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Abstract

Regularization procedures are popular methods in Statistics and
Learning Theory to enhance low-dimensional structures or smooth-
ness properties of estimators. In this work, we study the estimation
property of regularization procedures of the form

f̂ ∈ argmin
f∈F

( 1

N

N∑
i=1

(
Yi − f(Xi)

)2
+ λ ‖f‖

)
where the regularization function ‖·‖ satisfies rather weak property
allowing for various type of functions like `p- (quasi) norms and Sp-
(quasi) norms, for all 0 < p ≤ ∞, atomic norms, max-norm, RKHS
norms for which we provide a detailled study. It appears that rather
weak moment properties are enough to obtain these estimation results
when X satisfies a small ball property.

1 Introduction

Let X be a space endowed with a probability measure µ. Let X1, . . . , XN

be N iid input points in X distributed according to µ. To each point Xi a
real-valued output Yi is associated such that (Xi, Yi)

N
i=1 are N iid random

variables taking values in X × R. Given a new input X in X , we want
to predict an associated output. To that end, we use the set of data D =
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{(Xi, Yi) : i = 1, · · · , N} to construct prediction rules f̂(·) = f̂(D, ·) such
that f̂(X) will be a good guess of the output Y when (X,Y ) is distributed
like the (Xi, Yi)’s.

In the learning theory framework, we do not assume any statistical model
behind the data generating process but we are given a class of real-valued
functions F defined on X . We assume that F is convex and closed in
L2(µ) and denote by f∗ a best approximation of Y in F ⊂ L2(µ) = L2:

f∗ ∈ argmin
f∈F

E(Y − f(X))2. (1.1)

Our aim is to construct a prediction rule f̂ which is close to f∗ in L2: with
large probability,∥∥∥f̂ − f∗∥∥∥2

L2

= E
(
f∗(X)− f̂(X)

)2 ≤ αN (F )2 (1.2)

where αN (F )2 is called the rate of convergence and we want to construct
prediction rules f̂ such that αN (F )2 is as small as possible. Note that even
though f∗ exists, it may not be unique.

Since, we do not assume any underlying statistical model, the price to
pay to insure that f∗ is a reasonable prediction of Y is that one has to
consider models F of large size and therefore the rate αN (F )2 will be large
as well whatever the procedure f̂ is. To avoid this issue, we usually try
to find some a priori property satisfied by f∗. Such a property is usually
caracterized by a function ‖·‖ such that ‖f∗‖ should be small– even though
this is no assumption. Note that the function ‖·‖ does not have to be a
norm; properties on ‖·‖ required by our analysis are given below:

Assumption 1.1 The function ‖·‖ is non-negative, convex and satisfies the
following properties:

(N1) There exists η1 ≥ 1 such that for any f, g ∈ F ,

‖f − g‖ , ‖f + g‖ ≤ η1

(
‖f‖+ ‖g‖

)
.

(N2) For any f, g ∈ F , λ 7→ ‖λ(f − g)‖ is a continuous function from [0, 1]
onto [0, ‖f − g‖]. Moreover, for any λ ∈ [0, 1], ‖λ(f − g)‖ ≤ λ ‖f − g‖
and ‖λf‖ ≤ λ ‖f‖.

Classical examples of function ‖·‖ are related to the smoothness of f∗

or to some sparsity structure via some norms or quasi-norms (note that any
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quasi-norm satisfies Assumption 1.1) or mixtures of norms. We will explore
several examples of functions ‖·‖ in the following sections.

A classical approach is to consider regularized empirical risk mini-
mization procedures (RERM). A regularized empirical risk minimization
procedure is defined by

f̂ ∈ argmin
f∈F

(
PN`f + λ ‖f‖

)
(1.3)

where PN is the empirical probability measure, `f is the loss function asso-
ciated with f and λ is the regularization parameter. Here we consider only
the square loss `f (x, y) = (y− f(x))2 for all x ∈ X and y ∈ R, in particular,

PN`f = N−1
∑N

i=1(Yi − f(Xi))
2.

There are a large number of both theoretical and practical study on
the performance of estimators like (1.3) for some particular examples of
regularization function. One typical example of such a procedure is the
Lasso (cf. [41]). It is obtained when F is a class of linear functional of
the form

〈
·, t
〉

for t ∈ Rd and the regularization function is the `d1-norm.
Estimation, de-noising, prediction and support recovery results have been
obtained for the Lasso during the last decades (cf. [41], [2], we refer the
reader to the books [4] and [19] for more references). Few statistical results
for the Lasso have been obtained in the random design scenario (cf. [1],
[26] and chapter 8.2 in [19]). The vast majority of the results have been
obtained in the linear model with sub-gaussian noise and for a fixed design
satisfying some weak form of RIP. One typical example of such a property
is the Restricted Eigenvalue Condition (REC) from [2]. To define it, let
us introduce the following notation: for t ∈ Rd and a set S0 ⊂ {1, . . . , d}
of cardinality |S0| ≤ s, let S1 be the subset of indexes of the m largest
coordinates of (|xi|)ni=1 that are outside S0. Let tS01 be the restriction of t
to the set S01 = S0 ∪ S1.

Definition 1.1 Let Γ be an N × d matrix. For a constant c0 ≥ 1 and an
integer 1 ≤ s ≤ m ≤ d for which m+ s ≤ d, let the restricted eigenvalue
constant be

κ(s,m, c0) = min
( ‖Γt‖2
‖tS01‖2

: S0 ⊂ {1, . . . , n}, |S0| ≤ s,
∥∥tSc0∥∥1

≤ c0 ‖tS0‖1
)
.

The matrix Γ satisfies the Restricted Eigenvalue Condition (REC) of
order s with a constant c if κ(s, s, 3) ≥ c.

Several statistical properties of the Lasso have been obtained in [2] under
(REC). It appears that this condition is of the same flavor as the one we
consider below in (Q(ρ)) in the learning theory setup.
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There are also results obtained for general regularization methods as
we aim to obtain here. In [34], the authors identify theoretical principles
that underlies the analysis of several regularization methods for diverse loss
functions and regularization functions. They obtain estimation results un-
der two properties: 1) the regularizing function ‖·‖ is a norm satisfying the
so-called decomposability property ; 2) a control on the interaction between
the regularization function and the loss function called the restricted strong
convexity. Under those two properties, convergence rates for f̂ are obtained.
In the linear model with sub-gaussian noise and a fixed design satisfying the
(REC) condition, it is proved in [25] that these two conditions are satisfied
with large probability for the square loss and several examples of regular-
ization methods when the target vector belongs to some classes of signals.

In [50], the authors obtain results for fairly general concave regulariza-
tion methods in the linear model with sub-gaussian noise and fixed design.
They obtained estimation, de-noising and support selection properties for
the regularization method f̂ under a condition on the design matrix called
the restricted invertibility factor and some structures on the regularization
functions. Similar results are also obtained for approximate local minimizers
in [50].

At some point, all these works had to face the problem of calibration of
the regularization parameter λ. The strategy we use to construct a regular-
ization parameter λ is as follows. For any ρ ≥ 0, we define the sub-model

Fρ = {f ∈ F : ‖f‖ ≤ ρ}. (1.4)

We also define the excess loss of f ∈ F with respect to f∗ by:

Lf = `f − `f∗ . (1.5)

We consider the quadratic/linear decomposition of the excess loss:

Lf (x, y) =
(
`f − `f∗

)
(x, y) =

(
y − f(x)

)2 − (y − f∗(x)
)2

=
(
f(x)− f∗(x)

)2
+ 2
(
f∗(x)− f(x)

)(
y − f∗(x)

)
. (1.6)

Following this decomposition, an important role will be played by two em-
pirical processes: if we denote by P the actual measure – and recall that PN
is the empirical measure over the data then PNLf = PN (f−f∗)2−2PN (f∗−
f)(f∗ − Y ). The first empirical process we consider is the quadratic em-
pirical process

(
PN (f − f∗)2 : f ∈ F

)
where

PN (f − f∗)2 =
1

N

N∑
i=1

(
f(Xi)− f∗(Xi)

)2
. (1.7)
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Under a weak assumption (cf. the small ball property in Definition 2.1
below), this process has the following property.

Definition 1.2 Let ρ ≥ 0. We say that the quadratic process satisfies an
empirical small ball property of level sQ(ρ) ≥ 0 when for all f ∈ Fρ
satisfying ‖f − f∗‖L2

≥ sQ(ρ), we have

PN (f − f∗)2 ≥ κ0 ‖f − f∗‖2L2
(Q(ρ))

where κ0 is an absolute constant.

One way to see this condition is as a generalization of the (REC) to the
learning theory framework. It is interesting to note that the restricted strong
convexity from [34] turns also to be a type of (REC) when dealing with the
square loss. This condition (on the quadratic empirical process) seems to
be a key property to obtain statistical property of regularized procedures.
The main result from Section 2 below shows that this condition is almost
always true (with large probability) as long as X satisfies the so-called small
ball property which is a pretty weak requirement (for instance a vector of
iid Cauchy variables satisfies this condition even though Cauchy variables
don’t even have a mean). An output of our results is to show that the
key property (Q(ρ)) that appeared in many works, in a form or another, is
satisfied by fairly general design vectors X. What costs more is the control
of the linear process due to the noise Y − f∗(X).

The other empirical process that plays a central role in our analysis is
the linear empirical process

(
PN (f∗ − f)(f∗ − Y ) : f ∈ F

)
where

PN (f∗ − f)(f∗ − Y ) =
1

N

N∑
i=1

(
f∗(Xi)− f(Xi)

)(
f∗(Xi)− Yi

)
. (1.8)

When a statistical model is assumed to hold then Y − f∗(X) is equal to
the noise. In the more general learning theory setup, the quantity Y −
f∗(X) can still be considered as a noise. We will therefore call it like that.
With this terminology, the empirical process (1.8) is an empirical measure
of the correlation between the noise and the class (centered around f∗).
In particular when there is no noise (i.e. Y = f∗(X)), this process equals
zero and does not enter the analysis. As in Definition 1.2 concerning the
quadratic empirical process, we will be interested in some particular property
of the linear empirical process (1.8).

Before introducing the property of this process that plays a central role in
our analysis, we introduce some notations. We recall that L2 is the Hilbert
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space endowed with the norm ‖f‖L2
=
(
Ef(X)2

)1/2
. We denote by SL2

(resp. D) the unit sphere (resp. ball) of L2; in particular, if f∗ ∈ L2 and
s > 0, f∗ + sD = {f ∈ L2 : ‖f − f∗‖L2

≤ s}.

Definition 1.3 For all s ≥ 0 and ρ ≥ 0, define

φN (ρ, s) = sup
f∈Fρ∩(f∗+sD)

1

N

N∑
i=1

(f∗ − f)(Xi)(f
∗(Xi)− Yi).

Let ρ ≥ 0. We say that the linear process satisfies a noise/class interac-
tion of level sL(ρ) ≥ 0 when, for some absolute constant κ1,

φN (ρ, sL(ρ)) ≤ κ1sL(ρ)2, (L(ρ))

when sL(ρ) > 0 and φN (ρ, s) ≤ 0 for all s ≥ 0 when sL(ρ) = 0.

The two conditions (L(ρ)) and (Q(ρ)) characterize the order of mag-
nitude of the linear and quadratic process under two types of conditions:
some deviation conditions on the “noise” Y − f∗(X) and the class F for
property (L(ρ)) and a small ball property for (Q(ρ)). Those properties are
studied in Section 2 and 3. The two functions sL(·) and sQ(·) characterize
the rate of convergence of the Empirical risk minimization procedure over
all sub-models Fρ (cf. [22]).

Our first result is to show that under properties (L(ρ∗)) and (Q(ρ∗)) for
ρ∗ = η1C0 ‖f∗‖, the RERM f̂ satisfies some Model Selection properties in
the sense that it belongs to the “correct” model Fρ∗ and some estimation
properties of f∗ in L2. It should be noted that those properties concern
only the “true” model Fρ∗ and not the entire space F which should be much
bigger than Fρ∗ when f∗ is such that ‖f∗‖ is small (which is the motivation
behind the study of (1.3)). Before that we introduce conditions on the
regularization parameter λ under which (1.3) will be proved to have the
expected Model Selection and Estimation properties.

Assumption 1.2 (ρ,R∗, c0,C0) Let η1, κ0 and κ1 be the constants ap-
pearing in Assumption 1.1 and Definitions 1.2 and 1.3. Let s(·) be such
that

s(ρ) ≥ max
(
sQ(ρ), sL(ρ)

)
. (1.9)

There exists ρ > 0, R∗ > 0, c0 > 0, and C0 > 2η1 + 1 such that:

i) 2λρ ≤ κ0c
2
0s

2
(
η2

1C0ρ
)
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ii) (C0 − 2η1 − 1

2η1

)
λ ≥

φN
(
η1C0ρ, c0s(η

2
1C0ρ)

)
ρ

.

iii) If ‖f∗‖ = 0 then

λ

2η1
≥ sup

0<r≤η1C0R∗

φN
(
η1r, c0s(η

2
1C0R

∗)
)

r

For a choice of regularization function satisfying Assumption 1.2, we
obtain the following model selection and estimation result for the RERM f̂ .

Theorem A: Let η1 ≥ 1, C0 > 2η1+1 and R∗ > 0. Let ‖·‖ satisfying As-
sumption 1.1. Assume properties (L(η2

1C0 ‖f∗‖)) and (Q(η2
1C0 ‖f∗‖)) hold

and properties (L(η2
1C0R

∗)) and (Q(η2
1C0R

∗)) hold as well for some κ1 ≥ 0
and κ0 > 0. Let λ satisfy Assumption 1.2 with parameters (‖f∗‖ ,R∗, c0,C0)
for some c0 ≥ max(4κ1/κ0, 1). Then, the RERM f̂ is such that:

A)
∥∥∥f̂ − f∗∥∥∥

L2

≤ c0s
(
η2

1C0 ‖f∗‖
)
,

B)
∥∥∥f̂∥∥∥ ≤ η1C0 ‖f∗‖.

Estimation results follow from Theorem A when one is able to choose
λ and s(·) such that Assumption 1.2 is satisfied. One way to choose those
parameters is such that

λ ∼ sup
ρ>0

EφN (ρ,∞)

ρ
(1.10)

so that points ii) and iii) in Assumption 1.2 hold with large probability
(under appropriate stochastic assumptions introduced in the two following
sections) and then take

s2(ρ) = max
(
s2
L(ρ), s2

Q(ρ),
2λρ

κ0c2
0η

2
1C0

)
so that point i) of Assumption 1.2 is satisfied. This choice will be made in
the main applications of Theorem A: Theorems 4.2, 4.4 and 4.3 below.

Theorem A is a deterministic result in the same spirit as the results
in [45, 44] or [25, 34]. All the stochastic/complexity part of our analysis is
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contained in the two properties (L(ρ∗)) and (Q(ρ∗)) and in upper bounds on
the linear empirical processes φN . Obtaining results on these two properties
and φN is the aim of Section 2 and 3. In particular, Theorem A has nothing
to do with the fact that the data (Xi, Yi)

N
i=1 introduced at the beginning

are i.i.d.; Theorem A applies for instance when the data are dependent.
Note also that Theorem A can be generalized to other loss functions than
the quadratic one thanks to Taylor expansions of the loss. Finally, note
that another advantage of a deterministic result like Theorem A is that the
regularization parameter λ can be expressed in function of the data. Three
directions that will not be studied here.

Note that Theorem A also apply when ‖f∗‖ = 0. In this case, f̂ satisfies∥∥∥f̂ − f∥∥∥
L2

≤ c0s(0) and
∥∥∥f̂∥∥∥ = 0. In particular, when the regularizing

function ‖·‖ is a norm, f̂ = f = 0; that is exact reconstruction even though
there is some noise. This can be surprising at a first glance but this is
one consequence of the regularization function that forces the estimator f̂
towards zero which is the correct target when f = 0.

Note that we don’t use the definition of f∗ from (1.1) as an oracle. In
fact, Theorem A applies to any function f∗ ∈ F for which the two properties
(L(ρ∗)) and (Q(ρ∗)) hold. This may be useful when one wants to obtain
oracle inequalities instead of estimation results.

The paper is organized as follows. In order to apply Theorem A, we have
to construct functions sL(·) and sQ(·) for which (L(ρ)) and (Q(ρ)) hold with
large probability for a given ρ > 0. We also need to upper bound φN (ρ, s)
(cf. definition 1.3) in order to choose λ such that Assumption 1.2 holds. This
is the purpose of the two following sections. This is where the stochastic
(small ball and moment assumptions) and complexity arguments (Gaussian
mean width and expected suprema) enter the analysis. In Section 4, we
prove in Theorem 4.2 that the only computation of the Gaussian mean
width of the unit ball associated with ‖·‖ allows for a calibration of the
regularization parameter and for the identification of the rate of estimation.
We study several examples of application of this result in Section 4 to 7 just
by computing some Gaussian mean widths. This result does not require any
statistical model and is true if the noise is in Lq, for some q > 2. In the
case where a statistical model is true, a similar result is stated in Section 4.2
under weak moment assumptions on the coordinates of X as long as it
satisfies a small ball property. A property that will play an important role
in our analysis which introduced in the next section

Notation. (e1, . . . , ed) denotes the canonical basis of Rd; for every p > 0,

`dp is the space Rd endowed with the (quasi)-norm ‖t‖`dp =
(∑d

j=1 |tj |p
)1/p

.
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The unit balls and spheres of the `dp spaces are denoted by Bd
p = {t ∈ Rd :

‖t‖`dp ≤ 1} and Sd−1
p = {t ∈ Rd : ‖t‖`dp = 1}.

The set L2 denotes the Hilbert space L2(X , µ), its norm is denoted

by ‖f‖L2
=
(
Ef2(X)

)1/2
, its unit ball is denoted by D = {f ∈ L2 :(

Ef2(X)
)1/2 ≤ 1} and its unit sphere is denoted by SL2 . If H ⊂ L2 and

f∗ ∈ H then H −H = {h− g : h, g ∈ H} and H − f∗ = {h− f∗ : h ∈ H}.
When there will be no ambiguity, we will also use the notation ‖f(X)‖L2

for
(
Ef2(X)

)1/2
.

2 Property (Q(ρ)) under the small ball assump-
tion

In this section, we study condition (Q(ρ)) under the following small ball
assumption introduced in [29]:

Definition 2.1 Let H be a class of functions and define

QH(u) = inf
h∈H

P
(
|h| ≥ u ‖h‖L2

)
.

We say that H satisfies the small ball assumption when there exists pos-
itive constants u0 and β0 such that QH(u0) ≥ β0.

Several examples of classes satisfying the small ball property are given for
linear functionals: h(X) =

〈
X,β

〉
in [29, 31, 23]. The following result is a

key one for the understanding of the role played by the small ball property
in condition (Q(ρ)).

Lemma 2.2 Let H be a class of functions. Assume that there exists some
u0 > 0 such that QH(u0) > 0 and

E sup
h∈H

∣∣∣ 1

N

N∑
i=1

εiI
(
|h(Xi)| ≥ u0 ‖h‖L2

)∣∣∣ ≤ QH(u0)

8
(2.1)

where ε1, . . . , εN are iid Rademacher variables. Then with probability larger
than 1 − exp(−NQ2

H(u0)/8), for every h ∈ H, PNh
2 ≥ κ0 ‖h‖2L2

for κ0 =
u2

0QH(u0)/2.

Proof. Let

G(X1, . . . , XN ) = sup
h∈H

∣∣(P − PN )I(|h(·)| ≥ u0 ‖h‖L2
)
∣∣.
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It follows from the bounded difference inequality (cf. Theorem 6.2 in [3])
that with probability larger than 1− exp(−x),

G(X1, . . . , XN ) ≤ EG(X1, . . . , XN ) +

√
x

2N
.

It follows from a symmetrization argument (cf. [24]) and (2.1) that EG(X1, . . . , XN ) ≤
QH(u0)/4. So, if one takes x = NQH(u0)2/8 then, with probability larger
than 1 − exp(−NQH(u0)2/8), G(X1, . . . , XN ) ≤ QH(u0)/2. Moreover, by
definition of QH(·), any h ∈ H is such that P (|h(X)| ≥ u0 ‖h‖L2

) ≥ QH(u0)
so, with the same probability estimate,

PNI
(
|h(·)| ≥ u0 ‖h‖L2

)
≥ QH(u0)/2

and therefore, for any h ∈ H,

1

N

N∑
i=1

h(Xi)
2 ≥ u2

0 ‖h‖
2
L2
PNI

(
|h(·)| ≥ u0 ‖h‖L2

)
≥
u2

0 ‖h‖
2
L2
QH(u0)

2
.

Theorem 2.3 Let ‖·‖ be some function defined on L2 satisfying Assump-
tion 1.1 for some η1 ≥ 1. Let ρ∗ > 0 and f∗ ∈ Fρ∗. Assume that the
following hold:

• there exists u0 and β0 such that, QFη1ρ∗−f
∗(u0) ≥ β0,

• there exists sQ > 0 such that

E sup
h∈(Fη1ρ∗−f

∗)∩sQSL2

∣∣∣ 1

N

N∑
i=1

εih(Xi)
∣∣∣ ≤ β0u0

8
sQ. (2.2)

Then, with probability at least 1−exp(−β2
0N/8), for any f ∈ Fρ∗, if ‖f − f∗‖L2

≥
sQ then PN (f − f∗)2 ≥ (u2

0β0/2) ‖f − f∗‖2L2
. In other words, (Q(ρ∗))

holds for sQ(ρ∗) = sQ and κ0 = u0β
2
0/2 with probability larger than 1 −

exp(−β2
0N/8).

Proof. Denote H = Fη1ρ∗ − f∗. It follows from the contraction principle
(cf. Chapter 4 in [24]) that

E sup
h∈H∩sQSL2

∣∣∣ 1

N

N∑
i=1

εiI
(
|h(Xi)| ≥ u0 ‖h‖L2

)∣∣∣
≤ 1

u0sQ
E sup
h∈H∩sQSL2

∣∣∣ 1

N

N∑
i=1

εih(Xi)
∣∣∣ ≤ β0

8
.
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It follows from Lemma 2.2 that with probability at least 1−exp(−β2
0N/8),

for any h ∈ H ∩ sQSL2 , PNh
2 ≥ κ0 ‖h‖2L2

for κ0 = u2
0β0/2. Therefore, with

the same probability estimate, if one takes f ∈ Fρ∗ such that ‖f − f∗‖L2
≥

sQ then by convexity of F and Assumption 1.1, g = (sQ/ ‖f − f∗‖L2
)(f −

f∗) ∈ H ∩ sQSL2 , so PNg
2 ≥ κ0 ‖g‖2L2

and PN (f − f∗)2 ≥ κ0 ‖f − f∗‖2L2
.

3 Properties (L(ρ)) under moments and sub-gaussian
assumption

In this section, we provide tools to check assumption (L(ρ)) and to control
the linear process φN . In what follows ‖·‖ is some function defined on L2

satisfying Assumption 1.1 for some η1 ≥ 1.
In order to to prove that (L(ρ)) holds with large probability, it is enough

to obtain an upper bound on the quantity φN (ρ, s) for a given s ≥ 0 that
holds with large probability.

We first obtain such a bound under moment assumption on the design
X and the noise ζ = Y − f∗(X) when X and ζ are independent. We use
tools from chapter 2.9 in [46] from which we recall the notation:

‖ζ‖2,1 =

∫ ∞
0

√
P (|ζ| > x)dx.

When ζ ∈ Lq for some q > 2 then ‖ζ‖2,1 is finite. The set of all random
variables ζ such that ‖ζ‖2,1 is finite is denoted by L2,1. We now work
under the assumption that ‖ζ‖2,1 is finite. Then, a direct application of
Lemma 2.9.1 in [46] shows that the following holds.

Proposition 3.1 Let ζ = Y − f∗(X) and assume that ζ is independent of
X and E[ζ] = 0. Let ρ∗ ≥ ‖f∗‖ and s ≥ 0. Let 0 < δ < 1. With probability
larger than 1− δ,

φN (ρ∗, s) ≤
c1 ‖ζ‖2,1
δ
√
N

max
1≤k≤N

E sup
h∈Fρ∗−f∗∩sD

∣∣∣ 1√
k

k∑
i=1

εih(Xi)
∣∣∣

for c1 = 2
√

2 and ε1, . . . , εN iid Rademacher variables independent of the
(Yi, Xi)’s. In particular, if sL is such that

‖ζ‖2,1 max
1≤k≤N

E sup
h∈Fρ∗−f∗∩sLD

∣∣∣ 1√
k

k∑
i=1

εih(Xi)
∣∣∣ ≤ √Ns2

L (3.1)
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then (L(ρ∗)) is satisfied with probability larger than 1− δ for κ1 = c1/δ and
sL(ρ∗) = sL. Also, with the same probability, point ii) of Assumption 1.2 is
satisfied when λ is such that

λρ∗ ≥
2c1η1 ‖ζ‖2,1

(C0 − 2η1 − 1)δ
√
N

max
1≤k≤N

E sup
h∈Fρ∗−f∗∩sD

∣∣∣ 1√
k

k∑
i=1

εih(Xi)
∣∣∣. (3.2)

Proof. It follows from Markov inequality that with probability larger than
1− δ, φN (ρ, s) ≤ δ−1E|φN (ρ, s)|. Then, by Lemma 2.9.1 in [46],

E|φN (ρ, s)| ≤
c1 ‖ζ‖2,1√

N
max

1≤k≤N
E sup
f∈F :‖f‖≤ρ,‖f−f∗‖L2

≤s

∣∣∣ 1√
k

k∑
i=1

εi(f−f∗)(Xi)
∣∣∣.

It follows from Theorem 2.3 and the previous result that the only quan-
tity that remains to be studied to calibrate the regularization parameter λ
and get statistical properties for f̂ thanks to Theorem A is

max
1≤k≤N

E sup
h∈Fη1ρ∗−f∗∩sD

∣∣∣ 1√
k

k∑
i=1

εih(Xi)
∣∣∣. (3.3)

In what follows we obtain bounds on this quantity under moment assump-
tions on the coordinates of X.

The last result holds under the assumption that the noise ζ is indepen-
dent of X. A typical case of application will be when a statistical model
holds like Y = f∗(X) + ζ where ζ is a noise independent of X. This type of
assumption may not be true in the general learning theory setup – where no
statistical model is assumed. For this setup, we can still obtain some result
if the design X is subgaussian by using a result on multiplier processes from
[30] in place of lemma 2.9.1 from [46] used in the proof of Proposition 3.1.
Before stating this result, we recall some definition.

Definition 3.2 Let F be a class of functions in L2 and L > 0. We say that
F is a L-subgaussian class with respect to X when for all f ∈ F and
every u ≥ 1,

P
[
|f(X)| ≥ Lu ‖f‖L2

]
≤ 2 exp(−u2).

We define the Gaussian mean width of F by `∗(F ) = E supf,g∈F Gf−g
where (Gf−g : f, g ∈ F ) is the canonical Gaussian process associated with
the set F − F = {f − g : f, g ∈ F}.

12



Note that the Gaussian mean width is the natural complexity param-
eter associated with a L-subgaussian class of functions. Assuming other
deviation properties for F than the sub-gaussian one will result in other
complexity parameters. A direction that will not be pursued here.

We are now in position to recall a result on multiplier processes that
will be used to prove property (L(ρ)) and to check point ii) and iii) in
Assumption 1.2.

Theorem 3.3 (cf. Theorem 3.10 in [30]) There are two absolute con-
stants c1 and c2 such that the following holds. Let X1, . . . , XN be iid copies
of some vector X and let H be a L-sub-gaussian class of functions with re-
spect to X. Let ζ1, . . . , ζN be iid copies of some real-valued random variable
ζ such that ζ ∈ Lq for some q > 2. Then for all u ≥ 1, with probability
larger than 1− (c1/u)q,

sup
h∈H

∣∣∣ 1

N

N∑
i=1

ζih(Xi)− Eζh(X)
∣∣∣ ≤ c2(u log(eu)) ‖ζ‖Lq

`∗(H)√
N

.

Note that in Theorem 3.3, theXi’s and ζi’s do not have to be independent
– this may be the case when the “noise” ζ := Y −f∗(X) depends on X, which
is in general the case in learning theory. The strategy that we use in the
applications of Theorem A below to prove (L(ρ)) and check Assumption 1.2
is based on the following result.

Theorem 3.4 Let F be a convex class, ρ > 0 and u ≥ 1. Assume that F
is a L-subgaussian class with respect to X for some L ≥ 1 and that ζ =
Y − f∗(X) ∈ Lq for some q > 2. Then with probability at least 1− 2(c1/u)q,

1. (L(ρ)) holds for sL(ρ) = sL and κ1 = κ1(u) = c2u log(eu) when sL ≥ 0
is such that

‖ζ‖Lq `
∗(Fρ ∩ (f∗ + sLD)

)
≤
√
Ns2

L.

2. point ii) of Assumption 1.2 is satisfied when

λρ ≥
2η1κ1(u) ‖ζ‖Lq
C0 − 2η1 − 1

`∗
(
Fη1C0ρ ∩ (f∗ + c0s(η

2
1C0ρ)D)

)
√
N

.

Proof. Since F is convex, by definition of f∗, one has for every f ∈ F :
E(f∗ − f)(X)(f∗(X) − Y ) ≤ 0. Therefore, for any ρ, s ≥ 0, φN (ρ, s) is
smaller than

sup
f∈Fρ∩(f∗+sD)

1

N

N∑
i=1

(f∗ − f)(Xi)(f
∗(Xi)− Yi)− E(f∗ − f)(X)(f∗(X)− Y ).

13



The last quantity can be bounded for any (ρ, s) ∈ {(ρ, sL), (η1C0ρ, c0s
2(η2

1C0ρ))}
using Theorem 3.3 and the result follows.

4 Learning linear functional in Hilbert spaces

In this section, we assume that the data are N iid couples (Yi, Xi)
N
i=1 dis-

tributed like (Y,X) where Y is a real-valued output and X is a random
vector in a Hilbert space H. The inner product in H is denoted by

〈
·, ·
〉

and
its associated norm is ‖·‖2. We also denote by B2 = {t ∈ H : ‖t‖2 ≤ 1} the
unit ball of H. Classical examples studied later are: `d2, the space Rd en-
dowed with the Euclidean norm; Rm×T the space of m×T matrices endowed
with the Frobenius norm and Reproducing Kernel Hilbert Spaces. We de-
note by Σ = EXX> the covariance operator of X and by E the associated
ellipsoid: E = {t ∈ H : E

〈
X, t

〉2 ≤ 1}.
We consider T ⊂ H a closed and convex set and denote

t∗ ∈ argmin
t∈T

E(Y −
〈
X, t

〉
)2

so that
〈
X, t∗

〉
is the best linear approximation of Y in L2 restricted to

vectors in T . We want to obtain estimation results on t∗ using Theorem A.
Note that when T = H, any t ∈ H is such that E(Y −

〈
X, t

〉
)2 = E

〈
X, t −

t∗
〉2

+E(Y −
〈
X, t∗

〉
)2, so that predicting the best output associated with X

by linear forms like
〈
X, t

〉
is equivalent to estimate

〈
X, t∗

〉
in L2: prediction

of Y and estimation of
〈
X, t∗

〉
are therefore equivalent task.

Let ‖·‖ be a function on H satisfying Assumption 1.1. We want to

estimate t∗ knowing that t∗ ∈ T w.r.t. the semi-norm
(
E
〈
X, ·
〉2

)1/2 (or
equivalently to estimate f∗(·) =

〈
·, t∗
〉

in L2(µ)) and “believing” that ‖t‖ is
small. To that end, we consider the regularization procedure

t̂ ∈ argmin
t∈T

( 1

N

N∑
i=1

(
Yi −

〈
Xi, t

〉)2
+ λ ‖t‖

)
(4.1)

for some regularization parameter λ chosen such that Assumption 1.2 should
hold with large probability.

In order to obtain prediction results for t̂ by applying Theorem A, we
need to check properties (Q(ρ)) and (L(ρ)) and to obtain bounds on φN .

Property (Q(ρ)) follows from Section 2 if we assume that the design X
satisfies the small ball property: there exists u0 and β0 such that for all
t ∈ H,

P
[
|
〈
X, t

〉
| ≥ u0

∥∥〈X, t〉∥∥
L2

]
≥ β0. (4.2)

14



The study of (L(ρ)) follows from some bounds on φN which requires
some moments on the design and the noise. We study in the next sections
two different types of such assumptions as in Section 3.

4.1 Results for a sub-Gaussian design and noise in Lq, q > 2

In this section ,we assume that the design X is sub-gaussian and the noise
ζ = Y −

〈
X, t∗

〉
is in Lq for some q > 2 – but we do not assume that ζ is

independent of X, in particular, we do not assume any statistical model.
We recall that the random vector X is a L-sub-Gaussian vector for

some L > 0, in H when for every t ∈ H and u ≥ 1,

P
[
|
〈
X, t

〉
| ≥ Lu‖

〈
X, t

〉
‖L2

]
≤ 2 exp(−u2). (4.3)

Under the sub-gaussian assumption (4.3), the small ball property (4.2)

is satisfied for u0 = 1/2 and β0 =
(
3/(4(2

√
2eL)2)

)2
. Indeed, it follows from

(4.3) that, for any t ∈ H,
∥∥〈X, t〉∥∥

L4
≤ 2
√

2eL
∥∥〈X, t〉∥∥

L2
(cf., for instance,

Theorem 1.1.5 in [8]). Then (4.2) follows from the Paley-Zygmund inequality
(cf. Corollary 3.3.2 in [11]). In particular, we can apply Theorem 2.3 to
prove that condition (Q(ρ)) is satisfied when (4.3) holds as long as there
exists some level sQ such that (2.2) holds.

As in the previous sections, a key role will be played by the nested family
of sub-models (Tρ)ρ≥0 where Tρ = {t ∈ T : ‖t‖ ≤ ρ}. Moreover, under the
sub-gaussian assumption on the design, the complexity parameters of the
problem (appearing in both the regularization parameter and the rates of
convergence) are driven by the local and global Gaussian mean widths of the
sub-models Tρ for all ρ ≥ 0. This quantity was introduced in Definition 3.2
for function classes. In the case where T is a subset of a Hilbert space H, a
simple construction of the Gaussian mean width is given as follows:

`∗(T ) = E sup
u,v∈T

〈
G, u− v

〉
(4.4)

where G is a standard (centered) Gaussian vector of H.
We can recast the problem of learning linear functional in a Hilbert

space in the general setup considered in Section 1, by considering the class
F = {

〈
·, t
〉

: t ∈ T} and the linear function f∗(·) =
〈
·, t∗
〉
∈ F . It follows

from Theorem A together with Theorem 3.4, for condition (L(ρ)) and Theo-
rem 2.3, for condition (Q(ρ)) that the following result holds for the problem
of learning linear functional in a Hilbert space for a subgaussian design and
a noise in Lq, q > 2.
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Theorem 4.1 There are absolute constants c1 and c2 such that the follow-
ing holds. Let sL(·) and sQ(·) be two non-decreasing functions such that for
every ρ ≥ 0:

? σq`
∗(Tη41ρ ∩ sL(ρ)E) ≤

√
NsL(ρ)2, where σq =

∥∥Y − 〈X, t∗〉∥∥
Lq

,

?? `∗
(
Tη41ρ ∩ sQ(ρ)E

)
≤ c1β0u0

L

√
NsQ(ρ)

where u0 = 1/2 and β0 =
(
3/(4(2

√
eL))2

)2
have been introduced in (4.2).

Let s(ρ) ≥ max
(
sL(ρ), sQ(ρ)

)
. Let u ≥ 1, κ1(u) = c2(u log(eu)), κ0 =

u0β
2
0/2 and some c0 ≥ max

(
4κ1(u)/κ0, 1

)
and C0 > 2η1 + 1. Let λ > 0 be

such that:

1. 2λρ ≤ κ0c
2
0s

2
(
η2

1C0ρ
)
,

2.

λρ ≥ 2η1κ1(u)σq
C0 − 2η1 − 1

`∗
(
Fη1C0ρ ∩ (f∗ + c0s(η

2
1C0ρ)D)

)
√
N

.

Let R∗ > 0 and consider the event Ω∗ on which, when ‖t∗‖ = 0,

λ

2η1
≥ sup

0<r≤η1C0R∗

φN
(
η1r, c0s(η

2
1C0R

∗)
)

r
(4.5)

Then, for this choice of regularization parameter λ, the regularization proce-
dure t̂ defined in (4.1) is such that with probability larger than 1−2 exp(−Nβ2

0/8)−
5(c2/u)q − P

[
(Ω∗)c

]
,∥∥〈X, t̂− t∗〉∥∥

L2
≤ c0s(η

2
1C0 ‖t∗‖) and

∥∥t̂∥∥ ≤ η1C0 ‖t∗‖ .

Proof. By assumption, ‖·‖ satisfies Assumption 1.1. Moreover, thanks
to Theorem 3.4, λ satisfies Assumption 1.2 with probability larger than
1−(c1/u)q−P

[
(Ω∗)c

]
. Hence, in order to apply Theorem A, it only remains

to check conditions (L(ρ∗)) and (Q(ρ∗)) for both ρ∗ ∈ {η2
1C0 ‖f∗‖ , η2

1C0R
∗}.

We first start by proving that (Q(ρ∗)) holds thanks to Theorem 2.3.
Under the sub-gaussian assumption (4.3), a generic chaining argument

(cf. Chapter 1 in [40]) shows that

E sup
t∈(Tη1ρ∗−t

∗)∩sQ(ρ∗)E

∣∣∣ 1

N

N∑
i=1

εi
〈
Xi, t

〉∣∣∣ ≤ c5L√
N
`∗
(
(Tη1ρ∗ − t∗) ∩ sQ(ρ∗)E

)
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for some absolute constant c5. Therefore, by definition of sQ(·) in ?? and
since Tη1ρ∗ − Tη1ρ∗ ⊂ Tη21ρ∗ , we have, for an appropriate choice of constant
c1 in ??,

E sup
t∈(Tη1ρ∗−t

∗)∩sQ(ρ∗)E

∣∣∣ 1

N

N∑
i=1

εi
〈
Xi, t

〉∣∣∣ ≤ β0u0

8
sQ(ρ∗).

It follows from the small ball property (4.2) and Theorem 2.3 that (Q(ρ∗))
holds with probability larger than 1− exp(−β2

0N/8) for κ0 = u0β
2
0/2.

Then, it follows from Theorem 3.4 that (L(ρ∗)) holds with probabil-
ity larger than 1 − (c1/u)q for the function sL(·) defined in ? and κ1 =
c2(u log(eu)) where c2 is the constant appearing in Theorem 3.3 since Tρ∗ −
f∗ ⊂ Tη1ρ∗ . Finally, the result follows from Theorem A.

In order to obtain rates of convergence and model selection properties for
t̂ for the problem of learning linear functional with a noise ζ = Y − f∗(X)
in Lq, q > 2 and a sub-Gaussian design X, one may apply Theorem 4.1.
For that matter, it is enough to compute the local Gaussian mean widths
`∗(Tρ∩sE) for any ρ ≥ 0 and s ≥ 0 and to find a probability estimate for the
event Ω∗ in (4.5). Rates of convergence and regularization functions follow
from these two unique quantities.

Controlling these two quantities when ‖·‖ is sub-linear and T = H easily
follows from Theorem 4.1. We now state this result when ‖·‖ is such that
for every x, y ∈ H and λ ≥ 0,

‖x‖ = ‖−x‖ , ‖x+ y‖ ≤ η1

(
‖x‖+ ‖y‖

)
and ‖λx‖ ≤ λ ‖x‖ . (4.6)

Note that since T = H, the next result also provides a prediction result.

Theorem 4.2 Let q > 2, u ≥ 1, c0, C0 > 3, c1, β0 and u0 be the constants
introduced in Theorem 4.1. Let ‖·‖ satisfying (4.6) and denote by B‖·‖ =
{t ∈ H : ‖t‖ ≤ 1} its unit ball for some L > 0. Assume that X is L-sub-
gaussian. Set σq =

∥∥Y − 〈X, t∗〉∥∥
Lq

and κ1(u) = c1u log(eu). Consider the

RERM

t̂ ∈ argmin
t∈H

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + 2η3

1κ1(u)σq ‖t‖
`∗(B‖·‖)√

N

)
.

Then, for c0 large enough, with probability at least 1−2 exp(−c0N)−5(c1/u)q,∥∥〈X, t̂− t∗〉∥∥
L2
≤ c0s(η

2
1C0 ‖t∗‖) and

∥∥t̂∥∥ ≤ η1C0 ‖t∗‖
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where s2(ρ) = 2η4
1κ1(u)σqρ`

∗(B‖·‖)/
√
N when N & `∗(E)2 and when N .

`∗(E)2,

s2(ρ) = max
(

2η4
1κ1(u)σqρ

`∗(B‖·‖)√
N

,
η8

1L
2

c1β2
0u

2
0

ρ2 `
∗(B‖·‖)

2

N

)
. (4.7)

Proof. Theorem 4.2 will follow from Theorem 4.1 after controlling the prob-
ability estimate of the event introduced in (4.5) and checking that conditions
of Theorem 4.1 are satisfied by s(·) defined in (4.7) and

λ = 2η3
1κ1(u)σq

`∗(B‖·‖)√
N

. (4.8)

First note that Tη41ρ ⊂ η
4
1ρB‖·‖ and so `∗(η4

1ρ∩ sE) ≤ η4
1ρ`
∗(B‖·‖) for any

s ≥ 0. Therefore, if one takes

s2
L(ρ) =

η4
1ρσq`

∗(B‖·‖)√
N

and s2
Q(ρ) =

{
0 if (c1β0u0)2N ≥ L`∗(E)2

L2η81ρ
2`∗(B‖·‖)

2

c21β
2
0u

2
0N

otherwise.

both conditions ? and ?? of Theorem 4.1 are satisfied.
Now, we turn to controlling the probability measure of the event Ω∗. Let

R∗ > 0 and denote s = c0s(η
2
1C0R

∗). We have to control the probability
measure of the event Ω∗ introduced in (4.5) when ‖t∗‖ = 0. Using the
sub-linearity of ‖·‖ from (4.6), we get

sup
0<r≤η1C0R∗

φN (η1r, s)

r

= sup
(
PN
〈
·, t
∗ − t
r

〉
(
〈
·, t∗
〉
− Y ) : 0 < r ≤ η1C0R

∗, ‖t‖ ≤ η1r,E
〈
X, t− t∗

〉2 ≤ s2
)

≤ sup
0<r≤η1C0R∗

sup
t:‖t‖≤η21r,

PN
〈
·, t
r

〉
(−ζ) ≤ η2

1 sup
‖t‖=1

1

N

N∑
i=1

(−ζi)
〈
Xi, t

〉
. (4.9)

Then, using Theorem 3.3 and the same argument as in the proof of Theo-
rem 3.4, we obtain that, with probability at least 1− (c1/u)q,

sup
0<r≤η1C0R∗

φN (η1r, s)

r
≤ η2

1κ1(u)σq
`∗(B‖·‖)√

N

for κ1(u) = c2u log(eu). Therefore, if one chooses λ such that point 1) and
2) in Theorem 4.1 holds and

λ ≥ 2η3
1κ1(u)σq`

∗(B‖·‖)/
√
N

are satisfied then we can apply Theorem 4.1. It appears that for the choices
of λ in (4.8) and s(·) in (4.7), these conditions are satisfied.
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We will provide several examples of applications of Theorem 4.2 in what
follows. A typical example is given now for the Lasso that is when H = Rd
and the regularization function is the `d1-norm. Note that the following
result holds under no statistical model and requires only that the noise
ζ = Y −

〈
X, t∗

〉
is in Lq for some q > 2 and the design X is sub-Gaussian.

Theorem 4.3 Assume that X is a L-sub-gaussian random vector in Rd.
Assume that the noise ζ = Y −

〈
X, t∗

〉
is in Lq for some q > 2 and denote

σq =
∥∥Y − 〈X, t∗〉∥∥

Lq
. Let u > 1 and κ1(u) = c1u log(eu). Then, the Lasso

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(
Yi −

〈
Xi, t

〉)2
+ 2κ1(u)σq ‖t‖1

√
log(ed)

N

)
is such that with probability at least 1− 2 exp(−β2

0N)− 5(c1/u)q,∥∥〈X, t̂− t∗〉∥∥
L2
≤ c0s(C0 ‖t∗‖1) and

∥∥t̂∥∥
1
≤ C0 ‖t∗‖1

where s2(ρ) ∼ κ1(u)σqρ
√

log(ed)/N when N & `∗(E)2 and when N .
`∗(E)2,

s2(ρ) ∼ max
(
κ1(u)σqρ

√
log(ed)

N
, ρ2 log(ed)

N

)
.

In the next section, we show that a similar result holds when a weaker
moment assumption on the design X is satisfied but under the assumption
of a Statistical model. Comparing Theorem 4.3 with the other classical es-
timation results for the Lasso (cf. [2], Chapter 8.2 in [19] or Chapter 6.2 in
[4] among others), it appears that even under weak moment assumptions on
the noise and no Statistical model, we still consider the same regularization
parameter: λ is of the order of σ

√
log(ed)/N where σ measures the “vari-

ance” of the noise in different scenarii. About the optimality of the result
in Theorem 4.3, it appears that the rate of convergence s(C0 ‖t∗‖) is, up to
some log factor, the minimax rate of convergence in C0 ‖t∗‖1Bd

1 as proved
in Section 5.1 of [22].

4.2 Results under moments assumption on the design and
independent noise in L2,1 for the Lasso

In this section, we assume that the Xi’s take their values in Rd and that a
statistical model holds:

Y =
〈
X, t∗

〉
+ ζ (4.10)
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where ζ is a mean zero noise independent of X and t∗ ∈ T ⊂ Rd. We
also consider a regularization function ‖·‖ defined on Rd satisfying Assump-
tion 1.1.

Results similar to Theorem 4.1 and Theorem 4.2 can be obtained in this
setup where the (local and global) Gaussian mean width is replaced by the
complexity parameter (3.3) and the noise level σq = ‖ζ‖Lq is replaced by

‖ζ‖2,1. We do not reproduce here these two results for the sake of shortness.
Instead, we show how to get a result in the special case of the Lasso under the
small ball property and moment assumptions in model (4.10) via Theorem A.

Theorem 4.4 Assume that X is a random vector in Rd satisfying the small
property (4.2) in H = Rd for some β0 and u0. Assume that the coordinates
of X = (x1, . . . , xd) have c0 log(ed) sub-gaussian moments for some c0 > 1:
for every 1 ≤ j ≤ d, ‖xj‖Lp ≤ κ

√
p for every 1 ≤ p ≤ c0 log(ed). Let

0 < δ < 1. Then, in the statistical model (4.10) with an independent noise
ζ such that ‖ζ‖2,1 is finite, the Lasso

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(
Yi −

〈
Xi, t

〉)2
+
c1 ‖ζ‖2,1

δ
‖t‖1

√
log(ed)

N
max

1≤j≤d
‖xj‖L2

)
is such that with probability at least 1− 4δ − 2 exp(−β2

0N),∥∥〈X, t̂− t∗〉∥∥
L2
≤ c0s(C0 ‖t∗‖1) and

∥∥t̂∥∥
1
≤ C0 ‖t∗‖1

where s2(ρ) ∼ ‖ζ‖2,1 ρ
√

log(ed)/N max1≤j≤d ‖xj‖L2
when N & E ‖X‖2`d2 and

when N . E ‖X‖2`d2 ,

s2(ρ) = max
(c1 ‖ζ‖2,1

δ
ρ

√
log(ed)

N
max

1≤j≤d
‖xj‖L2

, ρ2 log(ed)

N

)
.

Again comparing Theorem 4.4 with the classical Lasso procedure studied
in many works, it appears that even under weak moment assumptions on
the design and the noise, we still consider a same regularization parameter
of the order of σ

√
log(ed)/N .

Proof. First note that ‖·‖1 is a norm so it satisfies Assumption 1.1 for
η1 = 1. Then, to apply Theorem A, we need to check properties (L(ρ))
and (Q(ρ)) for ρ ∈ {C0 ‖t∗‖1 , C0R

∗} for some C0 > 3 and R∗ > 0 and to
choose λ and some function s(·) so that Assumption 1.2 is satisfied. Thanks
to Theorem 2.3 and Proposition 3.1 this will follow from a bound on the
quantity in (3.3) that we control now.
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Let 1 ≤ k ≤ N , ρ∗ ≥ ‖t∗‖1 and s > 0. We have

(?) = E sup
h∈(Fρ∗−f∗)∩sD

∣∣∣ 1√
k

k∑
i=1

εih(Xi)
∣∣∣ = E sup

t∈(ρ∗Bd1−t∗)∩sE

∣∣∣ 1√
k

k∑
i=1

εi
〈
Xi, t

〉∣∣∣
≤ min

(
2ρ∗E

∥∥∥∥∥ 1√
k

k∑
i=1

εiXi

∥∥∥∥∥
`d∞

, sE

∥∥∥∥∥ 1√
k

k∑
i=1

εiXi

∥∥∥∥∥
`d2

)
.

Therefore, to obtain a bound on (?), we just have to control the two last
expectations in the minimum. For the second expectation, we have:

E

∥∥∥∥∥ 1√
k

k∑
i=1

εiXi

∥∥∥∥∥
`d2

≤

(
E

∥∥∥∥∥ 1√
k

k∑
i=1

εiXi

∥∥∥∥∥
2

`d2

)1/2

≤
(
E ‖X‖2`d2

)1/2
.

For the first one, we prove two intermediate results.

Proposition 4.5 Let z be a mean zero variance one random variable and
let z1, . . . , zN be N iid copies of z. Assume that there exists κ > 0 and
p0 ≥ 2 such that ‖z‖Lp ≤ κ

√
p for every 2 ≤ p ≤ p0. Then, for some

absolute constant c0, for every 1 ≤ k ≤ N and every 1 ≤ p ≤ p0,∥∥∥∥∥ 1√
k

k∑
i=1

zi

∥∥∥∥∥
Lp

≤ c0κ
√
p.

Proof. Let p ≤ p0. It follows from Lata la’s inequality (cf. [21]) that∥∥∥∥∥
k∑
i=1

zi

∥∥∥∥∥
Lp

∼ sup
(p
s

(k
p

)1/s
‖z‖Ls : max(2, p/k) ≤ s ≤ p

)
. (4.11)

Let H(s) = (p/s)(k/p)1/sκ
√
s. Since H is decreasing, H attains its maxi-

mum on the interval max(2, p/k) ≤ s ≤ p at max(2, p/k) for which it is less
than c0κ

√
pk whatever is p ≤ p0 and 1 ≤ k ≤ N . The result then follows

from (4.11) and the moment assumption.

Lemma 4.6 Let X = (x1, . . . , xd) be a random vector in Rd such that for
every 1 ≤ j ≤ d and every 1 ≤ p ≤ c0 log(ed), ‖xj‖Lp ≤ κ

√
p for some

absolute constant κ and c0 > 1. Let X1, . . . , XN be iid copies of X. Then,
for every 1 ≤ k ≤ N ,

E

∥∥∥∥∥ 1√
k

k∑
i=1

εiXi

∥∥∥∥∥
`d∞

≤ c1κ
√

log(ed) max
1≤j≤d

‖xj‖L2
.
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Proof. We write Xi = (xij)
d
j=1 for every 1 ≤ i ≤ N and Vj = k−1/2

∑k
i=1 xij

for every 1 ≤ j ≤ d. We have

E

∥∥∥∥∥ 1√
k

k∑
i=1

εiXi

∥∥∥∥∥
`d∞

= E max
1≤j≤d

|Vj |.

For every 1 ≤ j ≤ d, (εixij)
N
i=1 is a family of iid mean zero random variables

distributed like εxj and such that ‖εxj‖Lp = ‖xj‖Lp ≤ κ
√
p for any 1 ≤ p ≤

c0 log(ed). It follows from Proposition 4.5 that ‖Vj‖Lp ≤ c1κ
√
p ‖xj‖L2

for

every 1 ≤ p ≤ c0 log(ed) where c1 is some absolute constant. In particular,
it follows from Markov inequality that for every u > 0 and for every 1 ≤
p ≤ c0 log(ed),

P
[

max
1≤j≤d

|Vj | ≥ u
]
≤

d∑
j=1

P [|Vj | ≥ u] ≤
d∑
j=1

(‖Vj‖Lp
u

)p
≤ d
(c1κ

√
pmax1≤j≤d ‖xj‖L2

u

)p
.

Hence, for p = c0 log(ed) and u = tc1κ
√
pmax1≤j≤d ‖xj‖L2

for some t > 0,

P
[

max
1≤j≤d

|Vj | ≥ c1tκ
√
p max

1≤j≤d
‖xj‖L2

]
≤
(e
t

)c0 log(ed)
.

Now the result follows by integrating the last inequality.

Therefore, we obtain

(?) ≤ min
(
c1ρ
∗κ
√

log(ed) max
1≤j≤d

‖xj‖L2
, s
(
E ‖X‖2`d2

)1/2)
. (4.12)

Conditions required to apply Theorem A follow from this result. Indeed, let
us first check condition (Q(ρ)).

If β0u0

√
N ≥ 8

(
E ‖X‖`d2

)1/2
then (2.2) is satisfied for every sQ ≥ 0 so

one can take sQ(ρ∗) = 0. If not then (2.2) is satisfied for

s2
Q(ρ) =

c3

β0u0
ρ2 max

1≤j≤d
‖xj‖L2

log(ed)

N
. (4.13)

It also follows from (4.12) that (3.1) is satisfied for sL = sL(ρ∗) when

s2
L(ρ) = 2ρ ‖ζ‖2,1

√
log(ed)

N
max

1≤j≤d
‖xj‖L2

(4.14)
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and (3.2) holds as well when

λ ≥
c3 ‖ζ‖2,1
δ(C0 − 3)

√
log(ed)

N
max

1≤j≤d
‖xj‖L2

. (4.15)

Therefore, it follows from Theorem 2.3 and Proposition 3.1 that for ρ ∈
{C0 ‖t∗‖1 , C0R

∗}, κ0 = u0β
2
0/2 and κ1 = κ1(δ) = c1/δ, (Q(ρ)), (L(ρ))

and point ii) of Assumption 1.2 are satisfied with probability at least 1 −
2 exp(−β2

0N/8)− 2δ.
Now, we turn to point iii) of Assumption 1.2. Following the same argu-

ment as in (4.9), we obtain

sup
0<r≤C0R∗

φN (r, c0s(C0R
∗))

r
≤ sup
‖t‖1=1

∣∣∣ 1

N

N∑
i=1

ζi
〈
Xi, t

〉∣∣∣.
Following the same argument as in the proof of Proposition 3.1 (that is
Markov inequality and Lemma 2.9.1 from [46]), we obtain that with proba-
bility larger than 1− δ,

sup
0<r≤C0R∗

φN (r, c0s(C0R
∗))

r
≤ c4 ‖ζ‖2,1 κ

√
log(ed)

N
max

1≤j≤d
‖xj‖L2

.

Therefore, if we choose λ such that

λ ≥
2c4 ‖ζ‖2,1 κ

δ

√
log(ed)

N
max

1≤j≤d
‖xj‖L2

(4.16)

then point iii) of Assumption 1.2 holds with probability at least 1−δ. Hence,
there exists c5 an absolute constant large enough so that (4.15) and (4.16)
are satisfied for

λ =
c5 ‖ζ‖2,1 κ
(C0 − 3)δ

√
log(ed)

N
max

1≤j≤d
‖xj‖L2

. (4.17)

Finally, point i) of Assumption 1.2 holds when we choose the function
s(·) such that

s2(ρ) = max
(
s2
L(ρ), s2

Q(ρ),
2λρ

C0κ0c2
0

)
=


2λρ

C0κ0c20
if N ≥

(
8

u0β0

)2
E ‖X‖`d2

max
(

ρ2

β0u0

log(ed)
N max1≤j≤d ‖xj‖L2

, 2λρ
C0κ0c20

)
otherwise.
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5 Regularization methods in Rd

In this section, we consider the learning theory setup of Section 4 (in par-
ticular, we do not assume that a statistical model holds) where the input
variables Xi’s belong to Rd and are L-sub-gaussian for some L > 0 and the
noise ζ = Y −

〈
X, t∗

〉
is in Lq for some q > 2. In this framework and for a

regularization function ‖·‖ satisfying (4.6), it follows from Theorem 4.2 that
the regularization method

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + 2η3

1κ1(u)σq ‖t‖
`∗(B‖·‖)√

N

)
(5.1)

is such that, for some large enough constant c0 and c1, with probability at
least 1− 2 exp(−c0N)− 5(c1/u)q,∥∥〈X, t̂− t∗〉∥∥

L2
≤ c0s(η

2
1C0 ‖t∗‖) and

∥∥t̂∥∥ ≤ η1C0 ‖t∗‖

where s2(ρ) ∼ κ1(u)σqρ`
∗(B‖·‖)/

√
N when N & `∗(E)2 and when N .

`∗(E)2,

s2(ρ) = max
(
κ1(u)σqρ

`∗(B‖·‖)√
N

, ρ2 `
∗(B‖·‖)

2

N

)
.

As a consequence, any time the Gaussian mean width of the unit ball
B‖·‖ is known, one can derive an estimation result for the regularization
method (5.1) associated with ‖·‖ thanks to Theorem 4.2. In the next sec-
tion, we apply this result to some classical examples.

5.1 `p-regularization for 0 < p ≤ ∞

In this section, we study rates of convergence and model selection proper-
ties of t̂ for the regularization functions ‖t‖ = ‖t‖p for p > 0. Note that
Assumption 1.1 for η1 = 1 is satisfied because ‖·‖p is a norm when p ≥ 1

and for η1 = 21/p for 0 < p < 1 because ‖·‖p is a p-norm for 0 < p < 1 (cf.
page 2 in [13]).

When p < 1, `p-regularization functions, even though being non-convex,
received a particular attention for the fixed design model (cf. [36, 37, 47] and
also [12] in the sequence space model) and the random design model in [48].
Denote by (e1, . . . , ed) the canonical basis of Rd. We have {±e1, . . . ,±ed} ⊂
Bd
p so `∗(Bd

p) ∼
√

log(ed). We therefore recover the same rates of estimation
for the `p-regularization methods than for the Lasso in Theorem 4.3.
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The same is true for 1 ≤ p ≤ 1+(log(ed))−1 since there exists an absolute
constant c0 such that Bd

1 ⊂ Bd
p ⊂ c0B

d
1 , so `∗(Bd

p) ∼ `∗(Bd
1) ∼

√
log(ed).

When 1 + (log(ed))−1 ≤ p, define q such that p−1 + q−1 = 1 then by
duality `∗(Bd

p) ∼ √qd1/q.

5.2 weak-`p-regularization for 0 < p ≤ 1

We recall the definition

‖t‖p∞ = max
1≤j≤d

j1/pt∗j and Bd
p∞ = {t ∈ Rd : t∗j ≤ j−1/p for every 1 ≤ j ≤ d}

where t∗1 ≥ t∗2 ≥ . . . ≥ t∗d is the non-increasing rearrangement of the absolute
values of the coordinates of t. Those quasi-norms have been used in sparse
signal recovery for instance in [14].

Proposition 5.1 (cf. Theorem B in [16]) Set 0 < p ≤ 1.

`∗(Bp∞) .

{ √
log(ed)

p−1 if 0 < p < 1(
log(ed)

)3/2
if p = 1.

5.3 Micchelli, Morales and Pontil’s regularization functions

General structured sparsity norms have been introduced in [27] in the fol-
lowing way: let Θ be a nonempty convex cone in (0,∞)d, define for all
t ∈ Rd

Ω(t|Θ) = inf
θ∈Θ

1

2

d∑
j=1

( t2j
θj

+ θj

)
. (5.2)

It is shown in [27] that Ω(·|Θ) is a norm on Rd. Given this particular
form of the norm, [27] suggested an alternating minimization algorithm for
constructing the regularization function (5.1) with regularization function
Ω(·|Θ).

Several classical regularization functions can written like Ω(·|Θ) for an
appropriate choice of cone Θ. For instance, the `d1-norm is obtained for
Θ = (0,∞)d. The group Lasso procedure from [49] is also a special case: if
(G1, · · · , GT ) is a partition of {1, . . . , d} and

Θ = {θ ∈ (0,∞)d constant within groups Gt}

then

Ω(t|Λ) =

T∑
t=1

√
|Gt|

∥∥t|Gt∥∥2
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where |Gt| is the size of Gt and t|Gt is the restriction of t to Gt for all t’s.
Many other examples can be found in [27] and [28].

Global Rademacher complexities have been studied in [28] for the norms
(5.2) from which generalization bounds for constrained empirical risk mini-
mization procedure for bounded loss can be derived. In the following result
we compute the global Gaussian mean width of the unit ball associated
with the norm Ω(·|Θ) so that estimation and model selection results for the
regularization method associated with Ω(·|Θ) may follow from Theorem 4.2.

Proposition 5.2 Let Θ be a nonempty convex cone of (0,∞)d. Denote by
Ext(Θ∩ Sd−1

1 ) the set of extreme points of the closure of Θ intersected with
the unit sphere Sd−1

1 . The Gaussian mean width of the unit ball BΩ(·|Θ)

associated with the norm Ω(·|Θ) is such that

`∗(BΩ(·|Θ)) ≤ 2 +M
√

2 log
(
M |Ext(Θ ∩ Sd−1

1 )|
)
.

where M = maxa∈E ‖a‖1/2∞ .

Proof. The argument is adapted from the one in [28]. First note that the
bound is void when Ext(Θ ∩ Sd−1

1 ) is infinite. We assume now that this set
is finite and denote E = Ext(Θ ∩ Sd−1

1 ). It follows from [27] that the dual
norm of Ω(·|Θ) is

Ω∗(t|Θ) = max
a∈E

( d∑
j=1

ajt
2
j

)1/2
. (5.3)

Therefore, if G = (g1, . . . , gd) denotes a Standard Gaussian vector of Rd
then `∗(BΩ(·|Θ)) = EΩ∗(G|Θ).

For every a ∈ E , we have E
(∑d

j=1 ajg
2
j

)1/2
≤ ‖a‖1/21 = 1. Therefore, it

follows that for every δ > 0,

EΩ∗(G|Θ) =

∫ ∞
0

P [Ω∗(G|Θ) ≥ v]dv

≤ 1 + δ +

∫ ∞
1+δ

P
[

max
a∈E

( d∑
j=1

ajg
2
j

)1/2
≥ v
]
dv

≤ 1 + δ +
∑
a∈E

∫ ∞
1+δ

P
[ d∑
j=1

ajg
2
j ≥ v2

]
dv

≤ 1 + δ +
∑
a∈E

∫ ∞
δ

P
[( d∑

j=1

ajg
2
j

)1/2
≥ E

( d∑
j=1

ajg
2
j

)1/2
+ v
]
dv
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It follows from Borell inequality (cf. Chapter 3.1 in [24]) that for every a ∈ E

P
[( d∑

j=1

ajg
2
j

)1/2
≥ E

( d∑
j=1

ajg
2
j

)1/2
+ v
]
≤ exp

(
− v2/(2σ2

a)
)

where σa = supv∈Bd2

(∑d
j=1 ajv

2
j

)1/2
= ‖a‖1/2∞ . Hence, forM = maxa∈E ‖a‖1/2∞ ,

we obtain

EΩ∗(G|Θ) ≤ 1 + δ + |E|M exp(−δ2/(2M2))

and the result follows for δ = M
√

2 log(|E|M).

In particular, when Θ = (0,∞)d, the norm (5.2) is the `d1-norm and
according to Proposition 5.2 we obtain that the Gaussian mean width of
its unit ball is of the order of

√
log(ed) and we recover the result from Sec-

tion 5.1. In the case of the group Lasso, the size of the Gaussian mean width
is
√

log T where T is the number of groups. Other examples of applications
can be found in [28, 27].

6 Regularization methods in Rm×T

In this section, the Xi’s belong to the set of m×T matrices Rm×T endowed
with the inner product

〈
A,B

〉
=
∑

u,v AuvBuv. As in Section 5, we consider

A∗ ∈ argminA∈Rm×T E
(
Y −

〈
X,A

〉)2
so that

〈
X,A∗

〉
is the best linear ap-

proximation of Y . Usually the dimension mT will be larger than the number
of observations N but we believe that A∗ have some low-dimensional struc-
ture characterized by some function ‖·‖ satisfying Assumption 1.1 so that
‖A∗‖ should be small.

In this context, we may again apply Theorem 4.2 when X is L-sub-
gaussian for some L > 0 and Y −

〈
X,A∗

〉
∈ Lq for q > 2 and consider the

regularization procedure:

Â ∈ argmin
A∈Rm×T

( 1

N

N∑
i=1

(Yi −
〈
Xi, A

〉
)2 + 2η3

1κ1(u)σq ‖A‖
`∗(B‖·‖)√

N

)
(6.1)

where ‖·‖ is a functions on Rm×T satisfying Assumption (4.6). It follows
from Theorem 4.2 that Â satisfies, with probability at least 1−2 exp(−c0N)−
5(c1/u)q, ∥∥∥〈X, Â−A∗〉∥∥∥

L2

≤ c0s(C0 ‖A∗‖) and
∥∥∥Â∥∥∥ ≤ η1C0 ‖A∗‖
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where s2(ρ) ∼ κ1(u)σqρ`
∗(B‖·‖)/

√
N when N & `∗(E)2 and when N .

`∗(E)2,

s2(ρ) ∼ max
(
κ1(u)σqρ

`∗(B‖·‖)√
N

, ρ2 `
∗(B‖·‖)

2

N

)
.

In the following section, we provide Gaussian mean widths associated with
some classical regularization functions that have been used in fields like
matrix completion and collaborative filtering.

6.1 Sp-regularization for p > 0

In this section, we consider the Schatten (quasi)-norms ‖·‖Sp as regulariza-

tion function defined for every A in Rm×T by

‖A‖Sp =
(m∧T∑
j=1

σj(A)p
)1/p

where σ1(A) ≥ σ2(A) ≥ · · · ≥ σm∧T (A) are the ordered singular values of A
and m ∧ T = min(m,T ).

Those norms have been extensively used for the matrix completion and
collaborative filtering problems. Exact reconstruction properties of proce-
dures based on minimizing the S1-norm constrained to matching the data
have been proved for instance in [5, 7, 6, 17, 9]. In the noisy setup, statis-
tical properties of regularized procedures based on the S1-norm have been
obtained in [20, 38, 19, 33, 15, 18].

A result closely related to our is Theorem 9.2 from [19]. It shows that
in the statistical model Y =

〈
X,A∗

〉
+ ζ where X is sub-gaussian, isotropic

(i.e. E
〈
X,A

〉2
= ‖A‖2S2

for every A ∈ Rm×T ) and ζ is in the Orlicz space ψα

for some α ≥ 1, the regularization procedure Â with regularizing function
‖·‖S1

satisfies for every t > 0, with probability larger than 1− exp(−t),∥∥∥Â−A∗∥∥∥2

S2

≤ C min
(
λ ‖A∗‖S1

, λ2rank(A∗)
)

(6.2)

when N & mrank(A∗) and the regularization parameter is such that

λ & max
[
‖ζ‖2

√
m(t+ logm)

N
, ‖ζ‖ψα log1/α

(‖ζ‖ψα
‖ζ‖L2

)√m(t+ logN)(t+ logm)

N

]
where ‖ζ‖ψα is the ψα-Orlicz norm of ζ (cf. [35]).

An estimation result also follows from the next well-known result (cf. for
instance Proposition 1.4.4 in [8]) for (6.1) for Sp-norm regularization, p > 0
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without assuming a statistical model, for a noise in Lq, q > 2 and without
assuming isotropicity of X.

Proposition 6.1 There exists an absolute constant c0 such that the follow-
ing holds. Let p > 0 and denote by BmT

p the unit ball of ‖·‖Sp. The Gaussian

mean width of BmT
p satisfies

`∗(BmT
p ) ≤ c0

{ √
m+ T when p ≤ 1

(m ∧ T )1−1/p
√
m+ T when p > 1.

6.2 Max-norm regularization

Constrained empirical risk minimization procedures using the max-norm
have been used in [42, 32] and [22]. This norm is defined by

‖A‖max = min
A=UV >

‖U‖2→∞ ‖V ‖2→∞ .

Let Bmax be the unit ball relative to that norm. We have

`∗(Bmax) .
√

(mT )(m+ T ).

Indeed, an application of Grothendieck’s inequality (see, e.g., [32]) shows
that

conv
(
X±
)
⊂ Bmax ⊂ KGconv

(
X±
)

where KG is the Grothendieck constant and X± = {uv> : u ∈ {±1}m, v ∈
{±1}T }. If G = (gij)1≤u≤m:1≤v≤T is a standard m× T Gaussian matrix, it
follows from a Gaussian maximal inequality (cf. Chapter 3 in [24]) that

`∗(Bmax) = E sup
A∈Bmax

|
〈
G, A

〉
| ≤ KGE sup

A∈conv(X±)
|
〈
G, A

〉
|

= KGE sup
A∈X±

|
〈
G, A

〉
| . max

A∈X±
‖A‖F

√
log |X±| .

√
(mT )(m+ T ).

6.3 Atomic-norm regularization

Atomic-norm have been studied in [9] for the exact and robust recovery prob-
lem from few Gaussian linear measurements. Minimal numbers of Gaussian
measurements are obtained which insures exact and robust recovery of con-
strained and regularized procedures. The analysis from [9] follows from some
computations of the Gaussian mean width of the intersection of the tangent
cone at the target point of the unit ball associated with the atomic norm
with the unit Euclidean sphere.
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We recall the construction of atomic regularization functions in Rm×T .
Let A ⊂ Rm×T . The elements in A are called the atoms. Denote by conv(A)
the convex hull of A. The gauge function associated with conv(A) is

‖A‖A = inf
(
t > 0 : A ∈ tconv(A)

)
. (6.3)

Even though, ‖·‖A is not a norm in general it always satisfies that: for every
A,B ∈ Rm×T and λ ≥ 0:

‖A+B‖A ≤ ‖A‖A + ‖B‖A and ‖λA‖A = λ ‖A‖A

therefore, if we further assume that conv(A) is symmetric around 0 then
conditions (4.6) is satisfied and we can applied Theorem 4.2. It only remains
to compute the Gaussian mean width of the unit ball associated with ‖·‖A
which follows from the computation of `∗(A) since

`∗
(
B‖·‖A

)
= `∗(conv(A)) = `∗(A).

For instance, when m = T and A is the set of all orthogonal matrices, we
have ‖·‖A = ‖·‖S2

. Then `∗
(
B‖·‖A

)
= E ‖G‖S2

≤
√
mE ‖G‖S∞ . m because

the spectral norm ball is the convex hull of the set of orthogonal matrices.
Note that we recover the same order of the Gaussian mean width obtained
in Proposition 3.13 in [9].

7 Regularization method by RKHS norm

In this section, we consider regularizing by the norm of a Reproducing Kernel
Hilbert Space (RKHS). Important facts on RKHS may be found in Chapter 4
from [39] or in [10].

Recall that if K : X ×X → R is a positive definite kernel, then by Mer-
cer’s theorem, there is an orthogonal basis

(
φi
)
i∈N of L2 = L2(µ) (where we

recall that µ is the probability distribution of X) such that µ ⊗ µ-almost
surely, K(x, y) =

∑∞
i=1 λiφi(x)φi(y) where (λi)i∈N is the sequence of eigen-

values of the integral operator TK (arranged in a non-increasing order) de-
fined for every f ∈ L2(µ) and x ∈ X by

(TKf)(x) =

∫
K(x, y)f(y)dµ(y)

so that for all i ∈ N, φi is the eigenvector corresponding to λi.
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The reproducing kernel Hilbert space HK is the set of all function series∑∞
i=1 aiK(xi, ·) converging in L2 endowed with the inner product〈∑

aiK(xi, ·),
∑

biK(yi, ·)
〉

=
∑
i,j

aiajK(xi, xj)

where ai, bi’s are real numbers and xi, yi’s belong to X . The unit ball of HK
can be constructed from the eigenvalue decomposition of TK by considering
the feature map Φ : X → `2 defined by Φ(x) =

(√
λiφi(x)

)
i∈N and then

BHK =
{
fβ(·) =

〈
β,Φ(·)

〉
: ‖β‖`2 ≤ 1

}
.

There is an isometry between the two Hilbert spaces HK and `2 endowed

with the norm ‖β‖K =
(∑

β2
i /λi

)1/2
whose unit ball is an ellipsoid denoted

by EK . So that, we obtain

`∗(BHK ) = `∗(EK) ∼
(∑
j∈N

λj

)1/2

where the last inequality follows from Talagrand ellipsoid Theorem (cf.
Chapter 2 in [40]).

We can therefore apply Theorem 4.2 to obtain estimation results for the
regularization method based on the norm of a RKHS.

Note that classical procedures in RKHS are mostly developed in the
classification framework. They are usually based on the hinge loss and the
regularization function is the square of the RKHS norm. For such proce-
dures, oracle inequalities have been obtained in Chapter 7 from [39] under
the margin assumption (cf. [43]).

8 Proof of Theorem A

We consider the function

HN (f) = PNLf + λ
(
‖f‖ − ‖f∗‖

)
(8.1)

where we recall that PNLf = PN (`f −`f∗) = N−1
∑N

i=1(Yi−f(Xi))
2−(Yi−

f∗(Xi))
2. It follows from the definition of f̂ that HN (f̂) ≤ 0. Therefore,

any function f ∈ F such that HN (f) > 0 cannot be a RERM as defined in
(1.3).

The scheme of the proof is as follows. We want to prove results like∥∥∥f̂ − f∗∥∥∥
L2

≤ � and
∥∥∥f̂ − f∗∥∥∥ ≤ 4 (8.2)
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for appropriate quantities� and4. Our strategy is to prove that functions f
such that ‖f − f∗‖L2

> � or ‖f − f∗‖ > 4 satisfy HN (f) > 0 and therefore
cannot be a RERM.

The proof of Theorem A is based on proving that HN is positive on
different parts of the set F so that should only remain the set of functions

f for which ‖f − f∗‖L2
≤ � and

∥∥∥f̂ − f∥∥∥ ≤ 4 on which HN may take

non-positive values.
We start by proving a result on the linear process under assumption

(L(η2
1C0 ‖f∗‖)).

Proposition 8.1 Let C0 ≥ 1. Assume that (L(η2
1C0 ‖f∗‖)) holds for some

sL(η2
1C0 ‖f∗‖) ≥ 0 and κ1 ≥ 0. Then, for every f ∈ Fη1C0‖f∗‖,

PN (f∗ − f)(f∗ − Y ) ≤ κ1 max
(
sL(η2

1C0 ‖f∗‖) ‖f − f∗‖L2
, s2
L

(
η2

1C0 ‖f∗‖
))
.

Proof. We denote αN = sL(η2
1C0 ‖f∗‖). First assume that αN > 0. It

follows from Definition 1.3 that φN (η1C0 ‖f∗‖ , αN ) ≤ κ1α
2
N .

Let f ∈ Fη1C0‖f∗‖. When ‖f − f∗‖L2
> αN then, by convexity of F and

both properties (N1) and (N2) in Assumption 1.1,

αN (f − f∗)
‖f − f∗‖L2

+ f∗ ∈ Fη21C0‖f∗‖ ∩
(
f∗ + αND

)
.

Therefore, by definition of αN ,

1

N

N∑
i=1

(f∗(Xi)− Yi)
αN (f∗ − f)(Xi)

‖f∗ − f‖L2

≤ κ1α
2
N

and, since αN > 0,

1

N

N∑
i=1

(f∗(Xi)− Yi)(f∗ − f)(Xi) ≤ κ1αN ‖f∗ − f‖L2
.

In the other case, when ‖f − f∗‖L2
≤ αN then f ∈ Fη21C0‖f∗‖ ∩

(
f∗ + αND

)
therefore, by definition of αN ,

1

N

N∑
i=1

(f∗(Xi)− Yi)(f∗ − f)(Xi) ≤ κ1α
2
N .

In both cases, we have

1

N

N∑
i=1

(f∗(Xi)− Yi)(f∗ − f)(Xi) ≤ κ1 max
(
αN ‖f − f∗‖L2

, α2
N

)
.
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Finally, when αN = 0 then for all f ∈ Fη1C0‖f∗‖, PN (f∗ − f)(f∗ − Y ) ≤ 0
and the result holds as well.

We start with the case ‖f∗‖ > 0 – the case ‖f∗‖ = 0 follows an identical
path and will be studied after. First, we prove that functions f in Fη1C0‖f∗‖
such that ‖f − f∗‖L2

> c0s
2(η2

1C0 ‖f∗‖) satisfy HN (f) > 0, for some well
chosen c0 and C0. The idea is that in this part of F , the quadratic term
PN (f∗− f)2 is larger than both the linear term −2PN (f∗− f)(f∗− Y ) and
the regularization term −λ ‖f∗‖, thanks to point i) in Assumption 1.2 – in
particular, the regularization term λ ‖f‖ does not help to show that HN is
positive, somehow because f is in the “true” model Fη1C0‖f∗‖.

Lemma 8.2 Assume that (L(η2
1C0 ‖f∗‖)) and (Q(η2

1C0 ‖f∗‖)) hold and
that ‖f∗‖ > 0. Let f be in Fη1C0‖f∗‖. If ‖f − f∗‖L2

> c0s(η
2
1C0 ‖f∗‖)

for c0 ≥ max
(
4κ1/κ0, 1

)
then HN (f) > 0.

Proof. Since ‖f − f∗‖L2
> c0s(η

2
1C0 ‖f∗‖) and c0 ≥ 1, according to (L(η2

1C0 ‖f∗‖))
– together with Proposition 8.1 – and (Q(η2

1C0 ‖f∗‖)) we have both:

1. PN (f − f∗)2 ≥ κ0 ‖f − f∗‖2L2

2. PN (f∗ − f)(f∗ − Y ) ≤ κ1sL(η2
1C0 ‖f∗‖) ‖f − f∗‖L2

.

Therefore, since c0 ≥ 4κ1/κ0 then

HN (f) = PN (f − f∗)2 − 2PN (f∗ − f)(f∗ − Y ) + λ
(
‖f‖ − ‖f∗‖

)
≥ κ0 ‖f − f∗‖2L2

− 2κ1sL(η2
1C0 ‖f∗‖) ‖f − f∗‖L2

− λ ‖f∗‖

≥ κ0

2
‖f − f∗‖2L2

− λ ‖f∗‖ > κ0c
2
0

2
s2(η2

1C0 ‖f∗‖)− λ ‖f∗‖ ≥ 0

where the last inequality follows from point i) in Assumption 1.2.

Lemma 8.2 is the first “excluding lemma”: it follows from this result
that inside the sub-model Fη1C0‖f∗‖, all functions f ∈ Fη1C0‖f∗‖ such that
‖f − f∗‖L2

> c0s(η
2
1C0 ‖f∗‖) have a positive HN (f) and therefore cannot

be a RERM. In particular, if one proves that f̂ ∈ Fη1C0‖f∗‖ then, it follows

from Lemma 8.2 that
∥∥∥f̂ − f∗∥∥∥

L2

≤ c0s(η
2
1C0 ‖f∗‖). We are now proving

that f̂ cannot be outside of Fη1C0‖f∗‖.

To show that f̂ belongs to Fη1C0‖f∗‖ is based again on an excluding
lemma showing that all functions f outside of Fη1C0‖f∗‖ are such thatHN (f) >
0. In fact, we prove below a stronger result saying that HN is positive out-
side of K = {f ∈ F : ‖f − f∗‖ ≤ (C0 − 1) ‖f∗‖} for some C0 > 2η1 + 1. We
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obtain this result by first obtaining an intermediate result on the boundary
of K:

∂K =
{
f ∈ F : ‖f − f∗‖ = (C0 − 1) ‖f∗‖

}
.

Lemma 8.3 Assume that (L(η2
1C0 ‖f∗‖)) and (Q(η2

1C0 ‖f∗‖)) hold and
that ‖f∗‖ > 0. Let C0 > 2η1 + 1. For any f in ∂K,

PNLf +
( 1

η1
− 2

C0 − 1

)
λ ‖f − f∗‖ > 0.

Proof. Let f be in ∂K. First assume that ‖f − f∗‖L2
≥ c0s(η

2
1C0 ‖f∗‖).

Since f ∈ ∂K ⊂ Fη1C0‖f∗‖ and c0 ≥ 1, it follows from (L(η2
1C0 ‖f∗‖)) –

together with Proposition 8.1 – and (Q(η2
1C0 ‖f∗‖)) that:

a) PN (f − f∗)2 ≥ κ0 ‖f − f∗‖2L2
,

b) PN (f∗ − f)(f∗ − Y ) ≤ κ1sL(η2
1C0 ‖f∗‖) ‖f − f∗‖L2

.

Therefore,

PNLf = PN (f − f∗)2 − 2PN (f∗ − f)(f∗ − Y )

≥ κ0 ‖f − f∗‖2L2
− 2κ1sL(η2

1C0 ‖f∗‖) ‖f − f∗‖L2
≥ κ0

2
‖f − f∗‖2L2

> 0

because c0 ≥ 4κ1/κ0 and ‖f − f∗‖L2
> 0 (because ‖f − f∗‖ = (C0−1) ‖f∗‖

and ‖f∗‖ > 0). So the result holds in this case because C0 > 2η1 + 1.
Now, assume that ‖f − f∗‖L2

< c0s(η
2
1C0 ‖f∗‖). It follows from point

ii) in Assumption 1.2 that

2PN (f∗ − f)(f∗ − Y ) ≤ 2φN (η1C0 ‖f∗‖ , c0s(η
2
1C0 ‖f∗‖))

≤
( 1

η1
− 2

C0 − 1

)
λ ‖f − f∗‖ (8.3)

because ‖f‖ ≤ η1(‖f − f∗‖ + ‖f∗‖) ≤ η1C0 ‖f∗‖ and ‖f − f∗‖ = (C0 −
1) ‖f∗‖. Finally, if PN (f − f∗)2 = 0 then f(Xi) = f∗(Xi) for every i =
1, . . . , N so PN (f∗ − f)(f∗ − Y ) = 0 then PNLf = 0 and

PNLf +
( 1

η1
− 2

C0 − 1

)
λ ‖f − f∗‖ > 0

because C0 > 2η1 + 1 and ‖f − f∗‖ > 0. When PN (f − f∗)2 > 0, then, it
follows from (8.3) that

PNLf +
( 1

η1
− 2

C0 − 1

)
λ ‖f − f∗‖

> −2PN (f∗ − f)(f∗ − Y ) +
( 1

η1
− 2

C0 − 1

)
λ ‖f − f∗‖ ≥ 0.
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Now, we are in position to prove that HN is positive outside of K.

Lemma 8.4 Assume that (L(η2
1C0 ‖f∗‖)) and (Q(η2

1C0 ‖f∗‖)) hold and
that ‖f∗‖ > 0. Let C0 > 2η1 + 1. For any f ∈ F such that ‖f − f∗‖ ≥
(C0 − 1) ‖f∗‖, HN (f) > 0.

Proof. Let f ∈ F be such that ‖f − f∗‖ ≥ (C0 − 1) ‖f∗‖. First we prove
that there exists g ∈ ∂K for which

HN (f) ≥ PNLg +
( 1

η1
− 2

C0 − 1

)
λ ‖g − f∗‖ (8.4)

For any θ ∈ [0, 1], denote fθ = θf + (1 − θ)f∗. We have ‖fθ − f∗‖ =
‖θ(f − f∗)‖. Therefore, according to (N2) in Assumption 1.1, there exists
θ0 ∈ (0, 1] such that ‖fθ0 − f∗‖ = (C0 − 1) ‖f∗‖ – note that θ0 6= 0 because
‖f∗‖ > 0 (and ‖0‖ = 0).

It follows from (N1) in Assumption 1.1 that

‖f‖ − ‖f∗‖ ≥
( 1

η1
− 2

C0 − 1

)
‖f − f∗‖ . (8.5)

This implies that

HN (f) = PNLf + λ
(
‖f‖ − ‖f∗‖

)
≥ PNLf +

( 1

η1
− 2

C0 − 1

)
λ ‖f − f∗‖ .

Therefore, we obtain

HN (f) ≥ PNLf +
( 1

η1
− 2

C0 − 1

)
λ ‖f − f∗‖

≥ PNLf + θ−1
0

( 1

η1
− 2

C0 − 1

)
λ ‖fθ0 − f∗‖ ,

because, according to (N2) in Assumption 1.1, ‖fθ0 − f∗‖ = ‖θ0(f − f∗)‖ ≤
θ0 ‖f − f∗‖ and C0 > 2η1 + 1. Since 0 < θ0 ≤ 1, we also have

PNLf = PN (f − f∗)2 − 2PN (f∗ − f)(f∗ − Y )

= θ−2
0 PN (fθ0 − f∗)2 − 2θ−1

0 PN (f∗ − fθ0)(f∗ − Y ) ≥ θ−1
0 PNLfθ0

Therefore,

HN (f) ≥ θ−1
0

(
PNLfθ0 +

( 1

η1
− 2

C0 − 1

)
λ ‖fθ0 − f∗‖

)
and the result (8.4) holds for g = fθ0 ∈ ∂K since θ−1

0 ≥ 1. Then the result
follows from Lemma 8.3.
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Now, we study the case ‖f∗‖ = 0. In this case, we have

HN (f) = PN (f − f∗)2 − 2PN (f∗ − f)(f∗ − Y ) + λ ‖f‖ . (8.6)

The argument is merely the same as for the other case ‖f∗‖ > 0. It is based
on some excluding lemmas proving that HN (f) > 0 for any f ∈ F such that
‖f − f∗‖L2

> c0s(0) or ‖f − f∗‖ > 0. The main difference with the previous
case is that we don’t have to deal with the negative term −λ ‖f∗‖ which is
equal to zero and we cannot work with the sub-model Fη1C0‖f∗‖ which is F0

for which the argument used in Lemma 8.4 does not work. We therefore
have to work with the somehow “artificial” sub-model Fη1C0R∗ for R∗ > 0
introduced in Assumption 1.2.

We start with a result inside model Fη1C0R∗ saying that the only func-
tions f ∈ FC0R∗ that may have a non-positive HN (f) are such that ‖f‖ = 0.

Lemma 8.5 Assume that (L(η2
1C0R

∗)) and (Q(η2
1C0R

∗)) hold and that
‖f∗‖ = 0. Let f ∈ Fη1C0R∗. If ‖f‖ > 0 then HN (f) > 0.

Proof. It follows from (L(η2
1C0R

∗)) – together with Proposition 8.1 – and
(Q(η2

1C0R
∗)) that for any f ∈ Fη1C0R∗ ,

a) PN (f − f∗)2 ≥ κ0 ‖f − f∗‖2L2
when ‖f − f∗‖L2

≥ sQ(η2
1C0R

∗),

b) PN (f∗ − f)(f∗ − Y ) ≤ κ1 max
(
sL(η2

1C0R
∗) ‖f − f∗‖L2

, s2
L(η2

1C0R
∗)
)
.

Let f ∈ F be such that ‖f‖ ≤ η1C0R
∗. If ‖f − f∗‖L2

> c0s(η
2
1C0R

∗)
then, according to point a) and b) above, the quadratic term PN (f − f∗)2 is
strictly larger than the linear term−2PN (f∗−f)(f∗−Y ) and therefore, given
the form of HN (·) in (8.6), HN (f) > 0. Now, assume that ‖f − f∗‖L2

≤
c0s(η

2
1C0R

∗). It follows from point iii) in Assumption 1.2 that when ‖f‖ > 0

2PN (f∗ − f)(f∗ − Y ) ≤ 2φN (‖f‖ , c0s(η
2
1C0R

∗))

≤ 2η1φN (η1 ‖f‖ , c0s(η
2
1C0R

∗)) ≤ λ ‖f‖ .

Then by studying the cases PN (f − f∗)2 = 0 or PN (f − f∗)2 > 0 it is easy
to see that HN (f) > 0 when ‖f‖ > 0.

Now, we obtain an intermediate result for functions on the border {f ∈
F : ‖f − f∗‖ = C0R

∗} that will allow us to prove that all functions f such
that ‖f − f∗‖ ≥ C0R

∗ have a positive HN (f) (and therefore cannot be a
RERM f̂).
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Lemma 8.6 Assume that (L(η2
1C0R

∗)) and (Q(η2
1C0R

∗)) hold and that
‖f∗‖ = 0. Let f ∈ F . If ‖f − f∗‖ = C0R

∗ then

PNLf +
λ

η1
‖f − f∗‖ > 0.

Proof. Let f ∈ F be such that ‖f − f∗‖ = C0R
∗, in particular, f ∈ Fη1C0R∗

since ‖f‖ ≤ η1 ‖f − f∗‖ so (L(η2
1C0R

∗)) – together with Proposition 8.1 –
and (Q(η2

1C0R
∗)) apply. Therefore, if ‖f − f∗‖L2

> c0s(η
2
1C0R

∗) then the
quadratic term is strictly larger than the linear term and so PNLf > 0.
Then, if ‖f − f∗‖L2

≤ c0s(η
2
1C0R

∗). In this case, it follows from point iii)
in Assumption 1.2 that the linear term is such that

2PN (f∗ − f)(f∗ − Y ) ≤ 2φN
(
η1 ‖f − f∗‖ , c0s(η

2
1C0R

∗)
)
≤ λ

η1
‖f − f∗‖

because ‖f‖ ≤ η1 ‖f − f∗‖ and ‖f − f∗‖ ≤ η1C0R
∗. Then the result follows

by studying the cases PN (f − f∗)2 = 0 or PN (f − f∗)2 > 0 and by noting
that ‖f − f∗‖ > 0.

Lemma 8.7 Assume that (L(η2
1C0R

∗)) and (Q(η2
1C0R

∗)) hold and that
‖f∗‖ = 0. Let f ∈ F . If ‖f − f∗‖ ≥ C0R

∗ then HN (f) > 0.

Proof. When ‖f − f∗‖ ≥ C0R
∗ then thanks to the same argument as

the one used in the proof of Lemma 8.4, there exists g ∈ F such that
‖g − f∗‖ = C0R

∗, PNLf ≥ PNLg and

λ ‖f‖ ≥ λ

η1
‖f − f∗‖ ≥ λ

η1
‖g − f∗‖ .

Therefore, HN (f) ≥ PNLg+(λ/η1) ‖g − f∗‖. Then it follows from Lemma 8.6
that HN (f) > 0.

End of the proof of Theorem A: First assume that ‖f∗‖ > 0.
Lemma 8.4 shows that if ‖f − f∗‖ ≥ (C0 − 1) ‖f∗‖ then HN (f) > 0 there-

fore,
∥∥∥f̂ − f∗∥∥∥ < (C0 − 1) ‖f∗‖. In particular, f̂ ∈ Fη1C0‖f∗‖, therefore, it

follows from Lemma 8.2 that
∥∥∥f̂ − f∗∥∥∥

L2

≤ c0s(η
2
1C0 ‖f∗‖). This proves the

result of Theorem A when ‖f∗‖ > 0.

When ‖f∗‖ = 0. It follows from Lemma 8.7 that
∥∥∥f̂ − f∗∥∥∥ ≤ C0R

∗ hence∥∥∥f̂∥∥∥ ≤ η1C0R
∗ and so, according to Lemma 8.5,

∥∥∥f̂∥∥∥ = 0. Now, we apply
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(Q(0)) and (L(0)) to show that when ‖f‖ = ‖f∗‖ = 0, if ‖f − f∗‖L2
>

c0s(0) then HN (f) = PN (f − f∗)2 − 2PN (f∗ − f)(f∗ − Y ) > 0 therefore,∥∥∥f̂ − f∥∥∥
L2

≤ c0s(0).

Finally, it follows from (N1) in Assumption 1.1 that∥∥∥f̂∥∥∥ =
∥∥∥f̂ − f∗ + f∗

∥∥∥ ≤ η1

( ∥∥∥f̂ − f∗∥∥∥+ ‖f∗‖
)
≤ η1C0 ‖f∗‖ .
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