Debt Dilution and Firm Investment

Joachim Jungherr ¹ Immo Schott ²

¹Institut d'Anàlisi Econòmica (CSIC), MOVE, and Barcelona GSE

²Université de Montréal and CIREQ

ADEMU Toulouse Summer School Toulouse, June 20, 2017

Big question: Do financial frictions matter for firm investment?

Standard models: short-term debt only

Empirically, most firm debt is *long-term debt*:

▶ for the average U.S. corporation, 67% of total debt does not mature within the next year

This paper:

introduces long-term debt (and a maturity choice) into a standard model of firm financing and investment Main result:

- firms with previously issued outstanding debt do not internalize all costs from issuing additional debt
- they increase leverage and default risk

 \Rightarrow "Debt Dilution"

debt dilution reduces investment and output

We show this:

- analytically (2-period model)
- quantitatively (dynamic model)
- empirically (using firm-level Compustat data)

Dynamic model:

- debt dilution is a time-inconsistency problem
- removing debt dilution is as beneficial as reducing corporate income tax by 5.3 percentage points

Policy options:

- upper limit to leverage
- upper limit to maturity choice
- different seniority structures

Literature

Debt dilution and sovereign default:

 e.g. Hatchondo and Martinez (2009, 2013), Arellano and Ramanarayanan (2012), Chatterjee and Eyigungor (2012, 2015), Hatchondo, Martinez, and Sosa-Padilla (2016), Aguiar, Amador, Hopenhayn, and Werning (2016)

Long-term debt and firm investment:

► e.g. Caggese and Perez (2015), Alfaro, Bloom, and Lin (2016), Gomes, Jermann and Schmid (2016)

Closest paper: Crouzet (2016)

- does not study the effect of debt dilution on investment
- model does not match empirical facts about debt maturity

- 1. Introduction
- 2. 2-period Model
- 3. Dynamic Model
- 4. Empirical Results
- 5. Policy

1. Introduction

2. 2-period Model

- 3. Dynamic Model
- 4. Empirical Results
- 5. Policy

2-period Model: Setup

2 periods: t = 0, 1

A firm owned by risk-neutral shareholders:

• earnings in t = 1:

$$f(k) - \delta k + \varepsilon k$$

- f(k) concave \Rightarrow diminishing returns
- capital k set in t = 0:
 - idiosyncratic earnings shock ε uncertain
 - $\mathbb{E}[\varepsilon] = 0$

Definition

Debt: A bond is a promise to pay one unit of the numéraire good together with a coupon payment c at the end of t = 1.

- firm can raise funds in t = 0 by selling a number Δ_b of new bonds at market price p
- ▶ total funds raised in t = 0 on the bond market: $p\Delta_{h}$

Assume that there is an *exogenous* amount *b* of bonds outstanding \Rightarrow "Long-term" debt

- these bonds are otherwise identical to the one-period bonds sold in t = 0 and due in t = 1
- total stock of debt in t = 1: $b + \Delta_b \equiv \ddot{b}$

2-period Model: Debt & Capital

Firm chooses capital k in t = 0:

- firm sells new bonds and gets $\Delta_b p$
- shareholders inject equity e

$$k = e + p \Delta_b$$

Benefit of debt:

- total stock of debt in t = 1: $\tilde{b} = b + \Delta_b$
- coupon payments $\tilde{b}c$ are tax-deductible

Shareholder net worth q at the end of t = 1:

$$q = k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \varepsilon k - c\tilde{b}]$$

• debt lowers tax payment by $au c \tilde{b}$

Introduction

2-period Model

Equilibrium

Dynamic Model

Equilibrium

Empirical Results

Definition

Limited Liability: Shareholders are free to default in t = 1 and leave the firm to lenders for liquidation. A fraction ξ of firm assets is lost in this case.

Timing:

t=0 Given b, the firm chooses k, e, and $\tilde{b} = b + \Delta_b$

t=1 ε is realized.

This determines net worth q. The firm decides whether to default.

2-period Model: Firm Problem

Introduction

2-period Model

Equilibrium [

Dynamic Model

Equilibrium

Empirical Results

B Policy

2-period Model: Firm Problem

t = 1: **Default threshold** $\bar{\varepsilon}$: q = 0

$$\Leftrightarrow \quad k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \overline{\varepsilon}k - c\tilde{b}] = 0$$

Equilibrium Dyi

Dynamic Model

Equilibrium

Empirical Results

2-period Model: Firm Problem

$$t = 1$$
: Default threshold $\overline{\varepsilon}$: $q = 0$
 $\Leftrightarrow \quad k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \overline{\varepsilon}k - c\tilde{b}] = 0$

t = 0: Firm problem given b:

$$\max_{k,e,\Delta_{b},\tilde{b},\bar{\varepsilon}} -e + \frac{1}{1+r} \int_{\bar{\varepsilon}}^{\infty} [k-\tilde{b} + (1-\tau)[f(k) - \delta k + \varepsilon k - c\tilde{b}] \varphi(\varepsilon) d\varepsilon$$

s.t.: $\bar{\varepsilon}$: $k - \tilde{b} + (1-\tau)[f(k) - \delta k + \overline{\varepsilon}k - c\tilde{b}] = 0$
 $k = e + p \Delta_{b}$
 $\tilde{b} = b + \Delta_{b}$

Introduction

2-period Model Equilibrium

ium Dynamic Model

Vlodel Equilibrium

um Empirical Results

We have assumed that fraction $\boldsymbol{\xi}$ of firm assets is lost in case of default

Here: $\xi=1\Rightarrow$ liquidation value of the firm is zero

We have assumed that fraction $\boldsymbol{\xi}$ of firm assets is lost in case of default

Here: $\xi=1\Rightarrow$ liquidation value of the firm is zero

t = 0: Risk-neutral lenders break even on expectation:

$$ho \,=\, rac{1}{1+r} \, \left[1-\Phi(\overline{arepsilon})
ight] \, (1+c)$$

Introduction

2-period Model

Equilibrium Dy

Dynamic Model

Equilibrium

Empirical Results

Equilibrium Dyi

Dynamic Model

Equilibrium

Empirical Results

$$\max_{\substack{k,e,\tilde{b},\bar{\varepsilon},\rho}} -e + \frac{1}{1+r} \int_{\bar{\varepsilon}}^{\infty} [k-\tilde{b}+(1-\tau)[f(k)-\delta k+\varepsilon k-c\tilde{b}] \varphi(\varepsilon) d\varepsilon$$

s.t.: $\bar{\varepsilon}$: $k-\tilde{b}+(1-\tau)[f(k)-\delta k+\overline{\varepsilon}k-c\tilde{b}]=0$
 $k=e+p(\tilde{b}-b)$
 $p=\frac{1}{1+r}[1-\Phi(\overline{\varepsilon})](1+c)$

Introduction

2-period Model

Equilibrium Dyr

Dynamic Model Eq

Equilibrium

Empirical Results

$$\max_{k,e,\tilde{b},\bar{\varepsilon},p} -e + \frac{1}{1+r} \int_{\overline{\varepsilon}}^{\infty} [k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \varepsilon k - c\tilde{b}] \varphi(\varepsilon) d\varepsilon$$

s.t.: $\overline{\varepsilon}$: $k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \overline{\varepsilon}k - c\tilde{b}] = 0$
 $k = e + p(\tilde{b} - b) \Rightarrow e = k - p(\tilde{b} - b)$
 $p = \frac{1}{1+r} [1 - \Phi(\overline{\varepsilon})](1 + c)$

Introduction

2-period Model

Equilibrium Dyr

Dynamic Model

Equilibrium

Empirical Results

$$\max_{\substack{k,e,\tilde{b},\bar{\varepsilon},p}} -e + \frac{1}{1+r} \int_{\overline{\varepsilon}}^{\infty} [k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \varepsilon k - c\tilde{b}] \varphi(\varepsilon) d\varepsilon$$

s.t.: $\overline{\varepsilon}$: $k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \overline{\varepsilon}k - c\tilde{b}] = 0 \Rightarrow \tilde{b} = G(\overline{\varepsilon}, k)$
 $k = e + p(\tilde{b} - b) \Rightarrow e = k - p(\tilde{b} - b)$
 $p = \frac{1}{1+r} [1 - \Phi(\overline{\varepsilon})](1 + c)$

Introduction

2-period Model

Equilibrium Dyr

Dynamic Model

Equilibrium

Empirical Results

$$\max_{k,e,\tilde{b},\bar{\varepsilon},p} -e + \frac{1}{1+r} \int_{\bar{\varepsilon}}^{\infty} [k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \varepsilon k - c\tilde{b}] \varphi(\varepsilon) d\varepsilon$$

s.t.: $\bar{\varepsilon}$: $k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \overline{\varepsilon}k - c\tilde{b}] = 0 \Rightarrow \tilde{b} = G(\bar{\varepsilon}, k)$
 $k = e + p(\tilde{b} - b) \Rightarrow e = k - p(\tilde{b} - b)$
 $p = \frac{1}{1+r} [1 - \Phi(\bar{\varepsilon})](1+c) \Rightarrow p = H(\bar{\varepsilon})$

Introduction

2-period Model

Equilibrium Dyr

Dynamic Model

Equilibrium

Empirical Results

$$\max_{k,e,\tilde{b},\bar{\varepsilon},p} -e + \frac{1}{1+r} \int_{\overline{\varepsilon}}^{\infty} [k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \varepsilon k - c\tilde{b}] \varphi(\varepsilon) d\varepsilon$$

s.t.: $\overline{\varepsilon}$: $k - \tilde{b} + (1 - \tau)[f(k) - \delta k + \overline{\varepsilon}k - c\tilde{b}] = 0 \Rightarrow \tilde{b} = G(\overline{\varepsilon}, k)$
 $k = e + p(\tilde{b} - b) \Rightarrow e = k - p(\tilde{b} - b)$
 $p = \frac{1}{1+r} [1 - \Phi(\overline{\varepsilon})](1 + c) \Rightarrow p = H(\overline{\varepsilon})$

\Rightarrow This problem can be re-written in terms of k and $\bar{\varepsilon}$

Introduction

2-period Model Ed

Equilibrium Dynami

Dynamic Model E

Equilibrium

Equilibrium Dy

Dynamic Model

Equilibrium

Empirical Results

Consolidated problem in t = 0 given b:

$$\max_{k,\overline{\varepsilon}} -e + \frac{1-\tau}{1+r} k \int_{\overline{\varepsilon}}^{\infty} [\varepsilon - \overline{\varepsilon}] \varphi(\varepsilon) d\varepsilon$$

Consolidated problem in t = 0 given b:

$$\max_{k,\overline{\varepsilon}} \quad \underbrace{-k + p\Delta_b}_{-\epsilon} \qquad \qquad + \frac{1 - \tau}{1 + r} k \int_{\overline{\varepsilon}}^{\infty} [\varepsilon - \overline{\varepsilon}] \varphi(\varepsilon) d\varepsilon$$

- -

Policy

Introduction 2-period Model Equilibrium Dynamic Model Equilibrium Empirical Results

Consolidated problem in t = 0 given b:

$$\max_{k,\overline{\varepsilon}} \quad -k + \underbrace{[1 - \Phi(\overline{\varepsilon})]}_{p} \underbrace{(\tilde{b} - b)}_{\Delta_{b}} \qquad + \frac{1 - \tau}{1 + r} k \int_{\overline{\varepsilon}}^{\infty} [\varepsilon - \overline{\varepsilon}] \varphi(\varepsilon) d\varepsilon$$

Introduction 2-period Model **Equilibrium** Dynamic Model Equilibrium Empirical Results Policy

Consolidated problem in t = 0 given b:

$$\max_{k,\overline{\varepsilon}} \quad -k + \underbrace{[1 - \Phi(\overline{\varepsilon})]}_{p} \underbrace{(G(\overline{\varepsilon}, k) - b)}_{\Delta_{b}} + \frac{1 - \tau}{1 + r} k \int_{\overline{\varepsilon}}^{\infty} [\varepsilon - \overline{\varepsilon}] \varphi(\varepsilon) d\varepsilon$$

2-period Model: First Order Conditions

Two First Order Conditions:

Equilibrium Dy

Dynamic Model

Equilibrium

Empirical Results

2-period Model: First Order Conditions

Two First Order Conditions:

Capital k:

$$\underbrace{-1}_{\substack{\text{Marginal}\\ \text{cost of}\\ \text{capital}}} + \underbrace{[1 - \Phi(\overline{\varepsilon})]}_{\substack{\text{Marginal increase}\\ \text{in value of debt}}} \underbrace{\frac{1 - \tau}{\partial k}}_{\substack{\text{Harginal increase}\\ \text{in expected dividend}}} + \underbrace{\frac{1 - \tau}{1 + r} \int_{\overline{\varepsilon}}^{\infty} [\varepsilon - \overline{\varepsilon}] \varphi(\varepsilon) \, d\varepsilon}_{\substack{\text{marginal increase}\\ \text{in expected dividend}}} = 0$$

Equilibrium Dyn

Dynamic Model

Equilibrium

Empirical Results

2-period Model: First Order Conditions

Two First Order Conditions:

Capital k:

$$\underbrace{-1}_{\substack{\text{Marginal}\\ \text{cost of}\\ \text{capital}}} + \underbrace{[1 - \Phi(\overline{\varepsilon})]}_{\substack{\text{Marginal increase}\\ \text{in value of debt}}} \underbrace{\frac{1 - \tau}{\partial k}}_{\substack{\text{Harginal increase}\\ \text{in expected dividend}}} + \underbrace{\frac{1 - \tau}{1 + r} \int_{\overline{\varepsilon}}^{\infty} [\varepsilon - \overline{\varepsilon}] \varphi(\varepsilon) \, d\varepsilon}_{\substack{\text{marginal increase}\\ \text{in expected dividend}}} = 0$$

Threshold value $\bar{\varepsilon}$:

$$[1 - \Phi(\overline{\varepsilon})] \underbrace{(1 - \tau)k \frac{\tau c}{1 + (1 - \tau)c}}_{Marginal tax \ benefit \ of \ \overline{\varepsilon}} - \underbrace{\frac{\tau c}{1 + (1 - \tau)c}}_{Marginal \ tax \ benefit \ of \ \overline{\varepsilon}}$$

$$\underbrace{\varphi(\bar{\varepsilon})(1+c)(\tilde{b}-b)}_{=} = 0$$

Marginal increase in expected costs of default internalized by the firm

2-period Model

Equilibrium Dyn

Choice of threshold value $\bar{\varepsilon}$:

marginal increase in total expected costs of default

 $\varphi(\bar{\varepsilon})(1+c)\tilde{b}$

Choice of threshold value $\bar{\varepsilon}$:

marginal increase in total expected costs of default

 $\varphi(\bar{\varepsilon})(1+c)\tilde{b}$

Policy

 Firm only internalizes the loss in value of newly issued bonds: ∆_b = b̃ − b

Choice of threshold value $\bar{\varepsilon}$:

marginal increase in total expected costs of default

 $\varphi(\bar{\varepsilon})(1+c)\tilde{b}$

- Firm only internalizes the loss in value of newly issued bonds: Δ_b = μ̃ − b
- marginal increase in expected costs of default internalized by the firm

$$\varphi(\bar{\varepsilon})(1+c)\underbrace{(\tilde{b}-b)}_{\Delta_{b}}$$

Introduction

2-period Model

Equilibrium Dyn

Dynamic Model I

Equilibrium

Empirical Results

Choice of threshold value $\bar{\varepsilon}$:

marginal increase in total expected costs of default

 $\varphi(\bar{\varepsilon})(1+c)\tilde{b}$

- Firm only internalizes the loss in value of newly issued bonds: ∆_b = b̃ − b
- marginal increase in expected costs of default internalized by the firm

$$\varphi(\bar{\varepsilon})(1+c)\underbrace{(\tilde{b}-b)}_{\Delta_{b}}$$

► firm disregards that by increasing \(\varepsilon\) it also reduces ("dilutes") the value of previously issued bonds b

Introduction

Proposition

The default rate $\Phi(\bar{\varepsilon})$ is increasing in b.

► the higher is b, the lower is the fraction of total default costs internalized by the firm

Proposition

For $b > \overline{b}$, capital k is falling in b.

$$ar{b}=rac{(1- au)k\left[rac{f(k)}{k}-f'(k)
ight]}{1+(1- au)c}\,.$$

For $b < \overline{b}$, capital k is increasing in b.

- the higher is *b*, the higher is $\bar{\varepsilon}$
- ambiguous effect of higher $\bar{\varepsilon}$ on capital:
 - lower effective tax rate \Rightarrow higher capital
 - \blacktriangleright lower bond price \Rightarrow higher cost of capital \Rightarrow lower capital
- for $b > \overline{b}$, the second effect dominates

Proposition

If k is falling in b, leverage \tilde{b}/k is increasing in b.

- ▶ if k is falling in b, higher $\overline{\varepsilon}$ implies higher debt \tilde{b} and therefore higher leverage
- ▶ if k is increasing in b, this may or may not hold

- 1. Introduction
- 2. 2-period Model
- 3. Dynamic Model
- 4. Empirical Results
- 5. Policy

Definition

Short-term Debt: In period t, the firm can sell a short-term bond. This is a promise to pay 1 + c in period t + 1.

t: firm receives $p^{S}\tilde{b}^{S}$ t+1: firms pays $(1 + c)\tilde{b}^{S}$

Definition

Long-term Debt: In period t, the firm can sell a long-term bond. A fraction γ of this bond matures each period. This is a promise to pay $\gamma + c$ in period t + 1, $(1 - \gamma)(\gamma + c)$ in period t + 2, $(1 - \gamma)^2(\gamma + c)$ in period t + 3, etc. ...

t: firm receives $p^L \tilde{b}^L$ t+1: firms pays $(\gamma + c) \tilde{b}^L$ t+2: firms pays $(1 - \gamma)(\gamma + c) \tilde{b}^L$ t+3: firms pays $(1 - \gamma)^2(\gamma + c) \tilde{b}^L$ t+4: etc.

Definition

Floatation cost on the bond market:

$$\eta \left(\tilde{b}_t^{\mathcal{S}} + |\tilde{b}_t^{\mathcal{L}} - b_t| \right)$$

The firm pays η for each bond sold (and for each long-term bond repurchased)

Introduction 2-period Model Equilibrium Dynamic Model Equilibrium Empirical Results Policy

Dynamic Model: Equilibrium

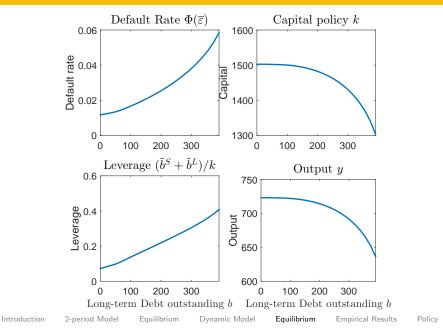
Introduction 2-period Model Equilibrium Dynamic Model **Equilibrium** Empirical Results Policy

Firm maximizes shareholder value subject to creditors' break even condition:

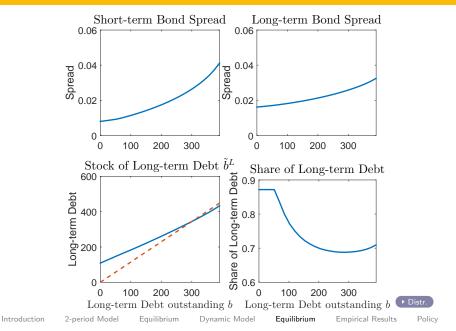
- firm cannot commit to future actions
- firm must take future firm policy as given
- time-consistent policy
- Markov Perfect equilibrium

Variable	Description	Value	Target/Source
r	riskless rate	0.0309	
δ	depreciation	0.391	Capital-output ratio 2.07
γ	repayment rate	0.1283	Long-term debt share 67.4%
С	debt coupon	r	
au	tax rate	0.3	Hennessy and Whited (2005)
$\sigma_{arepsilon}$	st.dev. earnings	0.6275	Leverage 27.2%
α	decr. returns	0.9	Blundell and Bond (2000)
η	floatation cost	0.0109	Altinkilic and Hansen (2000)
ξ	default cost	0.62	Credit spread 2.30%

Dynamic Model: Policy Functions



Dynamic Model: Policy Functions



Dynamic Model: Maturity Choice

Trade-off between short-term and long-term debt (LTD):

- LTD saves floatation costs on the bond market
- ▶ but LTD also creates **debt dilution** in the future ⇒ higher default risk in the future

Higher future default risk hurts the firm:

- Iower price of LTD sold today!
- default risk convex in b
- ▶ incentive to **reduce LTD** as *b* increases

Higher future default risk also hurts the holders of previously issued LTD b:

- higher b means less of the total cost of LTD is internalized by the firm!
- ► incentive to **increase LTD** as *b* increases

- 1. Introduction
- 2. 2-period Model
- 3. Dynamic Model
- 4. Empirical Results
- 5. Policy

One measure of debt dilution is the OLD-Share, the ratio of LTD outstanding b to total debt $\tilde{b}^{S} + \tilde{b}^{L}$:

$$\textit{OLD} ext{-Share} = rac{b}{ ilde{b}^{S} + ilde{b}^{L}}$$

Theoretical prediction: the OLD-Share is...

- mositively correlated with leverage and default risk
- ... negatively correlated with capital

Empirical test:

- ► firm-level data from Compustat 1984-2014
- ► Moody's Default & Recovery Database 1988-2014
- excluding financial firms and utilities

Convert the panel into a **cross-section** of firms: for firm j we use...

- average of firm j's OLD-Share in year t, t + 1, t + 2, ...
- average of firm j's leverage in year t, t + 1, t + 2, ...

► etc.

Empirical Results: Leverage

OLS				
	Leverage	Leverage	Leverage	Leverage
(Industry FE)			(low Z-score)	(high Z-score)
OLD-Share		0.0470***	0.0654**	0.0222*
		(3.83)	(3.31)	(2.12)
Tobin's q	0.0273***	0.0278***	0.0456***	0.0148
·	(6.42)	(6.64)	(7.46)	(1.70)
Profitability	-0.171***	-0.172***	-0.0796**	-0.0291
,	(-8.20)	(-8.43)	(-2.77)	(-0.76)
Tangibility	0.253***	0.243***	0.282***	0.118***
0,	(6.59)	(6.19)	(5.47)	(4.01)
Firm age	-0.00413***	-0.00411***	-0.00323***	-0.00280***
C	(-7.66)	(-7.75)	(-3.38)	(-5.60)
log Sales	0.0146***	0.0121***	0.0112**	0.0156***
-	(7.51)	(6.30)	(3.04)	(6.81)
adj. <i>R</i> ²	0.2524	0.2557	0.2344	0.3025
Ν	5118	5115	2556	2559

Introduction

2-period Model

Equilibrium Dyn

Empirical Results: Default

Logit	Default	Default	Default	Default
(Industry FE)			(low Z-score)	(high Z-score)
OLD-Share		0.529*	0.830**	-0.345
		(2.14)	(2.76)	(-0.66)
Leverage	3.989***	3.922***	3.421***	3.470***
	(11.55)	(11.45)	(8.04)	(4.65)
Tobin's q	-1.237***	-1.238***	-1.026***	-1.112***
	(-6.29)	(-6.30)	(-4.29)	(-3.52)
Profitability	-1.407***	-1.528***	-0.861*	-4.906***
	(-4.04)	(-4.53)	(-2.27)	(-5.10)
Firm age	0.00323	0.00408	0.0107	0.0150
	(0.35)	(0.43)	(0.89)	(0.85)
log Sales	0.429***	0.410***	0.421***	0.379***
	(11.25)	(10.39)	(9.67)	(4.67)
Pseudo R ²	0.2096	0.2114	0.2377	0.1638
Ν	5118	5115	2556	2559

Introduction

2-period Model

Equilibrium Dynamic Model

Aodel Equili

OLS	$\Delta \log Assets$	$\Delta \log Assets$	$\Delta \log Assets$	$\Delta \log Assets$
(Industry FE)			(low Z-score)	(high Z-score)
OLD-Share		-0.0697***	-0.0868***	-0.0524***
		(-7.43)	(-4.91)	(-4.58)
Leverage	-0.0810***	-0.0725***	-0.0264	-0.0442
	(-5.23)	(-4.75)	(-1.47)	(-1.52)
Tobin's q	0.0339***	0.0342***	0.0251***	0.0401***
	(6.46)	(6.56)	(3.40)	(3.98)
Profitability	0.183***	0.189***	0.148***	0.184**
	(7.65)	(8.00)	(4.92)	(2.74)
Firm age	-0.00646***	-0.00638***	-0.00675***	-0.00640***
-	(-9.18)	(-9.07)	(-6.64)	(-6.92)
log Sales	0.00556**	0.00871***	0.01000**	0.00435
-	(2.73)	(4.47)	(3.14)	(1.88)
adj. R ²	0.0830	0.0964	0.0299	0.1425
<u>N</u>	5116	5114	2555	2559

Introduction

Equilibrium Dynamic Model

- 1. Introduction
- 2. 2-period Model
- 3. Dynamic Model
- 4. Empirical Results
- 5. Policy

Necessary conditions for debt dilution:

- debt is risky
- firm can borrow before previously issued debt matures
- more than one lender
- less than full-commitment

These conditions are very general \Rightarrow Policy / Governance options...

- upper limit to leverage
- upper limit to debt maturity
- seniority for short-term debt

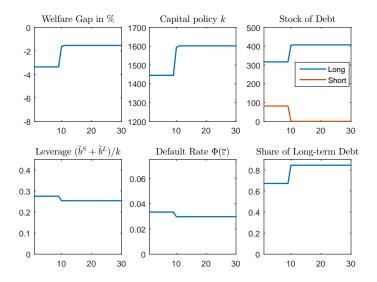
• Debt Covenants / Secured Debt

Period welfare is value added:

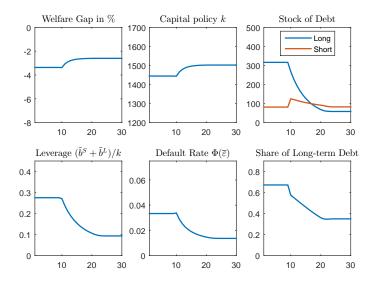
$$W = \int_0^1 [k(i)^{\alpha} - \delta k(i) - rk(i)] di$$

- assumption: taxes, earnings shocks, bankruptcy costs, floatation costs all purely redistributive
- ► financial frictions matter only because they distort capital

Policy: Leverage



Policy: Maturity



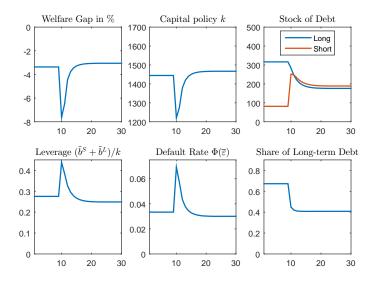
2-period Model

Equilibrium Dynamic Model

Equilibrium

Empirical Results

Policy: Seniority for Short-term Debt



Introduction

2-period Model

Equilibrium Dynamic Model

Equilibrium Empirical Results

- 1. Introduction
- 2. 2-period Model
- 3. Dynamic Model
- 4. Empirical Results
- 5. Policy

Conclusion

Summary of results:

- we introduce *long-term debt* (and a maturity choice) into a standard model of firm financing and investment
- debt dilution increases default risk and leverage, and reduces investment and output

These results could matter for:

- cyclical debt dilution (companion paper!)
- firm dynamics in a model with more cross-sectional heterogeneity
- with nominal long-term debt, cyclical debt dilution creates a role for monetary policy even if prices are fully flexible, e.g. Gomes, Jermann and Schmid (2016)

Thank you!

Introduction 2-period Model Equilibrium Dynamic Model Equilibrium Empirical Results Policy

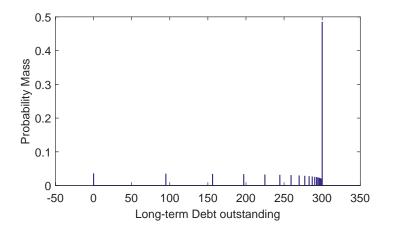
Dynamic Model: Equilibrium

Firm maximizes shareholder value subject to creditors' break even condition:

$$\begin{split} \mathcal{V}(b) &= \max_{k,e',\tilde{b}^{S},\tilde{b}^{L},\tilde{\varepsilon},p^{S},p^{L}} - e' \\ &+ \frac{1}{1+r} \bigg[\int_{\tilde{\varepsilon}}^{\infty} \Big[q' + \mathcal{V}((1-\gamma)\tilde{b}^{L}) \Big] \varphi(\varepsilon) d\varepsilon + \Phi(\bar{\varepsilon}) \, \mathcal{V}(0) \Big] \\ \text{s.t.:} \quad q' &= k - \tilde{b}^{S} - \gamma \tilde{b}^{L} + (1-\tau) [k^{\alpha} - \delta k + \varepsilon k - c \tilde{b}^{S} - c \tilde{b}^{L}] \\ \bar{\varepsilon} : \quad q' + \mathcal{V}((1-\gamma)\tilde{b}^{L}) &= \mathcal{V}(0) \\ k &= e' + p^{S} \tilde{b}^{S} + p^{L} (\tilde{b}^{L} - b) - \eta (\tilde{b}^{S} + |\tilde{b}^{L} - b|) \\ p^{S} &= \frac{1}{1+r} \bigg[[1 - \Phi(\bar{\varepsilon})] (1+c) + \Phi(\bar{\varepsilon}) \frac{(1-\xi)\tilde{q}}{\tilde{b}^{S} + \tilde{b}^{L}} \bigg] \\ p^{L} &= \frac{1}{1+r} \bigg[[1 - \Phi(\bar{\varepsilon})] \left(\gamma + c + (1-\gamma) \, p^{L} ((1-\gamma) \tilde{b}^{L}) \right) \\ &+ \Phi(\bar{\varepsilon}) \frac{(1-\xi)\tilde{q}}{\tilde{b}^{S} + \tilde{b}^{L}} \bigg] \end{split}$$

Go back

Empirical Results Policy



▶ Go back

Maybe debt dilution is no problem in real life because firms have options to mitigate it:

- debt covenants
- secured debt

Empirical evidence:

- less than 20% of bonds outstanding have covenants which address debt dilution (e.g. leverage limits)
 - Nash, Netter and Poulsen (2003), Begley and Freedman (2004), Billett, King and Mauer (2007), Reisel (2014)
- ▶ in U.S. manufacturing, median share of secured debt is only 20% of total debt
 - Biguri (2016)