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1 Introduction

The goal of developing methods to measure the health status of individ-
uals and populations has long been established in the health economics
literature (e.g., Torrance, 1976; 1986). It is frequently argued that the
benefit a patient derives from a particular health care intervention is de-
fined according to two dimensions: quality of life and quantity of life (e.g.,
Pliskin, Shepard and Weinstein, 1980). The so-called Quality Adjusted Life
Years (in short, QALYs) constitute the standard currency to deal with both
health dimensions in the methodology of cost-utility analyses, probably the
most widely accepted methodology in the economic evaluation of health care
nowadays (e.g., Drummond et al., 2005). Nevertheless, QALYs are usually
criticized on equity grounds (e.g., Harris, 1987; Smith, 1987) and the impor-
tance of considering alternative (equity-sensitive) measures of health in cost-
utility analyses is widely accepted (e.g., Wagstaff, 1991; Bleichrodt, 1997;
Williams, 1997; Dolan, 1998; Østerdal, 2003).1 The purpose of this paper is
to present normative foundations for equity-sensitive population health eval-
uation functions. To do so, we follow the new axiomatic approach to the
evaluation of population health, recently introduced by Hougaard, Moreno-
Ternero and Østerdal (2013a) (“HMØ” in what follows). In such approach,
the health of an individual in the population is defined according to the two
dimensions mentioned above (quality of life and quantity of life), but one of
them (quality of life) receives a special treatment, as it is assumed that it
might not have a standard mathematical structure. The approach has the
advantage of being informationally simple, as it does not make assumptions
about individual preferences over length and quality of life, which might not
be available information, either for practical or ethical reasons. This is in
contrast with the more standard approach in the health economics litera-
ture, where a given relationship is assumed between quality and quantity
of life at the individual level, entailing the existence of individual utility
functions (e.g., Østerdal, 2005). Nevertheless, even though there is a vast
literature on assessing individual preferences over health profiles (see, for
instance, Dolan (2000) and literature cited therein) recurrent criticisms are
made to each of the approaches in that literature.

One of the equity-sensitive population health evaluation functions, for
which we provide normative foundations, is the so-called multiplicative QALYs

1For discussions on the related issue of the conceptual foundations of measuring
(in)equity in health and health care, the reader is referred to Wagstaff and van Doorslaer
(2000), Williams and Cookson (2000) and, more recently, Fleurbaey and Schokkaert (2012)
and Hougaard, Moreno-Ternero and Østerdal (2013b). See also Rosa Dias (2009, 2010).
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function, which evaluates the health of a population by the product of the
QALYs each individual in the population is enjoying. Multiplicative forms
of the QALY model have been frequently endorsed in the literature (e.g.,
Bleichrodt, 1997; Dolan, 1998). A multiplicative form induces an obvious
concern for equity, as it penalizes uneven distribution of QALYs, whereas
an aggregate form is not sensitive to such uneven distributions.2

QALYs can be seen as a specific computation of the so-called Healthy
Year Equivalents (in short, HYEs), which refer to the socially equivalent
population health distribution, to a given one, in which the health outcome
of one (and only one) agent is replaced by that of full health, for some
quantity of time.3 The aggregate HYE model evaluates population health by
means of the unweighted aggregation of HYEs. As such, it is subject to the
same criticism of its counterpart aggregate QALY model on equity grounds.
We also derive in this paper normative foundations for the multiplicative
HYE model in which the health of a population is evaluated by the product
of the HYEs each individual in the population is enjoying.

One might argue that, for large populations, a multiplicative evaluation
function might be too equity sensitive. For that reason, we also derive norma-
tive foundations for two families of population health evaluation functions,
each generalizing the multiplicative QALY and HYE models, respectively.
In such families, individual QALYs (respectively, HYEs) are submitted to
an arbitrary (but increasing) function before being aggregated. When such
function is logarithmic, we recover, precisely, the multiplicative QALY (re-
spectively, HYE) model.

It is worth mentioning that our model differs, in an important aspect,
from the one used in HMØ. To wit, we assume here that the quantity-of-life
dimension is always strictly positive, whereas, in HMØ, it was only assumed
to be non-negative. This seemingly innocuous aspect turns out to make a
difference in both analyses. In HMØ, the so-called ZERO condition, which
said that if an agent gets zero lifetime then her health state does not influence
the social desirability of the health distribution, played an important role
in simplifying the analysis. Such condition, which is reminiscent of a widely
used condition for individual utility functions on health (e.g., Bleichrodt,
Wakker and Johannesson, 1997; Miyamoto et al., 1998; Østerdal 2005) is
beyond empirical testing, as the concept of health, in real life, is not properly
understood with zero lifetime. In the analysis of this paper, we replace this

2This is arguably the main reason why the UNDP unveiled a new methodology for the
calculation of the so-called Human Development Index (e.g., Zambrano, 2013).

3This notion can be traced back to Mehrez and Gafni (1989) who propose it as a
plausible way to reflect patient’s preferences over health.
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condition by another saying that, when quantity of life is sufficiently small,
quality of life becomes almost insignificant.

The normative foundations we propose for the population health eval-
uation functions described above are obtained by means of the axiomatic
method, a somewhat unexplored method in the health economics literature,
in contrast to many other subfields in economics.4 An axiomatic study be-
gins with the specification of a domain of problems, and the formulation of
a list of desirable properties (axioms) of solutions for the domain, whereas it
ends with (as complete as possible) descriptions of the families of solutions
satisfying various combinations of the properties (e.g., Thomson, 2001). An
axiomatic study often results in characterization theorems. They are theo-
rems identifying a particular solution, or perhaps a family of solutions, as
the only solution or family of solutions, satisfying a given list of axioms.
This is precisely what we do in this paper. We list some appealing axioms
for the evaluation of population health and then derive precise measures to
evaluate the health of a population. We first rely on a list of structural
axioms, whose combination characterizes the most general family of popula-
tion health evaluation functions described above. We then show that adding
three additional independent axioms to this list we can characterize each of
the remaining families we have mentioned above.

The main advantage of the axiomatic method is to move the debate from
hypothetical specific solutions of a given problem to the principles (axioms)
those solutions should satisfy. This opens the possibility of exploring the
positive appeal of different solutions by focussing on testing empirically the
principles that characterize each of them. As we mention later in the dis-
cussion section, this is certainly one possibility for future research arising
from this work.

The rest of the paper is organized as follows. In Section 2, we introduce
the model and the axioms we consider. In Section 3, we introduce and
characterize the population health evaluation functions described above. We
discuss the results and some further insights in Section 4. For a smooth
passage, we defer the proofs and provide them in an appendix.

4Besides HMØ, another notable recent exception within the health economics literature
is Canning (2013). Some instances of uses of the axiomatic method, regarding somewhat
related topics to this work, are Bleichrodt (1997), Bleichrodt et al., (1997), Miyamoto et
al., (1998), Moreno-Ternero and Roemer (2006), or Bossert and D’Ambrosio (2013).
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2 The preliminaries

Let us conceptualize a policy maker with preferences defined over distri-
butions of health for a population of fixed size n ≥ 3. We identify the
population (society) with the set N = {1, ..., n}. The health of each indi-
vidual in the population will be described by a duplet indicating the level
achieved in two parameters: quality of life and quantity of life.5 Assume
that there exists a set of possible health states, A, defined generally enough
to encompass all possible health states for everybody in the population. We
emphasize that A is an abstract set without any particular mathematical
structure.6 Quantity of life will simply be described by the set of strictly
positive real numbers, T = (0,+∞).7 Formally, let hi = (ai, ti) ∈ A× T de-
note the health duplet of individual i. A population health distribution (or,
simply, a health profile) h = [h1, . . . , hn] = [(a1, t1), ..., (an, tn)] specifies the
health duplet of each individual in society. We denote the set of all possible
health profiles by H.8 Even though we do not impose a specific mathemat-
ical structure on the set A, we assume that it contains a specific element,
a∗, which we refer to as perfect health and which is univocally identified, as
a “superior” state, by the policy maker.

The policy maker’s preferences (or social preferences) over health profiles
are expressed by a preference relation %, to be read as “at least as preferred
as”. As usual, � denotes strict preference and ∼ denotes indifference. We
assume that the relation % is a weak order.9

A population health evaluation function (PHEF) is a real-valued function
P : H → R. We say that P represents % if

P (h) ≥ P (h′)⇔ h % h′,

for each h, h′ ∈ H. Note that if P represents % then any strictly increasing
transformation of P would also do so.10

5It is worth mentioning that an “individual” could also be understood as the represen-
tative agent for a certain group.

6A could for instance refer to the resulting multidimensional health states after com-
bining the levels of each dimension of a categorical measure, such as EQ-5D, in all possible
ways.

7The model introduced in HMØ, differs from this one in allowing zero lifetimes.
8For ease of exposition, we establish the notational convention that hS ≡ (hi)i∈S , for

each S ⊂ N .
9More precisely, we assume that % is complete (for each health profiles h, h′, either

h % h′, or h′ % h, or both) and transitive (if h % h′ and h′ % h′′ then h % h′′).
10It is worth mentioning that our analysis does not deal with uncertainty. Following

Broome (1993), we consider a formulation of the population health evaluation problem
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2.1 Structural axioms

We now list several structural axioms for social preferences that we endorse
for population health evaluation functions. The first five were introduced in
HMØ, and, therefore, the reader is referred to that paper for further details
about them.

• ANON: h ∼ hπ for each h ∈ H, and each π ∈ ΠN .

• SEP:
[
hS , hN\S

]
%
[
h′S , hN\S

]
⇔
[
hS , h

′
N\S

]
%
[
h′S , h

′
N\S

]
, for each

S ⊆ N , and h, h′ ∈ H.

• CONT: Let h, h′ ∈ H, and h(k) be a sequence in H such that, for each

i ∈ N , h
(k)
i = (ai, t

(k)
i ) → (ai, ti) = hi. If h(k) % h′ for each k then

h % h′, and if h′ % h(k) for each k then h′ % h.

• PHS: [(a∗, ti), hN\{i}] % h, for each h = [h1, . . . , hn] ∈ H and i ∈ N .

• TMPH: If ti ≥ t′i, for each i ∈ N , with at least one strict inequality,
then [(a∗, t1), . . . , (a∗, tn)] � [(a∗, t

′
1), . . . , (a∗, t

′
n)].

In words, Anonymity says that the evaluation of the population health
should depend only on the list of quality-quantity duplets, not on who
holds them. Separability says that if the distribution of health in a pop-
ulation changes only for a subgroup of agents in the population, the relative
evaluation of the two distributions should only depend on that subgroup.
Continuity says that, for fixed distributions of health states, small changes
in lifetimes should not lead to large changes in the evaluation of the popu-
lation health distribution. Perfect health superiority says that replacing the
health status of an agent by that of perfect health, ceteris paribus, cannot
worsen the evaluation of the population health. Time monotonicity at per-
fect health says that if each agent is at perfect health, increasing the time
dimension is strictly better for society.

The last structural axiom we consider, insignificant health at negligible
lifetimes, says that quality of life improvements become almost insignificant
when lifetimes are negligible. More precisely, it says that any health profile
will dominate the resulting profile after improving the quality of life of (only)

which contains no explicit element of risk, and in which we obtain characterizations of
population health evaluation functions without assumptions on the policy maker’s (or
individuals’) risk attitudes.
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one agent to perfect health, provided the corresponding lifetime at which
such agent will enjoy it is sufficiently small. Formally,

IHNL: For each h ∈ H, and each i ∈ N , there exists ε > 0 such that
h � [(a∗, s), hN\{i}], for each 0 < s < ε.

The previous axiom replaces the pair of axioms in HMØ, made of the
so-called zero condition (described at the introduction), and the notion of
positive lifetime desirability (society improves if any agent moves from zero
lifetime to positive lifetime, for a given health state), none of which can be
formalized in the current model, which does not allow for zero lifetimes.

In what follows, we refer to the set of axioms introduced above as our
core structural axioms (in short, CORE).

2.2 Alternative axioms

We now introduce three alternative axioms that will be combined, inde-
pendently, to the list of core structural axioms presented above. The three
axioms convey a specific concern for relative comparisons of lifetimes, but
each of them formalizes such concern in a different way.

More precisely, the first one, known as relative lifetime comparisons,
says that an additional proportion of life years to individual i is socially
seen as just as good as an additional proportion of life years to individual
j, regardless of health states.11 Formally,

RLC: For each h ∈ H, c > 0, and i, j ∈ N ,
[
(ai, cti), hN\{i}

]
∼
[
(aj , ctj), hN\{j}

]
.

Now, we could restrict the scope of the previous axiom only to the case
in which all agents enjoy perfect health, giving rise to the axiom of relative
lifetime comparisons at perfect health. Formally,

RLCPH: For each h ∈ H, c > 0, and i, j ∈ N , such that ai = aj = a∗,[
(a∗, cti), (a∗, tj), hN\{i,j}

]
∼
[
(a∗, ti), (a∗, ctj), hN\{i,j}

]
.

Finally, we consider common duplets relative lifetime comparisons, which
states that if we have two health profiles with common duplets then the pref-
erence between them is independent of a scaling of the life year component.
Formally,

CDRLC: For each h = [(a, t)i∈N ], h′ = [(a′, t′)i∈N ] ∈ H, such that h % h′,
and c > 0, [(a, ct)i∈N ] % [(a′, ct′)i∈N ].

11This axiom was first formalized in a health context by Østerdal (2005).
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3 The results

We show in this section that some specific equity-oriented PHEFs, defined
next, can be characterized by some combinations of the axioms described in
the previous section.

First, we introduce the PHEF in which individual Quality Adjusted Life
Years (QALYs) are multiplied to evaluate the health distribution of the
population. More precisely,

Pmq[h1, . . . , hn] = Pmq[(a1, t1), . . . , (an, tn)] =
n∏
i=1

(q(ai)ti) , (1)

where q : A→ [0, 1] is an arbitrary function satisfying 0 < q(ai) ≤ q(a∗) = 1,
for all ai ∈ A.

Alternatively, we could consider the more general PHEF in which Healthy
Year Equivalents (HYEs), instead of QALYs, are multiplied to evaluate the
health distribution of the population. Formally,

Pmh[h1, . . . , hn] = Pmh[(a1, t1), . . . , (an, tn)] =
n∏
i=1

f(ai, ti), (2)

where f : A× T → T is a function indicating the HYEs for each individual,
i.e.,

• f is continuous with respect to its second variable,

• 0 < f(ai, ti) ≤ ti, for each (ai, ti) ∈ A× T , and

• For each h = [h1, . . . , hn] = [(a1, t1), . . . , (an, tn)] ∈ H,

h ∼ [(a∗, f(ai, ti))i∈N ].

It is worth mentioning that the multiplicative QALY PHEF can therefore
be seen as a specific instance of the multiplicative HYE PHEF, in which
f(ai, ti) = q(ai)ti, for each (ai, ti) ∈ A× T .

At the risk of stressing the obvious, note that the previous two families
endorse a concern for the equity of the distribution of QALYs or HYEs (more
specifically, a concern for the existence of agents with poor outcomes), which
is absent in their counterpart families that evaluate a health distribution
with the (unweighted) aggregation of the QALYs or HYEs in the population.

As we mentioned in Section 2, PHEFs are “immune” to monotonic trans-
formations. More precisely, if P represents % then any strictly increasing
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transformation of P would also do so. Thus, it is straightforward to see that
the following are equivalent representations of families (1) and (2):

Pmq[h1, . . . , hn] = Pmq[(a1, t1), . . . , (an, tn)] =
n∑
i=1

ln (q(ai)ti) ,

where q is constructed as in (1).

Pmh[h1, . . . , hn] = P ph[(a1, t1), . . . , (an, tn)] =

n∑
i=1

ln (f(ai, ti)) ,

where f is constructed as in (2).
A natural generalization of the above families would be obtained when

QALYs (or HYEs) are submitted to an arbitrary (but increasing) function
before being aggregated. Formally,

P gq[h1, . . . , hn] = P gq[(a1, t1), . . . , (an, tn)] =
n∑
i=1

g(q(ai)ti), (3)

where g : R++ → R is a strictly increasing and continuous function, and q
is constructed as in (1).

P gh[h1, . . . , hn] = P gh[(a1, t1), . . . , (an, tn)] =

n∑
i=1

g(f(ai, ti)), (4)

where g : R++ → R is a strictly increasing and continuous function, and f
is constructed as in (2).

We are now ready to state the formal results of our paper. The first result
says that the multiplicative QALY PHEF is characterized when relative
lifetime comparisons is added to the core structural axioms.12 Formally,

Theorem 1 The following statements are equivalent:

1. % is represented by a PHEF satisfying (1).

2. % satisfies CORE and RLC.

12The same functional form was characterized by Østerdal (2005) in a model in which
individual QALY functions (representing individual preferences) are given.
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Theorem 2 shows that the multiplicative HYE PHEF is characterized
when, instead of relative lifetime comparisons, only its weakening to perfect
health is added to the set of core axioms. Formally,

Theorem 2 The following statements are equivalent:

1. % is represented by a PHEF satisfying (2).

2. % satisfies CORE and RLCPH.

Similarly, Theorem 3 shows that the generalized QALY PHEF, P gq,
is characterized when common duplets relative lifetime comparisons is the
added axiom to the set of core axioms. Formally,

Theorem 3 The following statements are equivalent:

1. % is represented by a PHEF satisfying (3).

2. % satisfies CORE and CDRLC.

Finally, the generalized HYE PHEF, P gh, the most general family among
those described above, is precisely characterized by the set of core axioms.13

Formally,

Theorem 4 The following statements are equivalent:

1. % is represented by a PHEF satisfying (4).

2. % satisfies CORE.

One might argue that families (3) and (4), characterized in Theorems 3
and 4, respectively, do not necessarily include a concern for the equality of
the distribution (as it indeed happens for the “logarithmic members” charac-
terized in Theorems 1 and 2). The following results exhibit the implications
of adding a concern for inequality aversion to both families. More precisely,
as shown in their statements, the addition of a Pigou-Dalton transfer at
perfect health axiom (to the axioms used in their corresponding characteri-
zations) stating that a health profile in which two agents at perfect health
have different time spans is dominated by the subsequent profile in which
those agents keep the same perfect health status, but share a time span

13Theorem 4 is the counterpart of Theorem 1 in HMØ.
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equal to the average of the former two, implies that QALYs (HYEs) enter
into the PHEF in a (strictly) concave way. Formally,

PDTPH: For each h = [(a∗, tk)k∈N ] ∈ H, and i, j ∈ N , such that ti 6= tj ,[(
a∗,

ti + tj
2

)
,

(
a∗,

ti + tj
2

)
, hN\{i,j}

]
� h.

Corollary 1 The following statements are equivalent:

1. % is represented by a PHEF satisfying (3) with g(·) strictly concave.

2. % satisfies CORE, CDRLC and PDTPH.

Corollary 2 The following statements are equivalent:

1. % is represented by a PHEF satisfying (4) with g(·) strictly concave.

2. % satisfies CORE and PDTPH.

4 Discussion

We have presented in this paper normative foundations for several equity-
sensitive population health evaluation functions. All of them share the
common ground given by our core structural axioms. The normative ap-
peal of those core axioms seems to be strong, but we have not tested their
positive appeal via experiments or questionnaires, and that could certainly
be a plausible line for future research.14 Beyond those core structural ax-
ioms, the population health evaluation functions we single out differ from
each other on the specific form of relative lifetime comparisons they allow.
More precisely, if a policy maker is interested in the principle saying that
an additional proportion of life years to an individual is as just as good

14Amiel and Cowell (1999) provide empirical evidence in which respondents of ques-
tionnaires related to income inequality measurement reject separability. Turpcu et al.,
(2012) show the existence of framing effects in the empirical support for the axiom in an
health context. Nevertheless, it seems that separability is well established in the health
economics literature, as it underlies the use of incremental analysis in cost-effectiveness
analysis, which implies that individuals for whom two treatments yield the same health
should not influence the relative evaluation of these treatments (e.g., Gold et al., 1996).
As for continuity, it discards leximin evaluations, which may have intuitive appeals for
some observers.
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as an additional proportion of life years to another individual, regardless
of health states, then the multiplicative QALY function should be the one
adopted to evaluate the health distribution of a population. If, instead, the
policy maker is only interested in imposing such principle when all agents
enjoy perfect health, then the multiplicative HYE function should be the one
adopted. Finally, if the principle only refers to comparisons of health profiles
with common duplets then the function emerging is the aggregation of an
increasing transformation of individual QALYs. If the increasing transfor-
mation is concave, then the function conveys a concern for the equity of the
distribution modeled by a standard Pigou-Dalton transfer axiom.

As mentioned in the introduction, the importance of developing equity-
sensitive forms of evaluating a distribution of health has long been estab-
lished within the health economics literature. One focal contribution within
such literature aiming to address the issue is the so-called fair innings notion
(e.g., Harris, 1985; Williams, 1997). Essentially, the notion reflects the feel-
ing that everyone is entitled to some ’normal’ span of health. In some sense,
one could consider that the multiplicative QALY and HYE models character-
ized in this paper are implementing a variant of the fair innings notion: they
both aim to give a fair number (actually, the average) of quality-adjusted life
years, or healthy years equivalents, to each person. Nevertheless, one might
also argue that the fair innings notion is captured by Williams (1997) upon
endorsing a Bergsonian functional form to evaluate the health distribution
of a population. In the parlance of this paper, that would amount to con-
sider the subfamilies arising from (3) and (4) after imposing that g is, not
only a strictly increasing, continuous, and concave function (as in Corollar-
ies 1 and 2), but also a power function.15 Such families were characterized
in HMØ. The characterizations presented therein could be adapted to the
framework analyzed here, provided the pair of axioms in HMØ, made of the
zero condition and positive lifetime desirability, is replaced by the axiom of
insignificant health at negligible lifetimes considered here.16

5 Appendix. Proofs of theorems

In order to prove the results stated above, we need first the following lemma,
which is interesting on its own.17 Formally,

15Formally, there exists γ ∈ (0, 1) such that g(x) = xγ , for each x ∈ R++.
16To conclude, it is worth acknowledging explicitly that, whereas the notion of a thresh-

old plays a crucial role in the fair innings reasoning, it does not play any role in our
formalization.

17This lemma is the counterpart of Lemma 1 in HMØ.

11



Lemma 1 If % satisfies CORE then, for each h ∈ H and i ∈ N , there
exists t∗i ∈ T such that h ∼ [(a∗, t

∗
i ), hN\{i}].

Proof. Suppose, by contradiction, that such t∗i in the statement of the
lemma does not exist. Then, T = A ∪B, where,

A = {s ∈ T |h � [(a∗, s), hN\{i}]},

and
B = {s ∈ T |[(a∗, s), hN\{i}] � h}.

By IHNL, A 6= ∅. By PHS and TMPH, B 6= ∅. By CONT, A and B
are open sets relative to T . As A ∩ B = ∅, it would follow that T is not a
connected set, a contradiction.

We are now ready to prove the most general result of our analysis and,
from there, the remaining results.

Proof of Theorem 4. We focus on the non-trivial implication, i.e., 2→ 1.
Formally, assume % satisfies CORE. Let h ∈ H. By Lemma 1, for each
i ∈ N , there exists t∗i ∈ T such that h ∼ [(a∗, t

∗
i ), hN\{i}]. By SEP, t∗i only

depends on (ai, ti) (and, thus, is independent of the remaining duplets of
the profile). Thus, for each i = 1, . . . , n, let fi : A× T → T be defined such
that fi(ai, ti) = t∗i , for each (ai, ti) ∈ A × T . By ANON, fi(·, ·) ≡ fj(·, ·) ≡
f(·, ·), for each i, j ∈ N . By TMPH and PHS, 0 < f(ai, ti) ≤ ti, for each
(ai, ti) ∈ A × T and, by CONT, f is a continuous function with respect to
its second variable. Furthermore,

h ∼ [(a∗, f(ai, ti))i∈N ],

which implicitly says that social preferences only depend on the profile of
healthy years equivalents, and, by CONT, they do so continuously. It also
follows that the range of f is a connected subset of R. By Theorem 3 in
Debreu (1960), there exists a strictly increasing and continuous function
g : R+ → R such that

h % h′ ⇐⇒
n∑
i=1

g (f(ai, ti)) ≥
n∑
i=1

g
(
f(a′i, t

′
i)
)
,

which concludes the proof.

Proof of Theorem 1 We focus on the non-trivial implication, i.e., 2→ 1.
Formally, assume % satisfies CORE and RLC. Then, by Theorem 4, % can
be represented by a PHEF satisfying (4).
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By iterated application of RLC, and the transitivity of %

g(f(a1, t1))+...+g(f(an, tn)) = g

(
f

(
a1,

n∏
1

ti

))
+g(f(a2, 1))+...+g(f(an, 1)).

For a fixed common health state ā, g(f(ā, ·)) therefore satisfies the following
functional equation:

g(f(ā, t1)) + g(f(ā, t2)) = g(f(ā, t1t2)) + g(f(ā, 1)),

for all t1, t2 > 0. Let r : A × T → T be the function such that r(x, y) =
g(f(x, exp(y))) for each (x, y) ∈ A×T . Thus, for each fixed common health
state ā ∈ A and any t1, t2 ∈ T , we have

r(ā, t1 + t2) + r(ā, 0) = r(ā, t1) + r(ā, t2), (5)

which is precisely one of Cauchy’s canonical functional equations. As r is
continuous, it follows that the unique solutions to such equation are the
linear functions (e.g., Aczel, 2006; page 43). More precisely, there exist two
functions α : A→ R and β : A→ R such that

g(f(ā, t)) = r(ā, ln t) = α(ā) ln t+ β(ā),

for each t ∈ T .
Now, by RLC, it follows that, for each ā, ā′ ∈ A,

g(f(ā, t1)) + g(f(ā′, t2)) = g(f(ā, t1t2)) + g(f(ā′, 1))

= g(f(ā, 1)) + g(f(ā′, t1t2)).

Thus, α(ā) = α(ā′) = α, and, therefore,

P ((a1, t1), ..., (an, tn)) = α

(
n∑
i=1

ln(ti)

)
+

n∑
i=1

β(ai).

To conclude, let q : A → R be such that q(a) = exp
(
β(a)−β(a∗)

α

)
, for each

a ∈ A. By PHS, it follows that 0 < q(a) ≤ q(a∗) = 1, for all a ∈ A. Now, as
the PHEF is uniquely determined, up to strictly increasing transformations,

we can consider the monotonic transformation of P , P ′ = exp
(
P−nβ(a∗)

α

)
.

Then,

P ′((a1, t1), ..., (an, tn)) = exp((P ((a1, t1), ..., (an, tn))− nβ(a∗))/α)

= exp

(
n∑
i=1

ln ti +
n∑
i=1

(
β(a)− β(a∗)

α

))

=

n∏
i=1

q(ai)ti,
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as desired.

Proof of Theorem 2 We focus on the non-trivial implication, i.e., 2→ 1.
Formally, assume % satisfies CORE and RLCPH. Then, by Theorem 4, %
can be represented by a PHEF satisfying (4). Let h = [(a1, t1), . . . , (an, tn)] ∈
H, and h′ = [(a′1, t

′
1), . . . , (a

′
n, t
′
n)] ∈ H. Then, by iterated application of RL-

CPH, and the transitivity of %,

h % h′ ⇐⇒ [(a∗,
∏
i∈N

f(ai, ti)), (a∗, 1)k∈N\{i}] % [(a∗,
∏
i∈N

f(a′i, t
′
i)), (a∗, 1)k∈N\{i}].

By TMPH, and the transitivity of %,

h % h′ ⇐⇒
∏
i∈N

f(ai, ti) ≥
∏
i∈N

f(a′i, t
′
i),

as desired.

Proof of Theorem 3 We focus on its non-trivial implication, i.e., 2→ 1.
Formally, assume % satisfies CORE and CDRLC. Then, by Theorem 4, %
can be represented by a PHEF satisfying (4). We now make two further
claims.

Claim 1. We claim that for each (a, t), (a′, t′) ∈ A× T , and c > 0,

f(a, t) ≥ f(a′, t′) ⇐⇒ f(a, ct) ≥ f(a′, ct′).

To prove the claim, let h = [(a, t), . . . , (a, t)], h′ = [(a′, t′), . . . , (a′, t′)] ∈ H
and c > 0. Denote hc = [(a, ct), . . . , (a, ct)] and h′c = [(a′, ct′), . . . , (a′, ct′)].
By (4),

h % h′ ⇐⇒ f(a, t) ≥ f(a′, t′),

and
hc % h′c ⇐⇒ f(a, ct) ≥ f(a′, ct′).

By CDRLC, the claim follows.

Claim 2. Let q : A → R be such that q(a) = f(a, 1), for each a ∈ A.
We claim that

f(a, t) ≥ f(a′, t′) ⇐⇒ q(a)t ≥ q(a′)t′,

for each (a, t), (a′, t′) ∈ A× T .
In order to prove the claim note that, by definition, f(ai, 1) = f(a∗, q(ai)).

By Claim 1,

f(a, t) = f(a′, t′) ⇐⇒ f(a, ct) = f(a′, ct′).

14



Thus, f(a, t) ≥ f(a′, t′) ⇐⇒ f(a∗, q(a)t) ≥ f(a∗, q(a
′)t′) ⇐⇒ q(a)t ≥

q(a′)t′, as desired.

By Claim 2, it follows that f(·, ·) is a monotonic transformation of the
function τ : A × T → R defined by τ(a, t) = q(a)t, for each (a, t) ∈ A × T .
Then, by the above, P gq represents %, as desired.

Proof of Corollary 1 As before, we focus on the non-trivial implication,
i.e., 2 → 1. Formally, assume % satisfies CORE, CDRLC, and PDTPH.
Then, by Theorem 3, % can be represented by a PHEF satisfying (3).

Let i, j ∈ N and consider the two health profiles h = [(a∗, tk)k∈N ], where

ti 6= tj , and h′ =
[(
a∗,

ti+tj
2

)
,
(
a∗,

ti+tj
2

)
, hN\{i,j}

]
, By PDTPH, h′ � h,

which, by (3), means that

2g

(
q(a∗)

ti + tj
2

)
+

∑
k∈N\{i,j}

g(q(a∗)tk) > g(q(a∗)ti)+g(q(a∗)tj)+
∑

k∈N\{i,j}

g(q(a∗)tk).

Or, equivalently (as q(a∗) = 1),

g

(
ti + tj

2

)
>
g(ti)

2
+
g(tj)

2
,

from where it follows that g is strictly concave, as desired.

Proof of Corollary 2 As before, we focus on the non-trivial implication,
i.e., 2 → 1. Formally, assume % satisfies CORE and PDTPH. Then, by
Theorem 4, % can be represented by a PHEF satisfying (4).

Let i, j ∈ N and consider the two health profiles h = [(a∗, tk)k∈N ], where

ti 6= tj , and h′ =
[(
a∗,

ti+tj
2

)
,
(
a∗,

ti+tj
2

)
, hN\{i,j}

]
, By PDTPH, h′ � h,

which, by (4), means that

2g

(
f

(
a∗,

ti + tj
2

))
+

∑
k∈N\{i,j}

g(f(a∗, tk)) >

g(f(a∗, ti)) + g(f(a∗, tj)) +
∑

k∈N\{i,j}

g(f(a∗, tk)).

Or, equivalently (as f(a∗, t) = t, for each t ∈ T ),

g

(
ti + tj

2

)
>
g(ti)

2
+
g(tj)

2
,

from where it follows that g is strictly concave, as desired.
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