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1 Introduction

Since 1962, the US Food and Drug Administration (FDA) has restricted the marketing of

a drug to just the set of “on label” indications for which the drug is approved. However,

physicians may prescribe any approved drug for any indication.2 In the market for phar-

maceuticals, which accounted for $321.3 billion in sales in the United States in 2010 (2.2%

of US GDP),3 “off label” use is common and potentially desirable. On one hand, the best

treatment for a patient’s particular indication may require using a drug off-label. In addi-

tion, applying FDA-approved drugs to new uses may be a particularly cost-effective type of

innovation because these drugs have already passed safety benchmarks in clinical trials. On

the other hand, ineffective off-label use is socially wasteful. In a few cases, off-label use has

also led to patients being physically harmed.

Not surprisingly, off-label use is enormously controversial in the clinical and policy com-

munities and among federal regulators (Salbu 1999; Klein and Tabarrok 2004; Stafford

2008). And yet, no prior research supports broad, systematic, and trend-based analysis of

off-label use. Indeed, no economics papers analyze it empirically, and virtually nothing is

known about its welfare consequences. In this paper, we start to fill these gaps.

We apply Detection Controlled Estimation (Feinstein 1990) to a comprehensive data

set of patient prescriptions from the National Ambulatory Medical Care Survey (NAMCS)

during 1993-2008 to identify the incidence of off-label use and to test for what drives it.

We find that in the most recent years, more than one in three prescriptions are written

for off-label uses. This rate is lowest in the earliest years, and rises from 30.2% in 1993 to

39.1% in 2008, a 29.6% increase. The three years with the highest frequency are 2006, 2007,

and 2008. Coincidentally, this is also a period in which off-label use has been part of the

national policy conversation due to settlements between pharmaceutical manufacturers and

the U.S. Department of Justice (DOJ) on cases involving off-label use claims (Kesselheim,

2For clarity, we use the term “indication” instead of “diagnosis,” “condition,” “disease,” etc., throughout
the paper.

3Source: 2010 IMS National Sales Perspectives.
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Mello and Studdert 2011).4

Perhaps most importantly, our estimates show patterns of off-label use that are consis-

tent with choices we expect rational, fully-informed patients to make. For example, after

controlling for a host of drug and patient characteristics, we show that a ten percent in-

crease in the number of drugs that have been approved to treat a patient’s set of diagnoses

leads to a 4.7% reduction in the probability that a physician prescribes off-label. We also

find that when patients face lower out-of-pocket costs, physicians tend to prescribe off-label

more often. Relative to patients with no insurance, patients with insurance (of any type) are

more likely to be prescribed off-label. Of those with insurance, those with Medicaid are the

most likely to be prescribed off-label. Specifically, relative to those with private insurance,

the probability of a physician prescribing off-label is about 2.2% higher when a patient is in-

sured through Medicaid. This may be in response to the relatively weak prior authorization

programs at the state level for Medicaid since 1990 (Dranove, 1989; Huskamp, 2003) or the

very low copayments (relative to privately insured patients) that Medicaid recipients pay.

Those on Medicare are prescribed off-label at a similar rate to those on private insurance,

which is consistent with the privatized nature of “Medigap” policies that were in place over

much of our sample time period (Oliver, Lee and Lipton, 2004; Rowland, 2001). Together,

these substitution patterns are consistent with predictions from our simple theoretical model

of drug choice, where off-label prescribing by physicians enhances patient welfare.

Studying off-label use retrospectively using prescription data presents two significant

challenges. First, we must classify uses as on-label and off-label. Unfortunately, no existing

archive tracks a drug’s FDA-approved uses across time. We use annual issues of the Physi-

cian’s Desk Reference (PDR) to build yearly matches between drugs and their approved

(on-label) indications. To match the non-standardized indications in the PDR to the list

of International Classification of Disease - 9th Revision (ICD-9) codes from NAMCS pre-

scription records, we rely on a professional Clinical Documentation Specialist employed at

4Combining cases from our own search with those from Kesselheim et al. (2011), we identify 33 DOJ
settlements during 2004-12.
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a major academic medical center hospital. We treat a drug as being on-label for an indica-

tion if it has the same active ingredient as one of the drugs identified in the PDR as being

on-label for that indication.

Second, the way that NAMCS prescription data (and data in nearly every other survey or

retrospective data set) are recorded almost guarantee false detection of off-label use. For one

thing, indications recorded on survey forms are limited by the number of available fields. For

another, physicians often base their reports on administrative claims on which indications

will maximize reimbursement.5 Perhaps most importantly, patients frequently visit their

physicians about one indication and receive a prescription for another. For example, suppose

a person with chronic hypertension visits the physician because he has the flu. If the

physician does not record hypertension as an indication on the NAMCS form, but does

record a (convenience-driven) re-fill prescription for an ACE inhibitor, then näıve inspection

of the prescription record would classify the use of the ACE inhibitor as off-label. This issue

is problematic in nearly every other clinical, administrative or retrospective data source.

To overcome these problems, we appeal to Detection Controlled Estimation (DCE), first

used by Feinstein (1989; 1990; 1991) to study tax evasion and regulation of U.S. nuclear

power plants. Intuitively, this procedure constructs a model that separately predicts the

probability of on-label use and the probability of whether it is detected, with estimation

done via maximum likelihood. Crucially, identification requires a subset of variables that

affect only the probability of on-label use and a subset of variables that affect only the

probability of detection. For the latter category, we rely on the plausible assumption that

changes to the NAMCS survey form affect detection but do not affect a physician’s decision

to prescribe on-label. The form permits up to five prescriptions during 1993-94, up to six

from 1995-2002 and up to eight from 2003-2008. Since the maximum number of prescriptions

and indications is often binding, and an increase in the number of prescriptions relative to

5In a study providing advice to physicians on how to increase revenue through careful attention to
reimbursement intricacies, Heidelbaugh et al. (2008) states “Be sure to list active and acute medical
indications discussed during the visit... rather than those that are stable...”. Again, this could cause a
prescription to appear off-label in claims data, even if it were actually prescribed for an approved use.
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the number of indications tends to increase the likelihood that on-label use is not detected,

these changes vary the rate of detection exogenously.

More work is required to fully understand the efficiency and welfare properties of off-label

prescribing. For example, our paper does not identify either the dollar costs or treatment

gains of off-label uses relative to on-label alternatives. We view our results, which identify

the overall rate with which the practice occurs and identify some determinants of physicians’

decisions to prescribe off-label, as an important first step in understanding the phenomenon

of off-label prescribing.

The remainder of the paper is as follows. Section 2 provides some background on the

practice of off-label use in the pharmaceutical industry, including a literature review. Section

3 presents a theoretical model of off-label prescribing to assist in the interpretation of our

empirical findings. We discuss the data and empirical model in Sections 4 and 5, respectively.

Section 6 discusses our results and Section 7 concludes.

2 FDA Oversight and the Nature of Off-Label Use

The Food and Drug Administration Act of 1906 created the FDA, initially just to set

manufacturing standards. In the wake of the Elixir Sulfanilamide episode, Congress passed

the Federal Food, Drug and Cosmetic Act of 1938.6 This prevents a new drug’s introduction

without FDA certification that the drug is safe. The law also led to the modern arrangement

where many drugs are available only with a physician’s prescription (Temin 1979).7

In 1962, Congress passed the Kefauver-Harris Amendments to the Food, Drug and Cos-

metic Act. This grants the FDA the authority to certify a drug’s efficacy, in addition to

safety, before a firm can sell it. Initially, supporters of this law argued the law would prevent

6In the 1930s, the S.E. Massengill Company sold the antibiotic sulfanilamide first as tablets and capsules.
They then developed a liquid version by dissolving sulfanilamide in diethylene glycol. In September 1937,
Massengill marketed this liquid as “Elixir Sulfanilamide.” Unbeknownst to their chemists, diethylene glycol
is toxic. Over 100 people died. See Temin (1979).

7As Temin (1979) discusses, the new law did not directly implement the prescription system, but the
FDA moved quickly to use the law to establish this system.
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firms from aggressively marketing drug products, with dubious effectiveness, to physicians

who would then write prescriptions for their patients. However, the Thalidomide episode

of 1961-62 created a sense of urgency that also helped facilitate passage of the law (Harris,

1964). While the 1938 law kept Thalidomide off the US market, some physicians had al-

ready received the drug for experimental purposes. The FDA did not heavily regulate this

type of distribution. Reports of birth defects in babies born to European mothers who had

taken Thalidomide raised concerns that pharmaceutical firms might harm patients by mov-

ing their products to market too quickly (Peltzman 1973). This series of events contributed

significantly to the emergence of the current regulatory environment, which has important

implications for the incentives for firms to gain approval for particular indications.

2.1 Drug Development

Drug development begins with the isolation of a new molecule. A researcher then tests

to determine whether the molecule is biologically active and to identify the nature of that

action. Once action is determined, usually in animal models, the researcher (typically backed

by a pharmaceutical manufacturer) files an investigational new drug application (IND) to

begin human trials. These clinical trials follow a strict three-phase process in which the

applicant must prove safety and efficacy.8 If successful in these trials, the applicant submits

a New Drug Application (NDA) to the FDA; if it is approved, the NDA allows the applicant

to sell the drug in the U.S. and specifies a list of approved indications. Firms may market

their product for the approved (i.e., on-label) indications only.

The process from IND to NDA is long, risky and costly. Typically, it takes a decade or

more (DiMasi et al., 2003), and only around 9% of drugs for which an IND is filed achieve an

NDA (DiMasi 2001). Because firms typically seek molecule patents at the moment of initial

discovery, the process often consumes half or more of the life of the core patent covering the

8In Phase I, healthy humans are given the compound to establish safety. Phase II tests involve a small
number of volunteers with the disease for which the manufacturer is ultimately seeking approval. Phase II
aims to establish some measurable treatment effect. Once a minimal efficacy standard is met, the study
proceeds to Phase III, which requires much larger pools of volunteers with the disease be tested to identify
the treatment effect more precisely. All three phases are generally double blind.
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molecule. Given failure rates, direct costs of drug discovery and testing, and the opportunity

cost of capital that must be devoted to the effort, estimated average costs of achieving an

NDA range from $800 million to $1 billion (DiMasi et al. 2003; Adams and Brantner 2006).

Because of the incentives in the clinical-trials process, firms do not typically include a

broad list of approved indications on their drugs’ labels. Part of the reason is that clinical

trials center on demonstrating efficacy for a given indication, and the results of one approval

(NDA) are often not transferable to another. To add a new indication for an existing drug,

a manufacturer must go through the same tedious, costly clinical-trials process needed to

achieve the original marketing approval.9 In addition, physicians may prescribe a drug

off-label anyway, in which case obtaining a new indication is unnecessary.

The FDA grants a variety of marketing exclusivities, some of which affect strongly the

incentives to pursue NDAs and new indications. First, a drug approved with a new molecule

may earn a new chemical entity (NCE) exclusivity. For five years, the FDA prevents any

other firm from marketing the drug, regardless of patent protection.

More importantly, the FDA also grants a three-year marketing exclusivity for a label

change that recognizes a new indication (NI). In principle, the NI exclusivity grants a

significant incentive to endure clinical trials to modify a drug’s label. However, this benefit

depends crucially on generic competition. If one or more generic manufacturers have gained

approval to sell a drug, then the benefits of obtaining an NI may spill over to generic

manufacturers. Intuitively, a firm that obtains an NI receives only a three-year exclusive

right to advertise its product for the new use. But since a physician can prescribe a drug

for any reason, if one version of a drug is advertised for a use, physicians may prescribe all

other versions at nearly the same rate.

Prior to 1984, generic competition was less of a concern. Because generic applicants had

9As the USGAO has described it: “If, after FDA has approved a drug, evidence arises of its safety and
effectiveness in treating conditions or patient groups other than those named in the label, then the drug’s
manufacturer (or any other interested party) can submit a new application to have the label changed. This
application, known as an ’efficacy supplement,’ is similar to the original application in that it must contain
evidence demonstrating to FDA’s satisfaction that the product is both safe and effective for the treatment
of the new condition” (USGAO, 1996: page 2).
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to go through clinical trials to sell drugs bioequivalent to approved drugs, and because there

was tremendous uncertainty about whether testing a drug infringed on patents, generic

products were a relatively small part of the approved drug portfolio in the US. In 1984,

however, Congress passed the Hatch-Waxman Act to clarify the rules for, and increase the

rate of, generic entry.10 Now, a generic applicant may receive an Abbreviated New Drug

Application (ANDA), permitting entry, by demonstrating that its product is bioequivalent

to the branded product. The cost of an ANDA is a small fraction of that of an NDA.

Generic entry has expanded so rapidly, that generics now account for nearly two-thirds of

all prescriptions written in the U.S. (Aitken et al. 2009).

Practically speaking, obtaining a new indication for a drug (and getting the three-year

NI marketing exclusivity) has high economic value when the drug is covered by an NCE,

moderate economic value after the NCE expires but patents still partially block generic

entry,11 and low economic value upon generic entry. Since some new uses emerge late

during a drug’s life cycle, manufacturers may often find it optimal not to pursue an NI

exclusivity.

As an alternative, a manufacturer may pursue approval for a new drug. For example,

Glaxo-Wellcome gained FDA approval for buproprion hydrochloride in 1985, called it Well-

butrin (IR formulation) and marketed it as an antidepressant.12 Some time after, Dr. Linda

Ferry, a family practitioner in California, noticed that many of her patients taking Well-

butrin (for depression) showed decreased interest in smoking. She then convinced Glaxo

to pursue clinical trials. After successful trials, Glaxo got approval in 1997 for an on-label

indication for buproprion as a treatment for smoking cessation. However, Glaxo did not

add smoking cessation to the label for Wellbutrin (and they never have). Rather, they got

10Innovating firms can also earn (up to five years) patent life lost during the clinical-trials process.
11Under the Hatch-Waxman Act, a generic may file for an ANDA once four of the five NCE years have

expired. It must then show the pioneering firm’s patents are invalid or would not be infringed by the generic
product.

12Initially, there were a significant number of seizures at the recommended dosage of 400-600 mg. Glaxo
removed Wellbutrin from the market in 1986. After subsequently discovering that reducing the dose by
about half sharply reduced the risk of seizures, Glaxo reintroduced Wellbutrin to the market in 1989 with
a maximum dose of 450 mg/day. See http://www.emedexpert.com/facts/bupropion-facts.shtml.
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smoking cessation on the label for a new drug, Zyban (Perkins et al. 2008, pp. 113-114).

Obfuscating the relationship between Wellbutrin and Zyban may mitigate the advertising

spillover effect.

2.2 Literature Review

Given the FDA’s regulatory architecture, there are a variety of reasons that drugs’ labels do

not cover all uses. Numerous papers discuss anecdotes of off-label use. Collectively, these

anecdotes illustrate that off-label use may give a patient the highest-quality option, or may

give a lower-quality (but cheaper) option.

For example, beta-blockers, such as metaprolol and propranolol, have been used for

decades to treat hypertension, cardiac dysrhythmias, and other diseases. Clinicians have

noted that beta-blockers also control physical sensations associated with anxiety (such as

rapid heartbeat, tightness in the chest, and trembling), and that when patients do not

feel these sensations, their psychological experience of anxiety is significantly reduced. As

a result, these drugs are widely prescribed for situational and other forms of anxiety, to

apparent great effect. Lin et al. (2006) estimate that 52% of prescriptions for beta-blockers

were off-label from 1999-2002. Anxiety is not, however, an approved use of any beta-

blocker. Such examples of effective re-purposing are not rare and off-label use is not a new

phenomenon. In a 1991 survey, roughly one-third of cancer drugs were prescribed off-label

and about one-half of patients were prescribed at least one drug off-label (USGAO 1991).13

On the other hand, off-label use may introduce production complications that lower

the quality of drugs used off-label relative to the best on-label options. Consider macular

degeneration, which occurs when a person’s retina is damaged and the person loses vision

in the center of the visual field. It is quite common—approximately 10% of people 66-74

years old have macular degeneration.

Lucentis is FDA approved to treat macular degeneration. It sells for $2,000 a dose,

13Salbu (1999) and Klein and Tabarrok (2004) discuss a number of other examples of beneficial off-label
use.
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and a typical regimen is monthly injections for 12-24 months. Avastin is FDA approved to

treat metastatic colon cancer (and some other cancers) but has been shown to be effective

in treating macular degeneration. In treating macular degeneration, it sells for $50 a dose

because the dosage is far smaller for this than for treating cancer. Again, a typical treatment

regimen is monthly injections for 12-24 months. For this use, however, Avastin must also

be “compounded” by pharmacies. There have been cases of bad batches of Avastin, and

these have caused ocular infections and blindness.

This creates an obvious dilemma for opthalmologists. Prescribe a $2,000 medicine which

is indicated but which many patients can’t or won’t pay?14 Or prescribe an off-label medicine

which costs $50 a dose but carries a risk of infection?15

There are also many cases, especially among the drugs involved in the DOJ settle-

ments, where pharmaceutical firms are alleged to have marketed their drugs for off-label uses

with uncertain clinical support (Stafford 2008). In perhaps the best-known case, Warner-

Lambert’s drug Neurontin was initially approved for “adjunctive therapy in the treatment of

partial seizures...in patients above the age of 12 years,” and was later approved for patients

3-12 years old (2000) and for “postherpetic neuralgia” (2004). Physicians have prescribed

Neurontin for a number of off-label indications, such as bipolar disorder and neuropathic

pain, for which the evidence for effect is at best equivocal (Mack, 2003). In 2004, Pfizer

(which merged with Warner-Lambert in 2000) pled guilty to two felony counts of marketing

a drug for unapproved uses, and paid $430 million in civil and criminal fines. Some $26.6

million went to whistleblower David Franklin, who started working for Warner-Lambert in

1996 (Evans, 2009).

Numerous clinical papers study rates of off-label prescribing. Nearly all are narrowly

14Note that for a typical Medicare reimbursement of 80%, that still leaves $400 per dose of Lucentis
uncovered.

15In addition, off-label use has led to clear cases of patients being harmed. During the 1990s, after Dr.
Michael Weintraub showed that a group of 121 patients using a combination of the weight-loss drugs fenflu-
ramine and phentermine lost an average of 30 pounds, this “Fen-Phen” combination surged in popularity.
Because neither drug’s label discussed using the drugs in combination, this was an off-label use. Dr. Wein-
traub looked for side effects, but he assumed the drugs were safe (Kolata 1997). Unfortunately, numerous
patients suffered heart-valve damage (O’Reilly and Dalal 2003).
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focused, and their results vary widely and are virtually impossible to compare to each other.

For example, in a survey of papers studying off-label use in pediatrics, Cuzzolin et al. (2003)

identify 16 studies published during 1995-2001. Of these, 13 are prospective studies, 2 are

retrospective, and 1 is prescription-event monitoring (a much longer study, 10 years). The

number of patients varies from 40 to 24,337, while the number of prescriptions varies from

257 to 4,455.16 The percentage of off-label use varies from a low of 10.8% (McIntyre et

al. 2000, “pediatric ambulatory”) to a high of 72% (Avenel et al. 2000, NICU). In the

most comprehensive work, Radley et al. (2006) study off-label use of 160 drugs during

2001. Studying data from the National Disease and Therapeutic Index (NDTI), a survey

of physicians from IMS,17 they find off-label use at about 21% of overall use. This is near

the 32.5% rate we estimate for 2001, even though we examine a more comprehensive set

of drugs and use different (non-proprietary) data on prescriptions. Finally, USGAO (1991)

and Molitor (2012) examine some drivers of off-label drug use by cancer patients. USGAO

(1991) shows, for example, no pattern of off-label use by age group and gender, while Molitor

(2012) finds that over 20% of new cancer drug use within the Medicare population during

1998-2008 was off-label.

3 A Simple Model of Drug Choice

Consider a highly-stylized model of vertical product differentiation, which helps us to un-

derstand the potential implications of the Lucentis/Avastin example from Section 2.2 and

to interpret our empirical results that follow in Section 6.

Assume consumers have a condition that may be treated by some pharmaceutical product

with some maximum observable clinical treatment effect, which will generate a value of V for

a consumer, if she receives the full benefit. Further, assume that any individual consumer’s

response to the drug is idiosyncratic - she may receive the full measured benefit, or she

16Some studies did not indicate numbers for both categories.
17These data are “nationally representative diagnostic and treatment data similar to that contained in

the National Ambulatory Medical Care Surveys (NAMCS)” (Radley et al. 2006)
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may not benefit at all. The magnitude of any individual consumer’s realized treatment

effect from the drug is her match quality. Consumers are arrayed along a distributions of

responses to any given drug, so that each drug will be characterized by an average match

quality, summarized by the parameter, θ. Average match quality for a drug is uniformly

distributed on the [0, 1] interval. A representative consumer’s net (expected) utility of

purchasing a drug of quality V for price P is θV −P. The consumer prefers to buy the drug

rather than do nothing if θ > V
P
.

Let there be a continuum of markets for drugs. A market may be thought of as a

medical condition (e.g., depression or angina) for which pharmacological treatments are

available. In each market assume that there is one on-label option and one off-label option.

To simplify the analysis, assume that markets may be characterized by outcomes - a high

value-generating option and a low value-generating one. In fraction η of the markets, the

on-label option yields value for the representative consumer of V and the off-label option

generates value V . In fraction 1− η of the markets, the on-label option generates a value of

V and the off-label option has yields a value of V .

Let prices for uninsured consumers be P and P for the higher and lower average match

quality drug, respectively. Insured consumers pay P 0 < P for either drug. Then uninsured

consumers with θ > P−P

V−V
purchase the higher average match quality drug. Uninsured

consumers with θ ∈ [P
V
, P−P

V−V
] purchase the lower match quality drug. Uninsured consumers

with θ < P
V

purchase nothing. Insured customers always prefer the higher match quality

drug, and all consumers with θ > P 0

V
buy this drug.

Thus, conditional on having insurance, the fraction of consumer choices that are the

on-label option is just η, which is the probability the on-label option has the higher average

match quality. For uninsured consumers, the fraction of consumer choices that are on-label

is

Pr(OnLabel) =
η
(
1− P−P

V−V

)
+ (1− η)

(
P−P

V−V
− P

V

)
1− P

V

.

It is easy to show that this is lower than η (the analogous probability of on-label use by
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consumers with insurance) if and only if η > 1
2
. Hence, off-label prescribing rises with

insurance if and only if off-label options are more typically superior (η < 1
2
).

It may be, of course, more natural to expect η > 1
2
. If this is the case, then to get more

off-label use under insurance, it is necessary to have more subscribers switch to an off-label

drug when the off-label option is superior, than switch to an on-label drug when the on-label

drug is superior.

One way to achieve this result is to let the higher average match quality drug’s price

be different in the η markets where the on-label option is superior. Specifically, let it be

γP , where γ > 1 implies a higher price and γ < 1 implies a lower price, relative to the

price of the off-label drug in the 1− η markets where the off-label drug is superior. It may

be that γ < 1 if physicians are willing to cover extra costs for their patients in prescribing

on-label options (i.e., opthalmologists willing to cover the extra costs to allow their patients

to purchase Lucentis, rather than take risks with Avastin) but unwilling to cover extra costs

in prescribing off-label options. For example, when physicians give out free samples to their

patients, they are lowering the out of pocket costs for patients for the prescribed treatment

regimen. If physicians do this more often for on-label prescriptions than off-label, then γ < 1

could obtain.

Now for uninsured consumers, we have

Pr(OnLabel) =
η
(
1− γP−P

V−V

)
+ (1− η)

(
P−P

V−V
− P

V

)
1− P

V

.

Now suppose that γ < 1. Then, it is possible to have η > 1
2
but still have higher rates of

off-label prescribing with insurance. Intuitively, relatively few people consume the off-label

drug when it is inferior, so relatively more people switch to (superior) off-label options when

they obtain insurance. Thus, a positive relationship in our data between the frequency of

off-label use and the generosity of a patient’s insurance suggests that observed off-label use

enhances welfare.
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4 Data

Our data are drawn from two sources. The National Ambulatory Medical Care Survey

(NAMCS) provides information on the prescriptions written for a representative set of US

physician office visits. NAMCS data are collected for 1993-2008. The Supplement to the

Physicians’ Desk Reference (PDR) is titled either the PDR Companion Guide or PDR

Guide to Drug Interactions, Side Effects, Indications, Contraindications, depending on the

year. This serves as physicians’ primary reference on FDA-approved indications for each

drug, for 1993-2008 as well.

No existing research combines these two sources.18 Moreover, because of the incentives

facing firms to get indications on drug labels, the usually unanticipated timing of discoveries

of useful ways to repurpose drugs, and the ways physicians’ manuals (like the PDR) list sets

of approved indications, there are multiple ways of classifying on-label and off-label use. To

clarify, we first define two types of on-label use:

• A drug-label use occurs whenever a drug is used for an indication on the drug’s

FDA-approved label.

• An active-ingredient-label use occurs whenever a drug is used for an indication

on any label of any drug with the same active ingredient.

For any drug, the set of drug-label uses is a subset of the set of active-ingredient-label uses.

Next, we define two types of off-label use.

• An anticipated off-label use is any active-ingredient-label use that is not a drug-

label use.

• An unanticipated off-label use is any use that is not an active ingredient use.

Legally, active-ingredient uses that are not drug-label uses are off-label uses. However,

these off-label uses are natural candidates for prescribing physicians given that the use has

18Radley et al. (2006) use the PDR to classify off-label use.
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been approved for some other drug with the same active ingredient. Hence, we say such

off-label uses (e.g., Wellbutrin used for smoking cessation) are anticipated. For the purpose

of our analysis, we define off-label use as unanticipated off-label use. All other uses of a drug

will be defined as on-label.

4.1 NAMCS

The NAMCS is an annual survey, conducted by the Center for Disease Control and Pre-

vention (CDC). The multi-state design generates a representative sample of patient vis-

its to community-based (non-institutional, non-clinic) physician offices. The data include

variables capturing office visits, indications, characteristics of patients, insurance coverage,

medical procedures, tests conducted, and medications prescribed. The survey has been

conducted annually from 1973 to 1981, in 1985, and then again annually since 1989. Each

year approximately 1,500 physicians participate in the survey. Each physician is randomly

assigned a one-week participation window and uses an abstraction form to characterize ap-

proximately 30 office visits. This results in detailed quantitative descriptions of around

35,000 office visits each year. Visit weights are assigned so that national estimates can be

produced.19

We extract data on all visits from 1993 to 2008. After we keep those visits with at least

one prescription, the resulting data set contains information on 547,977 prescriptions from

the 141,523 office visits during 1993 to 2008. For each visit, the physician may record up to

3 indications. The NAMCS data code indications according to the ICD-9 classification. In

addition to prescriptions and indications, we extract information on visit payment source,

patient age and gender, physician specialty, and Census region.

19This use of the NAMCS weights to estimate prescribing volume has been validated in the literature;
see Pincus et al. (1998), Thomas et al. (2006), and Iizuka (2004). Note that the NAMCS visit weights are
calculated to impute prescriptions to the national and annual level. Given the weight construction we could
allocate annual prescription estimates to the month by dividing the weighted estimate by 12; allocating
prescriptions to the region could be accomplished by re-weighting on the basis of the region’s proportion of
the national population. In either case, any biases from not explicitly adjusting our prescription counts will
be isolated in the intercept term, and will not affect the marginal effects of interest.
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Figure 1: The Current FDA Label for Creon (Pancrelipase)

Figure 2: An Example of an Indication in the PDR

4.2 PDR

Each prescription drug available for sale in the U.S. has an FDA-mandated label, which lists

(among many other things) the indications for which the FDA has approved use. Figure

1 is an extract from the first part of the Creon label. Its label shows the drug-label use

(treatment of exocrine pancreatic insufficiency due to cystic fibrosis, chronic pancreatitis,

pancreatectomy, or other conditions) in specific populations. Identifying the history of

FDA-approved indications for a drug is surprisingly difficult. Although the FDA maintains

the current FDA-approved indications for a drug in the Orange Book, these listings do not

include the history of how the label reached its current state.

The annual Supplement to the PDR fills this void. In particular, the “Indications” sec-
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tion lists FDA-approved drugs for each indication, giving physicians up-to-date information

on a drug’s approved uses, interactions, side effects, and contraindications. We obtain each

edition of the PDR from 1993 to 2008 and capture all drug-indication combinations.20 Fig-

ure 2 provides an example of the Supplement ’s formatting from 1997. For the indication

“Pancreatic cystic fibrosis,” there are seven associated FDA-approved drugs: Cotazym Cap-

sules, Creon, KuZyme HP Capsules, Pancrease Capsules, Pancrease MT Capsules, Viokase,

and Zymase Capsules. PDR records also include the active ingredient for each drug—in this

case, Pancrelipase for all drugs—and the manufacturers.

Note that this list represents anticipated off-label uses as being on-label. For example,

Creon is approved for “treatment of exocrine pancreatic insufficiency due to cystic fibrosis

or other conditions,” i.e., pancreatic cystic fibrosis. But Viokace is approved just for “treat-

ment of exocrine pancreatic insufficiency in adults due to chronic pancreatitis or pancreate-

ctomy,” i.e., not pancreatic cystic fibrosis. Use of Viokace for pancreatic cystic fibrosis, like

Wellbutrin for smoking cessation, is an active-ingredient use that is an anticipated off-label

use.

We format the data so that the unit of observation is an indication-year-ingredient

(IYI) combination. For the text from Figure 2, the IYI is “pancreatic cystic fibrosis - 1997 -

pancrelipase.” There are 178,823 total IYIs, composed of 3,587 unique indication descriptors

and 3,342 unique active ingredients.

20To extract this information from over 1000 pages formatted in this way, we remove the Supplement ’s
binding and use a high resolution scanner to create images of each page. We use Able2Extract Professional,
software that uses Optical Character Recognition (OCR) technology, to extract the information to a raw text
format to parse into a useable form. Following the extraction and parsing processes, we search for and remove
the (surprisingly small) number of errors in the resulting files. The consistency in the Supplement ’s format
and few changes in the text descriptors for indications and drug names make this feasible. For example,
to catch errors in the text describing an indication, we sort the entire panel (all years) by indication and
flag subtle changes to the text descriptor. We then compare the flags to the original image files. We use a
similar cleaning process for drug names.
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4.3 Matching NAMCS to PDR

Drugs and indications are each defined differently in the NAMCS and the PDR. Hence,

matching drugs to indications for the purposes of identifying off-label use requires careful

interpretation of language from both definitions. For drugs, we use a word-based matching

algorithm to match the text for each active ingredient in the PDR to the NCHS Multum

codes used by the NAMCS to identify active ingredients. This corrects for abbreviations

and is virtually one-to-one.21

Matching indications in the PDR to indications in the NAMCS is far more complicated.

The PDR uses terms for indications that do not map directly to the ICD-9 codes used

on NAMCS prescription records. In fact, processing the language in these descriptors and

matching them to ICD-9 codes is sufficiently complicated that we rely on a Clinical Docu-

mentation Specialist, or coder, from a large academic medical center.22 The coder manually

matches each PDR indication to the appropriate ICD-9 code(s).23

This process is often not straightforward. Some of the language in the PDR indications

requires further research for additional information to establish an appropriate match. In

other situations where the PDR indication is not specific enough to map to a single 5-digit

ICD-9 code, we match to a less-specific (four- or three-digit) code corresponding to a broader

range of indications. For example, “Pneumonia, Community Acquired” and “Pneumonia

Nosocomial” are listed as separate indications in the PDR. “Pneumonia Nosocomial” is a

more complex pneumonia with an easily identified ICD-9 code for Gram Negative Pneumo-

nia, 482.83. “Pneumonia, Community Acquired” is less specific and is coded as a Pneu-

monia, NOS (not otherwise specified), 486. In other situations, a descriptor requires more

than one ICD-9 code to adequately describe the indication. In these situations, the coder

lists all relevant codes.

21The few instances where the match is not one-to-one is due to combinations.
22This person’s primary role at the medical center is to look for missing, vague, or incomplete physician

documentation and to query the physician for the specificity needed to ensure that the coders can capture
the most accurate indication, indication or symptoms for the patient.

23Our coder was provided a spreadsheet with the 3,587 unique text descriptors from the PDR for 1993-
2008, as well as the ICD-9-CM Manual Volumes 1, 2, 3 published by HCPro, Inc (2011).
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Hence, matching PDR indications to NAMCS indications is a many-to-many match. Our

conservative matching approach also leads us to under count off-label use. Alternatively,

we could make subjective decisions regarding the closest matching indication. We regard a

conservative approach as most sensible here.

Having matched PDR indications to NAMCS indications and PDR active ingredients

to NAMCS active ingredients, we reformat our data so that the unit of observation is a

prescription. For each observation, we then list the characteristics of the patient, the date

of the visit and the complete list of indications assigned for the visit. For each prescription,

we cycle through the indications to determine whether the set of approved active ingredients

for those indications includes the prescribed drug. To be conservative in our estimates of off-

label use, we convert the NAMCS indications to the three-digit ICD-9 level before querying

the set of approved drugs. For example, 410.01 would be matched to any 410 code.24

We set the on-label indicator to 1 if the prescribed drug’s active ingredient is among the

set of approved active ingredients for at least one of the indications listed for the visit. This

serves as the dependent variable in our analysis. As we discuss in more detail in section

4, this variable cannot be used to directly measure the amount of on-label use because of

imperfect detection.

4.4 Descriptive Statistics

Table 1 shows the demographic composition of the individuals and physician specialties

associated with prescriptions written in our sample from the NAMCS. Just over 58% of

prescriptions are written for female patients, 8.9% are for African-Americans, and 7.5% are

for Hispanics. The average prescription is written for a patient who is 51.8 years of age.

Over 93% of prescriptions are written for patients who have some form of insurance—47.5%

with private insurance, 31.3% with Medicare, 10.2% with Medicaid, and 4.1% with some

other form of insurance. The physician specialties with the greatest frequency are internal

24Our results are nearly identical regardless of whether we match using a three-digit or four-digit ICD-9
code.
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medicine (13.2%) and cardiology (11.2%). The Midwest Census region accounts for the

largest proportion of prescriptions at 34.4%, while the East Census region (omitted region)

accounts for the lowest, only 20.3%.

Table 2 shows that the most commonly prescribed drugs are central nervous system

agents (20.2%), cardiovascular agents (18.5%), and anti-infective agents (10.5%). The most

common indications are associated with circulatory disorders (25.4%) and respiratory disor-

ders (17.7%). The frequencies of the indications do not sum to one, because all indications

from a visit are listed for each prescription from the same visit.

On average, a patient is prescribed 3.9 prescriptions per visit. However, the standard

deviation is quite large. Across all visits, a physician has an average of 71.5 FDA-approved

alternatives for the entire set of (up to three) visit-specific indications, defined at the three-

digit ICD-9 level, reported in NAMCS. The median number of approved prescription alter-

natives (i.e., unique Multum codes) per indication is 27.7. We expect that when the on-label

alternatives for treating a patient are limited (i.e., a small number of approved drugs for the

complete set of observed indications), a physician will be more likely to prescribe off-label.

The NAMCS survey form changes significantly over our sample. From 1995 to 2002

(40.1% of our sample), the form allows six prescriptions to be reported, up from only five in

1993 and 1994. From 2003 onward, the form allowed a total of eight prescriptions to be listed.

The form never increases the maximum allowable number of indications, three, during our

period of study. Over 61.7% of prescriptions appear on a form with two indications listed

and 33.5% appear on a form with three indications.

Table 3 highlights how the NAMCS form limitations affect detection. The numbers

in the table are conditional means of the on-label indicator, by numbers of prescriptions

and indications. If the form limitations have identifying power, then our ability to detect

on-label use should be highest for those visits with a low number of prescriptions and a

high number of indications (top right corner of the table), and lowest for those visits with

a high number of prescriptions but a low number of indications (lower left corner of the
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table). These are precisely the patterns we observe. The conditional means of this indicator

rise virtually monotonically up the columns and across the rows, and plateau in the top-

right corner of Table 3. Thus there is a group of observations for which the NAMCS form

limitations appear to have significantly less impact on our ability to detect on-label use.

Hence, time-varying form limitations are very useful for identification purposes. Each

of the exogenous increases in the maximum number of prescriptions that can be recorded

was not accompanied by a similar increase in the maximum number of recorded indications

during a visit. These form limitations result in only 33.5% of all prescriptions in our data

appearing to be written for an FDA-approved use, or 66.5% off-label use. 25 In the next

section, we discuss how we correct for detection error and identify the rate of on-label use.

5 The Econometric Model

We cannot use our näıve indicator of on-label use directly because of false negatives. When a

prescription is on-label but the indication is not listed on the NAMCS survey form, true on-

label use is unobserved. To identify the rate of on-label use, we adopt the DCE methodology

introduced by Feinstein (1990).26

Let a physician’s decision, of whether to write prescription i for a drug that is on-label,

be summarized by a stochastic latent variable,

Y ∗
1i = x1iβ1 + ε1i, (1)

where εi1 is independently and identically distributed N(0, 1). The binary outcome of this

25The most comprehensive of these studies, Radley, et al. (2006), estimates a rate of off-label use of 21%
for over 160 drugs in 2001; we estimate an off-label use rate of around 26.5% for that same year. However,
Radley and coauthors are only able to conduct the study for one year and had to rely upon an expensive
proprietary data set (the National Disease and Therapeutic Index (NDTI) from IMS Health) and a hand-
generated indicator for on-label use. Consequently, their findings and methodology are both limited and
dated.

26DCE has been applied previously in a health context by Kleit et al. (2003) and Bradford et al. (2001),
and a non-health context by Helland (1998), Feinstein (1989), and Feinstein (1991).
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decision-making process, which is not observed, is then

Y1i =

 1 if Y ∗
1i > 0

0 otherwise .
(2)

With the normality assumption, the probability that the physician prescribes on-label, con-

ditional on x1i, is

Pr(Y1i = 1) = Φ(x1iβ1), (3)

where Φ(x1iβ1) is the standard normal cumulative distribution function (CDF). The vari-

ables in the linear index, x1iβ1, alter the likelihood of a physician writing a prescription for

an approved indication.

The difficulty is that we do not observe this binary outcome and cannot infer our outcome

of interest (i.e., Φ(x1iβ1)) by estimating a Probit model. Instead, we observe an indicator

that takes on a value of one when a prescription is both on-label and we can detect it in the

data. Conversely, the indicator takes on a value of zero when the prescription is actually

off-label or when we have a false negative. By specifying a model for detection, along with

the equation characterizing the physician’s choice to prescribe on-label, DCE allows us to

distinguish between these two cases.

Consider cases when on-label prescribing actually occurs and let

Y2i =

{
1 if on-label use is detected
0 otherwise .

(4)

Thus, when Y2i = 1, on-label use occurs (i.e., Y1i = 1) and is detected. This is precisely the

näıve on-label indicator we construct. Further, assume the distribution of the underlying

latent variable for the Y2i indicator is given by

Y ∗
2i = x2iβ2 + ε2i.

We assume ε2i is distributed standard normal and the linear index, x2iβ2, includes those

variables that alter the probability of detecting off-label use.
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The probability of detecting true on-label use is

Pr(Y2i = 1) = Pr(Y2i = 1|Y1i = 1) ∗ P (Y1i = 1) + Pr(Y2i = 1|Y1i = 0) ∗ P (Y1i = 0).

Assuming there are no false positives, i.e., all detected on-label use is truly on-label, then

Pr(Y2i = 1|Y1i = 0) = 0 and Pr(Y2i = 1|Y1i = 1) = Pr(Y2i = 1).27 With the normality

assumption,

Pr(Y2i = 1) = Φ(x1iβ1)Φ(x2iβ2).

The likelihood function is then

L =
∏
i

[Φ(x1iβ1)Φ(x2iβ2)]
Y2i [1− Φ(x1iβ1)Φ(x2iβ2)]

1−Y2i .

As Feinstein (1990) points out, certain conditions must be satisfied to identify the parame-

ters of the model via maximum likelihood. In particular, note that when Φ(x1iβ1)Φ(x2iβ2)

is high, it is unclear whether this is due to a high rate of on-label prescribing, or a high

rate of detection. For example, if x1i and x2i include all the same variables, then nothing

differentially shifts the probability of on-label prescribing and the probability of detection,

so β1 and β2 are not separately identified. But if there are some variables in the group

determining on-label prescribing but not in the group determining detection (or vice-versa),

then each probability will vary significantly conditional on a fixed value for the other prob-

ability and the model is identified. Ideally, we would include a variable in x2i that pushes

the probability of detection to one, and identify the rate of on-label prescribing in a simple

discrete choice model. Without this variable, the parametric assumptions (i.e., normality

and linear indices) are required for identification. In Section 6, we discuss how close we get

to this ideal setting.

27We assume that there are no false positives in our measure of on-label prescribing. Given the presence
of false negatives, this assumption is required for the detection model to be identified. In our application,
false positives can arise if there are errors in matching NAMCS indications to the PDR data. We hire a
professional medical records coder to do the matching to minimize this possibility. The other source of false
positives arises when a patient is actually prescribed a drug off-label for one observed indication but the
drug is approved for another of the patient’s observed indications. We believe the frequency of such events
is rare, and would lead to a conservative estimate of off-label use.
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The common elements in x1i and x2i move both the probability of on-label use and the

probability of detection. For this group of elements, we include patient characteristics such

as age, gender, and race. For example, a patient’s age may lead physicians to take a more

cautious or aggressive approach in prescribing off-label. Also, certain types of patients may

be more likely to have a chronic indication (e.g., African-Americans have a higher incidence

of diabetes), which decreases the probability of observing the relevant indication for the

visit, lowering the probability of detection. Those variables only in x1i move the probability

of on-label use but do not affect the probability of detection. These include the number of

FDA-approved drugs for the visit-specific indications, plus indicators for physician specialty,

categories of indications (e.g., mental disorders), the patient’s insurance status and census

region and year. Those variables only in x2i move the probability of detection but do not

affect the probability of prescribing off-label. These include the number of prescriptions

written on the visit, plus indicators for whether there were two or three indications and for

the maximum number of prescriptions recordable on the NAMCS survey form.

Thus our strategy for separately identifying β1 and β2 relies largely on exploiting the

limitations, and changes in those limitations, of the NAMCS form during our sample period,

along with some visit-specific information. Recalling Table 3, we expect an increase in the

maximum allowable number of prescriptions to decrease our chances of detecting on-label

use, but not to affect the physician’s actual decision to prescribe off-label. In Section 6,

we show that our results are robust even if the set of variables that are excluded from the

detection equation is varied substantially.

With estimates β̂1 and β̂2, we recover the rate of off-label prescribing as the complement

of the rate of on-label prescribing, 1 − Φ(x1iβ̂1). This can be calculated at the individual

prescription or population level. However, as noted by Feinstein (1990), even when valid

exclusion restrictions give consistent estimates of Φ(x1iβ̂1), the coefficient estimates on those

variables common to x1i and x2i may not be precisely estimated if variables excluded from

the detection linear index do not vary the probability of detection enough. For this reason,

we interpret these coefficients with caution, despite the finding that our exclusion restrictions
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provide a strong source of identifying variation.

6 Results

It is simplest to discuss our estimates as two separate models, one describing detection and

the other physician behavior. Table 4 and 5 present the coefficient estimates for selected

variables in the model of detection and physician behavior, respectively. The top panel

of each table contains the estimates for variables that are exclusive to each model, while

the middle panel of the respective tables presents estimates for variables common to both

models. Because identification of the coefficients for variables common to both models is

driven in part by the parametric structure of the model, we are hesitant to draw strong

conclusions about them. The bottom panels of Tables 4 and 5 describe the controls and

exclusion restrictions for each model.

Tables 4 and 5 each have four columns. Column 1 presents the results from a parsimo-

nious specification, restricting temporal trends to be the same for all physician specialties

in the model of physician behavior. Column 2 presents results from a specification that is

nearly identical to the first, the only difference being that the model of physician behavior

includes a quadratic polynomial to allow for temporal trends rather than year indicators.28

Column 3 presents estimates from a more general model of physician behavior that allows

for differential trends by including a full set of interactions of year and physician specialty

indicators. The estimates in Column 4 are from a specification that is similar to Column

3, except that the model of detection also includes physician-specialty indicators. Since the

estimates in each column of Tables 4 and 5 are nearly identical, we emphasize the results

from Column 3.

It is useful to first consider the results for the detection model. The coefficient estimates

in Table 4 for the detection model are consistent with our expectations. Both the number

28The coefficients on the year indicators and form-change indicators are separately identified, since the
form-change indicators represent only a subset of the year indicators. That is, the rate of detection does
not vary in years in which the survey is unchanged, but the rate of off-label use may vary. This specification
with a quadratic polynomial is included to demonstrate this point.
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of prescriptions for a visit and the form changes to the NAMCS decrease the probability of

detecting on-label use, and each coefficient is statistically significant at the 1% level. The

marginal effects for the NAMCS-form changes are also quite large, demonstrating that they

represent a strong source of identification. The mean probability of detection decreased

by 5.2% following the first form change, and a further 5.3% following the second change,

resulting in an overall reduction of 10.2%. Further, the indicators for whether there are

two or three indications for a visit are positive and statistically significant, such that for a

fixed number of prescriptions an increase in the number of indications increases our rate of

detection. The results in Table 4 are similar in all four columns.29 Collectively, the precise

and intuitive results in Table 5 give us confidence that we successfully identify the rate of

detection.

Moving to the model of physician behavior, Table 5 reports how the rate of actual on-

label prescribing varies with the number of FDA-approved alternatives for the physician to

treat a patient. We find that an increase in available alternatives significantly increases the

probability that a physician prescribes on-label. The effect is also economically significant.

Using the estimates from Column 3, increasing the observed number of on-label alternatives

by 10% (about 7.2) decreases the probability of prescribing off-label by 1.6 percentage points,

from 34.0% to 32.4%. This corresponds to a 4.7% reduction in the probability of off-label

prescribing. This result is similar across all four columns of Table 5. This is, at a minimum,

consistent with welfare-enhancing behavior on the part of physicians. In going beyond FDA-

approved alternatives to find a good match between a patient and a drug, physicians are

more likely to prescribe off-label when their choices are more limited.

Table 5 also reports the estimates of the effect of insurance status on the physician’s

decision to prescribe on-label. Relative to the base case of a patient with no insurance

(the omitted dummy variable), patients with any type of insurance are significantly more

likely to be prescribed a drug off-label. We estimate marginal effects for insurance status

29The results are unchanged if the insurance indicators are added to the specification of the model of
detection from Column 4.
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by assuming a particular insurance status for every patient, calculating the probability of

on-label prescribing, and comparing that to the probability of on-label prescribing when

all patients have a different insurance status. If no patient has insurance, our estimates

from Column 3 predict the proportion of prescriptions written off-label as 32.8%. If all

patients have Medicaid, we estimate the proportion as 34.8%. This corresponds to a 5.9%

increase in the probability that a prescription is written off-label for patients on Medicaid.

In comparing patients with Medicaid to those with private insurance, those on Medicaid are

2.2% more likely to be prescribed a drug off-label. Results are qualitatively similar when

comparing to patients with Medicare.

The result that better insurance coverage leads to more off-label use, narrowly construed,

is consistent with at two hypotheses in our theoretical model. First, off-label options are

more frequently superior, and insurance induces more switching to those superior off-label

options. This seems unlikely, however, as off-label prescribing is less common even for

patients with insurance. Second, if on-label options are more frequently superior, then

it must be the case that relatively few patients without insurance are prescribed off-label

when the off-label option is inferior. That is, in cases where there is a choice between

a superior-but-more-expensive on-label option and an inferior-but-cheaper off-label option

(e.g., Lucentis vs. Avastin), physicians prescribe the inferior option relatively infrequently.

30

Using the estimates of β1 and β2 from Column 3 of Tables 4 and 5, we construct implied

estimates of the probability of detection and off-label use. Table 6 gives the mean of the

predicted probability of detection, Φ(x2iβ2), for the taxonomy of prescription-indication

combinations from Table 3. Over all observations, we estimate that the naive indicator

is correct 50.6% of the time. The rate of detection falls significantly as the number of

prescriptions increases, given any fixed number of indications. For example, on average,

for visits with three indications and only one prescription, we detect on-label use 66.3%

30Due to space considerations, we omit the remainder of coefficient estimates for the model of physician
behavior: indicators for physician specialty, indication codes, and census region and year. These estimates
are available from the authors upon request.
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Figure 3: Trend in Off-label Use

of the time. Yet this probability falls to only 29.7% when the maximum number of eight

prescriptions is listed for a visit, along with three indications. This pattern holds across

all 3 columns of Table 6. These probabilities provide the average adjustment applied to

observations with certain combinations of number of prescriptions and indications.

For some prescriptions, the detection rate is over 80%, which means that we have a

group of prescriptions detected to be on-label with a very high probability. The limiting

case where the probability of detection is one is accomplished through the model’s parametric

assumptions. The limiting case where the linear index equals infinity does not exist in real-

world retrospective data, but observing very high detection rates for a subset of prescriptions

in our data gives us confidence in the DCE approach. A very cautious interpretation of

results would treat our estimates of off-label use as tight upper bounds on the true rate

since we get close to the limiting case in our data. Feinstein (1990) argues that this is how

DCE models should be interpreted.31

Figure 3 plots yearly rates of off-label use, calculated using the estimates from Column

3 of Table 5, along with a fitted polynomial. The rate of off-label prescribing fluctuates

31For example, in Feinstein’s (1991) study of tax evasion, it is necessary to assume that there is at least
one auditor in the data that detects evasion with probability 1 in the absence of parametric assumptions.
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Figure 4: Off-label Use by Drug Class

between around 30% and 35% between 1993 and 2002, and then rises consistently from

2003 to 2008. The predictions given by the estimates from the other columns of Table 5

are nearly identical, never differing by more than 1% in any year. Overall, off-label use

rises by nearly a third, from 30.2% in 1993 to 39.1% in 2008. Interestingly, this detected

trend in off-label use also leads, by just a few years, the trend in off-label settlements, which

accelerated from 2008 to 2011. Since our results cover essentially all drugs listed in the

PDR, this gives us further confidence in our results over the 15-year period we study.

Figures 4(a) and 4(b) summarize the trends in off-label use by drug class; drug classes

with the highest percentage increase in off-label use are in Figure 4(a), while drug classes

with the lowest percentage increase in off-label use are in Figure 4(b).32 With the exception

of a few drug classes (coagulant, gastrointestinal, and psychological), each ends our sample

period with a higher rate of off-label use than it begins. Additionally, it is uniformly true

that those classes with the lowest rates of off-label use in 1993 had higher percentage increase

in off-label use. Thus the practice appears to be growing most quickly in drug classes where

32Again we focus on the predictions from Column 3 of Table 5, since the other specifications yield nearly
identical results.
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it had been less common.33

7 Conclusion

Off-label use is prevalent, controversial and under-studied. In this paper, we take the im-

portant step of identifying the incidence of off-label use from 1993 to 2008 and important

factors that drive it. We are optimistic that our approach and these results will lead to

further insights about this controversial subject and, hopefully, recommendations for policy.

For example, our finding that Medicaid patients are more likely to be prescribed off-

label is important in light of recent policy developments. As of 2008, Medicaid expenditures

on prescription drugs for certain low-income adults and children total $15.2 billion dollars

(USGAO, 2010: page 1); however, this program will be expanded significantly under the Pa-

tient Protection and Affordable Care Act of 2010. While our findings suggest that off-label

prescribing patterns are consistent with the enhancement of patient welfare, additional eco-

nomic analysis is required to ensure that the practice is desirable from a societal perspective

and that tax dollars are spent efficiently. For instance, research that builds on our findings

might study whether treatment outcomes from using drugs off-label justify potential costs

(realized by any entity) in excess of on-label alternatives.

In addition, the DOJ continues to enforce FDA guidelines that ban promotion of off-

label uses for drugs, but it does not know the extent to which this promotion induces

physicians to prescribe off-label or the effect that strict enforcement has on patient welfare.

Our finding that physicians tend to prescribe off-label when it is in the best interest of the

patient suggests that an out-right ban on off-label use, and possibly even the current ban on

promotion of off-label uses, has the potential to harm welfare. However, much more research

is needed for clear and effective policy to be developed.

For example, little is known about how the current FDA regulatory architecture affects

33Radley et al. (2006) is the only other study, to our knowledge, that makes any attempt to estimate
off-label use by drug class; however, we do not know the identify of the few drugs they study within each
class, making the estimates impossible to compare.
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incentives for firms to invest in identifying new uses for existing drugs. The FDA provides

three-year exclusivities to incentivize firms to incur the costs associated with seeking new

indications for existing drugs, but this incentive may be negligible if the drug is already

generic. Currently, firms face a difficult decision of whether to rely on clinicians to discover

and promote these new uses, or incur the costs associated with adding the indication to a

drug’s label that will likely soon be, or already is, generic. Data from the FDA Orange Book

on new chemical entities, associated patents and associated exclusivities exist can shed light

on these questions. We look forward to further progress.

31



References

Adams, C.P.; Brantner, V. V. “Estimating the Cost of New Drug Development: Is It Really

$802 million?” Health Affairs 25, 2006, 420-428.

Aitken, M.; Berndt, E. R.; Cutler, D. M. “Prescription Drug Spending Trends in the United

States: Looking Beyond the Turning Point.” Health Affairs 28, 2009, 151-160.

Avenel, S.; Bomkratz, A.; Dassieu, G.; Janaud, JC.; Danan, C. “The Incidence of Pre-

scriptions without Marketing Product License in a Neonatal Intensive Care Unit.”

Pediatrics, 7, 2000, 143-147.

Bradford, W.; Kleit, A.; Krousel-Wood, M.; Re, R. “Testing Efficacy with Detection Con-

trolled Estimation: An Application to Telemedicine.” Health Economics, 10, 2001,

553-564.

Cuzzolin, L.; Zaccaron, A.; Fanos, V. “Unlicensed and off-label uses of drugs in paediatrics:

a review of the literature,” Fundam Clin Pharmacol 17, 2003, 125-31.

DiMasi, J, “Risks in new drug development: approval success rates for investigational

drugs,” Clinical Pharmacology and Therapeutics - St. Louis 69(5), 2001, 297-307.

DiMasi, J.; Hansen, R.; Grabowski, H. “The Price of Innovation: New Estimates of Drug

Development Costs,” Journal of Health Economics 22, 2003, 151-185.

Dranove, D. “Medicaid Drug Formulary Restrictions,” Journal of Law and Economics 32,

1989, 143-162.

Evans, D. “Pfizer Broke the Law by Promoting Drugs for Unapproved Uses,” Bloomberg

November 9, 2009.

Feinstein, J. “The Safety Regulation of U.S. Nuclear Power Plants: Violations, Inspections,

and Abnormal Occurrences,” Journal of Political Economy 97, 1989, 115-154.

Feinstein, J. “Detection Controlled Estimation,” Journal of Law and Economics 33, 1990,

233-276.

Feinstein, J. “An Econometric Analysis of Income Tax Evasion and Its Detection,” RAND

Journal of Economics 22, 1991, 14-35.

Harris, R. The Real Voice. New York: Macmillan, 1964.

Heidelbaugh, J.; Riley, M.; Habetier, J. “10 Billing & Coding Tips to Boost Your Reim-

bursement,” Journal of Family Practice 57, 2008, 724-730.

32



Helland, E. “The Enforcement of Pollution Control Laws: Inspections, Violations, and Self-

Reporting,” Review of Economics and Statistics 80, 1998, 141-153.

Huskamp, H.A. “Managing Psychotropic Drug Costs: Will Formularies Work?” Health

Affairs 22(5), 2003, 84-96.

Iizuka, T. “Prescribing Trends in Psychotropic Medications,” Journal of Industrial Eco-

nomics 52, 2004, 349-379.

Klein, D.; Tabarrok, A. “Who Certifies Off-Label?” Regulation 2004, 60-63.

Kesselheim, A.; Mello, M.; Studdert, D. “Strategies and Practices in Off-Label Marketing

of Pharmaceuticals: A Retrospective Analysis of Whistleblower Complaints,” PLoS

Medicine 8(4), 2011, 1-9.

Kolata, G. “How Fen-Phen, A Diet ’Miracle,’ Rose and Fell,” The New York Times, Septem-

ber 23, 1997.

Kleit, A.; Ruiz, J. “False Positive Mammograms and Detection Controlled Estimation,”

Health Services Research 38, 2003, 1207-1228.

Lin, H.; Phan, K.; Lin, S. “Trends in Off-Label β-Blocker Use: A Secondary Data Analysis,”

Clinical Therapeutics 28, 2006, 1736-1746.

Mack, A. “Examination of the Evidence for Off-Label Use of Gabapentin,” J. Managed Care

Pharm. 9, 2003, 559-68.

McIntyre, J.; Conroy, S.; Avery, A.; Corns, H.; Choonara, I. “Unlicensed and off label

prescribing of drugs in general practice,” Archives of Disease in Childhood 83, 2000,

498-501.

Molitor, D. “Physician Behavior and Technology Diffusion in Health Care,” MIT Doctoral

Dissertation, 2012.

Oliver, T.R.; Lee, P.R.; Lipton, H.L. “A Political History of Medicare and Prescription Drug

Coverage,” The Milbank Quarterly 82, 2004, 283-354.

O’Reilly, J.; Dalal, A. “Off-Label or Out of Bounds? Prescriber and Marketer Liability for

Unapproved Uses of FDA-Approved Drugs,” Ann Health L 12, 2003, 295-300.

Peltzman, S. “An Evaluation of Consumer Protection Legislation: The 1962 Drug Amend-

ments,” Journal of Political Economy 81, 1973, 1049-91.

Perkins, K.A.; Perkins, C.A.; Conklin, Levine, M.D. Cognitive Behavior Therapy for Smok-

33



ing Cessation: A Practical Guidebook to the Most Effective Treatments, Routledge:

New York, 2008.

Pincus, H.A.; Tanielian, T.L.; Marcus, S.C.; Olfson, M.; Thompson, J.; Zito, J.M. “Pre-

scribing Trends in Psychotropic Medications,” Journal of the American Medical As-

sociation 279, 1998, 526-531.

Radley, D.; Finkelstein, S.; Stafford, R. “Off-label Prescriptions Among Office-Based Physi-

cians,” Arch Internal Med 166, 2006, 1021-26.

Rowland, D. (Executive Director, Kaiser Commission on Medicaid and the Uninsured).

Prescription Drug Coverage for the Medicare Population - Testimony before the Sub-

committee on Health, Committee on Energy and Commerce, The United States House

of Representatives. , February 15, 2001.

Salbu, S.R. “Off-Label Use, Prescription, and Marketing of FDA-Approved Drugs: an As-

sessment of Legislative and Regulatory Policy,” Fla. L. Rev. 51, 1999, 18.1

Stafford, R. “Regulating Off-Label Drug Use - Rethinking the Role of the FDA,” New

England Journal of Medicine 358, 2008, 1427-29.

Temin, P. “The Origin of Compulsory Drug Prescriptions,” Journal of Law and Economics

22, 1979, 91-105.

Thomas, C.P.; Conrad, P.; Casler, R.; Goodman, E. “Trends in the Use of Psychotropic

Medications Among Adolescents, 1994 to 2001,” Psychiatric Services 2006.

United States General Accounting Office. “Off-Label Drugs: Reimbursement Policies Con-

strain Physicians in Their Choice of Cancer Therapies,” September 27, 1991.

United States General Accounting Office. “Prescription Drugs: Implications of Drug labeling

and Off-Label Use,” September 12, 1996.

United States General Accounting Office. “Medicaid Outpatient Prescription Drugs,” De-

cember 15, 2010.

34



Table 1: Patient and Physician Variables

mean sd

Patient age 51.780 23.220
Patient is female 0.582 0.493
Patient is Hispanic 0.075 0.263
Patient is African-American 0.089 0.284
Patient is other (non-Caucasian) race 0.093 0.290
Patient has Medicare 0.313 0.464
Patient has Medicaid 0.102 0.303
Patient has private insurance 0.475 0.499
Patient has other insurance 0.041 0.198

Physician specialty is internal medicine 0.132 0.339
Physician specialty is pediatrics 0.064 0.245
Physician specialty is OB/GYN 0.023 0.149
Physician specialty is cardiology 0.112 0.316
Physician specialty is psychiatry 0.072 0.258
Physician specialty is neurology 0.062 0.242
Physician has other specialty 0.304 0.460

Southern Census region 0.228 0.419
Mid-West Census region 0.344 0.475
West Census region 0.225 0.418

Observations 547,977

Note: These statistics reflect the demographic composition and insurance status of patients in our NAMCS

sample of prescriptions during 1993-2008, as well as the specialty and location of the physician treating them.
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Table 2: Prescription and Indication Variables

mean sd

Prescription observed to be on-label 0.335 0.472
Number of drugs approved to treat indications 71.490 69.290
Number of prescriptions written during visit 3.872 2.244
Two indications recorded on the NAMCS form 0.617 0.486
Three indications recorded on the NAMCS form 0.335 0.472
NAMCS form allows six prescriptions 0.887 0.316
NAMCS form allows eight prescriptions 0.485 0.500

Anti-infectives 0.105 0.306
Cardiovascular agents 0.185 0.388
Central nervous system agents 0.202 0.402
Coagulant modifiers 0.018 0.134
Gastrointestinal agents 0.044 0.205
Hormonal agents 0.063 0.242
Miscellaneous agents 0.017 0.130
Respiratory agents 0.083 0.276
Topical agents 0.094 0.292
Psychological agents 0.081 0.272
Immunologic agents 0.028 0.166
Metabolic agents 0.079 0.270

ICD9 code for infectious and parasitic disease 0.035 0.185
ICD9 code for neoplasm 0.039 0.192
ICD9 code for endocrine disorders 0.154 0.361
ICD9 code for mental disorders 0.130 0.337
ICD9 code for nervous system disorders 0.137 0.344
ICD9 code for circulatory system disorders 0.254 0.435
ICD9 code for respiratory system disorders 0.177 0.382
ICD9 code for digestive system disorders 0.058 0.234
ICD9 code for genitourinary system disorders 0.066 0.247
ICD9 code for skin disorders 0.074 0.261
ICD9 code for musculoskeletal system disorders 0.123 0.329
ICD9 code for ill-defined disorders 0.137 0.344
ICD9 code for injury and poisoning 0.046 0.209

Observations 547,977

Note: These statistics reflect information on the prescriptions and indications in our NAMCS sample

during 1993-2008. The top portion of the table provides information on the number of prescriptions and

indications, while the middle and bottom portions provide information on the types of drugs and indications,

respectively.
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Table 3: Form Limitations and Detection, Mean Y2i

(1) (2) (3) (4)
One Indications Two Indications Three Indications Average

One Prescription 0.379 0.448 0.461 0.408
Two Prescriptions 0.318 0.454 0.469 0.392
Three Prescriptions 0.271 0.413 0.464 0.370
Four Prescriptions 0.207 0.365 0.428 0.334
Five Prescriptions 0.164 0.308 0.390 0.302
Six Prescriptions 0.114 0.256 0.361 0.278
Seven Prescriptions 0.086 0.202 0.318 0.234
Eight Prescriptions 0.069 0.151 0.277 0.205

Average 0.267 0.364 0.388 0.335
Observations 209,733 154,843 183,401 547,977

Note: These statistics reflect the mean of Y2i, the indicator for whether on-label use both occurred and

is detected, by number of prescriptions and indications recorded by the physician on the NAMCS survey

form.
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Table 4: DCE Model for Detection of On-Label Prescribing

(1) (2) (3) (4)
Exclusive to Detection Model

Number of prescriptions written during visit -0.123*** -0.123*** -0.122*** -0.128***
(-98.69) (-99.13) (-97.37) (-99.86)

Two indications recorded on the NAMCS form 0.011* 0.010* 0.012* 0.020***
(1.71) (1.64) (1.85) (3.15)

Three indications recorded on the NAMCS form 0.067*** 0.067*** 0.067*** 0.045***
(12.12) (12.03) (12.06) (8.01)

NAMCS form allows six prescriptions -0.077*** -0.073*** -0.072*** -0.067***
(-9.59) (12.03) (-9.14) (-8.06)

NAMCS form allows eight prescriptions -0.069*** -0.061*** -0.072*** -0.039***
(-11.94) (-10.97) (-12.37) (-6.72)

Common to Both Models

Patient age -0.003*** -0.003*** -0.003*** -0.003***
(-24.72) (-24.62) (-24.66) (-23.89)

Patient is female -0.048*** -0.048*** -0.049*** -0.027***
(-9.53) (-9.47) (-9.62) (-5.20)

Patient is Hispanic 0.027*** 0.026*** 0.028*** 0.002
(2.85) (2.72) (3.00) (0.24)

Patient is African-American 0.128*** 0.127*** 0.129*** 0.101***
(15.20) (15.07) (15.17) (11.76)

Patient is other (non-Caucasian) race -0.050*** -0.053*** -0.049*** -0.053***
(-5.40) (-5.75) (-5.32) (-5.62)

Additional Controls By Model

Model of Detection
Indicators for Physician-Specialty No No No Yes

Model of On-Label Prescribing
Indicators for Year Yes No No No
Quadratic Time Trend No Yes No No
Indicators for Physician-Specialty Yes Yes No No
Interacted Indicators for Year and Physician Specialty No No Yes Yes

Observations 547,977 547,977 547,977 547,977

Note: These estimates are for the model of detection. The top panel of the table reports estimates for

variables exclusive to the model of detection, while the middle panel reports estimates for variables that are

included in both models. The bottom panel indicates which controls are included in the specification of the

two models. Numbers in parentheses are t-statistics. *p < 0.10, **p < 0.05, ***p < 0.01
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Table 5: DCE Model for On-Label Prescribing

(1) (2) (3) (4)
Exclusive to Model of On-Label Prescribing

Number of drugs approved to treat indications 0.044*** 0.044*** 0.043*** 0.033***
(64.45) (64.42) (67.24) (84.07)

Patient has Medicare -0.087*** -0.080*** -0.088*** -0.086***
(-5.06) (-4.37) (-5.10) (-5.05)

Patient has Medicaid -0.140*** -0.128*** -0.140*** -0.126***
(-7.02) (-6.67) (-7.06) (-6.32)

Patient has private insurance -0.079*** -0.074*** -0.084*** -0.078***
(-5.69) (-5.40) (-6.02) (-5.61)

Patient has other insurance -0.087*** -0.066*** -0.110*** -0.070***
(-3.37) (-2.55) (-4.08) (-2.69)

Common to Both Models

Patient age -0.003*** -0.003*** -0.003*** -0.002***
(-9.07) (-9.12) (-9.43) (-5.29)

Patient is female -0.076*** -0.076*** -0.072*** -0.044***
(-6.73) (-6.77) (-6.39) (-4.01)

Patient is Hispanic -0.035* -0.035* -0.021 -0.000
(-1.72) (-1.73) (-1.02) (-0.01)

Patient is African-American -0.110*** -0.110*** -0.100*** -0.079***
(-5.75) (-5.81) (-5.28) (-4.21)

Patient is other (non-Caucasian) race -0.016 -0.020 0.017 0.026
(-0.76) (-0.99) (0.79) (1.28)

Additional Controls By Model

Model of Detection
Indicators for Physician-Specialty No No No Yes

Model of On-Label Prescribing
Indicators for Year Yes No No No
Quadratic Time Trend No Yes No No
Indicators for Physician-Specialty Yes Yes No No
Interacted Indicators for Year and Physician Specialty No No Yes Yes

Observations 547,977 547,977 547,977 547,977

Note: These estimates are for the model of physician on-label prescribing. The top panel of the table reports

estimates for variables exclusive to the model of physician behavior, while the middle panel reports estimates

for variables that are included in both models. The bottom panel indicates which controls are included in the

specification of the two models. Numbers in parentheses are t-statistics. *p < 0.10, **p < 0.05, ***p < 0.01
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Table 6: Form Limitations and Detection, Mean of Φ(x2iβ̂2)

(1) (2) (3) (4)
One Indication Two Indications Three Indications Average

One Prescription 0.652 0.649 0.663 0.653
Two Prescriptions 0.602 0.602 0.618 0.605
Three Prescriptions 0.549 0.549 0.568 0.555
Four Prescriptions 0.495 0.495 0.514 0.502
Five Prescriptions 0.440 0.442 0.464 0.451
Six Prescriptions 0.379 0.383 0.408 0.395
Seven Prescriptions 0.317 0.322 0.344 0.332
Eight Prescriptions 0.269 0.273 0.297 0.286

Average 0.539 0.509 0.465 0.506
Observations 209,733 154,843 183,401 547,977

Note: These estimates reflect the mean probability of detection, Φ(x2iβ̂2), by number of prescriptions and

indications recorded by the physician on the NAMCS survey form. The estimates of β̂2 are drawn from

column (3) of Table 4.
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