lacks persistence. First, housing demand decreases, due mainly to patient house-

holds being able to lend more. They thus save relatively less through housing investment.

This effect can also occur through the collateral motive: impatient households and firms

can borrow the same amount of debt with less collateral. They thus need less real-estate

assets to guarantee their debt. The decrease in total housing demand then triggers a de-

crease in house prices, because the housing supply is constrained. However, house prices
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then increase, as the borrowing capacity gradually decreases. This increase in house prices

is exacerbated under learning due to a specific internal propagation mechanism (which

is explained below). Thus, learning generates endogenously persistent booms in house

prices in response to a loan-to-value ratio shock. As for total consumption, it first de-

creases, driven by a decrease in the consumption of patient households – who can save

more by lending more following the loan-to-value ratio shock – and by a decrease in the

consumption of entrepreneurs – who invest more in capital following the shock.
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Figure 3: Impulse response functions following a negative lenders’ preference shock

A negative lenders’ preference shock, which implies that patient households value the

current period less and are thus more willing to save money through lending, triggers a

decrease in the mortgage rate (Figure 3). This is in accord with what was observed in 2001

in the US prior to the housing market boom. The shock triggers a strong increase in all

variables, except in labor productivity. Impatient households and firms can borrow at a

lower rate and can thus invest more in housing and capital following the shock, as well as

consume more. Learning generates strong responses in house prices, investment, output,

debt and consumption in response to the shock.

Therefore, we see that learning generates stronger responses to shocks, that are, in

most cases, hump-shaped. The effect of productivity shocks and financial shocks is thus
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amplified and propagated by learning.

To understand the mechanism at play, we now present the joint dynamics of the ex-

pected house price growth rate and of the actual growth rate in response to a one-standard-

deviation negative lenders’ preference shock (Figure 4). The mechanism is similar for the

other shocks.

We observe that house prices grow in response to the shock. The realized growth

rate ln(Pt)− ln(Pt−1) (blue curve, left-hand scale) is higher than the expected growth rate

ln(µ̂t−1) (red curve, left-hand scale), implying positive forecast errors (which are roughly

measured as the difference between the two curves). According to equation (36), when

(lagged) forecast errors are positive, beliefs are updated upwards. This contributes to a

rise in the demand for housing and thus to an increase in house prices (green curve, right-

hand scale) because the housing supply is fixed. This in turn fuels the increase in the

expected growth rate. As the forecast error (that is, the distance between the two series)

decreases, at some point, the expected growth rate becomes equal to the actual growth

rate. This implies that forecast errors become null (at the point where the blue curve

and the red curve intersect). In this case, the expected growth rate remains constant in

the next period, and demand for housing grows more slowly. The realized growth rate

of house prices thus decreases below the expected value. Therefore, the expected growth

rate decreases in the next period. This decrease also causes the actual growth rate of house

prices to decrease and to become negative, meaning that house prices start to decrease.

As the expected growth rate is now higher than the actual growth rate, i.e., forecast

errors are negative, this generates the reverse feedback mechanism. A similar mechanism

is at work until house prices finally go back to the steady state, under stable dynamics.

Cyclical variations in forecast errors thus lead to cyclical variations in beliefs, house prices

and other variables, as forecast errors are state variables, and so are the mean belief and

house prices, which co-move with forecast errors. This mechanism, specific to learning,

32



1 20 40 60 79
−1

0

1

2

3

4
x 10

−3

 

 

1 20 40 60 79
1.835

1.84

1.845

1.85

1.855

1.86

Actual house prices growth rate
Expected house prices growth rate
Logged house prices

Figure 4: House prices and the dynamics of beliefs

then allows for the replication of episodes of sustained increases in house prices followed

by a steep persistent decrease in response to only one-quarter-lasting shocks. Learning

indeed generates self-reinforcing dynamics and endogenous reversals (at the time when

the expected growth rate is equal to the actual growth rate).

The simple model thus features several macro-financial linkages, which are exacer-

bated under learning. First, the model generates transmission of the macroeconomic

shock to the credit market. Second, the model generates transmission of the financial

shocks to the real sector. Learning on house prices reinforces those macro-financial link-

ages in response to both macroeconomic and financial shocks. Indeed, the learning mech-

anism induces a feedback loop between beliefs and house prices. In response to funda-

mental shocks, house prices shift, which affects both the beliefs and the other macroeco-

nomic and financial variables in the general equilibrium setting. Shifts in beliefs and in

other variables in turn affect house prices, and the transmission mechanism from house

prices to other variables starts again, generating strong and persistent propagation of fun-

damental shocks until all variables converge to their steady state value.

Even if default is not accounted for in the baseline model, which prevents modelling

the dynamics of financial losses and their consequences on the credit supply and the real
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sector, the model with learning is, however, able to qualitatively replicate the joint dy-

namics of macro-financial variables similar to those observed during the recent financial

crisis. Thus, the model with learning is able to generate a credit and housing boom as

the result of financial shocks. The increase in house prices contributes to fuel the simul-

taneous increase in credit due to collateralized borrowing constraints and thus to fuel the

increase in investment, consumption and output. However, at some point, the increase

in credit and macroeconomic variables reverts, as the effects of the transitory initial shock

decline and as house prices grow more slowly. The reversal is further propagated when

the expected house price growth rate catches up to the actual growth rate, which triggers

an endogenous bust in house prices.

Finally, we now assess the sensitivity of output and asset price volatility to key param-

eters of the model, namely the size of the financial frictions governed by the parameters

mF and mI and the parameter governing the learning process g in order to assess the re-

spective impact of learning and of financial frictions in driving the dynamics of the model

in response to shocks.

5.4 Sensitivity analysis to key parameters: the joint role of learning and

financial frictions

We have shown how learning affects the joint dynamics of business cycle variables and

house prices relative to the rational expectations set-up in a model with financial frictions.

These financial frictions play a crucial role in propagating the dynamics enhanced by the

learning mechanism. This is important to see that it is not learning alone that generates

the strong volatility in house prices in the model but the combination of learning and

financial frictions.

To show this, we provide a sensitivity analysis to the value of the parameters govern-

ing the extent of the financial frictions, that is, the parameters mF (in the borrowing con-
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straint of entrepreneurs) and mI (in the borrowing constraint of impatient households),

which represent loan-to-value ratios. For simplicity, we keep mF and mI equal in the sen-

sitivity analysis, and we assess how their value affects the volatility of both house prices

and output, with all other parameters value, notably the learning parameter g, held con-

stant. Second, we study the sensitivity of the volatility of house prices and of output to

the learning parameter g (Figure 5).18
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Figure 5: Sensitivity of the volatility of house prices and output to financial frictions and
learning parameters

The top left-hand-side panel reveals that the volatility of house prices decreases when

the degree of financial frictions (which decreases in mF ) decreases. This result is obtained

both in the learning and in the rational expectations case.

However, high financial frictions (i.e., low mF and mI) only generate high volatility of

house prices in the learning model (the green dotted curve remaining almost constant).

Interestingly, when the degree of financial frictions is low, house price volatility in the

learning case is much closer to that in the rational expectations case, showing the crucial

role of financial frictions in making the learning mechanism able to replicate the volatility

observed in the data.

Such a result can be rationalized as follows. With high financial frictions, when pro-

18We restrict the sensitivity analysis to parameter values for which borrowing constraints are always
binding throughout the simulations given the calibrated variance of shocks.
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ductivity suddenly increases, when the loan-to-value ratio suddenly increases, or when

the lenders’ preference for the present period suddenly decreases, the amount of credit

in the economy does not increase as much as it would with lower financial frictions, and

the demand for housing tends to increase more. Learning then generates self-reinforcing

expectations about future house prices that propagate the increase in house prices.

As for the volatility of output (top right-hand-side panel), on the reverse, it increases

when financial frictions decrease because entrepreneurs can increase their debt more and

thus produce relatively more following the distinct shocks. In addition, the sensitivity of

output volatility to the degree of financial friction displays much less difference between

the two models. This result shows that lower financial frictions increase the volatility of

output, whereas they decrease the volatility of house prices, implying a trade-off between

the two. Learning can help reconcile both aspects by amplifying the dynamics of asset

prices.

The two bottom panels show how the volatility of house prices and of output both

increase when the Kalman filter gain g increases, reflecting a stronger reaction of beliefs

(and thus of all other variables because beliefs are a state variable) to new house price

realizations. Indeed, a higher g means that agents believe that changes in the time-varying

drift µt play a stronger role in explaining variations in house prices relative to changes in

the transitory noise ηt, which are unpredictable. Agents thus update more strongly their

beliefs in the direction of the last forecast error in response to changes in house prices.

Indeed, the last forecast error is then more informative for predicting future variations in

house prices.

In addition, as the persistence parameter of the loan-to-value ratio shock process ρa

estimated in the most recent period (since the early 2000s) on household data in the US is

significantly higher (see Pintus and Suda (2016)) than the value retained in earlier litera-

ture, we display the volatility of output, house prices, debt and investment as functions
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of this parameter. However, it appears that in our model the volatility of output, house

prices and investment is quite insensitive to the persistence parameter of the leverage

shock process (Figure 6).

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.0095

0.01

0.0105

0.011

Sensitivity of σy
t
 to ρ

a

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.01

0.015

0.02

0.025

Sensitivity of σq
t
 to ρ

a

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.02

0.025

0.03

0.035

0.04

Sensitivity of σb
t
 to ρ

a

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0.025

0.03

0.035

0.04

Sensitivity of σi
t
 to ρ

a

Figure 6: Sensitivity of key variables to the persistence of the loan-to-value ratio shock
process

Finally, our results on the joint role of learning and financial frictions to explain asset

prices volatility are in line with Winkler (2016) in the context of a distinct set-up directed

at explaining stock prices instead of house prices, with the same learning mechanism but

different financial frictions and with Kuang (2014) who obtains a similar result in a pure

exchange economy. Our own results thus tend to further support the idea that learning in

combination with financial frictions significantly amplifies and propagates the impact of

both macroeconomic and financial shocks on house prices.

6 Conclusion

The present paper proposes an interpretation of the recent macro-financial linkages in-

volving feedback transmission channels between the credit market, the housing market

and the real sector, based on imperfect market knowledge, and thus on Bayesian learning

regarding house prices. We incorporate the learning process into an otherwise standard

borrower-saver model with a production sector, collateralized borrowing constraints and
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financial frictions. We show how learning generates strong amplification and propagation

of small aggregate disturbances in combination with credit frictions. We show that the

learning mechanism enables the replication of persistent boom episodes in house prices

followed by endogenous busts in response to shocks affecting the credit market, in accord

with what was observed before and during the recent subprime financial crisis. The set-

up helps simultaneously replicate several features of the dynamics of house prices and

most standard business cycle moments of the last 30 years.

This paper thus presents a parsimonious and stylized model that helps better account

for the recent joint dynamics of house prices, credit and macroeconomic variables, and

paves the way for many potential extensions in which house price excess volatility would

be better accounted for, based on an explanation with strong intuitive appeal and con-

sistent with the rejection of the rational expectations hypothesis evidenced by survey

data. The model can thus be seen as a starting point for many future avenues of research,

that would focus on deriving optimal policies in a context of significant volatility in asset

prices, with strong consequences on other macroeconomic and financial variables. In par-

ticular, the set-up could be extended by introducing nominal frictions and investigating

optimal monetary policy.

The model could also be extended by allowing for default – and therefore by modelling

lenders’ expectations of default and thus endogenous risk premia – to better account for

additional features of the recent subprime financial crisis. In a model allowing for de-

fault and a house price appreciation-dependent mortgage rate, the learning mechanism

would prove able to generate increased mortgage rates in response to the endogenous re-

versal in house prices. This would then generate an endogenous increase in the default

rate, triggering losses in the financial sector, a credit crunch and recession. The learning

mechanism thus seems very promising for explaining the recent financial crisis without

resorting to somewhat less explanatory exogenous shocks.
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A The rational expectations model

A.1 The first-order conditions
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A.2 The flow of fund constraints

Ct,P + qtHt,P +Bt = wtNt,P +Rt−1Bt−1 + qtHt−1,P .

Ct,F + qtHt,F +Rt−1Bt−1,F + wtNt + It = Yt +Bt,F + qtHt−1,F .

Ct,I +Rt−1Bt−1,I + qtHt,I = wtNt,I + qtHt−1,I +Bt,I .

A.3 The production function and the capital accumulation equation

Yt = AtK
α
t−1H

v
t−1N

1−α−v
t .

Kt = It + (1− δ)Kt−1 +
φ

2

(
It

Kt−1
− δ
)2

Kt−1.

A.4 The shock processes

ln(dt) = ρd ln(dt−1) + εd,t.

ln(At) = ρa ln(At−1) + εa,t.

ln(am,t) = ρam ln(am,t−1) + εam,t.
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A.5 The market clearing equations

Yt = It + Ct,P + Ct,F + Ct,I .

Bt = Bt,F +Bt,I .

Nt = Nt,P +Nt,I .

HP,t +HF,t +HI,t = 1.

B The approximation method

Appendix B presents a summary of the original method presented in Winkler (2016) ap-

plied to the specific case of our model.

A general way to describe the learning model is to write it as the combination of the

two following systems of equations under the subjective probability measure P :

EP
t [f(yt+1, yt, xt, ut, zt)] = 0, (37)

EP
t [φ(yt+1, yt, xt, ut, zt)] = 0, (38)

where yt is a vector of endogenous variables in period t, yt+1 is a vector of these variables

in the next period, xt is a vector of state variables such that xt = Cyt−1, where C is a

matrix including 0 and 1 values, and yt−1 is a vector of the endogenous variables in the

previous period. ut is a vector of stochastic disturbances with σ the vector of variances

of these exogenous disturbances. zt is a vector of variables perceived by agents as iid ex-

ogenous disturbances that affect the house price process and the belief updating process,

with zero mean and variance σz. They are assumed to be uncorrelated with ut. They can

be interpreted as forecast errors regarding house prices and are assumed to be null in the

steady state. EP
t is the expectations operator under the subjective probability measure P .
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As discussed in Section 3, the elements of zt are actually not exogenous. They are deter-

mined endogenously by market clearing on the housing market, and thus by a second set

of equilibrium conditions, given by the system of equations (38), which is unknown to

agents.

In the specific case of our model, the second set of equilibrium conditions takes the

form of two equations:

HI,t +HF,t +HP,t − 1 = 0, (39)

and

z2t − z1,t−1 = 0. (40)

Solving the model under the subjective probability measure P first amounts to finding the

function h, that we call the subjective policy function, such that all endogenous variables

are expressed as functions of state variables xt and of the two types of exogenous distur-

bances ut and zt only (and of the shock variances): h(xt, ut, zt, σ). We obtain a numerical

approximation for the subjective policy function by implementing standard perturbation

methods for numerically solving the system of equations characterizing the policy func-

tion under P that includes the first-order conditions (4-6), (14-16), (18 and (22-24), the flow

of fund constraints (3), (8), and (20), the production function (9), the capital accumulation

equation (11), the complementary slackness conditions (17-25), market clearing conditions

(27) and (28), random processes (2), (10) and (13) and the beliefs’ updating equation (36).

This step yields the coefficient of the Taylor expansion of h around the deterministic steady

state. This is the first step of the approximation method.

Secondly, we aim at finding the values of zt such that the market clearing condition on

the housing market is actually satisfied, that is, such that HI,t + HFt + HP,t = 1. The ele-

ments of zt can thus be written as a function r of state variables xt, stochastic disturbances

ut and shock variances σ: zt = r(xt, ut, σ). We thus need to approximate the function r
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(which, at this point, is assumed to exist and to be unique, which is verified ex-post in

the case of our model) in order to approximate the objective policy function g, which is

such that, in equilibrium, yt = g(xt, ut, σ). By applying chain rules for derivation, g can be

approximated in the neighborhood of the non-stochastic steady state at the first order as

follows:

yt = g(xt, ut, σ) = h(xt, ut, r(xt, ut, σ), σ)

' g(x̄, 0, 0) + (hxt + hztrxt)(xt − x̄) + (hut + hztrut)ut + (hσ + hztrσ)σ,

where x̄ is the vector of steady state values of the state variables.

To derive the objective policy function g, we still need to find the approximate values of

rxt , rut and rσ in the steady state. These derivatives can be otained by total differentiation

of the second set of equilibrium conditions (38) at the deterministic steady state. Indeed,

the second set of equilibrium conditions (38) can be rewritten as:

0 = Φ(xt, ut, σ) = EP
t [φ(yt+1, yt, xt, ut, zt)] =

EP
t

[
φ

[
h

(
Ch(xt, ut, r(xt, ut, σ), σ), ut+1, zt+1, σ

)
︸ ︷︷ ︸

yt+1

, h

(
xt, ut, r(xt, ut, σ), σ

)
︸ ︷︷ ︸

yt

, xt, ut, r

(
xt, ut, σ

)
︸ ︷︷ ︸

zt

]]
.

Total differentiation at the steady state makes it possible to obtain the derivatives of r,

which are, in our case, as follows (due to the fact that yt+1 and ut do not appear in the

second set of equilibrium conditions (39-40) and thus φyt+1 = 0 and φut = 0):

dΦ

dx
(x̄, 0, 0) = φythxt + φxt + (φythzt + φzt)rxt = 0

⇔ rxt = −(φythxt + φxt)(φythzt + φzt)
−1.
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dΦ

du
(x̄, 0, 0) = φythut + (φythzt + φzt)rut = 0

⇔ rut = −φythut(φythzt + φzt)
−1.

dΦ

dσ
(x̄, 0, 0) = φythσ + (φythzt + φzt)rσ = 0

⇔ rσ = −φythσ(φythzt + φzt)
−1 = 0,

because hσ = 0.

Because the matrix φythzt + φzt is invertible in our model, the function r exists and is

unique.

For higher order approximations, the method is similar, even though the calculations are

trickier, notably because they imply deriving Kronecker products of large matrices (see

Winkler (2016) for more details).

C Data series

All data series are extracted from the Federal Reserve Bank of St Louis database (FRED),

mainly from the US Flow of Funds Statistics, and are expressed in real terms using the

GDP Implicit Price Deflator. Series used for deriving aggregate entrepreneur loans and

household loans are similar to those used in Iacoviello (2015).

Variable Series
Output Gross Domestic Product

House prices All-transactions House Prices Index
Investment Private Non-Residential Fixed Investment + Durable Consumption

Consumption Personal Consumption Expenditures, Nondurable Goods
Debt Sum of Entrepreneur Loans and of Household Loans

Hours Hours of All Persons, Nonfarm Business Sector
Capital Annual Capital Stock at Constant National Prices

Mortgage rate 1-year adjustable rate (average in the US)
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