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Abstract

Excessive concentration of aggregate risk can lead to financial fragility and may create the
need for financial regulation. This paper studies the optimal financial regulation policy in a
standard model where financial frictions are derived from a moral hazard problem, with a focus
on the allocation of aggregate risk. First, I study the competitive equilibrium where agents can
write complete long-term contracts, and I derive a simple formula for the allocation of aggregate
risk. I then consider the optimal allocation that can be achieved by a social planner who faces
the same informational asymmetries as the market, and show the competitive equilibrium is
not constrained efficient. I identify a “moral hazard externality” that appears in a wide class
of models, and show how it can create incentives for an inefficient allocation of aggregate risk.
Finally, I show that although the competitive equilibrium may feature excessive concentration
of aggregate risk, the optimal allocation can be implemented with a tax on capital.
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1 Introduction

The concentration of aggregate risk on the balance sheets of highly leveraged agents can lead to
financial fragility. Macroeconomic shocks will be amplified and propagated throughout the economy
when these agents face large loses and reduce their demand for productive assets, depressing growth
and leading to balance sheet recessions and financial crises. As a result, the aftermath of the last
financial crisis has seen a renewed interest in financial regulation. This concentration of aggregate
risk, however, might be an efficient feature of a market economy. In this paper I study the optimal
financial regulation policy, with a focus on the allocation of aggregate risk.

There are three main contributions. First, I provide a tractable framework to study the role
of financial frictions derived from a moral hazard problem when agents are able to write complete
long-term contracts in a competitive environment. I show that concentration of aggregate risk
can arise naturally even though the moral hazard problem does not limit agents’ ability to share
aggregate risk, and I derive a simple formula that characterizes the allocation of aggregate risk in the
competitive equilibrium, in both financial and utility terms. I then turn to the problem of optimal
financial regulation. Instead of committing to a set of policy instruments, I characterize the best
allocation that can be achieved by a social planner who faces the same informational asymmetries
as the market, and then ask how it can be implemented in a competitive equilibrium. The focus in
this paper is on understanding under what conditions, and why, the allocation of aggregate risk in
a competitive market will be inefficient, and what can be done about it.

I show that even though agents can write optimal long-term contracts, the competitive equi-
librium is constrained inefficient. I identify a “moral hazard externality” that appears in a wide
class1 of models: agents don’t internalize that by demanding capital and bidding up its price, they
create a moral hazard problem for everyone else. While the moral hazard problem does not directly
limit agents’ ability to share aggregate risk, it may create incentives for an excessive concentration
of aggregate risk, and I derive a simple formula that characterizes this inefficiency. Remarkably,
even though the allocation of aggregate risk is inefficient, the socially optimal allocation can be
implemented with a simple tax on capital, without the need to directly regulate agents’ exposure
to risk.

I then use these general results to study two applications. First, when the economy is hit only
by Brownian TFP shocks, the social planner implements lower asset prices and growth than the
unregulated competitive equilibrium, in order to reduce the cost of providing incentives. Aggregate
risk sharing, however, is efficient. Neither the unregulated competitive equilibrium nor the optimal
allocation feature concentration of aggregate risk. In contrast, when the economy is hit by uncer-
tainty shocks that raise idiosyncratic risk, the allocation of aggregate risk is inefficient. After a bad
shock, financial loses are excessively concentrated on financial intermediaries, while utility loses are
excessively concentrated on households.

I use a standard continuous-time growth model as in the Di Tella (2013) and Brunnermeier and
1Such as, for example, Di Tella (2013), Brunnermeier and Sannikov (2012), or He and Krishnamurthy (2011)
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Sannikov (2012) models of financial crises.2 There are two goods: consumption and capital, and
two types of agents: experts and households. Both have the same preferences, but only experts
can trade and use capital to produce consumption goods. Capital is exposed to both aggregate and
expert-specific idiosyncratic shocks. In addition, there is an investment goods sector with constant
returns to scale that uses consumption goods and capital to produce new capital.3

Experts would like to raise funds and share risk with households, but they face a moral hazard
problem. They can secretly divert (steal) capital and immediately sell it for consumption goods
which they can add to their consumption (no hidden savings). To deal with this moral hazard
problem they sign long-term contracts contingent on all observable variables. In order to provide
incentives to not steal, contracts must expose experts’ continuation utility to the idiosyncratic risk
in their capital. The larger the value of capital under management, the higher the idiosyncratic risk
the expert must be exposed to, relative to his continuation utility.4 Experts’ continuation utility
therefore becomes an important state variable that can amplify and propagate aggregate shocks.

While moral hazard limits agent’s ability to share idiosyncratic risk, it places no constraints
on aggregate risk sharing, which can be characterized in terms of the marginal cost of providing
utility to experts in terms of foregone utility for households. The competitive equilibrium allocates
aggregate risk so that experts face large loses in continuation utility after an aggregate shock that
raises the cost of providing utility to them. In terms of financial wealth, however, there is an income
and a substitution effect. The substitution effect says experts should have relatively more net worth
after an aggregate shock that reduces the cost of providing utility to them, in order to get more
“bang for the buck”. The income effect, on the other hand, says that they should have relatively
less net worth after an aggregate shock that reduces the cost of providing utility to them, since in
those states of the world they need less net worth to achieve any given level of utility. The income
effect dominates in the empirically relevant case with relative risk aversion greater than one.

I then turn my attention to the problem of optimal financial regulation. I study the optimal
allocation that can be achieved by a social planner who faces the same technological and informa-
tional environment. To this end, I consider a social planner who can a) determine consumption
streams for households; b) determine consumption and capital under management for each expert;
and c) provide consumption goods and capital to the investment sector and demand a flow of new
capital from them. The planner faces the same informational problem as the market: experts can
secretly divert capital. In the decentralized market problem they could immediately sell it in a
competitive market for consumption goods. In the planner’s problem, they can strike a side deal
with an investment sector firm in exchange for consumption goods. With less consumption goods
to invest, output of new capital will be lower, but the investment firm can use the stolen capital
to make up the difference and avoid being detected (and punished) by the planner. The “black
market” price of capital in this setting will then be equal to the marginal cost of producing new
capital (which was equal to the price of capital in the competitive equilibrium). Thus, this setup

2A similar setup is also used in He and Krishnamurthy (2011).
3This sector doesn’t have any frictions, and investment firms don’t make any profits in equilibrium.
4Here is where the externality appears, as the private benefit of the hidden action depends on the price of capital.
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captures the same contractual problem as in the decentralized market economy.
The competitive equilibrium is constrained inefficient. Agents don’t internalize that by de-

manding capital and bidding up its price they worsen the moral hazard problem for others, limiting
idiosyncratic risk sharing and increasing the cost of providing incentives to experts. The planner
internalizes the resulting tradeoff between growth and idiosyncratic risk sharing. This moral hazard
externality creates a wedge between the private and social marginal cost of providing utility to ex-
perts in terms of forgone utility for households. In addition, although the externality does not affect
aggregate risk sharing directly, it can create incentives for an inefficient allocation of aggregate risk.
The allocation of aggregate risk in the competitive equilibrium will be inefficient when the wedge
between the private and social cost of experts’ utility is correlated with aggregate shocks. Utility
loses will be excessively concentrated on experts after an aggregate shock that increases the private
cost of experts’ utility relative to the social cost.5

I then show how the socially optimal allocation can be implemented in a competitive market
with a simple tax on capital.6 One advantage of the approach to optimal policy taken here is
that we don’t need to commit ex-ante to any given set of policy instruments. Instead, we let the
model tell us what instruments are appropriate for the problem at hand.7 In particular, although
the allocation of aggregate risk may be inefficient, there is no need to directly regulate aggregate
risk sharing. Once the externality is internalized with a tax on capital, agents can be allowed to
share aggregate risk freely. In addition, the implementation of the socially optimal allocation as
a competitive equilibrium allows us to study the allocation of aggregate risk in terms of financial
wealth. As in the case of continuation utility, the allocation of aggregate financial risk is inefficient
when the wedge between private and social cost of experts’ utility is correlated with aggregate
shocks. When the income effect dominates, financial loses are excessively concentrated on experts
after an aggregate shock that reduces the private cost of experts’ utility relative to the social cost.

Finally, I apply these general results to two settings. I first consider an economy that is hit only
by Brownian TFP shocks. In line with Di Tella (2013), experts and households share aggregate
risk proportionally, and the economy is deterministic (up to the level of capital): a negative TFP
shock will reduce output in the economy, but will have no effect on asset prices, growth, interest
rates, or the price of aggregate risk. The distribution of wealth (or continuation utility) matters
for the equilibrium because of the financial friction created by the moral hazard, but they play no
role in the propagation or amplification of aggregate shocks. In terms of efficiency, the unregulated
competitive equilibrium is inefficient because of the moral hazard externality. The social planner
implements lower asset prices and growth in order to reduce the cost of providing incentives to

5This is a statement about the ratio of experts’ to households’ utility. It might be the case that both gain utility
after such a shock, but experts less so that households.

6The implementation of the optimal allocation is not unique. This implementation has the advantage of highlight-
ing the margins the planner would like to manipulate.

7Sometimes we may be interested in what is the best we can do with a given policy instrument. Both approaches
can yield valuable insights. In particular, the optimal allocation considered here provides an upper bound on what
can be achieved with a given set of policy instruments, and is therefore the natural benchmark to evaluate those
policies.
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experts. Nevertheless, aggregate risk sharing is efficient because these TFP shocks don’t affect the
wedge between the private and social cost of experts’ utility. As a result, the social planner also
does not concentrate aggregate risk.

I then consider an economy hit by uncertainty shocks that raise idiosyncratic risk. In contrast to
the TFP case, the competitive equilibrium concentrates aggregate financial risk on experts. After
an uncertainty shock asset prices and growth falls, and financial loses are concentrated on experts
because the private cost of experts’ utility is lower when idiosyncratic risk, and therefore excess
returns, are high. However, this concentration of aggregate risk is inefficient, because after a bad
uncertainty shock the wedge between private and social cost is bigger (the private cost is smaller
relative to the social cost). The social planner not only implements lower asset prices and growth,
as in the TFP case, but also allocates financial risk more evenly. In utility terms the situation
is reversed: in the competitive equilibrium utility loses are concentrated on households, while the
social planner allocates utility risk more evenly. In other words, after a bad uncertainty shock,
financial loses are too concentrated on experts, but utility loses are too concentrated on households.

Literature review. This paper fits in the literature on balance sheet recessions starting with
Kiyotaki and Moore (1997) and Bernanke et al. (1999). More recently, Brunnermeier and Sannikov
(2012) and He and Krishnamurthy (2011) use a similar setting, and restrict agents to short-term
contracts that cannot be written on the aggregate state of world. Di Tella (2013) shows that when
agents can write short-term contracts on all observable variables, the concentration of aggregate
risk disappears in models driven by Brownian TFP shocks, but can arise naturally in an economy
hit by uncertainty shocks. This paper studies the optimal financial regulation policy in a very
similar environment. The main difference in the setting is that here I allow agents to write complete
long-term contracts with full commitment. This is a simpler contractual structure that makes the
comparison with the social planner’s allocation cleaner. It is therefore a more natural starting point
for the study of optimal financial regulation. Hidden savings are ruled out for the same reason, but
both hidden savings and limited commitment seem like a natural direction for future research.

The private contractual environment in the competitive market is that same as in Di Tella and
Sannikov (2014), where we explore it in more detail in a partial equilibrium setting, as well as the
case with hidden savings. It is also related to the partial equilibrium settings in Sannikov (2008),
DeMarzo and Sannikov (2006), and DeMarzo et al. (2012). The setting here has two features that
make it particularly well suited to financial and macroeconomic applications. First, preferences
with risk aversion and elasticity of intertemporal substitution are important in financial or macro
settings. Second, the scale of the project can be continuously adjusted and is unbounded, allowing
both growth and the hedging and replication strategies common in finance.

The approach to optimal policy is in the tradition of Mirrlees (1971) and the large literature on
optimal taxation. Davila et al. (2012) study the optimal allocation in a model with exogenously
uninsurable idiosyncratic risk, and no aggregate risk. Here, in contrast, agents face a moral hazard
problem that endogenously limits idiosyncratic risk sharing, and the focus is on the allocation of
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aggregate risk.

Layout. The rest of the paper is organized as follows. In Section 2 I present the model and define
the competitive equilibrium. In Section 3 I provide a recursive characterization of the competitive
equilibrium and study aggregate risk-sharing. In Section 4 I introduce the planner’s problem and
characterize it recursively. I also show how to implement the optimal allocation as a competitive
equilibrium. In Section 5 I apply the general results to two settings: I provide numerical solutions
of the competitive equilibrium and the planner’s allocation for TFP shocks and uncertainty shocks.
Section 6 concludes.

2 The model

Technology. The economy is populated by two types of agents: “experts” i ∈ I = [0, 1] and
“households” j ∈ J = (1, 2], identical in every respect except that experts are able to use capital.
There are two goods, consumption and capital. Denote by kt the aggregate “efficiency units” of
capital in the economy, and by ki,t the individual holdings on expert i, where t ∈ [0,∞) is time. An
expert can use capital to produce a flow of consumption goods

yi,t = aki,t

There’s a competitive investment sector that uses capital and consumption goods to produce new
capital. The cost of producing a flow of new capital ktgt is ι(gt)kt, where the function ι′ > 0, ι′′ > 0

is a standard investment technology with convex adjustment costs. The competitive investment
sector sets the growth rate to satisfy a Tobin’s q FOC:

ι′(gt) = pt

Since this technology has constant returns to scale, the investment sector has zero profits and experts
who own capital add to their return from holding capital (ptgt − ι(gt))ki,t.8 In addition, capital is
exposed to both aggregate and expert-specific idiosyncratic risk. If an expert i holds ki,t units of
capital over a short period of time, the change in his capital stock is9

σtki,tdZt + νtki,tdWi,t

where Z = {Zt ∈ Rd;Ft, t ≥ 0} is an aggregate brownian motion, and Wi = {Wi,t ∈ R;Ft, t ≥ 0} is
an idiosyncratic brownian motion for each expert i, in a probability space (Ω, P,F) equipped with

8Formally, investment firms are owned by households or experts, but since they will have zero profits in equilibrium,
this can be ignored in agents’ problems. A firm in the investment sector chooses g and k to maximize profits
ptgk − ι(g)k − qtk, where qt is rental price for the capital used in the production of new capital (or the difference
between the price of old and new capital). The FOC yields ι′(gt) = pt and free entry implies zero profits, so
qt = ptgt − ι(gt). Experts therefore receive a rental income for the capital they hold qtki,t = (ptgt − ι(gt))ki,t.

9The expert will be allowed to continuously trade capital, so ki,t will be a choice variable.
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a filtration F = {Ft; t ≥ 0} generated by Z and {Wi}i∈I, with the usual conditions. The law of
motion of the aggregate capital stock is not affected by idiosyncratic shocks10

dkt
kt

= gtdt+ σtdZt

We can let several features of the environment depend on the history of aggregate shocks (in
one of the examples, it will be idiosyncratic volatility νt). To this end, I introduce an exogenous
aggregate state of the economy Yt ∈ Rd following a Markov process

dYt = µY (Yt)dt+ σY (Yt)dZt

We can later specify how this aggregate state affects the economy, e.g. νt = ν(Yt). Notice that the
aggregate shocks and state can be multidimensional d > 1 so that different aggregate shocks can
have different effects on the economy.

Preferences. Both experts and households have Epstein-Zin preferences with the same discount
factor ρ, risk aversion γ, and elasticity of intertemporal substitution ψ−1. For a consumption stream
c = {ct; t ≥ 0} in an appropriate set C, the utility process U satisfies

Ut = Et
[ˆ ∞

t
f(cu, Uu)du

]
(1)

where

f(c, U) =
1

1− ψ

{
c1−ψ

[(1− γ)U ]
γ−ψ
1−γ
− ρ(1− γ)U

}
I will focus on the case where relative risk aversion is larger than log: γ > 1, and elasticity of
intertemporal substitution is larger than 2: ψ < 1

2 .
11

Markets. Experts can trade capital continuously at a competitive price pt > 0, which we conjec-
ture follows an Ito process

dpt
pt

= µp,tdt+ σp,tdZt

The price of capital depends on the history of aggregate shocks Z and is determined endogenously
in equilibrium. The total value of the capital stock in the economy is ptkt.

There is also a complete financial market with a SDF η = {ηt; t ≥ 0} that follows

dηt
ηt

= −rtdt− πtdZt

10I am using an exact law of large numbers, assuming the {Wi} and Z are essentially pairwise independent. This
requires working with an extension of the Lebesgue interval and a Fubini extension of the product space. See Sun
and Zhang (2009) for details. Abusing notation, I still write, for example,

´
I ki,tdi.

11It is natural to focus on the case with elasticity of intertemporal substitution greater than 1, especially when
studying economies with stochastic volatility. The further restriction to EIS > 2 is required to guarantee existence
of the competitive equilibrium and is related to the assumption of no hidden savings.
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Here rt is the risk-free interest rate and πt the price of aggregate risk Z. Both depend on the
history of aggregate shocks, and are determined endogenously in equilibrium. When I write the
law of motion of the SDF this way I am already using the fact that the price of idiosyncratic risks
{Wi}i∈[0,1] is zero in equilibrium, since they can be aggregated away. Later I will use the Equivalent
Martingale Measure Q, defined from the SDF η.

Households’ problem. Households are all the identical and have homothetic preferences, so we
may consider the problem faced by a representative household. It starts with some wealth w0

(derived from its initial ownership of capital and government transfers) and choses consumption
c = {ct > 0; t ≥ 0} ∈ C to maximize utility subject to the budget constraint

max
c
V0(c)

st : E
[ˆ ∞

0

ηt
η0
ctdt

]
≤ w0

This is equivalent to choosing c and the exposure of wealth to aggregate risk σw = {σw,t; t ≥ 0} to
maximize utility subject to a dynamic budget constraint

st :
dwt
wt

= (rt + σw,tπt − ĉt)dt+ σw,tdZt

and a solvency constraint wt ≥ 0, where the hat on ĉt denotes the variable is divided by wealth.12

Implicit in the second formulation is the fact that since idiosyncratic risks {Wi}i∈[0,1] have price
zero in equilibrium, it is wlog that they will never chose to be exposed to them. We refer to (c, w)

as the representative household’s portfolio plan: it is optimal if it solves the household’s problem.

Experts’ contracts. Experts take aggregate conditions as given, and can continuously trade and
use capital to produce consumption goods. Each expert would like to borrow from and share risk
with the market, but he faces a moral hazard problem: he can secretly steal capital at rate st and
keep a fraction φ ∈ (0, 1).13 He must immediately sell it at price pt and consume the proceeds (no
hidden savings). This partial equilibrium contractual setting is studied in more detail in Di Tella
and Sannikov (2014).

Formally, the expert starts with net worth ni,0 which he gives to a principal in exchange for a
contract C = (ei, ki) that specifies his consumption ei = {ei,t > 0; t ≥ 0} ∈ C and the capital he will
manage ki = {ki,t ≥ 0; t ≥ 0}, both adapted to F.14 There is full commitment on both sides.

12The link is wt = Et
[´∞
t

ηu
ηt
cudu

]
and σw,twt is the loading on Z of wt thus defined.

13The parameter φ captures the severity of the moral hazard problem. With φ = 0 there is no moral hazard.
14To prevent arbitrage, we must restrict ki so that pki is martingale-generating, and limT→∞ EQt

[
pT ki,T
BT

]
= 0 a.e.

A portfolio process is martingale-generating if the discounted gain process is a martingale under the equivalent
martingale measure Q (see Karatzas and Shreve (1998), Definition 5.9), and is required in order to rule out, e.g.
doubling strategies. In this setting we say pki is martingale generating if the local martingales

´ t
0

puki,u
Bu

(σ+σp,u)dZQu

and
´ t
0

puki,u
Bu

νudWu are both martingales under Q, where ZQt = Zt +
´ t
0
πudu is a Q-Brownian Motion. See Di Tella
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Faced with a contract C, the expert privately chooses a stealing plan si = {si,t ≥ 0; t ≥ 0}
adapted to F, and obtains utility process U sii = {U sii,t; t ≥ 0} defined recursively

U sii,t = Esit
[ˆ ∞

t
f(ei,u + φpuki,usi,u, U

si
i,u)du

]
(2)

where the expectation is taken under the probability measure P si induced by his stealing plan si.
We restrict the expert to stealing plans that induce a probability measure P si equivalent to P , since
otherwise he would be detected and punished.15 The observable return of capital Ri = {Ri,t; t ≥ 0}
satisfies for any valid stealing plan s

dRi,t =

(
a− ι(gt)

pt
+ gt + µp,t + σtσ

′
p,t − si,t

)
dt+ (σt + σp,t)dZt + νtdW

s
i,t

where W si
i,t = Wt +

´ t
0
si,u
νu
du is a Brownian Motion under P si .16 The informational asymmetry

comes from the principal’s inability to observe or contract on the stealing process si and therefore
P si , so he must provide incentives to the expert so he chooses the right si. It is always optimal to
implement no stealing si = 0.17,18

A contract C is incentive compatible if and only if never stealing (si = 0) is optimal:

si = 0 ∈ arg max
si

U sii,0

Let IC denote the set of incentive compatible contracts (for given aggregate conditions). Notice
that due to the homotheticity of preferences and the linearity of stealing technology, if a contract
is incentive compatible, then so is a scaled up version of the contract C′ = (αe, αk) for α > 0.

The principal represents the market and just wants to maximize the present value of profits

Esi=0,Q
0

[ˆ ∞
0

1

Bt

(
ptki,t(dRi,t − (rt + τkt )dt)− ei,tdt

)]
where the expectation is taken under no stealing and the equivalent martingale measure Q, and
Bt = exp(

´ t
0 rudu) is the value of a risk-free bond. τkt is a tax on capital investment that the

government may impose, as will be explained below (this will be used for the implementation of
the socially optimal allocation; in the unregulated economy, τkt = 0). In equilibrium the principal’s
value must always be negative: it is costly to provide continuation utility to the expert.19

and Sannikov 2014.
15Technically, we also need to restrict the expert to stealing plans such that the resulting consumption stream has a

defined utility. Let C(si) be the set of consumption streams for which the expert’s utility is defined, under probability
measure P si . We require that the stream ei + φpksi ∈ C(si). Of course, si = 0 ∈ C(0) = C.

16Stealing does not affect the probability over Z (the aggregate shocks), so Z is also a P si -Brownian Motion.
17The standard argument applies: if the agent is stealing in equilibrium it’s better to just give him what he steals

and have him not steal instead. See DeMarzo and Sannikov (2006) for example.
18Notice that we allow the contract to vary the scale of the project continuously, this is a major difference with

many contractual settings where the scale is either fixed, or can only be adjusted “slowly”.
19If this is not the case, by scaling up the program (αei, αki) the principal can achieve unbounded profits.
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An incentive compatible contract C is optimal if it maximizes the present value of profits subject
to providing continuation utility U s=0

i,0 ≥ ui,0 to the expert, and its value to the principal is Ji,0:

Ji,0(ui,0) = max
ei,ki

Esi=0,Q
0

[ˆ ∞
0

1

Bt

(
ptki,t(dRi,t − (rt + τkt )dt)− ei,tdt

)]
st : U s=0

i,0 ≥ ui,0

(ei,, ki) ∈ IC

We set the expert’s outside option ui,0 at the level such that the principal breaks even Ji,0 +ni,0 = 0

(this captures competition among principals).
Define the continuation value of the optimal contract for agent i at time t

Ji,t = Es=0,Q
t

[ˆ ∞
t

Bt
Bu

(
puki,u(dRi,u − (ru + τku )du)− ei,udu

)]
Government. In Section II, I study the unregulated economy where the government is inactive.
I then consider in Section III the optimal allocation that can be achieved by a social planner who
faces the same informational frictions as private agents, and show how it can be implemented as a
competitive equilibrium with a simple tax on capital. To facilitate the exposition I introduce here
the policy instruments that will implement the optimal allocation. For the unregulated economy,
the role of government can be ignored. It should be stressed that I am not restricting the planner
to use this instrument to control the economy, but instead finding that the optimal allocation can
be implemented in this way.20

The government taxes investment in capital with a history-dependent tax τk = {τkt ; t ≥ 0}
adapted to F. An expert who has holdings in capital worth ptki,t must pay a tax flow τkt ptki,t.
As a result the government raises a total flow τkt ptkt. To balance the budget the government will
distribute back the proceeds as lump-sum transfers to agents. Since there is a complete financial
market agents can just sell these transfers, so the market value of the transfers they will receive is
part of their initial wealth. The aggregate value of transfers is T = {Tt; t ≥ 0} per unit of capital

Tt =
1

kt
Et
[ˆ ∞

t

ηu
ηt
τkupukudu

]
Total wealth in the economy is therefore kt(pt + Tt). In the unregulated economy, we simply take
τk = 0 and therefore T = 0.

Competitive Equilibrium. Take as given the initial capital stock k0, and a tax τk. In addition,
take as given the initial distribution of wealth for experts {θi > 0}i∈I, such that

´
I θidi < 1 (the rest

belongs to the representative household).
20Of course, the implementation of the optimal allocation is not unique. This is one possible way to implement it,

that has the advantage of being simple and highlighting how the planner wants to distort agents’ incentives.
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Definition 1. A competitive equilibrium is a set of F-adapted stochastic processes: the price of
capital p, value of taxes T , the state price density η, growth rate g, and the aggregate capital stock k;
an optimal contract Ci = (ei, ki) with associated value Ji and continuation utility Ui for each expert
i ∈ I ; and a portfolio plan (c, w) for the representative household, such that

i. The representative household’s plan and experts contracts are optimal, with initial wealth ni,0 =

θi(p0 + T0)k0 and w0 = (p0 + T0)k0(1−
´
I θidi).

ii. Investment is optimal ι′(gt) = pt.

iii. The value of taxes is Tt = 1
kt
Et
[´∞
t

ηu
ηt
τkupukudu

]
.

iv. Market clearing ˆ
I
ei,tdi+ ct = (a− ι(gt))kt

ˆ
I
ki,tdi = kt

v. Aggregate capital satisfies the law of motion

dkt
kt

= gtdt+ σtdZt

We can take ni,t = −Ji,t > 0 to be the net worth of expert i at time t. In equilibrium it will be the
case that wt +

´
I(−Ji,t)di = kt

(
pt + Tt

)
: the representative household and experts hold the total

wealth in the economy, made up of the value of capital ptkt, plus the value of taxes Ttkt. Recall,
however, that in the unregulated economy we have τk = 0 and therefore T = 0.21

Concentration of financial risk. We can think of the market value of experts’ contracts as the
aggregate net worth of experts, nt = −

´
I Ji,tdi. Then the ratio of experts’ net worth to households’

wealth is

ωt =
nt
wt

with law of motion
dωt
ωt

= µω,tdt+ σω,tdZt

We say aggregate financial risk is concentrated on experts, if after a bad shock their net worth nt
falls proportionally more than households’ wealth wt, so the ratio ωt falls. To the extent that the
distribution of wealth matters for the economy, the aggregate shock will be amplified and propagated
through its effect on ωt.

21We can alternatively define initial utility for each expert {ui,0}i∈I and define the equilibrium requiring contracts
to deliver utility ui,0 to each expert, and the household’s portfolio plan (c, w) to be optimal for w0. There then exist
{θi > 0}i∈I such that ni,0 = θi(p0 + T0)k0 = −Ji,0 > 0 andw0 = (p0 + T0)k0(1 −

´
I θidi) > 0. Both definitions are

equivalent, but this one has the advantage of paralleling the social planner’s problem.
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3 Solving the competitive equilibrium

In this section I characterize the competitive equilibrium. Both experts and households face a
dynamic problem where their optimal policies depend on endogenously stochastic investment pos-
sibility sets. The approach I take is to obtain a recursive characterization of their problems, and
look for a Markov equilibrium in the exogenous state variable Yt and an endogenous state variable
Xt that captures the continuation utility of experts relative to the total capital stock in the econ-
omy kt. This is the same endogenous state variable that a social planner would use, which makes
comparisons between the competitive equilibrium and the social optimum clear.

The layout of this section is as follows: I first characterize a first best benchmark without
moral hazard. I then provide a recursive characterization of agents’ problems and define a Markov
equilibrium which can be solved as a system of PDEs.

3.1 First Best without moral hazard

Consider the first best without moral hazard, and without taxes τk=0. Without moral hazard,
optimal contracts will provide full insurance against idiosyncratic shocks and there is no financial
friction. Capital is then priced by arbitrage, and the distribution of wealth between experts and
households doesn’t matter. If there are only TFP shocks, the competitive equilibrium is a balanced
growth path with constant asset prices pt = p∗ and growth gt = g∗, given by

p∗ =
a− ι(g∗)

ρ− (1− ψ)g + (1− ψ)γ2σ
2

ι′(g∗) = p∗

The interest rate and price of risk are then also constant, rt = r∗ = ρ + gψ − γ
2σ

2(1 + ψ) and
πt = π∗ = γσ.

This is also the case when the exogenous state Yt affects only idiosyncratic volatility νt = ν(Yt),
because with full idiosyncratic risk-sharing this volatility is irrelevant, and so are shocks to it.
Instead if aggregate shocks affect other features of the environment, the equilibrium will not be a
balanced growth path in general, but it will still be true that the distribution of wealth doesn’t
matter. Experts and households are equivalent, and they share aggregate risk proportionally.

3.2 Back to moral hazard

Optimal contracts. It’s a standard result that experts’ optimal contracts are recursive in their
continuation utility Ui,t = U s=0

i,t . In this section I drop the i subscript to simplify notation. First
note that for an agent i, we can wlog restrict attention to contracts C = (e, k) adapted to the
filtration generated by Z and Wi, Fi ⊂ F. There is no point is exposing agent i to other agents’
idiosyncratic risk. With this in mind, we obtain a representation of the expert’s continuation utility.

12



Lemma 1. For any contract C = (e, k) and no stealing s = 0, the expert’s continuation utility
process U s=0 = {U s=0

t ; t ≥ 0} satisfies the following BSDE

dU s=0
t = −f(et, U

s=0
t )dt+ σU,tdZt + σ̃U,tdWt (3)

for some Fi-adapted processes σU = {σU,t; t ≥ 0} ∈ L and σ̃U = {σ̃U,t; t ≥ 0} ∈ L, with boundary
condition limt→∞ Es=0[U s=0

t ] = 0.22

Under a stealing plan s 6= 0 the probability measure over observed returns changes to P s

equivalent23 to P . The utility the expert gets from stealing is given

U st = Est
[ˆ ∞

t
f(eu + φpukusu, U

s
u)du

]
We can use this representation to obtain an IC constraint for the case of interest where the EIS and
the risk aversion are both larger than 1.24

Lemma 2. If the EIS ψ−1 > 1 and the risk aversion γ > 1, an incentive compatible contract
C = (e, k) must satisfy the following condition (ω, t)-almost everywhere:

0 ∈ arg max
s≥0

f(et + φptkts, U
s=0
t )− σ̃U,t

s

νt
− f(et, U

s=0
t ) (4)

Taking FOC in (4) we obtain

σ̃U,t ≥ f1(et, U
s=0
t )φptktνt =

e−ψt

((1− γ)U s=0
t )

γ−ψ
1−γ

φptktνt ≥ 0 (5)

From now on, let Ut denote the continuation utility under no stealing (U s=0
t ). It’s easy to see that

because the expert is risk averse, while the principal is risk-neutral with respect to idiosyncratic risk
W , the local IC will always be binding in the optimal contract. We can also verify that if contract
C = (e, k) is IC, then so is a scaled up version of the contract C′ = (αe, αk) for any α > 0. In
consequence, because expert’s preferences are homothetic and the principal’s objective function is
linear, the value of the contract for the principal will take the following form

Jt = −ξt((1− γ)Ut)
1

1−γ

for some process ξ = {ξt > 0; t ≥ 0} that depends only on the history of aggregate shocks Z and
follows

dξt
ξt

= µξ,tdt+ σξ,tdZt

22A stochastic process y = {yt; t ≥ 0} is in L if E
[´ T

0
y2t dt

]
<∞ for all T .

23Recall agents must choose a stealing plan s that induces an absolutely continuous change of measure, since
otherwise they would be detected and punished.

24The proof works for other parameters values as well.
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for some processes µξ and σξ that must be determined in equilibrium. The HJB equation associated
with the optimal contract is

rtJtdt = max
e,k,σU

ptktEQt
[
dRt − (rt + τkt )dt

]
− et + EQt [dJt]

Because expectations are taken under the equivalent martingale measure Q, it is useful to write
Zt = ZQt −

´ t
0 πudu, where Z

Q is a Brownian motion under Q to obtain a representation for ξ and
for Ut under Q:

dξt
ξt

= (µξ,t − πtσξ,t)dt+ σξ,tdZ
Q
t

dUt = (−f(et, Ut)− σU,tπt)dt+ σU,tdZ
Q
t + σ̃U,tdWt

Finally, let us normalize the controls et = êt((1 − γ)Ut)
1

1−γ , kt = k̂t((1 − γ)Ut)
1

1−γ , and σU,t =

σ̂U,t(1− γ)Ut. The HJB equation then takes the following form25

0 = max
ê,k̂,σ̂U

ptk̂(
a− ι(gt)

pt
+ gt + µp,t + σtσ

′
p,t − (rt + τkt )− (σt + σp,t)πt)− ê

+ξt

{
rt +

1

1− ψ

{
ê1−ψ − ρ

}
+ σ̂Uπt − µξ,t + σξ,tπt

−1

2
γσ̂2

U −
1

2
γ(ê−ψt φptk̂νt)

2 − σξ,tσ̂U
}

Households’ value function. Likewise, households have a value function

Vt(wt) =
(ζtwt)

1−γ

1− γ

where ζ = {ζt > 0; t ≥ 0} depends only on the history of aggregate shocks Z with law of motion

dζt
ζt

= µζ,tdt+ σζ,tdZt

for some µζ and σζ which we must find in equilibrium. ζ captures the endogenously stochastic
investment possibilities for households, and must satisfy the following HJB equation

ρ

1− ψ
= max

ĉ,σw

ĉ1−ψ

1− ψ
ζψ−1
t + rt + σwπt − ĉ+ µζ,t −

γ

2
σ2
ζ,t −

γ

2
σ2
w + (1− γ)σζ,tσw

25Existence of the optimal contract requires ψ < 1
2
. This is related to the assumption of no hidden savings, as will

be explained below. Once we assume this, the objective function in the HJB is concave, and the FOC are sufficient
for optimality.
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The value of taxes. Finally, since Tt only depends on the history of aggregate shocks Z, we can
write

dTt
Tt

= µT,tdt+ σT,tdZt

The value of taxes Tt must satisfy a no-arbitrage pricing equation

ptτ
k
t

Tt
+ µT,t + gt + σtσ

′
T,t − rt = πt(σT,t + σt) (6)

Markov equilibrium. Experts’ continuation utilities {Ui,t}i∈[0,1] are a state variable for the equi-

librium. In fact, contracts are linear in xi,t = ((1− γ)Ui,t)
1

1−γ . This suggests using

Xt =

´
[0,1] xi,tdi

kt

as an endogenous aggregate state variable, with law of motion

dXt

Xt
= µX,tdt+ σX,tdZt

We therefore look for a Markov equilibrium in Xt and Yt, where, e.g. ξt = ξ(Xt, Yt) for some
function ξ twice continuously differentiable. We can then use Ito’s lemma to obtain expressions for
e.g.

µξ =
ξX
ξ
µXX +

ξY
ξ
µY +

1

2

(
ξXX
ξ

(σXX)2 +
ξY Y
ξ
σ2
Y + 2

ξXY
ξ
σXXσY

)
σξ =

ξX
ξ
σXX +

ξY
ξ
σY

where the functions are evaluated at (X,Y ) (and analogous expressions for µζ , σζ , µp and σp). For
this to work, it must be the case that taxes are also Markov, τkt = τk(Xt, Yt), which will be the case
for the implementation of the optimal allocation.

We can now provide a definition of a Markov equilibrium for a given tax policy τk(X,Y ).

Definition 2. A Markov equilibrium in (X,Y ) is a set of functions of (X,Y ) for prices p, T , r, and
π and growth g; value functions ξ, ζ and policy functions ê,k̂, σ̂U for experts and ĉ, σw for households,
and a law of motion for the endogenous state variable X given by dXt

Xt
= µX(X,Y )dt+σX(X,Y )dZt

such that:

i. The value functions ξ and ζ and the associated policy functions solve experts’ and households
HJB equations, taking prices p, r, and π as given.

ii. The investment sector optimizes ι′(g) = p.

iii. The value of taxes T satisfies pricing equation (6).
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iv. Market clearing

ĉ(p+ T − ξX) + êX = a− ι(g) [consumption goods]

k̂ =
1

X
[capital]

v. The aggregate law of motion for X is derived from the policy functions

µX(X,Y ) =
ρ

1− ψ
− ê1−ψ

1− ψ
+
γ

2
σ̂2
U +

γ

2
(ê−ψ

φpν

X
)2 − g − σσ̂U + σ2

σX(X,Y ) = σ̂U − σ

To understand the market clearing conditions, notice that the aggregate value of experts’ contracts
is −ξtXtkt, so household wealth wt = ptkt+Ttkt−ξtXtkt in equilibrium. We use this for the market
clearing condition for consumption goods (and divide by kt). Market clearing for capital goods
requires total demand for capital k̂Xk be equal to total supply k. Finally, the law of motion of the
endogenous state variable X is derived using Ito’s lemma.

Demand for capital and growth. Taking FOC in the HJB, and using the equilibrium condition
k̂ = X−1 we obtain a pricing equation for capital

a− ι(gt)
pt

+ gt + µp + σσ′p − rt − τkt︸ ︷︷ ︸
excess return

= (σt + σp,t)πt︸ ︷︷ ︸
agg. risk premium

+ γξt(ê
−ψ
t φνt)

2 pt
Xt︸ ︷︷ ︸

id. risk premium

Notice that although the market price of idiosyncratic risk Wi is zero, capital must pay a premium
for its exposure to this risk. The reason is as follows: because of the moral hazard, the contract must
expose the expert’s continuation utility to his idiosyncratic risk in order to provide incentives to
not steal, and this exposure is proportional to the amount of capital the expert manages. However,
exposing the expert to risk is costly because he is risk averse. The principal knows that if he wants
to have the expert manage a large amount of capital, he must be willing to bear the extra cost
associated with the volatility in the expert’s continuation utility, so he will only demand capital if
it pays a premium for this risk.

Naturally, this premium is higher the higher idiosyncratic risk is (higher νt). In addition, the
premium for idiosyncratic risk is higher when experts’ continuation utility is low relative to the
capital stock (small Xt) because the idiosyncratic risk contained in capital is large relative to the
continuation utility of experts. It is through this pricing equation for capital that both idiosyncratic
risk νt and the endogenous state variable Xt affect the equilibrium. Notice how this premium would
disappear if we had no moral hazard (φ = 0) or no idiosyncratic risk (νt = 0).
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The price of capital determines growth through Tobin’s q:

ι′(gt) = pt

so any shocks that depress the price of capital will result in lower growth.

Consumption. The FOC for experts’ consumption ê also takes a nonstandard form

ξtê
−ψ
t + ξtγψ(φpt

νt
Xt

)2ê−2ψ−1
t︸ ︷︷ ︸

front-loading

= 1

The first term on the left hand side is standard: by giving the expert consumption today, we can
promise lower utility in the future, so the principal trades off the cost of providing consumption today
(on the RHS) against the reduction in cost of providing utility in the future. The higher the cost
of providing utility ξt, the more attractive it is to give consumption to the expert today. However,
there is another term on the LHS. The principal realizes that by front-loading consumption he can
reduce the expert’s marginal utility of consumption, and therefore render stealing (and immediately
consuming) less attractive. To see this, use (5) and the market clearing condition for capital to
write the exposure of the expert’s utility to his idiosyncratic risk W as

σ̃U,t = (1− γ)Utê
−ψ
t φpt

νt
Xt

The optimal contract will distort the optimal intertemporal profile of consumption in order to
relax the constraint on idiosyncratic risk sharing. In fact, this tool is so powerful that if experts’
preferences where very curved (EIS < 2) the principal would be able to obtain unbounded profits
by scaling up the contract, and the optimal contract would not exist.26 This is the reason we need
to assume ψ < 1

2 (EIS > 2). The principal can do this because the expert doesn’t have hidden
savings, so introducing hidden savings seems like an important direction for future research.

Households have a more standard FOC for consumption

ĉ−ψt ζψ−1
t = 1

Aggregate risk-sharing. The FOC for σ̂U that controls the exposure of the expert’s continuation
utility to aggregate risk Z is

πt − σξ,t = γσ̂U,t

=⇒ σ̂U,t =
πt − σξ,t

γ
(7)

26As long as capital pays a premium for idiosyncratic risk. If it doesn’t then the optimal contract has k̂ = 0 and
this can’t be an equilibrium.
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The cost of the contract to the principal is higher when the expert’s continuation utility is larger, so
the principal prefers to give him more utility when a) the value of money for the principal, captured
by the SDF ηt, is lower (the term πt); and b) when it is relatively cheaper to provide utility to the
expert, as captured by ξt (the term σξ,t).

Households have a similar FOC for their exposure to aggregate risk σw:

πt = γσw,t − (1− γ)σζ,t

=⇒ σw,t =
πt
γ

+
1− γ
γ

σζ,t (8)

Households’ hold aggregate risk because it carries a positive premium πt (a myopic motive), and
because it correlates with their investment possibility set, as captured by ζt (hedging motive).

To understand aggregate risk sharing, it’s useful to consider households’ utility. Let Vt be
households continuation utility, and consider the increasing transformation

St =
((1− γ)Vt)

1
1−γ

kt

with law of motion dSt = µS,tStdt + σS,tStdZt, analogous to Xt for experts. It follows that St =

ζt
wt
kt

= ζt(pt + Tt − ξtXt). Define the (private) relative cost of providing utility to experts in terms
of forgone utility for households

Λt = ξtζt

with law of motion dΛt = µΛ,tΛTdt+σΛ,tΛtdZt. If we increase an expert’s utility xi by ∆, the cost of
the contract increases by ξt∆, which translates into a decrease of ζtξt∆ = Λt∆ in the (transformed)
utility of the representative household. We can use Ito’s lemma and the FOC for aggregate risk
sharing (7) and (8), and the definition of σX = σ̂U − σ to obtain an expression for the allocation of
aggregate risk in utility terms

σX,t − σS,t = −1

γ
(σζ,t + σξ,t) = −1

γ
σΛt (9)

Equation (9) says that the market will allocate more continuation utility to experts, relative to
households, when the cost of experts’ utility Λt is low.

Of course, the cost of experts’ utility Λt is endogenous and must be determined in equilibrium.
In particular, it depends on the endogenous state variable X, which creates a two-way feedback
loop: a) aggregate risk sharing (captured by σX) affects how Λt and S respond to aggregate shocks

σΛ =
ΛX
Λ
σXX +

ΛY
Λ
σY σS =

SX
S
σXX +

SY
S
σY

and b) these in turn provide incentives for the concentration of aggregate risk given by (9). We can
then obtain an expression for σX in terms of functions of the Markov equilibrium objects:
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σX =

SY
S −

1
γ

ΛY
Λ

1−
(
SX
S −

1
γ

ΛX
Λ

)
X
σY (10)

Concentration of financial risk. While equation (9) determines the allocation of aggregate risk
in utility terms, we might be more interested in the allocation of financial risk. Consider the ratio
of experts’ net worth to households’ wealth

ωt =
nt
wt

The proportional exposure of experts’ net worth to aggregate risk is σn,t = σξ,t + σX,t + σt, while
for households’ wealth we have σw,t. The volatility of the wealth ratio ωt is then

σω,t = σn,t − σw,t

If aggregate risk was distributed proportionally, then σn,t = σw,t and σω,t = 0. If instead aggregate
risk is concentrated on experts, then σn,t > σw,t and σω,t > 0. Using agents’ FOC for aggregate risk
sharing, and market clearing in the financial market, we can obtain an expression for σω,t

σω,t =
γ − 1

γ
σΛ,t (11)

Here we have two opposing effects. On the one hand, there is a substitution effect : experts should
have more net worth when it is cheap to provide utility to them relative to households (i.e. when
the cost Λt is low) in order to get more “bang for the buck”. But there is also an income effect :
experts need more net worth in order to achieve any given utility level when it is expensive to
provide utility to them relative to households (i.e. when Λt is high). If agents are very risk averse,
γ > 1, they are more interested in stabilizing their utility across states of the world and the income
effect dominates, so the market allocates more financial wealth to experts after aggregate shocks
that increase the cost of providing utility to them (ωt is positively correlated with Λt).

Solving the competitive equilibrium. The full competitive equilibrium can be characterized
with a system of PDEs for ξ(X,Y ), ζ(X,Y ), and p(X,Y ). We can use the FOC for ĉ and ê, the
optimal growth formula ι′(g) = p, and formula (10) for σX , plus the market clearing conditions and
formula for µX , and plug them into the HJB for experts, the HJB for consumers, and the FOC for
capital. Appendix B describes the procedure in detail.

4 Planner’s Problem

I now turn to the problem of optimal financial regulation. I take a mechanism design approach, and
ask what is the best allocation that can be achieved by a social planner who faces the same informa-
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tional frictions as the market. We can then ask how the optimal allocation can be implemented as
a competitive equilibrium. The main advantage of this approach is that we are not pre-committing
to a given set of policy instruments which might be inappropriate for the problem at hand. We are
letting the model tell us what policy instruments we should use.

Even though we allow agents to write complete optimal contracts, the competitive equilibrium
is inefficient because there is a “moral hazard externality”. The private moral hazard problem
arises because experts can divert capital and sell it for consumption goods: the private benefit of
the hidden action depends on prices. Agents don’t internalize that by competing for capital and
bidding up its price, they are creating a moral hazard problem for everyone else. Indeed, if the
equilibrium price of capital was pt = 0, there wouldn’t be any moral hazard problem: there’s no
point in stealing something that is worthless.

The price of capital, however, plays an allocative role in equilibrium inducing investment and
growth. There is then a tradeoff between growth and idiosyncratic risk sharing that is not inter-
nalized by market participants. The focus here is not only on the tension between idiosyncratic
risk-sharing and growth, but on the sharing of aggregate risk between households and experts. Since
the market does not properly reflect the economic tradeoffs given the aggregate state of the world,
it may also misallocate aggregate risk. We want to understand under what conditions the allocation
of aggregate risk in the competitive equilibrium is inefficient, and what can be done about it.

To this end, consider a social planner who faces the same informational frictions as private
agents in the market. He can a) control households’ consumption; b) give capital and a flow of
consumption goods to invest to the investment sector, and order them to deliver a flow of new
capital; c) give consumption and capital to experts to manage, but they can secretly divert it. In
the competitive equilibrium setup they could sell capital at price pt and consume the proceeds right
away. Here there is no market for capital, but experts can strike a side deal with the investment
sector to obtain consumption goods from the capital they divert. An expert with a flow of stolen
capital ki,tsi,t can give it to a firm in the investment sector in exchange of ι′(g) units of consumption
good. The investment firm will then be able to produce less new capital, but it will instead present
the stolen capital to the planner, so that the side deal is not detected.27

A plan P = (c, {ei, ki}i∈[0,1], g, k} is a consumption stream for households c = {ct > 0; t ≥ 0}
and each expert ei = {ei,t > 0; t ≥ 0}; capital allocation for each expert ki = {ki,t ≥ 0; t ≥ 0} and

27To formalize this, let p̃t be the black market price for stolen capital. The investment firm receives an order to use
kt units of capital and ι(gt)kt consumption goods to deliver a flow of new capital gtkt. However, it can instead chose
to buy a flow of stolen capital ktst and do actual investment ktι(g̃t) in order to maximize its surplus consumption
(that it rebates to its owners)

max
s,g̃

kt (ι(gt)− ι(g̃)− p̃ts)

st : ktg̃ + kts = ktgt

Optimality implies
p̃t = ι′(g̃t)

So if the planner is implementing his desired investment rate gt and there is no stealing in equilibrium, the black
market price of capital is

p̃t = ι′(gt)

and investment firms have no surplus consumption.
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an investment/growth rate g = {gt; t ≥ 0} and aggregate capital k = {kt; t ≥ 0}, all F-adapted. A
plan P is feasible if it satisfies the aggregate consistency conditions

ct +

ˆ
I
ei,tdi = (a− ι(gt))kt

ˆ
I
ki,t = kt

and aggregate capital follows the law of motion

dkt = ktgtdt+ σtktdZt

Let F be the set of feasible plans. Faced with a feasible plan P, each expert choses a stealing plan
si in order to maximize his utility defined recursively

U sii,t = Esit
[ˆ ∞

t
f(ei,u + φι′(gt)ki,usi,u, U

si
i,u)du

]
Notice that this is the same as expression (2) in the private contract, with the difference that instead
of pt we have ι′(gt). A feasible plan is incentive compatible if every expert i chooses si = 0:28

si = 0 ∈ arg max
si

U sii,0 ∀i ∈ I

Let ICP be the set of incentive compatible plans. Given initial utility levels for each expert
{u0

i }i∈[0,1], an incentive compatible plan P is optimal if it maximizes households’ utility subject to
delivering utility u0

i to each expert:
max
P

V0(c)

st : Ui,0(ei) = u0
i ∀i ∈ I

P ∈ ICP

4.1 A recursive formulation of the planner’s problem

Just as in the private contract case, we look for an optimal mechanism that is recursive in the
continuation utility of experts {Ui}i∈I and the aggregate state variable. Experts’ utility follows a
law of motion under no stealing s = 0

dU s=0
i,t = −f(ei,t, U

s=0
i,t )dt+ σU,i,tdZt + σ̃U,i,tdWi,t

and we can get an expression for incentive compatibility

0 ∈ arg max
s≥0

f(ei,t + φι′(gt)ki,ts, U
s=0
i,t )− σ̃U,i,t

s

νt
− f(ei,t, U

s=0
i,t ) (12)

28As in the CE, it is optimal to implement no stealing always.
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Taking FOC with respect to s yields

σ̃U,i,t ≥ f1(ei,t, U
s=0
i,t )φι′(gt)ki,tνt =

e−ψi,t

((1− γ)U s=0
i,t )

γ−ψ
1−γ

φι′(gt)ki,tνt ≥ 0 (13)

which will be binding in the optimal plan because experts are risk averse and the planner can
aggregate their idiosyncratic risks {Wi}i∈I away.

Introduce xi,t = ((1− γUi,t)
1

1−γ as in the private contract, and write ei,t = ẽi,txi,t and ki,t =

k̃i,txi,t , and σU,i,t = σ̃U,i,t(1−γ)Ui,t. We can verify that, just as in the private contract, the planner
will choose the same ẽi,t = ẽt, k̃i,t = k̃t, and σ̃U,i,t = σ̃U,t for all experts. For consumers write
ci,t = c̃i,tkt. The planner’s problem must be markov in the same endogenous state variable as the
competitive equilibrium

Xt =

´
I xi,tdi

kt

in addition to the exogenous state variable Yt. Thanks to homothetic preferences and the linear
technology, the planner’s value at time t then takes the following power form

(Stkt)
1−γ

1− γ

for some process St which depends only on the history of aggregate shocks Z. We look for a value
function S and the policy functions ẽ, k̃, g, and σ̃U , all functions of (X,Y ) (recall the economic
environment is also a function of Yt). We can then re-write the aggregate consistency conditions

c̃+ ẽX = a− ι(g)

k̃X = 1

and the law of motion of the endogenous state variable X is

µX =
ρ

1− ψ
− ẽ1−ψ

1− ψ
+
γ

2
σ̃2
U +

γ

2
(ẽ−ψφ

ι′(g)

X
ν)2 − g − σσ̃U + σ2 (14)

σX = σ̃U − σ (15)

Using Ito’s lemma we obtain

µS =
SY
S
µY +

SX
S
µXX +

1

2

SY Y
S

σ2
Y +

1

2

SXX
S

(σXX)2 +
SXY
S

σXXσY (16)

σS =
SX
S
σXX +

SY
S
σY (17)

The associated HJB equation is

ρ

1− ψ
= max

g,ẽ,σ̃U

(a− ι(g)− ẽX)1−ψ

1− ψ
Sψ−1 + (µS + g − γ

2
σ2
S −

γ

2
σ2 + (1− γ)σSσ) (18)
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The (social) cost of providing utility to experts, in terms of forgone utility for households is

Λ = −SX > 0

with law of motion dΛt = µΛ,tΛtdt+σΛ,tΛtdZt.29 Just as its private counterpart in the competitive
equilibrium, this will play an important role in the socially optimal allocation.

Consumption. The FOC for ẽ takes the following form (dropping the time subscript)

Λ
(
ẽ−ψ + γψ(φι′(g)

ν

X
)2ẽ−2ψ−1

)
=

(
c̃

S

)−ψ
(19)

On the right hand side we have the cost of giving consumption to experts, in terms of the necessary
reduction in households consumption. The benefit is the reduction is promised utility for experts.
First, by giving them consumption now. Second, by front-loading consumption the planner can
relax the idiosyncratic risk-sharing problem, which is costly because agents are risk averse. The
planner is willing to distort the optimal intertemporal allocation of consumption in order to improve
idiosyncratic risk sharing, just like the private contracts.

Growth and idiosyncratic risk sharing. The FOC for investment/growth g is

(
c̃

S

)−ψ
ι′(g) +

externality︷ ︸︸ ︷
ΛXγ(ẽ−ψφι′(g)

ν

X
)2 ι
′′(g)

ι′(g)
= S + ΛX (20)

On the right hand side we have the benefit of increasing the growth rate of the economy: first, we
can deliver more utility to households with more capital, and second we reduce the utility promised
to experts (per unit of capital), so we save on the cost Λ.

On the left hand side we have the cost of increasing growth: first, we must reduce households’
consumption to allocate goods to investment. But in addition, the planner realizes that a higher
growth rate will increase the marginal cost of capital, and therefore will require a larger exposure to
idiosyncratic risk for experts. The planner internalizes the tradeoff between growth and idiosyncratic
risk sharing which private agents in the competitive equilibrium don’t. This is where we see the moral
hazard externality. To see this, we can obtain a similar equation for the unregulated competitive
equilibrium: (

c̃

S

)−ψ
ι′(g) = S + ΛX

Because of the moral hazard externality, the competitive equilibrium is not efficient.

Proposition 1. The competitive equilibrium is constrained inefficient, and there is a wedge between
29Recall in the competitive equilibrium, the private relative cost of experts utility in terms of forgone utility for

households is ΛCE = ξζ.
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the private and social cost of experts’ utility

Γ =
ΛCE

ΛSP
6= 1

The wedge Γ captures the inefficiency associated with the moral hazard externality and depends
on the history of aggregate shocks, with law of motion

dΓ = µΓΓdt+ σΓΓdZt

Aggregate risk sharing. For experts’ exposure to aggregate risk σ̃U we have the following FOC.

σX − σS = −1

γ
σΛ (21)

The planner wants to give more utility to experts when the social cost of experts’ utility Λ is low.
After some algebra, using Ito’s lemma, we can obtain an expression for σX

σX =

SY
S −

1
γ

ΛY
Λ

1− (SXS −
1
γ

ΛX
Λ )X

σY (22)

Notice how equations (21) and (22) parallel equations (9) and (10) for aggregate risk sharing in the
competitive equilibrium. The only difference is that the competitive equilibrium uses the private
cost of experts’ utility ΛCE = ξζ while the planner uses the social cost ΛSP = −SSPX (where CE
and SP denote the competitive equilibrium and the planner’s allocation). Although the externality
only directly relates to the tradeoff between growth and idiosyncratic risk sharing, it will also distort
the allocation of aggregate risk.

Proposition 2. The allocation of aggregate risk in the unregulated competitive equilibrium will be
inefficient when the wedge Γ between private and social cost of experts’ utility is correlated with the
aggregate shocks.

(
σCEX − σCES

)
−
(
σSPX − σSPS

)
= −1

γ

(
σCEΛ − σSPΛ

)
= −1

γ
σΓ (23)

Experts will lose “too much” utility relative to households, after shocks that make the private cost
ΛCE of providing utility to them high relative to the social cost ΛSP .

If the wedge Γ, which reflects the moral hazard externality, is not affected by aggregate shocks,
although the unregulated competitive equilibrium may be constrained inefficient the allocation of
aggregate risk will be efficient. If instead aggregate shocks affect the wedge Γ, the unregulated
competitive equilibrium will overexpose experts’ continuation utility to aggregate shocks that reduce
the wedge Γ. Although Proposition 2 is useful to understand the efficiency of the equilibrium
allocation, sometimes we may be more interested in the allocation of financial risk. Proposition 4
below deals with this.
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Remark. The total loss or gain of utility for experts and households in response to an aggregate shock
will in general be different in the unregulated competitive equilibrium and the optimal allocation.
Equation (23) refers to how this loss or gain is allocated between experts and households. In
particular, it may very well be the case that after a “bad” shock, both experts and households lose
utility. Equation (23) tells us if the loss is shared correctly.

Solving the planner’s problem. The planner’s problem boils down to solving a PDE for
S(X,Y ). We use the FOC for ẽ, g̃ and σX and plug them into the HJB equation (18) to obtain a
second order PDE. Appendix C describes the procedure in more detail.

4.2 Implementation of the optimal allocation

The planner’s optimal allocation can be implemented as a competitive equilibrium with a tax on
capital holdings τk = {τkt ; t ≥ 0}. If an agent holds ptki,t in capital, he must pay a tax flow τkt ptkt

to the government. To balance the budget, the government distributes the proceeds from this tax
via lump sum transfers to agents. The value of taxes is given by Ttkt with

Tt =
1

kt
Et
[ˆ ∞

t

ηu
ηt
τkupukudu

]
Remarkably, although the competitive equilibrium may feature an excessive concentration of ag-
gregate risk on experts, it is not necessary to directly regulate the allocation of aggregate risk.
Aggregate risk sharing will be inefficient in the unregulated competitive equilibrium if the wedge
Γ between the social and private cost of experts’ utility is correlated with aggregate shocks. But
once taxes on capital internalize the moral hazard externality and align the private and social costs
of providing utility to experts (ΛCE = ΛSP ), aggregate risk sharing becomes optimal without the
need for further regulation. The same reasoning applies to consumption and growth.

Consider an optimal plan P and the associated value function S and policy functions ẽ, g, and
the law of motion of the endogenous state, µX and σX , functions of (X,Y ). We can build a Markov
equilibrium using the same law of motion µX and σX , as well as the policy functions g and ê = ẽ.
From the FOC for growth we get

p = ι′(g) (24)

And we want to build the competitive equilibrium so that the private cost of experts’ utility is
aligned with the social cost30

ξζ = −SX

We build ξ and ζ as follows. Households’ wealth per unit of capital is p + T − ξX > 0, and their
utility S > 0, so we set

S = ζ(p+ T − ξX)

30This will only work if SX < 0, i.e. if it is costly for households to provide utility to experts.
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In addition, from the FOC for ĉ we obtain(
c̃

p+ T − ξX

)−ψ
= ζ1−ψ

The FOC for ê will then be automatically satisfied. Putting these equations together we obtain

ζ =

(
c̃

S

)−ψ
> 0, ξ = −SX

ζ
> 0, T =

S

ζ
− p+ ξX (25)

We can use the representative household’s HJB equation to pin down r, and from his FOC for σw
we pin down π (experts’ FOC for σ̂U will be automatically satisfied).31 The optimal tax on capital
τk that implements the optimal allocation as a competitive equilibrium is then obtained from the
FOC for capital.

a− ι(g)

p
+ µp + g + σ′σp − (r + τk) = π(σ + σp) + γξ(ê−ψφν)2 p

X
(26)

Appendix C shows the procedure in detail and proves the following result:

Proposition 3. Given the planner’s optimal allocation with value function S satisfying SX < 0, and
associated policy functions ẽ, g and σ̂U , we can implement it as a markov competitive equilibrium
with a tax on capital τk as in (26).

Remark. Although the allocation of aggregate risk in the competitive equilibrium is inefficient, the
optimal allocation can be implemented without directly regulating agents’ aggregate risk sharing.
This may not be the only way in which we can implement the optimal allocation, but it has the
benefit that it highlights the source of the inefficiency and deals with it directly. In addition, taxes
on capital, or capital income, are relatively easy to implement. On the other hand, the optimal tax
τk is contingent on aggregate shocks, which may limit its feasibility. A complementary approach
would study what is the best we can do with an ad-hoc simple instrument, and use the planner’s
optimal allocation as a benchmark for welfare, e.g. check if a simple instrument achieves most of
the welfare gains from the optimal allocation.

An expression for the size of the externality. We can use the planner’s FOC for g to obtain
a useful expression for the wedge. The market value of capital in the optimal allocation would be
p+ T in the absence of taxes τk. This is also the shadow value of an extra unit of capital, in terms
of consumption goods, for the planner: ∂kSk = ζ(p+ T ), where ζ =

(
c̃
S

)−ψ captures the marginal
value of an extra unit of consumption for households. It would seem that investment should be
pinned down by ι′(g) = p+ T . That is, devote consumption goods to create new capital up to the
point where the cost in consumption goods equals the shadow value, also in consumption goods.
However, this is the shadow value of a unit of capital that falls from the sky. The planner knows

31Using the envelope theorem for the planner’s HJB, we can show that experts’ HJB is satisfied, and therefore also
the pricing equation for taxes. See Appendix C.
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that in order to create more capital using his investment technology, he must distort idiosyncratic
risk sharing, so in the implementation of the optimal allocation we have

ι′(g) = p = (p+ T )(1− Ω)

The wedge Ω captures the externality as the difference between the shadow value of an extra unit
of capital, and the value of creating an extra unit of capital through investment. From the FOC for
g (20) we get an expression for this wedge

Ω =
T

p+ T
= γ

ξX

p+ T

σ̃2
x,i︷ ︸︸ ︷

(ẽ−ψφι′(g)
ν

X
)2 ι
′′(g)

ι′(g)

The wedge Ω is larger when experts’ exposure to idiosyncratic risk, σ̃x,i is higher, and when the
investment function is very curved. If if was linear ι′′(g) = 0, the marginal cost of investment would
be fixed and there wouldn’t be any point is distorting the growth rate of the economy. Likewise, if
experts’ exposure to idiosyncratic risk is very small, the cost of the externality is very small, so it
doesn’t make sense to distort investment in order to improve idiosyncratic risk sharing.

Concentration of financial risk in the regulated competitive equilibrium. We can use
expression (11) to obtain an expression for the concentration of aggregate financial risk σω = σn−σw.
Use SP and CE to distinguish the optimal allocation from the unregulated competitive equilibrium.
We have from equation (11)

σSPω =
γ − 1

γ
σSPΛ

σCEω =
γ − 1

γ
σCEΛ

We can then obtain the following equation comparing the concentration of financial risk in the
unregulated competitive equilibrium and the implementation of the optimal allocation

Proposition 4. The allocation of aggregate financial risk in the unregulated competitive equilibrium
will be inefficient when the wedge between private and social cost of experts’ utility Γ = ΛCE

ΛSP
is

correlated with the aggregate shock:

σCEω − σSPω =
γ − 1

γ

(
σCEΛ − σSPΛ

)
=
γ − 1

γ
σΓ (27)

When the income effect dominates (γ > 1), experts will lose “too much” net worth after a shock that
makes the private cost of providing them utility ΛCE lower relative to the social cost ΛSP .

Remark. As in the case of utility in equation (23), the total loss or gain of aggregate wealth for
experts and households in response to an aggregate shock will in general be different in the unreg-
ulated competitive equilibrium and the optimal allocation. Equation (27) refers to how this loss or
gain is allocated between experts and households.
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5 Two numerical examples: TFP and uncertainty shocks

In this section I provide numerical solutions for the competitive equilibrium and the social planner’s
allocation for two different setups that illustrate the general results. First I consider an economy
driven purely by TFP shocks. In this case there is no concentration of aggregate risk in the un-
regulated competitive equilibrium. As a result, this case holds less interest as a positive theory of
financial crises, but is very useful as a benchmark. The competitive equilibrium is inefficient be-
cause of the moral hazard externality: the private and social cost of experts’ utility are not aligned.
The regulated economy has lower asset prices and growth, in order to reduce the cost of providing
incentives to experts. However, the wedge between the private and social cost of experts’ utility is
not correlated with TFP shocks, and therefore the allocation of aggregate risk is efficient.

I then consider an economy hit by uncertainty shocks that increase idiosyncratic risk νt, as in
Di Tella (2013). Just as in in the TFP case, the unregulated competitive equilibrium is inefficient
because of the moral hazard externality, and the private and social cost of experts’ utility are not
aligned. In contrast to the TFP case, the unregulated competitive equilibrium concentrates financial
risk on experts. A “bad” uncertainty shock that increases idiosyncratic risk νt drives excess returns
up, and this reduces the private cost of experts’ utility. Because the income effect dominates (recall
we assume throughout that γ > 1), privately optimal contracts concentrate financial loses on experts
(they need less net worth to achieve a given utility level).

This concentration of aggregate risk is inefficient, however, because uncertainty shocks are corre-
lated with the wedge Γ between private and social cost of experts’ utility. Uncertainty shocks reduce
the private cost ΛCE relative to the social cost ΛSP (excess returns on assets go up too much during
periods of high idiosyncratic risk), so in the unregulated equilibrium aggregate financial risk is too
concentrated on experts: after a bad uncertainty shock, experts lose too much net worth. Utility
loses, however, are too concentrated on households (experts face proportionally larger financial loses,
but they make up for it with high excess returns looking forward).

5.1 Brownian TFP Shocks

In this section I solve for a Markov equilibrium in an economy driven only by TFP shocks. There
are no shocks Y to the economic environment (µY = σY = 0) which is fixed: νt = ν and σt = σ.

Parametrization: I use the following parametrization for this numerical example. Preferences:
γ = 5, ψ = 1

3 , ρ = 0.1; technology : a = 1, σ = 0.03, ν = 0.25, ι(g) = 200g2; moral hazard : φ = 0.2.

Competitive equilibrium vs. Social planner. Figure 1 shows the welfare of households S
(per unit of capital) for a given promised utility for experts. For households, in the competitive
equilibrium we have SCE = ζCE(pCE − ξCEX), while in the social planners solution we simply
have SSP . The curve for the social planner can be interpreted as the constrained Pareto frontier
because it is decreasing throughout. The unregulated competitive equilibrium is below the frontier,
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Figure 1: Welfare, growth, and exposure to idiosyncratic risk as a function of X, under the CE
(solid) and the SP (dashed)

as expected since it is inefficient. A social planner can deliver the same continuation utility to
experts X while providing more utility to households. This is achieved by reducing the growth rate
in order to reduce the cost of providing incentives to experts, as Figure 1 shows.

The intuition is as follows: with high growth, experts’ hidden action has a high private benefit
(asset prices are high, so diverting capital is very profitable). They must therefore receive very
high powered incentives that expose them to high idiosyncratic risk, proportionally to their utility.
Because they are risk averse, this is costly: to deliver the promised utility to the experts, the planner
must give them a lot of consumption, either now or in the future; this comes at the cost of reduced
consumption for households. So the planner prefers to reduce the growth rate of the economy and
the idiosyncratic risk of experts as shown in Figure 1 (σ̃x = idvol(xi)

xi
= ê−ψφι′(g) νX ). In other words,

the cost of high growth is that experts appropriate large rents to compensate for their large exposure
to risk, which is necessary to sustain high growth: households are better off with a slower growing
economy where experts get less rewards.32

In both the competitive equilibrium and the social planner’s allocation, growth increases with
X. When experts’ utility is low, exposing them to idiosyncratic volatility is relatively more costly.
Capital is therefore less attractive in the market, so its price falls, along with investment. The
social planner faces the same logic but reacts more strongly, as Figure 1 shows. Growth falls much
more as X falls in the social planner’s solution, and the gap between growth in the competitive
equilibrium and the social planner’s solution widens when X is low. The intuition is that when X
is low, a small increase in the price of capital has a bigger impact on experts’ proportional exposure
to idiosyncratic risk necessary to provide incentives to experts. The moral hazard externality is
therefore larger, so the planner wants to reduce asset prices and growth to a larger extent. This can
be seen in Figure 2. The private cost of experts’ utility ΛCE is always smaller than the social cost
ΛSP , and the wedge Γ is larger for small X. The tax τk that implements the optimal allocation
tells the same story.

Figure 2 also shows the law of motion of the endogenous state variableX. In both the competitive
equilibrium and the optimal allocation, X has a positive drift, and in the long-run experts have

32It may seem surprising that the social planner wants to reduce growth in the economy, since the first best level
of growth is higher than in equilibrium. This makes sense, however, because the social planner also faces the same
informational frictions. The first best is unattainable.
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Figure 2: Drift of the endogenous state variable µX , the cost of experts’ utility Λ, and the tax on
capital τ , as a function of X, under the CE (solid) and the SP (dashed)

all the utility in the economy. This is a standard result in models of financial frictions.33 In the
unregulated competitive equilibrium experts’ utility X grows faster, because they are exposed to
higher idiosyncratic risk.

In both the unregulated competitive equilibrium and the optimal allocation aggregate risk is
shared proportionally between experts and households, both in utility and financial terms. TFP
shocks don’t affect the private relative cost of experts’ utility ΛCE . As a result, from equation (9)

σCEX − σCES = −1

γ

=0︷︸︸︷
σCEΛ = 0

In fact, since σY = 0, from equation (10) we know σCEX = 0, which yields σCEΛ =
ΛCEX
ΛCE

σCEX X = 0.
Aggregate TFP shocks affect only the level of capital, but because they are not concentrated on
experts, they don’t affect growth gCE , asset prices pCE , interest rates rCE , or the price of risk
πCE . Furthermore, this risk sharing is efficient since the ratio of private to social relative cost
of experts’ utility is not affected by TFP shocks: σSPX = 0 from equation (22), and therefore
σSPΛ =

ΛSPX
ΛSP

σSPX X = 0. As a result, TFP shocks don’t affect the wedge Γ between private and social
cost of experts’ utility. From equation (23) we obtain

(
σCEX − σCES

)
−
(
σSPX − σSPS

)
= −1

γ

=0︷︸︸︷
σΓ = 0

Although the unregulated competitive equilibrium is constrained inefficient due to the moral hazard
externality, aggregate risk sharing is efficient. The same analysis can be done in terms of the
allocation of financial risk. From equation (11) we get the concentration of financial risk in the
unregulated competitive equilibrium:

σCEω =
γ − 1

γ

=0︷︸︸︷
σCEΛ = 0

33This can be avoided by introducing retirement among experts, as in Di Tella (2013), or giving them higher
discount rates, as in Brunnermeier and Sannikov (2012), for example. Here I present the “bare bones” model.
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and from equation (27) we learn that this allocation of aggregate financial risk is efficient:

σCEω − σSPω =
γ − 1

γ

=0︷︸︸︷
σΓ = 0

5.2 Uncertainty Shocks

Now consider an economy hit by uncertainty shocks. The idiosyncratic risk of capital, νt = Yt, now
follows an autoregressive stochastic process34

dνt︸︷︷︸
dYt

= β(ν̄ − νt)︸ ︷︷ ︸
µY (Yt)

dt+
√
νtσν︸ ︷︷ ︸

σY (Yt)

dZt

By convention, we will take σν < 0, so that we may think of Z as a “good” shock that drives
idiosyncratic risk νt down. The aggregate risk of capital is still fixed σ. For simplicity we consider
only one aggregate shock (Z is unidimensional). If σ > 0 the good shock Z also improves TFP, but
there is no loss in intuition from setting σ = 0.

Parametrization: I use the same parametrization as for the TFP case and add a stochastic
process for νt. Preferences: γ = 5, ψ = 1

3 , ρ = 0.1; technology : a = 1, σ = 0.03, ι(g) = 200g2; moral
hazard : φ = 0.2; uncertainty shock : β = 0.2, ν̄ = 0.24, σν = −0.13.

Competitive Equilibrium vs. Social Planner. Figure 3 shows households’ welfare S as a
function of experts utility X, for the competitive equilibrium and the social planner’s allocation.
The social planner can always deliver more utility to households, for a given promised utility to
experts. The gap is larger when X is low and ν is large. The social planner reduces growth and
asset prices, p = ι′(g), with respect to the unregulated competitive equilibrium in order to reduce
the cost of providing incentives to experts. With lower asset prices the private benefit of experts’
hidden action is lower, so idiosyncratic risk sharing is improved, as shown also in Figure 3. The
planner does this to a larger extent when X is low and ν is large, when the moral hazard externality
is large. A marginal increase in the price of capital increases the required exposure of experts to
idiosyncratic risk more when X is low and ν is large, and therefore has a larger impact on the cost
of providing incentives to experts.

In contrast to the TFP case, the unregulated competitive equilibrium concentrates aggregate
financial risk on experts. Figure 4 shows the volatility of the wealth ratio ω = N

W . In the competitive
equilibrium after a bad uncertainty shock raises idiosyncratic risk ν, loses are concentrated on
experts, so ω falls. We can understand this looking at the private cost of providing utility to
experts ΛCE :

σCEω =
γ − 1

γ
σCEΛ

34This is a CIR process. If 2βν̄ ≥ σ2
ν , then νt > 0 always, and it has a long-run distribution with mean ν̄.
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Figure 3: Experts and households welfare, the growth rate g, and experts’ idiosyncratic risk σ̃U ,
in the CE (solid) and SP (dashed), as functions of X for a fixed ν0 = ν̄ = 0.24.(above) and as a
function of ν for a fixed X0 = 15 (below).

When the income effect dominates (γ > 1) optimal contracts devote less resources to experts when
it is cheaper to provide them utility (they need less in order to achieve any given level of utility).
Figure 4 shows ΛCE is lower when X is low and ν is high. This is because capital pays a high
premium for idiosyncratic risk to convince experts to hold it (the price of this idiosyncratic risk is
proportional to σ̃ from Figure 3). Since they are compensated at the margin (for the last “unit”
of idiosyncratic risk), the surplus from managing capital is larger, and therefore the private cost of
experts’ utility ΛCE is lower. After a bad uncertainty shock ν rises and X falls (because σX > 0 as
we will see below35), and therefore it becomes cheaper to provide utility to experts:

σCEΛ =

>0︷ ︸︸ ︷
ΛCEX
ΛCE

>0︷ ︸︸ ︷
σCEX X +

<0︷ ︸︸ ︷
ΛCEν
ΛCE

<0︷ ︸︸ ︷
√
νσν > 0 =⇒ σCEω > 0

The resulting concentration of aggregate financial risk on experts is inefficient, however. Figure
4 shows the regulated competitive equilibrium is very close to allocating aggregate financial risk
proportionally, and sometimes slightly concentrates financial risk on households. The social cost of
providing utility to experts ΛSP is less sensitive to increases in ν and reductions in X, and therefore
less sensitive to uncertainty shocks. We can see this better looking at the wedge Γ between private
and social cost of experts’ utility in Figure 4. It is always below one: the social cost of experts’
utility is always higher that the private cost because the private cost doesn’t take into account the
moral hazard externality. In addition, the wedge Γ is increasing in X and decreasing in ν: when
idiosyncratic risk is very high relative to experts’ continuation utility, the impact of a small increase
in the price of capital on the moral hazard problem each expert faces is large (the externality is
large, so the wedge is big). After a bad uncertainty shock X is low ν high, so the private cost of

35Recall that a bad uncertainty shock is a negative dZ < 0.

32



5 10 15 20 25 30
X

-0.01

0.00

0.01

0.02

0.03

0.04

ΣΩ
CE , ΣΩ

SP

5 10 15 20 25 30
X0.0

0.2

0.4

0.6

0.8

LCE , LSP

0 5 10 15 20 25 30
X0.0

0.2

0.4

0.6

0.8

1.0

G

0.1 0.2 0.3 0.4 0.5
v0.000

0.005

0.010

0.015

0.020

0.025

0.030

ΣΩ
CE , ΣΩ

SP

0.1 0.2 0.3 0.4 0.5
v0.0

0.2

0.4

0.6

0.8

LCE , LSP

0.0 0.1 0.2 0.3 0.4 0.5
v0.0

0.2

0.4

0.6

0.8

1.0

G

Figure 4: The volatility of the wealth ratio σω, the marginal cost of experts’ utility Λ (private
and social) and the wedge Γ in the CE (solid) and SP (dashed), as functions of X for a fixed
ν0 = ν̄ = 0.24.(above) and as a function of ν for a fixed X0 = 15 (below).

experts’ utility is particularly low relative to the social cost

σΓ =

>0︷︸︸︷
ΓX
Γ

>0︷ ︸︸ ︷
σXX +

<0︷︸︸︷
Γν
Γ

<0︷ ︸︸ ︷
σν
√
ν > 0

The unregulated competitive equilibrium therefore has an excessive concentration of aggregate fi-
nancial risk on experts. From equation (27)

σCEω − σSPω =
γ − 1

γ

>0︷︸︸︷
σΓ > 0

Even though aggregate financial risk is too concentrated on experts, aggregate risk in utility
terms is too concentrated on households. Figure 5 shows the law of motion of the endogenous
state variable X. σCEX > σSPX > 0 so after a bad uncertainty shock experts lose continuation
utility both in the unregulated and the regulated economy. The volatility of experts’ utility in the
regulated economy is smaller because the planner intervenes and dampens the impact of shock for
both experts and households. In fact, in the unregulated competitive equilibrium the loss of utility
is concentrated on households. This can be seen by looking at the volatility of the ratio X/S, in
Figure 5. After a bad uncertainty shock, experts’ utility falls proportionally less than households’.
This is because although they lose more net worth (proportionally), they at least get very high
excess returns, so the private cost of providing them utility falls, as we saw before (σCEΛ > 0).
Privately optimal contracts therefore give experts relatively more utility (compared to households)
after an uncertainty shock:

σCEX − σCES = −1

γ

>0︷︸︸︷
σCEΛ < 0

This allocation of aggregate risk in utility terms is inefficient: even though experts’ utility in the
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Figure 5: Drift µX and volatility σX of the endogenous state variable X, and the volatility of
the utility ratio X/S, in the CE (solid) and SP (dashed), as functions of X for a fixed ν0 = ν̄ =
0.24.(above) and as a function of ν for a fixed X0 = 15 (below).

optimal allocation falls less after a bad uncertainty shock, their share of the total loss is higher. The
distribution of aggregate risk in utility terms is closer to proportional, and sometimes concentrates
this risk on experts. The inefficiency comes from the correlation of the wedge Γ with the uncertainty
shock. From equation (23):

<0︷ ︸︸ ︷(
σCEX − σCES

)
−

≈0︷ ︸︸ ︷(
σSPX − σSPS

)
= −1

γ

>0︷︸︸︷
σΓ < 0

A bad uncertainty shock makes the private cost lower relative to the social cost, so utility loses are
excessively concentrated on households in the unregulated competitive equilibrium. Figure 5 also
shows the drift of X. Since the planner improves idiosyncratic risk sharing, experts continuation
utility rises slower in the optimal allocation.

State-contingent taxes. Figure 6 shows the tax on capital holdings that implements the optimal
allocation as a competitive equilibrium. As expected, the tax is larger when X is low and ν high,
reflecting the larger externality. This may seem counterintuitive if we think that low asset prices and
growth are part of the problem after bad shocks, and this is true when comparing the equilibrium
with the first best without moral hazard. But the social planner cannot get rid of moral hazard, it
can only deal with the resulting externality, which is larger after a bad uncertainty shock (with low
X and high ν). If we could prevent the increase in idiosyncratic risk, we may well want to do so,
but once the shock occurs it is optimal to also reduce asset prices and growth to reduce the cost of
providing incentives.

A related puzzle is that asset values are more volatile in the regulated equilibrium, i.e. σ+σp is
larger as Figure 6 shows. Notice, however, that in the regulated equilibrium the total wealth is not
only capital, but also the present value of government transfers, and total wealth (p + T )k is less
volatile in the regulated equilibrium.
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Figure 6: Optimal tax on capital τk, the volatility of aggregate wealth vol(pk + Tk) and the
volatility of the value of capital σ + σp, in the CE (solid) and SP (dashed), as functions of X for a
fixed ν0 = ν̄ = 0.24.(above) and as a function of ν for a fixed X0 = 15 (below).

6 Conclusion

This paper studies the optimal financial regulation policy in a setting where financial frictions are
derived from a moral hazard problem, focusing on the allocation of aggregate risk. Even if agents can
write complete long-term contracts, the competitive environment is constrained inefficient. Agents
don’t internalize that by competing for capital and bidding up its price they create a moral hazard
problem for everyone else. A social planner who faces the same informational asymmetries will
internalize the resulting tradeoff between growth and idiosyncratic risk sharing. As a result, there is
a wedge between the private and social costs of providing utility to experts. Even though the moral
hazard problem does not prevent agents from sharing aggregate risk, and even though the externality
does not involve aggregate risk sharing directly, it can create incentives for an excessive concentration
of aggregate risk. The equilibrium allocation of aggregate risk will be inefficient when aggregate
shocks are correlated with the wedge. However, even though the competitive equilibrium may face
an excessive concentration of aggregate risk, the socially optimal allocation can be implemented as
a competitive equilibrium with a tax on capital, without the need to directly regulate aggregate risk
sharing.

I then study two specific settings that illustrate the general results. In the first, the economy
is hit only by TFP shocks. Asset prices and growth are too high in the unregulated competitive
equilibrium, but the allocation of aggregate risk is efficient: experts and households share it propor-
tionally, both in utility and financial terms. In contrast, in the second setting the economy is hit
by uncertainty shocks that raise idiosyncratic risk. Now the competitive equilibrium concentrates
aggregate financial risk on experts, while concentrating aggregate utility risk on households. Fur-
thermore, this allocation of aggregate risk is inefficient, because uncertainty shocks are correlated
with the wedge between the private and social cost of experts’ utility. After a bad uncertainty shock,
financial loses are too concentrated on experts, and utility loses too concentrated on households.

There are three broad avenues for future research. First, this paper uses a simple and tractable
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contractual setting. Contracts with full long-term commitment and no hidden savings make clear the
comparison with the socially optimal allocation, and are a natural starting point to study optimal
financial regulation. The case with hidden savings or with limited commitment seem like natural
next steps that can provide new insights and make the setting more realistic. Second, the general
results show that the type of aggregate shock can play an important role explaining not only the
concentration of risk in the competitive equilibrium, but also its efficiency. In particular, monetary
shocks play an important role in business cycle theory, as well as in theories of financial crises.36

Finally, an advantage of the approach to optimal policy taken here is that we are not pre-committing
to a set of policy instruments, but rather letting the economic environment tells us what are the
tools appropriate for the job. In some circumstances, however, we might be more interested in the
optimal use of a given policy instrument. Both approaches can yield valuable insights, especially
when combined, since the socially optimal allocation studied here provides a natural benchmark to
evaluate different policy instruments.
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7 Appendix

7.1 Appendix A: Omitted Proofs

Proof of Lemma 1. Consider the process Y = {Yt; 0 < t < T} for some arbitrary T

Yt = Es=0
t

[ˆ T

0
f(eu, U

s=0
u )du+ U s=0

T

]
=

ˆ t

0
f(eu, U

s=0
u )du+ U s=0

t

It is a P -square integrable martingale adapted to Fi, so we can write

dYt = f(et, U
s=0
t )dt+ dU s=0

t = σU,tdZt + σ̃U,tdWt

dU s=0
t = −f(et, U

s=0
t )dt+ σU,tdZt + σ̃U,tdWt

for some Fi-adapted processes σU = {σU,t; t ≥ 0} and σ̃U = {σ̃U,t; t ≥ 0} in L. The transversality
condition comes from taking limits as T →∞.

Proof of Lemma 2. Given contract C = (e, k), the utility the expert obtains from following
stealing plan s is U s defined recursively so that for any t < T it holds that

U st = Est
[ˆ T

t
f(eu + φpukusu, U

s
u)du+ U sT

]

37



Meanwhile, the utility of not stealing is U s=0 and satisfies (3). We can then write

dU s=0
t =

[
−f(et, U

s=0
t )− st

νt
σ̃U,t

]
dt+ σU,tdZt + σ̃U,tdW

s
t

and integrating and taking expectation under P s we obtain for any t < T

U s=0
t = Est

[ˆ T

t
f(eu, U

s=0
u ) +

st
νt
σ̃U,tdu+ U s=0

T

]
Now suppose the IC condition (4) fails, and pick a bounded stealing strategy s such that f(et +

φptkts, U
s=0
t )− σ̃U,ts− f(et, U

s=0
t ) > 0 on a set A of positive measure in [0, T ]× Ω, for some large

enough T , and zero outside of A. After this T , the expert doesn’t steal anymore, so U sT+u = U s=0
T+u,

u ≥ 0. We can compare the utility from this strategy with the utility from not stealing for t < T .
We will prove that U s0 > U s=0

0 which contradicts incentive compatibility. To this end, write:

U st − U s=0
t = Est

[ˆ T

t

[
f(eu + φpukusu, U

s
u)− f(eu, U

s=0
u )− su

νu
σ̃U,u

]
du

]
Now look at the integrand, and obtain the following inequality

f(eu + φpukusu, U
s
u)− f(eu, U

s=0
u )− σ̃U,u

su
νu

= f(eu + φpukusu, U
s
u)− f(eu + φpukusu, U

s=0
u )

+f(eu + φpukusu, U
s=0
u )− f(eu, U

s=0
u )− σ̃U,u

su
νu

≥ f(eu + φpukusu, U
s
u)− f(eu + φpukusu, U

s=0
u )

with strict inequality on A. Now we use an interesting fact about the EZ aggregator f(c, U): if
γ > 1 and ψ < 1, then there is a constant λ > 0 such that f(c, y) − f(c, x) ≤ λ(y − x) for y ≥ x,
and any c.37 We can then write

f(eu + φpukusu, U
s
u)− f(eu, U

s=0
u )− σ̃U,u

su
νu︸ ︷︷ ︸

Hu

≥ λ (U su − U s=0
u )︸ ︷︷ ︸

Mu

when U su − U s=0
u︸ ︷︷ ︸

Mu

≤ 0

and the inequality is strict on A. Now define the process Mt = U st − U s=0
t and write

Mt = U st − U s=0
t = Est

[ˆ T

t
Hudu

]
with Ht ≥ λMt whenever Mt ≤ 0

We can now use a generalized version of Skiadas’ Lemma38 to obtain that Mt = U st −U s=0
t ≥ 0 for

all t ∈ [0, T ], a.s. as follows. Let τ = inf{t : U s=0
t ≤ U st } and write

Mt1{τ>t} ≥ Est
[ˆ τ∧T

t
λMu1{τ>t}du+Mτ∧T1{τ>t}

]
37see Proposition 3.2 in Kraft et al. (2011)
38The strategy is similar to Theorem A.2 in Kraft et al. (2011).
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Mt1{τ>t} ≥ Est
[ˆ T

t
λMu1{τ>u}du+MT1{τ>T}

]
= Est

[ˆ T

t
λMu1{τ>u}du

]
Applying the stochastic Gronwall-Bellman inequality,39 we get that Mt1{τ>t} ≥ 0 for 0 ≤ t ≤ T .
Since M01{τ=0} ≥ 0 , we conclude M0 ≥ 0. We can apply a similar argument for any u < T

(redefining the stopping time τu = inf{t ≥ u : U s=0
t ≤ U st }) and get Mu ≥ 0 for all 0 < u < T .

Now to make the inequality strict, if Mt = 0 a.e. on [0, T ] × Ω, then Ht ≥ λMt = 0, and the
inequality is strict on positive measure subset A, and therefore M0 > 0. If Mt > 0 for at least
some (ω, t) with t < T , with positive probability, we do the following. For some small ε > 0, let
τ ε = inf{t : Mt ≥ ε}. If we take ε small enough, the probability that we get to such a point
before T is positive: P s({τ ε ∧ T < T}) > 0 (for any P s since they are equivalent). It must be that
there is some stealing going on after this, since otherwise Mτε would be zero. Now consider the
alternative stealing plan s′ that steals only until τ ε and then stops, that is s′t = st for t < τ ε and
s′ = 0 after this. By a similar argument as before, U s=0

0 ≤ U s
′

0 . Utility under this plan satisfies
U s
′
τε∧T = U s=0

τε∧T < U sτε∧T if τ ε ∧ T < T , and equal otherwise. Now if we compare s and s′, both
plans induce the same probability measure until τ ε ∧T , and the same consumption stream, but the
payoff at τ ε ∧ T is larger for s (strictly so with positive probability):

U s
′
t = Est

[ˆ τε∧T

t
f(eu + φpukusu, U

s′
u ) + U s=0

τε∧T

]

U st = Est
[ˆ τε∧T

t
f(eu + φpukusu, U

s
u) + U sτε∧T

]
By strict monotonicity of EZ preferences with respect to terminal value, we get U s0 > U s

′
0 ≥ U s=0

0 .
This proves stealing is attractive if (4) fails.

Proof of Proposition 1. Using the FOCs for consumption we obtain in the CE:

Λ
(
ê−ψ + γψ(φι′(g)

ν

X
)2ẽ−2ψ−1

)
=

(
c̃

S

)−ψ
where c̃ = c

k . This is the same as equation (19) in SP. It follows that if the CE is efficient, then
ΛCE = ΛSP , since all other objects in the equation must coincide by definition, including S.

Now use the FOC for g, ι′(g) = p, and for consumption to obtain in the CE(
c̃

S

)−ψ
ι′(g) = S + ΛX

39See Duffie and Epstein (1992)
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while in the SP we have

(
c̃

S

)−ψ
ι′(g) +

externality︷ ︸︸ ︷
ΛXγ(ẽ−ψφι′(g)

ν

X
)2 ι
′′(g)

ι′(g)
= S + ΛX

This shows the CE is not constrained efficient.

Proof of Proposition 2. Straightforward from equilibrium and optimal allocation conditions.

Proof of Proposition 4. Straightforward from equilibrium and optimal allocation conditions.

7.2 Appendix B: Solving the Competitive Equilibrium

The strategy to solve the competitive equilibrium is to transform the problem into a system of PDEs
for p, ξ, and ζ. Suppose we are given these functions. We can build S = ζ(p − ξX) and Λ = ξζ,
and use Ito’s lemma to compute the drift and volatility of all these objects, in terms of µX and σX ,
which we still don’t know, and µY and σY , which are exogenously given. We use equation (10) to
obtain σX . Then use the definition of σX to write σ̂U = σX + σ, and use the FOC for σ̂U , equation
(7), to write π = γσ̂U +σξ. Then using the FOC for σw, equation (8), we get σw = π

γ + 1−γ
γ σζ . Now

we need to compute the drifts. First, use the FOCs to obtain ê and ĉ, and we can use the definition
of µX to compute it. Now use households’ HJB to compute r. We now have experts’ HJB (with
k̂ = X−1 from market clearing for capital), the FOC for capital, and the market clearing condition
for consumption goods (this is an algebraic constraint), and we need to find ξ, ζ and p.

The system of equations can be solved by adding a fictitious finite time horizon T , with some
terminal values for these functions. A time derivative must be added to the computation of all
drifts, and we can then solve backwards in time. In this respect we have a system of first order
ODEs with respect to time, which can be solved with a standard integrator, such as Runge-Kutta 4
for example. If the time derivatives vanish as we solve backwards, we have a solution to the system
of PDEs we were interested in (infinite horizon). Terminal conditions are not important as long
as the time derivatives vanish in the limit. Since the market clearing condition for consumption is
an algebraic constraint, it is easier to differentiate it with respect to time to obtain a differential
equation. We just need to make sure that terminal conditions are consistent with market clearing
for consumption goods, and the algorithm will preserve this as we solve backwards. We can also
verify ex-post that this condition is satisfied by the solution.

There are two complications. The first is that the FOC for ê cannot be solved analytically, and
solving it numerically at each step would make the algorithm much slower. What we can do is
add ê as a function to be solved for, and differentiate the FOC for ê with respect to time, like we
did for market clearing for consumption. We get an extra unknown but also an extra differential
equation, and terminal conditions must be chosen so that the FOC for ê is satisfied. This can also
be verified ex-post (the benefit is we only solve the FOC for ê once at the beginning). The second
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complication is that the domain of the system (X,Y ) ∈ D ⊂ R2
+ is unknown. Basically, for a

given Y we know that X ∈ (0, X̄(Y )), but we don’t know what is the maximum utility that can be
delivered to experts for each exogenous state Y . To deal with this we can do a change of variables,
such as X̃ = X

X+ζ(p−ξX) ∈ (0, 1), and solve the resulting system.

7.3 Appendix C: Solving the Planner’s Problem

The planner’s HJB is a PDE for S(X,Y ). As in the competitive equilibrium, we can solve it by
adding a fictitious finite horizon T . This requires us to add a time derivative when computing µS .
We can then solve backward for arbitrary terminal conditions. If the time derivative vanishes as we
solve back, we found the original PDE.

Just like in the competitive equilibrium case, we need to deal with two complications. The first
is that now the FOC for both ẽ and g are difficult to solve analytically, so we add both as functions
of (X,Y ) and differentiate the FOCs with respect to time to obtain two more PDEs. We just need to
ensure that terminal conditions satisfy the FOCs (the benefit, as before, is that we only solve them
numerically once). We can check at the end that the FOC are satisfied. The second problem is that
as before we don’t know the domain, so we need to do a change of variables as in the competitive
equilibrium, such as X̃ = X

X+ζ(p−ξX) ∈ (0, 1), and solve the resulting system.

Implementation of the planner’s allocation (and proof of Proposition 3). Using the
construction described in Section 4.2, we only need to check that experts’ and the representative
household’s HJB equations are satisfied, and the pricing equation for taxes holds. Start with
households. By construction, their FOC for consumption is satisfied. Using w = (p+T − ξX)k > 0

we derive an expression for σw and then set π = γσw − (1− γ)σζ . We then set r so that their HJB
equation is satisfied. We are in effect choosing r and π so that (a− ι(g)− êX)k = c̃k is the optimal
choice of consumption for the household, and their wealth (p+ T − ξX)k. Notice that the FOC for
experts’ ê and σ̂U will be satisfied automatically. To see this, first use the planner’s FOC for ẽ

Λ
(
ẽ−ψ + γψ(φι′(g)

ν

X
)2ẽ−2ψ−1

)
=

(
c̃

S

)−ψ
and using

(
c̃
S

)−ψ
= ζ and Λ = ξζ and multiplying by ê on both sides (recall ẽ = ê) we get experts’

FOC for ê in the private contract

ξ
(
ê−ψ + γψ(ê−ψφι′(g)

ν

X
)2
)

= ê

From planner’s optimal aggregate risk sharing we get

σX = σS −
1

γ
σΛ = σζ + σw − σ −

1

γ
(σζ + σξ)
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and using π = γσw−(1−γ)σζ and σX = σ̂U −σ we get experts’ FOC for σ̂U in the private contract:

σ̂U =
π − σξ
γ

Now we want to prove that ξ = −SX
ζ satisfies experts’ HJB equation. For this we will use the

planner’s HJB equation (18). Multiply by S on both sides, take the derivative with respect to X
using the envelop theorem, and divide throughout by SX to obtain

ρ

1− ψ
=

(a− ι(g)− ẽX)1−ψ

1− ψ
ψSψ−1− (a− ι(g)− ẽX)−ψ Sψ

SX
ê+ (g− γ

2
σ2) +

SXY
SX

µY +
SXX
SX

µXX

+ µX − γ(ẽ−ψφ
ι′(g)

X
ν)2 +

1

2

SXY Y
SX

σ2
Y +

1

2

SXXX
SX

(σXX)2 +
SXX
SX

σ2
XX +

SXXY
SX

σXXσY

+
SXY
SX

σXσY + (1− γ)σ

(
SXX
SX

σXX +
SXY
SX

σY

)
+ (1− γ)σσX

− γ
(
SX
S
σXX +

SY
S
σY

)(
SXX
SX

σXX +
SXY
SX

σY + σX

)
+
γ

2

(
SX
S
σXX +

SY
S
σY

)2

(28)

Now use −ξζ = SX to obtain

SXX
SX

=
ξX
ξ

+
ζX
ζ
,

SXY
SX

=
ξY
ξ

+
ζY
ζ
,

SXXX
SX

=
ζXX
ζ

+ 2
ξX
ξ

ζX
ζ

+
ξXX
ξ
,

SXY Y
SX

=
ζY Y
ζ

+ 2
ζY
ζ

ξY
ξ

+
ξY Y
ξ
,

SXXY
SX

=
ζXY
ζ

+
ξY
ξ

ζX
ζ

+
ξX
ξ

ζY
ζ

+
ξXY
ξ

Now plug this into (28), use the definition of µX and the FOC for ê in the private contract (which
we already know holds), and simplify to obtain

0 =
ψ

1− ψ
ĉ1−ψζψ−1 + µξ + µζ − ψ

ẽ1−ψ

1− ψ
+
γ

2
σ2
X − γ(

1

2
− ψ)(ẽ−ψφ

ι′(g)

X
ν)2

σξσζ + σX (σξ + σζ) + (1− γ)σ (σξ + σζ)

−γσS (σξ + σζ + σX) +
γ

2
σ2
S

Now from household’s HJB and using σw = σS − σζ + σ we get

ρ

1− ψ
= ψ

ĉ1−ψ

1− ψ
ζψ−1 + r +

γ

2
(σS − σζ + σ)2 + µζ −

γ

2
σ2
ζ

which we plug into our expression. After some algebra using σS = σX+ 1
γ (σξ+σζ) and σ̂U = σX+σ,

as well as the FOC for ê and σ̂U , we get

γ(ẽ−ψφ
ι′(g)

X
ν)2−ê+ξ

{
r +

ê1−ψ

1− ψ
− ρ

1− ψ
− γ

2
(ẽ−ψφ

ι′(g)

X
ν)2 − µξ + σ̂Uπ + σξπ −

γ

2
σ̂2
U − σξσ̂U

}
= 0
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Because τ is chosen so that the pricing equation for capital holds we get

γ(ẽ−ψφ
ι′(g)

X
ν)2 =

p

X

(
a− ι(g)

p
+ µp + g + σ′σp − (r + τk)− π(σ + σp)

)
and plugging this in, we obtain experts’ HJB.

Finally, we just need to check that the pricing equation for taxes is satisfied. First, use the
planner’s HJB and households’ HJB to obtain a version of the dynamic budget constraint of the
household

pµp + TµT − ξX(µξ + µX + σξσX) + g(p+ T − ξX) + σ(pσp + TσT − ξX(σξ + σX))

= r(p+ T − ξX) + π(pσp + TσT + ξX(σξ + σX) + σ(p+ T − ξX))− ĉ(p+ T − ξX)

Multiply experts’ HJB by X to obtain

a− ι(g)− êX + p(g + µp + σσp − (r + τk)− (σ + σp)π

+ξX

{
r +

1

1− ψ
(ê1−ψ − ρ)− γ

2
σ̂2
U −

γ

2
(ê−ψφ

ι(g)

X
v)2 + σ̂U (π − σξ)− µξ + σξπ

}
= 0

Combining these two expressions, and using the definition of µX , σX , and ĉ = a−ι(g)−êX
p+T−ξX we get the

pricing equation for capital. This completes the proof of Proposition 3.
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