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Preliminary

Abstract

Gravity trade models are the most important empirical tool in international trade.

However, characterization of their theoretical and empirical properties has thus far been

primarily focused on specific parametric examples. In this paper, we show there exist

a number of theoretical and empirical properties that are universal to all gravity trade

models, regardless of their microeconomic foundations. In particular, in any gravity

trade model where goods and factor markets clear and trade is balanced, we (1) prove

the existence of an equilibrium and provide sufficient conditions for its uniqueness;

(2) provide sufficient conditions under which the equilibrium maximizes world income

and is Pareto optimal; (3) derive an analytical expression for the elasticity of all trade

flows and incomes to all bilateral trade frictions; (4) provide a general method to

identify model fundamentals from observed trade flows; and (5) develop two easily

implementable estimators of the gravity equation that respect the general equilibrium

conditions.

∗We thank Dave Donaldson, Sam Kortum and Xiangliang Li for excellent comments. All remaining errors
are all ours.
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1 Introduction

The gravity relationship – where trade flows increase with the origin and destination countries

incomes and decrease with the distance between the two countries – is one of the most

robust empirical results in economics.1 As such, economists have offered many alternative

theoretical foundations for this relationship, see e.g. Anderson (1979); Eaton and Kortum

(2002); Chaney (2008). However, much remains unknown about how assumptions regarding

the source of the gravity relationship affect the implications of the model.

In this paper, we show that standard equilibrium conditions along with the gravity struc-

ture of trade flows are sufficient to characterize a number of properties that hold regardless

of the particular microeconomic foundations of the model. In particular, we derive a number

of theoretical results that hold universally for all gravity trade models where good and fac-

tor markets clear and trade is balanced, a class of models that we term general equilibrium

gravity models. We classify the set of results into four groups: (1) existence and uniqueness;

(2) efficiency; (3) comparative statics; and (4) identification and estimation.

First, we examine the existence and uniqueness properties common to all general equi-

librium gravity trade models. We show that their solution can be represented by a nonlinear

operator operating on a compact set, which allows us to prove existence of a trade equilib-

rium and provide conditions for which uniqueness is guaranteed. These sufficient conditions

depend only on two parameters – α and β – which govern the relationship between factor

market clearing and the gravity equation. In turn, this setup can be mapped to a wide range

of parameterized gravity setups depending on the specification of the parameters α and β

making it simple to check whether the equilibrium in any particular gravity trade model is

unique. The set of gravity models for which uniqueness can be proven using this method

is strictly larger than the set for which the gross substitutes property used in Alvarez and

Lucas (2007) can be applied, and include a wider range of trade models with intermediate

inputs and economic geography models where labor is mobile.

In addition, for the set of trade frictions that are the focus of much of the empirical

gravity literature where frictions are symmetric up to an origin-specific and destination-

specific shifter (which we call “quasi-symmetric”), we prove that balanced trade implies that

the origin and destination fixed effects of the gravity equation are equal up to scale. This

allows us to further extend the range of model parameters for which uniqueness can be

guaranteed. It also provides a general theoretical underpinning for a result that has actually

already been used in the literature (albeit implicitly); for example, it was this result that

1The literature on the gravity equation in trade is vast; an excellent starting place are the recent review
articles by Baldwin and Taglioni (2006) and Head and Mayer (2013).
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allowed Anderson and Van Wincoop (2003) to show that the “multilateral resistance” term

was equal to the price index and allowed Allen and Arkolakis (2013) to simplify a set of

non-linear integral equations into a single integral equation.

Second, we examine the efficiency properties of gravity trade models when trade costs

are quasi-symmetric. We show that if the uniqueness conditions are satisfied, then the

trade equilibrium can be equivalently expressed as the optimization problem of maximizing

world trade flows subject to trade remaining balanced and an arbitrary normalization on the

aggregate factor market clearing condition, i.e. general equilibrium gravity models maximize

world income. Furthermore, if welfare in a location is increasing in its openness (as in the

class of trade models considered by Arkolakis, Costinot, and Rodŕıguez-Clare (2012)), we

prove that general equilibrium gravity models are Pareto optimal.

Third, we examine how changes in bilateral trade frictions affect equilibrium trade flows

and incomes. We first derive an analytical expression for the (large) matrix of elasticities of

all bilateral trade flows and incomes to all bilateral trade frictions. Somewhat surprisingly,

this expression depends only on observed trade flows and α and β, indicating that apart

from these two model parameters, there is no need to specify (let alone solve) a gravity trade

model in order to determine how a change in any bilateral trade friction would affect all

bilateral trade flows and incomes in all countries. We then derive a system of equations that

show how arbitrary (possibly non-infinitesimal) changes to the trade friction matrix affect

trade flows and incomes. The former result, to the best of our knowledge, is novel in the

literature; the latter latter result generalizes the results of Dekle, Eaton, and Kortum (2008)

to all general equilibrium gravity models; as with the elasticities, this system of equations

depends only on observed trade flows and α and β.

Fourth, we examine the empirical properties of general equilibrium gravity models. We

first show under what conditions trade frictions and the equilibrium origin and destination

fixed effects can be recovered from observed trade flows. We then provide two new methods

of estimating the gravity equation that combine the gravity structure of trade flows with

the general equilibrium conditions of the model. First, we show how including factor market

clearing conditions in the estimation allows one to recover the parameters α and β from a

gravity equation as long as one can control for the exogenous income shifter (e.g. by including

proxies for the effective units of labor). Second, we develop a simple method of estimating

the gravity equation when trade costs are quasi-symmetric that respects the balanced trade

condition that is twice as efficient (i.e. has half the asymptotic variance) as the widely used

fixed effects gravity estimator (see e.g. Eaton and Kortum (2002); Waugh (2010)).

The paper is organized as follows. The next section defines the set of general equilibrium

gravity models we are considering. Sections 3-6 present the theoretical results for existence
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and uniqueness, efficiency, comparative statics and counterfactuals, and identification and

estimation, respectively. Throughout these sections, we present a number of theorems and

propositions (the two being distinguished solely by the fact that we found the proofs for

the former more mathematically interesting); for readability, all proofs are relegated to the

appendix. Because of the rather abstract nature of the exercise, in Section 7 we show how

our framework can be applied to a number of seminal gravity trade models and economic

geography models. The paper finishes with a brief conclusion.

2 The General Equilibrium Gravity Model

Consider a world comprised of a set S ≡ {1, ..., N} of locations.2 We define a gravity trade

model as any model which yields an equation of the following type for the value of bilateral

trade flows from i ∈ S to j ∈ S:

Xij = Kijγiδj, (1)

where Xij is the value of bilateral trade flows, γi is an origin fixed effect, δj is a destination

fixed effect, and Kij is bilateral trade friction. The two fixed effects are endogenous model

outcomes; depending on the specification of the model, they may include wages or the

measure of producing firms. The bilateral trade frictions are exogenous and capture the

effects of bilateral trade costs; they could be inverse functions of bilateral distance, various

exporting barriers faced by exporting countries, etc. Whereas we do not take a particular

stand on the model that yields the gravity specification (1), we explain how different models

map to this specification and to our subsequent results below.

We proceed by defining three equilibrium conditions that are sine qua non for modern

general equilibrium gravity models: goods market clearing, trade balance, and factor market

clearing. Let Yi be the total income derived from trade in a location i ∈ S. We say that

goods markets clear if the income for all i ∈ S is equal to the value of the good traded to

other destinations:

Yi =
∑
j∈S

Xij. (2)

The goods market clearing condition is little more than an accounting identity.

We say that trade is balanced if the income for all i ∈ S is equal to the amount spent on

2The choice of a finite number of locations is not necessary for the the results that follow, but it saves on
notation, avoids several thorny technical issues, and is consistent with the majority of the trade literature.
However, it does come at a cost: when there are a continuum of locations, Theorem 3 can be shown to hold
for any set of trade frictions, not just quasi-symmetric trade frictions.
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good purchased from all other destinations:

Yi =
∑
j∈S

Xji. (3)

While balanced trade is a standard equilibrium condition, it is important to note that trade

is not balanced empirically. This empirical discrepancy is an inherent limitation arising

from the use of a static model to explain an empirical phenomenon with dynamic aspects.

However, given both its ubiquity in the literature and the necessarily ad hoc nature of any

alternative assumption (e.g. exogenously trade deficits), balanced trade seems the natural

assumption on which to focus.

We say that factor markets clear if for all i ∈ S the income in the region is equal to a

log-linear function of the origin and destination fixed effects:

Yi = Biγ
α
i δ

β
i , (4)

where α and β are (exogenous) model parameters and Bi > 0 is an (exogenous) country

specific shifter. The factor market clearing condition is analogous to the standard condition

that the income in a location is equal to the income earned by the factors of production

in that location but reformulated in terms of the origin and destination fixed effects of the

gravity equation. This formulation is general enough to incorporate a number of seminal

gravity trade models, e.g. Armington (1969); Anderson (1979); Krugman (1980); Eaton and

Kortum (2002); Melitz (2003). In addition, with a slight modification,3 this formulation also

applies to many prominent economic geography models, e.g. Helpman (1998); Redding and

Sturm (2008); Redding (2012); Allen and Arkolakis (2013). Table 1 shows how to write the

factor market clearing condition in these models (and several others) in terms of equation

(4); in Section 7 we consider several of these models in more detail.

The elasticity of income to the origin and destination fixed effects – which are captured

by parameters α and β, respectively – turn out to be very important in characterizing the

equilibrium properties of a gravity model. As we will see below, they are key determinants

of whether or not an equilibrium is unique and determine how changes to model parameters

affect trade flows and incomes. Figure 1 shows the range of α and β where trade and

economic geography models may lie depending on their own parameter values (e.g. the

elasticity of substitution and the importance of intermediaries). In trade models, when

3In economic geography models equation (4) must be modified to also include an unknown constant λ > 0.
This constant is a a monotonic transformation of welfare which is pinned down in equilibrium by the total
population of the world. The existence and uniqueness results that follow are unaffected by the inclusion of
λ (although additional care must be taken in the proofs); see Section 7.2 for details.
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goods are substitutes, α and β are either both negative (and α ≤ β) or both greater than

one (and α ≥ β). In trade models when goods are complements, α ≥ 1 and β ∈ [0, 1]. These

regions are also inhabited by economic geography models (where the exact location depends

on the preferences and the strength of spillovers). Economic geography models, however,

can also reside in the space where α, β ∈ [0, 1] and β ≥ α (when goods are substitutes) and

α ∈ [0, 1], β ≥ 1 (when goods are complements).

Finally, to choose the numeraire, we normalize world income equal to an arbitrary con-

stant Y W : ∑
i

Yi = Y W . (5)

In what follows, we define a general equilibrium gravity model to be any gravity trade model

such that goods market clears, trade is balanced, factor markets clear, and the normalization

(5) is satisfied.

3 Existence and Uniqueness

In this section, we prove that there exists an equilibrium of any general equilibrium gravity

model and provide conditions for its uniqueness.

Combining gravity (1) with goods market clearing (2) and the generalized labor marking

clearing condition (4) yields:

Biγ
α−1
i δβi =

∑
j

Kijδj (6)

Combining gravity (1) with balanced trade (3) and the generalized labor marking clearing

condition (4) yields:

Biγ
α
i δ

β−1
i =

∑
j

Kjiγj (7)

Define xi ≡ Biγ
α−1
i δβi and yi ≡ Biγ

α
i δ

β−1
i . Then it can be shown that δi = x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

and γi = x
1−β

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i so that for any set of {Bi} ∈ RN

++, {Kij} ∈ RN×N
++ , {α, β} ∈

{R2|α + β 6= 1}, the equilibrium of a general equilibrium gravity model described by Equa-

tions (6) and (7) can be written using the equations

xi =
∑
j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j , (8)
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and

yi =
∑
j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j . (9)

At this point, for given parameters Kij, Bj, β, and α, the system takes the form of a

standard system of non-linear equations. It turns out that this reformulation of the problem

provides a method of solving for the trade equilibrium system using functions that map a

compact space onto itself. This has two advantages over the standard formulation given in

equations Equations (6) and (7): first, by restricting the potential solution space, it facilitates

the calculation of the equilibrium; second, it allows us to generalize results used in the study

of integral equations to prove the following theorem regarding the existence and uniqueness

of general equilibrium gravity models:

Theorem 1. Consider a general equilibrium gravity model. Then:

i) As long as α + β 6= 1, the model has a positive solution and all possible solutions are

positive; and

ii) If α and β are both (weakly) negative or α and β are both (weakly) greater than 1,

then the system has a unique solution.

Proof. See Appendix A.1.

Note that condition (ii) of Theorem 1 provides sufficient conditions for uniqueness; for

certain parameter constellations (e.g. particular geographies of trade costs), equilibria may

be unique even if the conditions are not satisfied. In practice, however, we have found that

there exist multiple equilibrium for particular geographies when condition (ii) is not satisfied;

section 7.3 provides two examples.

It turns out that we can extend the range in which uniqueness is guaranteed if we constrain

our analysis to a particular class of trade frictions which are the focus of a large empirical

literature on estimating gravity trade models. We call these trade frictions quasi-symmetric.

Definition 1. Quasi Symmetry: We say the trade frictions matrix K is quasi-symmetric if

there exists a symmetric N ×N matrix K̃ (i.e. for all i, j ∈ S we have K̃ij = K̃ji) and N × 1

vectors KA and KB such that for all i, j ∈ S we have:

Kij = K̃ijK
A
i K

B
j .

Loosely speaking, quasi-symmetric trade frictions are those that are reducible to a sym-

metric component and an origin- and destination-specific component. While restrictive, it is

important to note that the vast majority of papers which estimate gravity equations assume

that trade frictions are quasi-symmetric; for example Eaton and Kortum (2002) and Waugh
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(2010) assume that trade costs are composed by a symmetric component that depends on

bilateral distance and on a destination or origin fixed effect.

When trade frictions are quasi-symmetric we can show that the system of equations (8)

and (9) can be dramatically simplified, and the uniqueness more sharply characterized.

Theorem 2. Consider any general equilibrium gravity model with quasi-symmetric trade

costs. Then:

i) The balanced trade condition alone implies that the fixed effects that are equal up to

scale, i.e.

γiK
A
i = κδiK

B
i

for some κ > 0 that is part of the solution of the equilibrium.

ii) If α and β satisfy

α + β ≤ 0 or α + β ≥ 2 (10)

the model has a unique positive solution.

Proof. See Appendix A.2.

Part i) of the Theorem 2 is particularly useful since it allows to simplify the equilibrium

system (8)-(9) into a single non-linear equation:

xi = κ
1−α

α+β−1

∑
j

K̃i,jK
A
i K

B
j B

1
1−α−β
j

(
KB
i

KA
i

) 1−α
α+β−1

x
1

α+β−1

j (11)

In addition, because the origin and destination fixed effects in gravity models will (generally)

be composites of exogenous and endogenous variables, by showing that the two fixed effects

are equal up to scale, Theorem 2 provides a more precise analytical characterization of the

equilibrium. We should note that the results of Theorem 2 has already been used in the

literature for particular models, albeit implicitly. The most prominent example is Anderson

and Van Wincoop (2003), who use the result to show the bilateral resistance is equal to

the price index. The result is also used by Allen and Arkolakis (2013) to simplify a set on

non-linear integral equations into a single integral equation. To our knowledge, Head and

Mayer (2013) are the first to recognize the importance of balanced trade and market clearing

in generating the result for the Armington model; however, Theorem 2 shows that the result

applies more generally to any gravity equation with quasi-symmetrical trade costs.

One might wonder if the conditions for uniqueness given in Theorem 2 also hold for

non-quasi symmetric trade costs. The answer is no: for certain parameter constellations,

there exist multiple equilibria when trade costs are sufficiently asymmetric but only a single

equilibrium if trade costs are quasi-symmetric. Section 7.3.2 provides an example.
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Figure 2 illustrates the range of α and β for which uniqueness of model can be guaranteed.

It should be noted that while most of the examination of existence and uniqueness of trade

equilibria has proceeded on a model-by-model case, the gross substitute methodology used by

Alvarez and Lucas (2007) has proven enormously helpful in establishing conditions for exis-

tence and uniqueness. It can be shown (see Online Appendix B.3) that the gross-substitutes

methodology works only when α ≤ 0 and β ≤ 0; hence, the tools used in Theorems 1 and 2

extend the range of trade models for which uniqueness can be proven. As we discuss below

in Section 7, examples of trade models which Theorems 1 and 2 guarantee existence and

uniqueness (that cannot be addressed using the gross substitute methodology) include trade

models with intermediate inputs where the share of labor in the production function is less

than 1
σ
, trade models with elasticities of substitution σ < 1, and trade models with labor

mobility.

4 Efficiency

In this section, we examine the efficiency properties of gravity trade equilibria. There has

been much work on the efficiency of trade equilibria (e.g. Dixit and Norman (1980); Helpman

and Krugman (1985); Dhingra and Morrow (2012)); to our knowledge, however, there does

not exist an efficiency proof that is sufficiently general to include any general equilibrium

gravity model. In this section, we provide such a proof. To do so, we borrow a key in-

sight from the study of integral equations: oftentimes integral equations can be equivalently

considered as the solutions to “dual” maximization problems.4 In our particular system of

integral equations defined by equations (8) and (9), when trade costs are quasi-symmetric

and the sufficient conditions for uniqueness of the equilibria are satisfied, we show the equilib-

rium of the gravity model can be equivalently interpreted as the set of origin and destination

fixed effects that maximizes world income subject to a factor market clearing constraint, i.e.

the equilibrium of the gravity model maximizes world income. Furthermore, if welfare is in-

creasing in trade openness, maximizing world income is equivalent to maximizing a weighted

average of a positive monotonic transform of country’s welfare, i.e. the equilibrium of the

gravity model is Pareto efficient.5 We formalize these results in the following theorem:

Theorem 3. Consider any general equilibrium gravity model with quasi-symmetric trade

costs. If condition (ii) of Theorem 2 is satisfied (which guarantees uniqueness), then:

4A simple example is that the eigenvalues of the system λx = Ax solve the maximization problem
maxx∈{RN |xT x=1} x

TAx. This dual approach has also been used previously in the international trade litera-
ture, see e.g. Dixit and Norman (1980); Costinot (2009) .

5This is not necessarily true for economic geography models in which labor is mobile, a result which we
are exploring in ongoing research.
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(1) The general equilibrium gravity model maximizes world income subject to trade being

balanced and the aggregate factor markets clearing; and

(2) If for all i ∈ S, welfare can be written as a log linear function of the share of income:

Wi = CW
i λ

−ρ
ii , (12)

where CW
i > 0 and ρ > 0 are constants, then there exists a set of weights ωi > 0,

∑
i∈S ωi = 1

and a constant η > 0 such that the trade equilibrium maximizes a weighted average of the

following positive monotonic transform of welfare:

W =

(∑
i∈S

ωiW
η
ρ

i

) 1
η

,

i.e. the general equilibrium trade model is Pareto efficient.

Proof. See Appendix A.3.

Note that Arkolakis, Costinot, and Rodŕıguez-Clare (2012) show that for a large class of

trade models, the welfare of a country can be written solely as an increasing function of its

openness to trade and an exogenous parameter, i.e. the equation (12) holds.

5 Comparative Statics

In this section, we consider how changes in model fundamentals affect trade flows and income.

We first consider infinitesimal changes and derive an expression that yields the elasticities

of all origin and destination fixed effects to all bilateral trade frictions that depends only on

observed trade flows and the elasticities α and β. We then derive a system of equations that

show how arbitrary changes to the trade friction matrix affect trade flows that also depend

only on observed trade flows and the elasticities α and β.

5.1 Local Comparative Statics

Consider an infinitesimal change in any bilateral trade friction Kij; how does this affect

equilibrium trade flows and incomes? The following proposition provides a simple analytical

expression for the elasticity of any origin or destination fixed effects to any change in bilateral

trade frictions:
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Proposition 1. Consider any general equilibrium gravity model where condition (ii) of The-

orem 1 is satisfied. Define the 2N × 2N matrix A ≡

(
(α− 1)Y βY −X
αY −XT (β − 1)Y

)+

, where the

“+” denotes the Moore-Penrose pseudo-inverse, Y is an N×N diagonal income matrix whose

ith diagonal element is Yi and X is the N × N trade flow matrix whose 〈i, j〉th element is

Xij. Then:

∂ ln γl
∂ lnKij

= Xij × (Al,i + AN+l,j)− c and
∂ ln δl
∂ lnKij

= Xij × (AN+l,i + Al,j)− c, (13)

where Akl is the 〈k, l〉th element of A and c is a scalar6 that ensures the normalization∑
iBiγ

α
i δ

β
i = Y W holds.

Proof. See Appendix A.4.

We should note that the choice of the constant c (and hence the elasticities) will depend

on the normalization chosen: for example, the alternative normalization that γ1 = 1 implies
∂ ln γ1
∂ lnKij

= 0, so that c = Xij × (A1,i + AN+1,j).

Because trade flows and country income are functions of the origin and destination fixed

effects, Proposition 1 can be applied to determine how changing the trade costs from i to j

affects trade flows between any other bilateral trade pair k and l:

∂ lnXkl

∂ lnKij

=
∂ ln γk
∂ lnKij

+
∂ ln δl
∂ lnKij

= Xij × (Ak,i + AN+k,j + AN+l,i + Al,j)− 2c.

Similarly, Proposition 1 can be applied to determine how changing the trade costs from i to

j affects income in any country l:

∂ lnYl
∂ lnKij

= α
∂ ln γl
∂ lnKij

+ β
∂ ln δl
∂ lnKij

= Xij × (α (Al,i + AN+l,j) + β (AN+l,i + Al,j))− (α + β) c.

If welfare can be written as in equation (12), then we can also determine the elasticity of

welfare in any country l to any change in trade costs from i to j:

∂ lnWl

∂ lnKij

= Xij × ρ ((α− 1) (Al,i + AN+l,j) + (β − 1) (AN+l,i + Al,j))− ρ (α + β − 2) c

Hence, apart from a choice of α and β, there is no need to specify (let alone solve) a gravity

model in order to calculate how, for example, a small reduction in trade costs between the

U.S. and China would affect income in Vietnam or trade flows between Chile and Germany:

6In particular, c ≡ 1
(α+β)YW Xij

∑
l Yl (α (Al,i +AN+l,j) + β (AN+l,i +Al,j)).
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all that one needs to observe is trade flows.

5.2 Global Comparative Statics

Now consider how an arbitrary change in the trade friction matrix K affects bilateral trade

flows. The following proposition, which generalizes the results of Dekle, Eaton, and Kortum

(2008) for all general equilibrium gravity trade models, provides an analytical expression

relating the change in the origin and destination fixed effects to the change in trade frictions

and the initial exporting and importing shares:

Proposition 2. Consider any general equilibrium gravity model where condition (ii) of Theo-

rem 1 is satisfied. Consider any change in the trade friction K̂ij. Then the percentage change

in the fixed effects, γi, δi can be computed as the unique solution of the following system:

γ̂α−1i δ̂βi =
∑
j

πijK̂ij δ̂j and γ̂αi δ̂
β−1
i =

∑
j

λijK̂jiγ̂j (14)

where πij = Xij/
∑

j Xij represents the exporting shares and λij = Xij/
∑

iXij represents

the import shares.

Proof. See Appendix A.6.

Since equation (14) only depend on trade data and parameters α and β the proposition

tells us that for any given change in variable trade costs, all the gravity trade models with

the same α and β must imply the same change in the fixed effects γi and δi. This in turn

implies that for any change in trade costs, all gravity models sharing the same α and β will

imply the same change in trade flows (and hence trade shares) when calibrated to the same

initial trade shares. If welfare can be written as in equation (12), the change in country and

global welfare will also be the same.

This proposition characterizes the comparative statics for a wide class of gravity trade

models. In the case where β = 0, it can be shown (see Online Appendix B.4) that the

comparative statics can be characterized using import shares alone. This special case (and

its welfare implications) is discussed in Proposition 2 of Arkolakis, Costinot, and Rodŕıguez-

Clare (2012).

6 Identification and Estimation

Our final contribution is to examine how the general equilibrium conditions of gravity trade

models facilitate the empirical analysis of trade flows. We first show the extent to which
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trade frictions can be recovered from observed trade flows. We then show how to use the

factor market clearing condition to identify the trade elasticities α and β if proxies for the

trade frictions and exogenous income shifters are observed. We finally present a simple

variant of the standard fixed effects method of estimating the gravity equation which both

improves the asymptotic efficiency of the estimator and ensures the balanced trade condition

is satisfied.

6.1 Identification of trade frictions and origin and destination

fixed effects

Suppose that we observe trade flows {Xij} and model parameters {Bi}, α, and β. Can we

identify the trade frictions {Kij} and origin and destination fixed effects {γi} and {δi}?
It is important to note that the model can only rationalize observed trade flows where

goods market clearing and balanced trade holds; that is, by definition, there does not exist

a set of trade frictions for which there exists a trade equilibrium that generates trade flows

where these two equilibrium conditions do not hold. Define the set of feasible trade flows

that satisfy balanced trade and goods market clearing to be Ξ.7 The following proposition

summarizes the extent to which trade frictions and origin and destination fixed effects can

be identified from observed trade flows:

Proposition 3. For any set of observed trade flows {Xij} ∈ Ξ and parameters {Bi} , α

and β, there exists a unique set of relative trade frictions

{
Kij

(Kβ
ii/K

α
jj)

1
α−β

}
and origin and

destination fixed effects

{
γi

K

β
α−β
ii

}
and

{
δi

K
α

β−α
ii

}
that are consistent with a trade equilibrium,

which can be written solely as a function of observables:

γi

K
β

α−β
ii

=

(∑
j Xij

Bi

) 1
α−β

X
β

β−α
ii ,

δi

K
α

β−α
ii

= X
α

α−β
ii

(∑
j Xij

Bi

) 1
β−α

, and

Kij(
Kβ
ii/K

α
jj

) 1
α−β

= Xij ×

(∑
kXjk∑
kXik

× Bi

Bj

× Xβ
ii

Xα
jj

) 1
α−β

.

Proof. See Appendix A.5.

7Specifically, Ξ ≡
{
{Xij} ∈ RN×N++ |

∑
j∈S Xij =

∑
j∈S Xji∀i ∈ S

}
.
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Note that Proposition 3 implies that if we assume trade with ones own country is costless,

i.e. Kii = 1 for all i ∈ S, then {Kij}, {γi} and {δi} are all uniquely identified. If α = 0, then

{KijKii} , {γiKii}, and {δi} are uniquely identified. Conversely, if β = 0, then {KijKjj},
{γi}, and {δiKii} are uniquely is identified. Intuitively, the reason that we can only identify

Kij when Kii = 1 for all i ∈ S is that it is only possible to identify the cost of trading with

other countries relative to the cost of trading at home. Loosely speaking, this is because

changes in the overall level of trade flows can be captured equally well by a change in the

overall level of trade costs or the overall level of the origin and destination fixed effects.

A related procedure for identification of bilateral trade frictions from trade flows using

the full structure of a general equilibrium trade model has been described by Burstein and

Vogel (2012) and Arkolakis, Ramondo, Rodŕıguez-Clare, and Yeaple (2013), in parameterized

setups that are closely related to the class of general equilibrium gravity trade model that

we discuss. Our derivations show that there is formal mapping between bilateral data on

trade flows and trade frictions that holds for any gravity model.8

6.2 Identification of trade elasticities α and β

In this subsection, we show that one can use the generalized labor market clearing condition

in conjunction with the gravity structure to identify the trade elasticity parameters α and

β.

Consider any gravity trade model where the generalized labor market clearing condition

(4) holds, i.e.:

Xij = Kijγiδj and Yi = Biγ
α
i δ

β
i ,

where we assume that for all i ∈ {1, ..., N}, Kii = 1. Suppose that the econometrician

observes bilateral trade flows {Xij}, income {Yi}, and proxies for the bilateral trade frictions

and the exogenous income shifters {Bi}, but does not observe the trade elasticities α and

β. Is it possible for the econometrician to identify α and β? As is well known (see e.g.

Anderson and Van Wincoop (2004)), the trade elasticities cannot be identified solely from

the gravity structure of trade flows: for example, the coefficient of distance in a gravity

equation captures both the effect of distance on trade costs and the elasticity of trade to the

trade cost. However, it turns out that incorporating the generalized labor market clearing

8These results also provide a formal underpinning to the results of Eaton, Kortum, Neiman, and Romalis
(2011). They describe a calibration procedure using the gravity setup of Eaton and Kortum (2002) whereas
changes in the trade frictions can be inverted from the data using data on bilateral trade flows. We formally
show that this inversion is unique not only for changes but also for levels of bilateral trade flows and holds
for any gravity trade model. Note that Eaton, Kortum, Neiman, and Romalis (2011) use also price data to
identify the changes in the productivity parameters that correspond to Bi in our notation.
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condition allows for the identification of α and β.

To see this, note that rearranging the generalized labor market clearing condition implies

the following relationship between the origin and destination fixed effects:

γi =

(
Yi
Bi

) 1
α

δ
− β
α

i . (15)

From the gravity structure of trade flows and using the fact that Kii = 1, we can write the

destination fixed effect solely as a function of own trade flows, income, and the income shifter

Bi, all of which are observed (although possibly with error):

δi = X
α

α−β
ii

(
Bi

Yi

) 1
α−β

. (16)

Combining equations (15) and (16), we can write the origin fixed effect solely as a function

of observables as well:

γi =

(
Yi
Bi

) 1
α−β

X
β

β−α
ii (17)

Finally, substituting equations (16) and (17) back into the gravity equation lets us write the

following log linear relationship between bilateral trade flows and observables:

ln
Xij

Xii

= lnKij +

(
1

α− β

)
ln

(
Yi
Bi

/
Yj
Bj

)
+

(
α

α− β

)
ln
Xjj

Xii

. (18)

Recall that we assumed the econometrician observes proxies for bilateral trade frictions Kij

and the exogenous income shifter Bi; for simplicity, let us assume these proxies are related

log linearly to the model parameters:

lnKij = µK lnZK
ij + εKij

lnBi = µB lnZB
i + εBi

so that equation (18) becomes:

ln
Xij

Xii

= µK lnZK
ij +

(
1

α− β

)
ln
Yi
Yj

+

(
µB

α− β

)
ln
ZB
j

ZB
i

+

(
α

α− β

)
ln
Xjj

Xii

+ εij, (19)

where εij ≡ εKij +
(

1
α−β

) (
εBj − εBi

)
. Hence, α and β can be identified by comparing the

estimated coefficients of ln Yi
Yj

and ln
Xjj
Xii

.

We illustrate the estimation procedure for the Armington model (both with and without
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intermediates) in Section 7.1.

6.3 Estimation with balanced trade

We now consider how imposing the balanced trade condition affects the estimation of the

gravity equation when trade costs are quasi-symmetric. Suppose that the econometrician

observes bilateral trade flows Xij with log-additive measurement error εij and is interested

in estimating the origin and destination fixed effects {γi} and {δi}. For simplicity, suppose

too that the econometrician observes trade frictions Kij. As a result, trade flows can be

written as:

lnXij = lnKij + ln γi + ln δj + εij. (20)

Since Anderson and Van Wincoop (2003), the most common way to estimate ln γi and ln δj is

via ordinary least squares with origin and destination fixed effects (see e.g. Head and Mayer

(2013)). We refer to this as the “traditional” estimator. However, this procedure relies

only on the gravity structure of the trade model without imposing the general equilibrium

conditions, in particular that trade is balanced. From part (i) of Theorem 2, however, we

know that when trade costs are quasi-symmetric, we have that γiK
A
i = κδiK

B
i . This implies

that equation (20) can be written as:

lnXij = lnKij + lnKA
i γi + lnKA

j γj − lnκ+ εij. (21)

Equation (21) says that the gravity regression respecting balanced trade should include a

single fixed effect for each country :

lnXij = lnKij + zi + zj + εij, (22)

which we refer to as the “balanced trade gravity estimator.” The origin and destination fixed

effects can be identified (up to scale) from regression (22) as follows:

γ̂i =
exp (ẑi)

KA
i

and δ̂i =
exp (ẑi)

KB
i

.

Furthermore, if we suppose that for all i, j ∈ S, the variance of the idiosyncratic measurement

error is constant, i.e. E
[
ε2ij
]

= σ, we can compare the asymptotic variance of the two

estimators. A straightforward application of the central limit theorem yields an asymptotic

variance of σ2 for the traditional estimator, whereas the balanced trade gravity estimator has

an asymptotic variance of 1
2
σ2, i.e. the general equilibrium consistent gravity estimator is

twice as precise (simply because there are only half the number of fixed effects to estimate).
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7 Examples

Below, we study parametrized variations of the main gravity setup. In particular, we charac-

terize the equilibrium in the perfect competition Armington (1969) setup considered by An-

derson (1979), with and without intermediate inputs, and with labor mobility and spillovers

in the setup considered by Allen and Arkolakis (2013). Table 1 summarizes how the universal

gravity framework can be applied to many additional models as well. Finally, we provide

examples of multiple equilibria for two simple geographies.

7.1 The Armington Model

In the Armington model, each location produces a differentiated variety (which is sold at

marginal cost) and consumers have CES preferences with elasticity of substitution σ and

where we denote by P (i) the CES price index across all varieties. It is easy to solve for

bilateral trade flows in this model and the value of trade between i ∈ S and j ∈ S is:

Xij = τ 1−σij

(
wi
Ai

)1−σ

P σ−1
j Yj (23)

where wi is location’s i wage, Ai is the location’s productivity and the marginal production

cost is wi
Ai

, τ ij is the iceberg cost of delivering i’s good in destination j, and Yi is again its

income.

Income is determined by labor market clearing:

Yi = wiLi (24)

where Li is the population in location i. Note that the labor market clearing condition can

be written as:

Yi = γ
1

1−σ
i AiLi, (25)

which is the factor market clearing condition (4) where α = 1
1−σ , β = 0, and Bi = AiLi.

In general, Theorem 1 implies that there is a unique solution of the system as long as

σ > 1. From part (ii) of Theorem 2, in the case of quasi-symmetry the uniqueness region

expands to σ ≥ 1/2. Thus, it is possible that we have multiplicity when σ < 1 and trade

costs are not quasi-symmetric, or in general, for σ < 1/2.

In addition, because wages are a function solely of the origin fixed effect and the pro-

ductivity, i.e. wi = γ
1

1−σ
i Ai, the existence of a unique set of origin and destination fixed

effects implies the existence and uniqueness of the set of wages. Note that this also explains

why we normalize
∑

iwiLi = Y W , as it is straightforward to show that the equilibrium is
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homogeneous of degree zero in wages. (In contrast, since factor market clearing and balanced

trade imply δi = wiLi∑
j τ

1−σ
ji Aσ−1

j w1−σ
j

, note that we cannot normalize δi, since its scale is pinned

down by the normalization of γi).

7.1.1 Quasi-symmetric trade costs

When trade costs are quasi-symmetric, the equilibrium of the model can be further charac-

terized. From part (i) of Theorem 2, we have γi = κδi, which implies:

κKA
i

(
wi
Ai

)1−σ

= KB
i P

σ−1
i Yi.

This can be rewritten to express welfare as a function of wages and model parameters, using

the balanced budget condition Yi = wiLi :

κW σ−1
i =

KB
i

KA
i

w2σ−1
i LiA

1−σ
i . (26)

We can also provide a characterization of the welfare in the Armington model using

the results of Theorem 1. In particular, we can re-write equation substitute equation (26)

into the trade balance equation to derive a set of equations that characterize welfare across

locations:

κW σσ̃
i Lσ̃i =

∑
j

τ 1−σij A
(σ−1)σ̃
i Aσσ̃j L

σ̃
jW

−(σ−1)σ̃
j , (27)

where σ̃ ≡ σ−1
2σ−1 . This equation reveals the fundamental forces acting upon the welfare of

each country: As long as σ ≥ 1/2 increased access into foreign markets (lower τij) tends to

increase the welfare of a worker i as is larger productivities anywhere in the world, either

domestic because they increase the ability of i to export or for any destination country

because they increase the demand for i′s goods. An increase in the domestic population in

principle may decrease welfare but an increase in the foreign population typically expands

domestic demand. Note too that equation (27) holds for both trade models (where labor

is fixed) and economic geography models (where labor is mobile); in the former case, Li

is treated as exogenous parameter and Wi solved for; in the latter case Li is treated as

endogenous and Wi is assumed to be constant across locations.

7.1.2 Estimation of the trade elasticity in an Armington model

This section shows how one would estimate the trade elasticity in an Armington model using

the methodology of Section 6.2. By combining the gravity structure of the Armington model
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with the factor market clearing condition wiLi = Yi, it is straightforward to show that:

Xij

Xii

= τ 1−σij ×
((

Yi
AiLi

)
/

(
Yj
AjLj

))1−σ

×
(
Xjj

Xii

)
,

which if proxies for Ai, Li, and τij are observed (i.e. lnAi = µA lnZA
i +εAi , lnLi = µL lnZL

i +

εLi and ln τij = µτ lnZτ
ij + ετij, where the Z’s are observables) yields the following estimating

equation:

ln

(
Xij

Xjj

)
= (1− σ)µτ lnZτ

ij+(1− σ) ln

(
Yi
Yj

)
+(1− σ)µA ln

(
ZA
j

ZA
i

)
+(1− σ)µL ln

(
ZL
j

ZL
i

)
+εij,

where εij ≡ (1− σ)
(
ετij + εLj + εAj − εLi − εAi

)
. Hence, the elasticity of trade can be identified

from the coefficient on ln
(
Yi
Yj

)
, which then in turn allows us to identify

{
µτ , µA, µL

}
.

7.1.3 Intermediate Inputs

Suppose now that we introduce intermediate inputs a la Eaton and Kortum (2002), so that

the marginal production cost of is
wγi P

1−γ
i

Ai
. Then the origin and destination fixed effects

become:

γi ≡
(
wγi P

1−γ
i

Ai

)1−σ

δi ≡ P σ−1
i Yi,

which allows us to write the factor market clearing condition in the form of equation (4):

Yi = γ
1

1−σγ
i δ

1−γ
1−σγ
i A

σ−1
σγ−1

i L
γ(σ−1)
σγ−1

i ,

so that α = 1
1−σγ , β = 1−γ

1−σγ , and Bi = A
σ−1
σγ−1

i L
γ(σ−1)
σγ−1

i . From Theorem 1, there exists a unique

origin and destination fixed effect if σ ≥ 1. When trade costs are quasi-symmetric, from

Theorem 2, there exists a unique origin and destination fixed effects if σ ≥ 1/2.

With intermediate inputs, we can write the gravity equation as:

Xij

Xii

= τ 1−σij ×

 Yi

A
1−σ
1−σγ
i L

γ(1−σ)
1−γσ
i

/
Yj

A
1−σ
1−σγ
j L

γ(1−σ)
1−γσ
j


1−σγ
γ

×
(
Xjj

Xii

) 1
γ

,

which if lnAi = µA lnZA
i + εAi , lnLi = µL lnZL

i + εLi and ln τij = µτ lnZτ
ij + ετij, yields the
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following estimating equation:

ln

(
Xij

Xii

)
= (1− σ)µτ lnZτ

ij +

(
1− σγ
γ

)
ln

(
Yi
Yj

)
+

1

γ
ln

(
Xjj

Xii

)
+(

1− σ
1− σγ

)
µA ln

ZA
j

ZA
i

+

(
γ (1− σ)

1− γσ

)
µL ln

ZL
j

ZL
i

+ εij,

where εij ≡ (1− σ) ετij +
(

1−σ
1−σγ

) (
εAj − εAi

)
+
(
γ(1−σ)
1−γσ

) (
εLj − εLi

)
. Notice that the coefficients

on ln
(
Yi
Yj

)
and ln

(
Xjj
Xii

)
depend only on γ and σ, so that the two can be separately identified.

One can show directly that the Eaton and Kortum (2002) model of Ricardian compar-

ative advantage maps to the Armington framework, and the two models generate the same

predictions for trade flows as long as we set σ − 1 in the Armington model equal to the

elasticity of the Frechet distribution, θ, in the Eaton and Kortum framework. The Frechet

elasticity is restricted to be positive, which directly implies that there is always a unique

equilibrium in the Eaton and Kortum framework.

7.2 Economic Geography Models

In this subsection, we examine the economic geography model considered by Allen and

Arkolakis (2013), which is itself isomorphic to a number of seminal economic geography

models (e.g. Roback (1982); Helpman (1998); Redding and Sturm (2008); Redding (2012)).

7.2.1 Setup

The model is based on an Armington model, labor mobility, and both productivity and

amenity spillovers, and yields trade flows:

Xij = τ 1−σij Aσ−1i L
a(σ−1)
i w1−σ

i P σ−1
j Yj,

where a is a parameter governing the strength of productivity spillovers. Labor is the only

factor of production and markets are perfectly competitive, so income in location i can be

written as wiLi = Yi. Because workers are perfectly mobile, welfare is equalized across

locations, which implies wi
Pi
Lbi = W, where b is a parameter governing the strength of amenity

spillovers. Finally, the total population in the world is set exogenously to L̄, so that
∑

i Li =

L̄.

Combining the gravity formulation with the factor market clearing condition and the

welfare equalization condition yields the following expression for trade flows in the universal
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gravity notation:

Xij = λKijγiδj,

where Kij ≡ τ 1−σij , γi ≡ Aσ−1i w1−σ
i L

a(σ−1)
i , δj ≡ wσj L

1+(σ−1)b
j , and λ = W 1−σ. Substituting

the expressions for γi and δi into the factor market clearing condition allows us to write

income in the form of equation (4):

Yi = λBiγ
α
i δ

β
i ,

where Bi = A
1+(σ−1)b−σ
1+aσ+(σ−1)b

i , α = 1−b
1+aσ+(σ−1)b and β = 1+a

1+aσ+(σ−1)b . Note that this framework is

identical to the framework considered above, apart from the inclusion of an (endongeous)

constant λ > 0, which is a monotonic transformation of welfare.

7.2.2 Existence and Uniqueness

Even though the geography models contain an unknown constant determined in equilibrium,

we can obtain similar results to one we get in gravity models. As we did in trade models,

the system is written as follows:

xi = λ1−β
∑
j

Ki,jB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

yi = λ1−β
∑
j

Kj,iB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j .

where the welfare level can be pinned down by the aggregate labor market clearing condition:

λ = W 1−σ =

∑
iA
−σ
i B

1
1−α−β

2σ−1
σ−1

i x
1

α+β−1(α+(1−β) σ
σ−1)

i y
1

α+β−1(1−α+β σ
σ−1)

i(
L̄
)1+aσ+(σ−1)b .

Proposition 4. Consider a general equilibrium geography model. Then:

i) The model has a positive solution and all possible solutions are positive.

ii) If α and β are both negative or α and β are both greater than 1, then the system has

an unique solution up to scale.

Proof. The proof is very similar to that of Theorem 1, with some additional work to account

for the presence of λ. See Appendix A.7.

Applying Proposition 4, it can be shown that if σ ≥ 1 and α, β ∈ [−1, 1], there exists a

unique set of equilibrium origin and destination fixed effects if a + β ≤ 0. This extends the

range of uniqueness beyond those proven by Allen and Arkolakis (2013), who only consider
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the cases where there are no spillovers a = b = 0 (so that α = β = 1) or where trade costs

are symmetric.

Given the origin and destination fixed effects, we can solve for wages and population:

Li =
(
W σ−1A−σi δiγ

σ
σ−1

i

) 1
1+aσ+(σ−1)b

wi =

(
W

a(σ−1)
1+(σ−1)bAiγ

1
1−σ
i δ

a
1+(σ−1)b

i

) 1+(σ−1)b
1+aσ+(σ−1)b

Hence, Proposition 4 shows there exists a unique set of wages, population, and welfare

consistent with the economic geography model.

7.3 Examples of multiple equilibria

We now consider two trade models with simple geographies to provide examples of the

possibility of multiple equilibria.

7.3.1 Armington Model with two countries

Consider an Armington model with two countries. Note that with two countries, all trade

costs are quasi-symmetric. We first provide an analytical characterization of the relative

welfare in the two regions and then provide an example of multiple equilibria.

To study the two countries case we define the Kernel Mij = τ 1−σij L−σ̃i A
(σ−1)σ̃
i Aσσ̃j L

σ̃
j .

Our analysis will proceed by discussing the equilibrium levels of welfare but wages can be

computed using equation (26). Solving for the trade balance of the two countries and dividing

we directly obtain a non-linear equation in the relative welfares of the two countries

M22

(
W 1

W 2

)σσ̃
−M11

(
W 1

W 2

)(1−σ)σ̃

+M21

(
W 1

W 2

)σ̃
= M12 (28)

It is easy to show that there is a unique solution of this nonlinear equation if σ > 1/2, which

is consistent with Theorem 2. In addition, we can directly show using the implicit function

theorem that the relative welfare of country 1 to country 2 increases with M11, M12, and

decreases with M21, M22, i.e. country 1 becomes relatively richer if either its productivity

increases favorably compared to country’s 2 productivity or it faces a relative reduction in

its trade costs to selling to 2 versus the corresponding trade costs of country 2 selling to

country 1.

A particularly interesting region of parameters to study is that of low elasticities of sub-

stitution, σ < 1/2, a case where multiple equilibria may arise as we discussed in Section 3.
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In our numerical solutions of the equilibrium we find that multiple equilibria arise for reason-

able parameter configurations. In particular, with symmetric countries and M21 = M22 = 0.5

when we set σ = .25 we obtain three possible equilibria. The first equilibrium is the sym-

metric, where wages and welfare are equal across countries. The other two equilibria are

asymmetric where, despite the ex-ante symmetry in fundamental parameters, wages and

welfare are higher in one country to the expense of the other, the more so the lower the

elasticity of substitution. The intuition for this result is that with goods that are strong

complements a country might be able to have relatively higher wage and still be very suc-

cessful in exporting because a large share of the other country’s spending is allocated to

imported goods. Thus, with strong complementarities and under certain parameter con-

figurations there exists two more equilibria where both terms of trade -relative wages- and

exporting is in favor of one country resulting in large welfare differentials.

7.3.2 Multiple equilibria arising from trade cost asymmetry

We now provide an example of multiple equilibria that arises from the asymmetry of trade

costs, i.e. an equilibria that would be unique if trade costs were quasi-symmetric. Because

trade costs are always quasi-symmetric when there are two countries, we consider an Arm-

ington model with three countries. Suppose that the elasticity of substitution is one half,

i.e. σ = 1
2

and the share of labor and intermediates are both 1
2
, i.e. γ = 1

2
. In the universal

gravity framework (see Section 7.1.3) this implies that α = 4
3

and β = 2
3
. Because α+β = 2,

Theorem 2 implies that if K is quasi-symmetric, then the equilibria is unique.

Consider instead the following matrix of trade frictions, which is not quasi symmetric:

K =

1 .0191 .0116

.1 1 .1

.1 .1 1

 .
With these trade frictions, countries 2 and 3 have symmetric trade costs, but country 1 faces

much lower costs exporting to countries 2 and 3 than importing from 2 and 3. In this case,

it can be shown that there exist multiple equilibria: equilibria exist in which country 2 and

country 3 have the same price index, country 2 has a higher price index than country 3,

and vice versa. Loosely speaking, since goods are complements and there are intermediate

inputs, it is possible for either country 2 or country 3 to be the larger producer, despite the

small differences in trade frictions from country 1 to both countries. This example shows

that sufficiently asymmetric trade costs may result in multiple equilibria when uniqueness is
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guaranteed for quasi-symmetric trade costs.

8 Conclusion

Despite the empirical importance of gravity trade models, little is known about their theo-

retical and empirical properties which hold universally, i.e. regardless of the micro-economic

foundation of the model. In this paper, we have established a number of properties that hold

for any gravity trade model where goods and factor markets clear and trade is balanced. In

particular, we have shown that the equilibrium exists and provided conditions for when it is

unique and efficient. We have also derived analytical expressions that allow one to determine

how changing any bilateral trade friction affects trade flows and incomes worldwide. Finally,

we have developed new methods of bringing the gravity model to the data which are more

consistent with the general equilibrium conditions.

These universal properties of gravity trade models have highlighted the importance of the

relationship between the gravity structure and the factor market clearing condition. Indeed,

once this relationship is known – and we provide a method of estimating it – much of the

insight yielded by gravity trade models (e.g. for determining counterfactual incomes and

trade flows) can be accomplished without specifying any particular trade model. This paper

hence contributes to a growing literature emphasizing that the micro-economic foundations

are not particularly important for determining a trade model’s macro-economic implications.

The major limitation with the set of gravity models considered in this paper is that in

reality trade is not balanced. We see this limitation arising as a result of the static nature of

such gravity models, and look forward to future research incorporating the gravity structure

into dynamic models of trade.
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Tables and Figures

Figure 1: Gravity models and their locations in (α, β) space

Notes : This figure shows the regions in (α, β) space which correspond to different types of
gravity trade models. Economic geography models where labor is mobile are represented
in blue; regions which correspond to economic geography models and trade models (where
labor is fixed) are in purple. Models in which goods are substitutes (e.g. the elasticity of
substitution is greater than one) are represented by dark colors; models in which goods are
complements (e.g. the elasticity of substitution is between zero and one) are represented by
light colors.
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Figure 2: Existence and Uniqueness

Notes : This figure shows the regions in (α, β) space for which the gravity equilibrium is
unique generally and the when trade frictions are quasi-symmetric.
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A Proofs

A.1 Proof of Theorem 1

The proof of Theorem 1 proceeds in four parts. In the first part, we consider a general math-

ematical structure, for which the general equilibrium gravity model (defined by equations

(8) and (9)) is a special case. In the second part, we prove a lemma that will allow us to

convert the general mathematical result to the particular case of the gravity trade model. In

the third and fourth parts, we show how the general mathematical result can be applied to

the trade model to prove existence and uniqueness, respectively.

A.1.1 The general case

Lemma 1. Consider the following system of non-linear equations; for all i ∈ S,

xi =

∑
j Fi,jx

a
jy

b
j∑

i,j Fi,jx
a
jy

b
j

(29)

yi =

∑
j Hijx

c
jy
d
j∑

i,j Hijxcjy
d
j

, (30)

for some a, b, c, d ∈ R, Cx, Cy ∈ R++ and matrices F,H with all elements non-negative and

the diagonal strictly positive (i.e. for all i ∈ {1, ..., N}, Fi > 0 and H i > 0). Then the

system has a positive solution x, y ∈ RS
+ and all its possible solutions are positive.

Proof. We use the following fixed point theorem to show the existence.

Theorem [Schauder’s fixed point] Suppose that D ⊂ V , where V is a topological vector

space. If a continuous function f : D → D satisfies the condition that f (D) is a compact

subset of D, then there exists x ∈ D such that f (x) = x.

To apply the theorem, we have to find a proper subset D of R2S such that D satisfies the

condition in theorem 1.

Now consider the system (29)(30). We define the set Γ as

Γ =
{

(x, y) ∈ ∆
(
RS
)
×∆

(
RS
)

;mx ≤ xi ≤Mx, my ≤ yi ≤My for all i
}
,
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and the following constants

Mx , max
i,j

Fi,j∑
i Fi,j

mx , min
i,j

Fi,j∑
i Fi,j

My , max
i,j

Hi,j∑
iHi,j

my , min
i,j

Hi,j∑
iHi,j

.

In addition, we define the following operator for d = (x, y) ∈ Γ.

Td = T (x, y)

= ((T x (x, y)) , (T y (x, y))) ,

where

T xi (x, y) =

∑
j Fi,jx

a
jy

b
j∑

i

∑
j Fi,jx

a
jy

b
j

=
∑
j

Fi,j∑
i Fi,j

∑
i Fi,jx

a
jy

b
j∑

j

∑
i Fi,jx

a
jy

b
j

.

T yi (x, y) =

∑
j Hi,jx

c
jy
d
j∑

i

∑
j Hi,jxcjy

d
j

=
∑
j

Hi,j∑
iHi,j

∑
iHi,jx

c
jy
d
j∑

j

∑
iHi,jxcjy

d
j

.

It is easy to show that

mx ≤ T xi (x, y) ≤Mx,my ≤ T xi (x, y) ≤My

so that the operator T is from Γ to Γ, where Γ is compact.

To show that T is continuous, it suffices to show that T xi and T yi are continuous for all i.

Since the range is compact, these functions are trivially continuous.

Since Schauder’s fixed point theorem is applied for T, then there exits an solution to the

system. Also by construction, any fixed points satisfy

0 ≤ mx ≤ xi

0 ≤ my ≤ yi
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for all i.

A.1.2 Preliminary mathematical result

Lemma 2. Suppose that (x, y) satisfies

xi =

∑
jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j∑
i,jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

yi =

∑
jKjiB

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j∑
i,jKjiB

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

.

Then we have ∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j =
∑
i,j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j .

Proof. Note that

xi = λx
∑
j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j ,

where

λx =
∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

Multiply both sides by x
1−β

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i , which yields:

xi ×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)
= λx

∑
j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j ×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)
⇐⇒

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λx

∑
j

Kij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)

33



Now sum over all i and rearrange to solve for λx:

∑
i

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λx

∑
i

∑
j

Kij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)
⇐⇒

λx =

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

∑
jKij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

)

=

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

[∑
jKij

(
B

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

)]
×
(
x

1−β
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i

) .
Now let us consider the second equilibrium condition:

yi = λy
∑
j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

where

λy =
∑
i,j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j .

Multiply both sides by x
α

β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i :

yi ×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)
= λy

∑
j

Kji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)
⇐⇒

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λy

∑
j

Kji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)

Now sum over all i and rearrange to solve for λy:

∑
i

x
α

β+α−1

i y
β

β+α−1

i B
1

1−α−β
i = λy

∑
i

∑
j

Kji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)
⇐⇒

λy =

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

∑
jKji

(
B

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

)
×
(
x

α
β+α−1

i y
1−α

β+α−1

i B
1

1−α−β
i

)

=

∑
i x

α
β+α−1

i y
β

β+α−1

i B
1

1−α−β
i∑

i

[∑
jKij

(
x

α
β+α−1

j y
1−α

β+α−1

j B
1

1−α−β
j

)]
×
(
B

1
1−α−β
i x

1−β
α+β−1

i y
β

α+β−1

i

) .
Comparing the expressions for λx and λy, we immediately have λx = λy ≡ λ.
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A.1.3 Existence for trade models

We now consider the existence of a strictly positive solution to the general equilibrium gravity

model defined by equations (8) and (9).

Proof. We apply Lemma 1 with

a =
α

1− α− β
, b =

1− α
α + β − 1

c =
1− β

α + β − 1
, d =

β

α + β − 1

Fi,j = KijB
1

1−α−β
j , Hi,j = KjiB

1
1−α−β
j .

Then there exits a solution to the system. Define t as follows

t =

(∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

) 1
1− α

α+β−1

.

From the lemma, we have

∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j =
∑
i,j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j = t1−
α

α+β−1 = t
β−1

α+β−1 .

Then if we show that (tx, y) is a solution to

(txi) =
∑
j

KijB
1

1−α−β
j (txj)

α
α+β−1 y

1−α
α+β−1

j

yi =
∑
j

KjiB
1

1−α−β
j (txj)

1−β
α+β−1 y

β
α+β−1

j ,

then (tx, y) is a solution to a general equilibrium trade model.

To see this, note that

txi = t1−
α

α+β−1

∑
jKijB

1
1−α−β
j (txj)

α
α+β−1 y

1−α
α+β−1

j∑
i,jKijB

1
1−α−β
j (xj)

α
α+β−1 y

1−α
α+β−1

j

=
∑
j

KijB
1

1−α−β
j (txj)

α
α+β−1 y

1−α
α+β−1

j .

The equality holds by construction of t. Thus first equation is satisfied. To show second

equation, it suffices to show

∑
i,j

KjiB
1

1−α−β
j (txj)

1−β
α+β−1 y

β
α+β−1

j = 1.
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This holds since∑
i,j

KjiB
1

1−α−β
j (txj)

1−β
α+β−1 y

β
α+β−1

j = t
1−β

α+β−1

∑
i,j

KjiB
1

1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

=

∑
i,jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j∑
i,jKjiB

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

= 1,

where the last line followed from Lemma 2.9

A.1.4 Uniqueness for trade models

We now consider the uniqueness of the general equilibrium gravity model. We prove unique-

ness by contradiction.

Proof. For Part ii), uniqueness, we make use of the same Proposition. Gravity models imply

the following restrictions to the coefficients of equations (29) and (30):

a =
α

α + β − 1
, b =

1− α
α + β − 1

c = a− 1 =
1− β

α + β − 1

d = b+ 1 =
β

α + β − 1
.

Suppose that there are two solutions (x, y) , (x̃, ỹ) for the system. Also assume that there

are no constants t such that

x = tx̃. (31)

Without loss of generality, we can assume that for all i,∑
j

Fi,j =
∑
j

Hi,j = 1.

Also we can take (x̃, ỹ) = (1, 1) since

1 =
∑
j

Fi,j1
a1b

1 =
∑
j

Hi,j1
c1d.

9If β = 1, then this last line is not true, since the equation for y is no longer dependent on x. In this case,
however, existence and uniqueness follows immediately from Theorem 1 of Karlin and Nirenberg (1967), as
the two integral equations can be treated as distinct from each other.
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Define

mx = min
i
xi

Mx = max
i
xi

my = min
i
yi

My = max
i
yi.

From (31), mx (my) is strictly less than Mx (My) respectively.

Then we can show that;

maxxi = Mx = max
∑
j

Fi,jx
a
jy

b
j ≤Ma

xm
b
y

max yi = My = max
∑
j

Hi,jx
c
jy
d
j ≤ mc

xM
d
y

mx = minxi = min
∑
j

Fi,jx
a
jy

b
j ≥ ma

xM
b
y

my = min yi = min
∑
j

Hi,jx
c
jy
d
j ≥M c

xm
d
y.

It is easy to show10

(
Mx

mx

)1−a(
My

my

)b
< 1(

Mx

mx

)c(
My

my

)1−d

< 1.

10To obtain first equation, multiply first and third equation.

Mx

(
mb
xM

b
y

)
≤ mx

(
Ma
xm

b
y

)
,

which is equivalent to (
Mx

mx

)1−a(
My

my

)b
< 1.

For second equation, multiply second and fourth equation.

(My)M c
xm

d
y ≤

(
mc
xM

d
y

)
my,

which implies (
Mx

mx

)c(
My

my

)1−d

≤ 1
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Since c = a− 1, and d = b+ 1, (
Mx

mx

)1−a(
My

my

)b
< 1(

Mx

mx

)a−1(
My

my

)−b
< 1.

Therefore the following holds.(
Mx

mx

)1−a(
My

my

)b
< 1 <

(
Mx

mx

)1−a(
My

my

)b
,

which is a contradiction.

A.2 Proof of Theorem 2

Proof. Part i) This relation comes from the balanced trade conditions and labor market

clearing conditions. ∑
i

Xi,j =
∑

Xj,i,

which is equivalent to

KA
i γi

KB
i δi

=

∑
j K̃i,jK

A
j γj∑

j K̃i,jKB
j δj

=
∑
j

K̃i,jK
B
j δj∑

j

(
K̃i,jKB

j δj

) × KA
j γj

KB
j δj

.

It is easy to show that
KA
i γi

KB
i δi

= 1

is a solution to the problem. From the Perron-Frobenius theorem, this solution is unique up

to scale. Therefore for some κ, we have

γiK
A
i = κδiK

B
i . (32)

Part ii) The relation (32) implies

yi =
γi
δi
xi = κ

KB
i

KA
i

xi.
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Substituting this expression into (8), we get

xi = κ
1−α

α+β−1

∑
j

K̃i,jK
A
i K

B
j B

1
1−α−β
j

(
KB
i

KA
i

) 1−α
α+β−1

x
1

α+β−1

j . (33)

Also if we substitute the same expression into (9), we get the exact same expression. There-

fore one of the two equations is trivially satisfied. From Theorem 1 of Karlin and Nirenberg

(1967), the system has an unique solution if
∣∣∣ 1
α+β−1

∣∣∣ ≤ 1, which is equivalent to (10).

A.3 Proof of Theorem 3

A.3.1 Part (i): The trade equilibrium maximizes world income.

The proof of part (i) of Theorem 3 proceeds in three parts. First, we provide the necessary

and sufficient conditions of a maximization problem that will turn out to be a positive

monotonic transformation of world income. Second, we show that the general equilibrium

gravity model satisfies these conditions. Finally, we show that the object being maximized

is indeed a positive monotonic transformation of world income.

Step #1: Necessary and sufficient conditions for a maximization problem

Proof. Assume that α + β ≥ 2. The case where α + β ≤ 0 is similarly proved. We proceed

as follows. We first derive the FONCs for a maximization problem, which implies that from

Kuhn-Tucker theorem, the solution satisfies the associated FONCs. Second we show that

the general equilibrium trade model solves the FONCs.

Consider the following maximization problem:11

max
{γ̃i}i∈S

∑
i∈S

∑
j∈S

K̃ij γ̃iγ̃j s.t.
∑
i∈S

Bi

(
KA
i

)−α (
KB
i

)−β
γ̃α+βi ≤ 1, (34)

where γ̃i = KA
i γi. This part of the proof shows (1) that there exists a unique γ̃ that satisfies

the first order conditions of this maximization problem; (2) that there exists a solution to

the maximization problem; and (3) that the maximization must be reached at an interior

point, thereby showing that the unique γ̃ that satisfies the first order conditions is also the

unique γ̃ that solves the maximization problem.

11For the case where α+ β ≤ 0, the constraint becomes∑
i∈S

Bi
(
KA
i

)−α (
KB
i

)−β
γ̃α+βi ≥ 1.
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The associated Lagrangian is:

L = γ̃T K̃γ̃ + λ

[
1−

∑
i∈S

Bi

(
KA
i

)−α (
KB
i

)−β
γ̃α+βi

]
.

The first order conditions are:

2
∑
j

K̃i,j γ̃j = (α + β)λ
(
Bi

(
KA
i

)−α (
KB
i

)−β
γ̃α+β−1i

)
.

The associated Lagrange multiplier λ is expressed as:

λ =
2

α + β
γ̃T K̃γ̃ > 0. (35)

The strict inequality follows from the fact that
∑

j K̃i,j is strictly positive and at the optimal

γ∗ the objective function is strictly positive.12

We now redefine the variables so as to allow us to apply Theorem 1 in Karlin and

Nirenberg (1967):

Fi,j =
K̃i,j

Bi (KA
i )
−α

(KB
i )
−β

xi = γ̃α+β−1i

a =
1

α + β − 1
.

Then with these variables the FONCs are rewritten;∑
j

Fi,jx
a
j = λxj.

As we did in the proof for Theorem 1, first we solve the following sub-problem.

xj =

∑
j Fi,jx

a
j∑

i,j Fi,jx
a
j

.

Theorem 1 in Karlin and Nirenberg (1967) assets that there exits a solution for any F and

a. Furthermore if |a| ≤ 1, which is assumed, a solution is unique. Consider (txi)i where

t =

((∑
i,j K̃i,jx

a
i x

a
j

)−1 (∑
i,j Fi,jx

a
j

)) 1
1+a

. It is easy to show that (txi)i satisfy;

12More formally we can choose a sufficiently small ε such that γ̃i = ε satisfies the constraint and the attains
a positive value for the objective function.
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txj =
t1−a∑
i,j Fi,jx

a
j

∑
j

Fi,j (txj)
a

=

(
t2a
∑
K̃i,jx

a
i x

a
j

)−1∑
i,j Fi,jx

a
j∑

i,j Fi,jx
a
j

∑
j

Fi,j (txj)
a

=

(∑
i,j

K̃i,j (txi)
a (txj)

a

)−1∑
j

Fi,j (txj)
a .

Therefore γ̃i = (txi)
a solves

(γ̃i)
α+β−1

(∑
i,j

K̃i,j γ̃iγ̃j

)
=

∑
j

Fi,j (γ̃j) .

Substituting F into the equation, we get

Bi

(
KA
i

)−α (
KB
i

)−β
(γ̃i)

α+β−1

(∑
i,j

K̃i,j γ̃iγ̃j

)
=
∑
j

K̃i,j (γ̃j) .

Set the Lagrange multiplier as follows.

λ =
2

α + β

(∑
i,j

K̃i,j γ̃iγ̃j

)
.

These two equations tell us that (γ̃i)i solves the FONCs for the maximization problem.

It is easy to show that: ∑
i

(
Bi

(
KA
i

)−α (
KB
i

)−β
γ̃α+βi

)
= 1.

which is implies the constraint is satisfied. Therefore we have shown that if α + β ≥ 2 (or

α+ β ≤ 0), there exits a unique {γ̃} which solves the FONCs for the maximization problem

(34).

It remains to show that solving the FONCs for the maximization problem are sufficient

for finding the maximization. This requires (1) showing that there exists a maximum for

the maximization problem (34); and (2) showing that the maximization does not occur at a

boundary (where the FONCs may not hold).

That there exists a maximum for the maximization problem (34) follows from compact-
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ness of the constraints. Remember that the constraint set is given by∑
i∈S

Bi

(
KA
i

)−α (
KB
i

)−β
γ̃α+βi = 1

Then the constraint set is trivially closed, and bounded.13

We establish that the maximization does not occur at a boundary in the following lemma:

Lemma 3. Any solution γ∗ to the maximization problem (34) must be strictly positive, i.e.

γ∗i > 0 for all i ∈ S.

Proof. Suppose not, i.e. there exists an i ∈ S such that γ∗i = 0. We show that this

cannot be a maximum. Let ε > 0 and consider the alternative γ̃ where γ̃i = ε and

γ̃j =

((
γ∗j
)α+β − Bi(KA

i )
−α

(KB
i )
−β

Bj(KA
j )
−α

(KB
j )
−β

1
N−1ε

α+β

) 1
α+β

. Note that since the solution γ∗ satisfies

the constraint, i.e.
∑

i

(
Bi

(
KA
i

)−α (
KB
i

)−β
(γ∗i )

α+β
)

= 1, so too does the alternative γ̃, i.e.∑
i

(
Bi

(
KA
i

)−α (
KB
i

)−β
(γ̃i)

α+β
)

= 1. Intuitively, we have chosen an alternative γ̃ where we

increase γ∗i by ε by taking an equal amount from all j 6= i. We can write the change on the

objective function, Z (ε) moving from γ∗ to γ̃ as follows:

Z (ε) ≡
∑
i∈S

∑
j∈S

K̃ijK
A
i K

A
j γ
∗
i γ
∗
j −

∑
i∈S

∑
j∈S

K̃ijK
A
i K

A
j γ̃iγ̃j =⇒

Z (ε)

2
=ε

∑
j∈S

K̃ijK
A
i K

A
j

((
γ∗j
)α+β − Bi

(
KA
i

)−α (
KB
i

)−β
Bj

(
KA
j

)−α (
KB
j

)−β 1

N − 1
εα+β

) 1
α+β

−
∑
j 6=i

∑
k 6=i

(K̃ijK
A
i K

A
j

γ∗j −
((
γ∗j
)α+β − Bi

(
KA
i

)−α (
KB
i

)−β
Bj

(
KA
j

)−α (
KB
j

)−β 1

N − 1
εα+β

) 1
α+β


×

γ∗k −
(

(γ∗k)
α+β −

Bi

(
KA
i

)−α (
KB
i

)−β
Bk (KA

k )
−α

(KB
k )
−β

1

N − 1
εα+β

) 1
α+β


13To get the bounds note that if (γ̃i) satisfies the constraint, then

0 ≤ γ̃i ≤

{∑
i∈S

Bi
(
KA
i

)−α (
KB
i

)−β}−1
.

Therefore the constraint set is included by{
(γ̃i) ∈ RN ;

∑
i∈S

Bi
(
KA
i

)−α (
KB
i

)−β
γ̃α+βi ≤ 1

}
⊆

[
0,

{∑
i∈S

Bi
(
KA
i

)−α (
KB
i

)−β}]N
.
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Taking the derivative of Z (ε) evaluated at ε = 0 yields:

Z ′ (0) =
∑
j∈S

K̃ijK
A
i K

A
j γ
∗
j > 0,

i.e. the feasible deviation γ̃ increases the objective function. This is a contradiction since γ∗

was supposed to maximize the objective function, thereby proving the lemma.14

The previous lemma shows that we can constrain our focus on interior solutions where the

FONCs must be satisfied. We can also check the second order conditions locally to see that

the maximization problem (34) is indeed a maximization. The Hessian of the Lagrangian is:

H (γ̃) = 2K̃ − λ (α + β) (α + β − 1)


C1γ̃

α+β−2
1 · · · 0
...

. . .
...

0 · · · CN γ̃
α+β−2
N



= 2K̃ − 2γ̃T K̃γ̃ (α + β − 1)


C1γ̃

α+β−2
1 · · · 0
...

. . .
...

0 · · · CN γ̃
α+β−2
N

 .
Note that:

γ̃TH (γ̃) γ̃ = 2γ̃T K̃γ̃ − 2γ̃T K̃γ̃ (α + β − 1) γ̃T


C1γ̃

α+β−2
1 · · · 0
...

. . .
...

0 · · · CN γ̃
α+β−2
N

 γ̃ ⇐⇒
γ̃TH (γ̃) γ̃ = 2γ̃T K̃γ̃ (1− (α + β)) ≤ 0,

since α+β ≥ 2, i.e. the second order conditions in the direction of γ̃ are negative, confirming

that in this direction, the problem (34) is indeed a maximization problem.15 When α +

β ≤ 0, note that the second term of the Hessian is positive, which yields γ̃TH (γ̃) γ̃ =

2γ̃T K̃γ̃ (α + β) , which is also negative.

14When α + β ≤ 0, this lemma is unnecessary since it is immediately obvious from the constraint∑
i

(
Bi
(
KA
i

)−α (
KB
i

)−β
(γi)

α+β
)

= 1 that γi 6= 0.
15If it was the case that the Hessian was negative definite, then we could have simply relied upon the second

order sufficiency conditions. However, it turns out that the Hessian is indefinite, which is why we instead
show (1) there is a unique solution satisfying the necessary first order conditions; and (2) the maximization
cannot be achieved at a boundary where the first order conditions may not hold.
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Step #2: The general equilibrium gravity model solves the maximization prob-

lem.

Proof. Now we show that a solution to a general equilibrium gravity model satisfies the

FONCs for the maximization (and hence are the unique solution to the maximization problem

(34)). If (γi, δi) is a solution to a general equilibrium gravity model, then (γi, δi) solves

KB
i δi = κKA

i γi∑
i

Bi (γi)
α (δi)

β = Y W

Bi (γi)
α (δi)

β =
∑
j

Ki,jγiδj.

Substituting first equation into the other conditions,

κβ
∑
i

Bi

(
KA
i

)−α (
KB
i

)−β
γ̃α+βi = Y W (36)

κβ−1
(
Bi

(
KA
i

)−α (
KB
i

)−β
(γ̃i)

α+β−1
)
i

= (γ̃)T K̃. (37)

Note here that κ is used for normalization, and take κ as follows:

κ =
(
Y W

) 1
β , (38)

which is equivalent to ∑
i

Bi

(
KA
i

)−α (
KB
i

)−β
γ̃α+βi = 1.

This equation is one of the FONCs for the maximization problem.

To obtain the other set of the conditions, multiply γ̃ on (37) and sum over i, we get

κβ−1
∑
i

Bi

(
KA
i

)−α (
KB
i

)−β
(γ̃i)

α+β

︸ ︷︷ ︸
=1

= κβ−1 = (γ̃)T K̃ (γ̃) . (39)

Then (36) simplifies to:

(γ̃)T K̃ = κβ−1
(
Bi

(
KA
i

)−α (
KB
i

)−β
(γ̃i)

α+β−1
)
i

= (γ̃)T K̃ (γ̃)
(
Bi

(
KA
i

)−α (
KB
i

)−β
(γ̃i)

α+β−1
)
i
,

which is the other FONC of the maximization problem. We have hence shown that the
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general equilibrium gravity model is the unique solution to the maximization problem (34).

Step #3: The maximization problem maximizes world income.

Proof. It remains to show that any solution to the maximization problem maximizes world

income. Combining equations (38) and (39), we have that:

(
(γ̃)T K̃ (γ̃)

) β
β−1

= Y W ,

i.e. the maximand of (34) is monotonically increasing in Y W as long as β
β−1 > 0. Note

that we could have done the entire proof maximizing the δ instead of maximization γ; in

this case, following the same methodology as above, it is straightforward to show that the

maximand of (34) would be monotonically increasing in Y W as long as α
α−1 > 0. Note that

the assumption α+β ≥ 2 (or α+β ≤ 0) implies either β
β−1 > 0 or α

α−1 > 0. Hence, since the

solution of the general equilibrium gravity model, maximizes (γ̃)T K̃ (γ̃), it also maximizes

Y W , thereby completing the part (i) of the proof.

A.3.2 Part (ii): The trade equilibrium maximizes a weighted average of world

welfare.

Proof. From part (i) of Proposition 3, we know that if part (ii) of Theorem 1 is satisfied, the

equilibrium of the general equilibrium gravity model maximizes world income subject to trade

being balanced in all regions and a normalization on the factor market clearing condition.

As a result, it is sufficient to show that world income can be written as a weighted average

of welfare in each country, i.e.:

∑
i

∑
j

Xij = c

(∑
i

ωi (W
ρ
i )η
) 1

η

,

where ρ > 0, some constant η, weights ωi > 0 such that
∑

i ωi = 1 are functions solely of

exogenous model parameters, and c is a constant common to all countries (which hence does

not affect the maximization). Recall that λii ≡ Xii
Yi

, which combining the gravity structure

of trade flows from equation (1) and the factor market clearing condition from equation (4)
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can be written as:

λii =
Kiiγiδi

Biγαi δ
β
i

⇐⇒

γi =

(
λiiBi

Kii

) 1
2−(α+β)

(
δi
γi

) β−1
2−(α+β)

.

Substituting this expression into the factor market clearing condition allows us to write the

income in region i solely as a function of λii, the ratio of the destination to origin fixed effect,

and exogenous model parameters:

Yi = Biγ
α
i δ

β
i ⇐⇒

Yi = B
2

2−(α+β)

i

(
λii
Kii

) α+β
2−(α+β)

(
δi
γi

) α−β
α+β−2

= κβBi

(
KA
i

)−α (
KB
i

)−β
γ̃α+βi .

Then the trade openness is expressed by

λii =
Kiiγiδi

Biγαi δ
β
i

= κ
γ̃iγ̃i

κβBi (KA
i )

α
(KB

i )
β
γ̃α+βi

=
κ1−β

Bi (KA
i )
−α

(KB
i )
−β
γ̃α+β−2i

.

Then the adjusted origin effect γ̃i is a function of the trade openness for country i:

γ̃i =

[
λ−1ii

κ1−β

Bi (KA
i )
−α

(KB
i )
−β

] 1
α+β−2

.

Substituting this expression into the constraint considered in the maximization problem,∑
i

Bi

(
KA
i

)−α (
KB
i

)−β
γ̃α+βi = 1.

allows us to write the auxiliary variableκ as:

κβ−1 =

{∑
i

[
Bi

(
KA
i

)−α (
KB
i

)−β]1− α+β
α+β−2

λ
− α+β
α+β−2

ii

}α+β−2
α+β

.
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From equation (35), we know κ is related with the maximization problem

κβ−1 = γ̃K̃γ̃ =

{∑
i

[
Bi

(
KA
i

)−α (
KB
i

)−β]1− α+β
α+β−2

λ
− α+β
α+β−2

ii

}α+β−2
α+β

.

Therefore the maximization problem attains the weighted welfare maximization since trade

openness λii is inversely related with nominal income

Wi = CW
i λ

−ρ
ii .

To see this, we substitute welfare equation (12) into the trade openness for country i, λii,

yielding:

γ̃K̃γ̃ =

{∑
i

[
Bi

(
KA
i

)−α (
KB
i

)−β]1− α+β
α+β−2

(
CW
i

Wi

)− 1
ρ

α+β
α+β−2

}α+β−2
α+β

=

{∑
i

ωi

(
W

1
ρ

i

)η} 1
η

,

where the weights are given by ωi =
[
Bi

(
KA
i

)−α (
KB
i

)−β] −2
α+β−2 (

CW
i

)− 1
ρ

α+β
α+β−2 , and η =

α+β
α+β−2 , which completes the proof.

A.4 Proof of Proposition 1

Proof. First some notation is necessary. Define yi ≡ ln γi, zi ≡ ln δi, kij ≡ lnKij. Let

~y ≡ {yi} and ~z ≡ {zi} both be N × 1 vectors and let ~x ≡ {~y; ~z} be a 2N × 1 vector. Let
~k ≡ {kij} be a N2× 1 vector. Now consider the function f

(
~x;~k
)

: R2N ×RN2 → R2N given

by:

f
(
~x;~k
)

=


[
Bi (exp {yi})α (exp {zi})β −

∑
j exp {ki,j} (exp {yi}) (exp {zj})

]
i

...[
Bi (exp {yi})α (exp {zi})β −

∑
j exp {kj,i} (exp {yj}) (exp {zi})

]
i

 .
In the general equilibrium trade model, we have:

f
(
~x;~k
)

= 0.
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Full differentiation of the function hence yields:

f~xD~k~x+ f~k = 0, (40)

where f~x is the 2N × 2N matrix:

f~x

(
~x;~k
)

=

(
(α− 1)Y βY −X
αY −XT (β − 1)Y

)
,

where Y is a N ×N diagonal matrix whose ith diagonal is equal to Yi and X is the N ×N
trade matrix.

Similarly, f~k is a 2N ×N2 matrix that depends only on trade flows:

f~k

(
~x,~k
)

= −



X11 · · · X1N 0 · · · 0 · · · 0 · · · 0

0 · · · 0 X21 · · · X2N · · · ...
. . .

...
...

...
...

...
...

...
. . . XN1 · · · XNN

X11 · · · 0 X21 · · · 0 · · · XN1 · · · 0

0
. . .

... 0
. . .

... · · · 0
. . .

...

0 · · · X1N 0 · · · X2N · · · 0 · · · XNN


If f~x was of full rank, we could immediately invert equation (40) (i.e. apply the implicit

function theorem) to immediately yield:

D~k~x = − (f~x)
−1 f~k.

However, because Walras Law holds and we can without loss of generality apply a normal-

ization to {γi} and {δi} (see Online Appendix B.1 for details), we effectively have N − 1

equations and N − 1 unknowns, i.e. matrix f~x is of rank 2N − 1. Hence, there exists an

infinite number of solutions to equation (40), each corresponding to a different normalization.

To find the solution that corresponds to our choice of world income as the numeraire, note

that from equation (5): ∑
l

Blγ
α
l δ

β
l = Y W =⇒

∑
l

Yl

(
α
∂ ln γl
∂ lnKij

+ β
∂ ln δl
∂ lnKij

)
= 0. (41)

We claim that if ∂ ln γl
∂ lnKij

= Xij × (Al,i + AN+l,j) − c and ∂ ln δl
∂ lnKij

= Xij × (AN+l,i + Al,j) − c,
where c ≡ 1

YW (α+β)
Xij

∑
l Yl (α (Al,i + AN+l,j) + β (AN+l,i + Al,j)), then ∂ ln γl

∂ lnKij
and ∂ ln δl

∂ lnKij
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solve equations (40) and (41). It is straightforward to see that our assumed solution ensures

equation (40) holds, as the generalized inverse is a means of choosing from one of the infinitely

many solutions; see James (1978). It remains to scale the set of elasticities appropriately

to ensure that our normalization holds as well. Given our definition of the scalar c, it is

straightforward to verify that equation (41) holds:

∑
l

Yl

(
α
∂ ln γl
∂ lnKij

+ β
∂ ln δl
∂ lnKij

)
=

∑
l Yl(α (Xij × (Al,i + AN+l,j)− c) +

+β (Xij × (AN+l,i + Al,j)− c))

=
Xij

∑
l Yl (α (Xij × (Al,i + AN+l,j)) + β (Xij × (AN+l,i + Al,j)))

−c (α + β)
∑

l Yl

=
Xij

∑
l Yl (α (Xij × (Al,i + AN+l,j)) + β (Xij × (AN+l,i + Al,j)))−(

1
YW (α+β)

Xij

∑
l Yl (α (Al,i + AN+l,j) + β (AN+l,i + Al,j))

)
(α + β)Y W

= 0,

i.e. equation (41) also holds. More generally, different choices of c correspond to different

normalizations. A particularly simple example is if we choose the normalization γ1 = 1.

Since this implies that ∂ ln γ1
∂ lnKij

= 0, c = Xij × (A1,i + AN+1,j). In this case, however, an

alternative procedure is even simpler: the elasticities for all i > 1 can be calculated directly

by inverting the (2N − 1) × (2N − 1) matrix generated by removing the first row and first

column of f~x.

A.5 Proof of Proposition 3

Proof. From the gravity equation (1) we have:

Xij = Kijγiδj ⇐⇒

Kij =
Xij

γiδj
(42)

Combining factor market clearing (4) with goods market clearing yields:

Biγ
α
i δ

β
i =

∑
j

Xij ⇐⇒

γαi δ
β
i =

∑
j Xij

Bi

. (43)
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The gravity equation (1) yields the following relationship between origin and destination

fixed effects:

Xii = Kiiγiδi ⇐⇒

δi =
Xii

Kiiγi
. (44)

Combining equations (43) and (44) to solve for γi and δi yields:

γi =

(∑
j Xij

Bi

) 1
α−β
(
Xii

Kii

) β
β−α

and δi =

(
Xii

Kii

) α
α−β
(∑

j Xij

Bi

) 1
β−α

,

which substituting into equation (42) yields an expression for trade frictions Kij that depends

only on observed model parameters and trade flows

Kij = Xij ×

(∑
kXjk∑
kXik

× Bi

Bj

× Xβ
ii

Xα
jj

×
Kα
jj

Kβ
ii

) 1
α−β

,

thereby proving the claim.

A.6 Proof of Proposition 2

Proof. We want to rewrite the equilibrium conditions in changes by defining (x̂i) = x′i/xi.

Starting from (6) we have

γ̂αi δ̂
β
i =

∑
j

K ′ijγ
′
iδ
′
j∑

jKijγiδj
=⇒

γ̂αi δ̂
β
i =

∑
j

πijK̂ij γ̂iδ̂j =⇒

γ̂α−1i δ̂βi =
∑
j

πijK̂ij δ̂j
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where πij = Xij/
∑

j Xij represents the exporting shares. Similarly we can rewrite the second

equilibrium condition, Equation (7), in changes as

γ̂αi δ̂
β
i =

∑
jK

′
jiγ
′
jδ
′
i∑

jKjiγjδi
=⇒

γ̂αi δ̂
β
i =

∑
j

λijK̂jiγ̂j δ̂i =⇒

γ̂αi δ̂
β−1
i =

∑
j

λijK̂jiγ̂j

where λij = Xij/
∑

iXij represents the import shares. This system of equations in changes

is the same as the system of equations in levels. As long as λij, πij are the same and α,β are

the same all the gravity models give the same changes in γi, δj for a given change in Kij.

A.7 Proof of Proposition 4

The basic idea is the same as the proof of Theorem 1; see Appendix A.1.

Proof. Consider the following subproblem.

xi =

∑
jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j∑
i,jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

yi =

∑
jKjiB

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j∑
i,jKjiB

1
1−α−β
j x

1−β
α+β−1

j y
β

α+β−1

j

.

From the proof of Theorem 1, there exists (x, y) satisfies these two equations. Now consider

(tx, y) .

txi = t

∑
jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j∑
i,jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

=
t1−

α
α+β−1∑

i,jKijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

∑
j

KijB
1

1−α−β
j (txj)

α
α+β−1 y

1−α
α+β−1

j .
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Geography models require that

t1−
α

α+β−1∑
i,jKijB

1
1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

= λ1−β =

∑iA
−σ
i B

1
1−α−β

2σ−1
σ−1

i (txi)
1

α+β−1(α+(1−β) σ
σ−1) y

1
α+β−1(1−α+β σ

σ−1)
i(

L̄
)1+aσ+(σ−1)b

1−β

,

which implies

t =

∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j

∑iA
−σ
i B

1
1−α−β

2σ−1
σ−1

i x
1

α+β−1(α+(1−β) σ
σ−1)

i y
1

α+β−1(1−α+β σ
σ−1)

i(
L̄
)1+aσ+(σ−1)b

1−β


α+β−1

(β−1)( 2σ−1
σ−1 )−α

.

Then the associated welfare under (tx, y) satisfies

W 1−σ =

∑
iA
−σ
i B

1
1−α−β

2σ−1
σ−1

i x
1

α+β−1(α+(1−β) σ
σ−1)

i y
1

α+β−1(1−α+β σ
σ−1)

i(
L̄
)1+aσ+(σ−1)b ,

and ∑
i,j

KijB
1

1−α−β
j x

α
α+β−1

j y
1−α

α+β−1

j = λ1−β.

Therefore

txi = λ1−β
∑
j

Ki,jB
1

1−α−β
j (txj)

α
α+β−1 y

1−α
α+β−1

j .

From Lemma 2, we get

yi =
∑
j

KjiB
1

1−α−β
j (txj)

1−β
α+β−1 y

β
α+β−1

j ,

which implies that (tx, y) solves the geography model.

Repeating the exact same argument, we can show that under the same conditions, the

solutions are unique up to scale.
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B Online Appendix (not for publication)

This Online Appendix provides some additional theoretical results referenced in the paper.

B.1 Normalization

Without loss of generality we can normalize the world income.

Proposition 5. Suppose that (γ, δ) solves the non-linear system. Denote the associated

(x, y) . Then
(
tγ, t−

1−α
1−β δ

)
induces

(
t−

1−α
1−β x, ty

)
, which again solves the non-linear equation.

The world income Y W under
(
tγ, t−

1−α
1−β δ

)
is t

α−β
1−β . In particular if t = (Y w)−

1−β
α−β , then

Y W = 1.

Proof. Take (tγ, sδ) , where

s = t−
1−α
1−β .

Denote the associated (x (t, s) , y (t, s)) .Then

x (t, s) = tα−1sβx

= tα−1t−β
1−α
1−β x

= tα−1−β
1−α
1−β x

= t−
1−α
1−β x

y (t, s) = tαsβ−1y.

= ty.

It is easy to show

xi (t, s) = tα−1sβxi =
∑
j

KijB
1

1−α−β
j

(
tα−1sβxj

) α
α+β−1

(
tαsβ−1yj

) 1−α
α+β−1

=
∑
j

KijB
1

1−α−β
j (xj (t, s))

α
α+β−1 (xj (t, s))

1−α
α+β−1

yi (t, s) =
∑
j

KjiB
1

1−α−β
j

(
tα−1sβxj

) 1−β
α+β−1

(
tαsβ−1yj

) β
α+β−1

=
∑
j

KjiB
1

1−α−β
j (xj (t, s))

1−β
α+β−1 (yj (t, s))

β
α+β−1 .
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Thus a solution to the The world income induced by
(
tγ, t−

1−α
1−β δ

)
is

∑
i

Bi (tγi)
α
(
t−

1−α
1−β δi

)β
= tα−

1−α
1−β β

∑
i

Biγ
α
i δ

β
i

= t
α−β
1−β Y w.

In particular if we take t−
α−β
1−β = Y w, then the world income is normalized to 1.

B.2 Walras law

In the previous section, we showed that without loss of generality, we can normalize the

system of equations so that world income is equal to an arbitrary constant. In this section,

we show that Walras law holds, i.e. if all equilibrium equations but one hold with equality,

then the remaining one holds with equality as well. The two facts together imply that the

equilibrium is really defined by 2N − 1 equations and 2N − 1 unknowns.

To see this, define γ ≡ {γi}, δ ≡ {δi} and x ≡ {γ; δ}, where x is a 2N × 1 vector.

Consider the function f (x) : R2N → R2N given by:

f (x) =


[
Biγ

α−1
i δβi −

∑
jKijδj

]
i

...[∑
jKjiγj −Biγ

α
i δ

β−1
i

]
i

 .
Note that the general equilibrium trade model is in equilibrium if f (x) = 0. Walras law can

be written as:

f (x) · x = 0.

To see this is the case, note that:

f (x) · x = 0 ⇐⇒∑
i

(
Biγ

α−1
i δβi −

∑
j

Kijδi

)
× γi +

∑
i

(∑
j

Kijγi −Biγ
α
i δ

β−1
i

)
× δi = 0 ⇐⇒∑

i

Biγ
α
i δ

β
i −

∑
i

∑
j

Kijγiδi +
∑
i

∑
j

Kjiγjδi −
∑
i

Biγ
α
i δ

β
i = 0 ⇐⇒

0 = 0.

Hence, Walras law holds.
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B.3 Existence and Uniqueness using Gross Substitutes Method-

ology (a la Alvarez and Lucas (2007))

We will illustrate the application of the gross-substitute property to prove uniqueness equi-

librium in an excess demand system. This is a necessary step in the proof of Alvarez and

Lucas (2007) but it is not sufficient, as a number of other properties need to be proved for

an equation to be an excess demand system, as we discuss below.

Because of the complexity of the system that we analyze we cannot apply the gross-

substitutes property directly to equations (6) and (7).

Biγ
α−1
i δβi =

∑
j

Kijδj (45)

Combining gravity (1) with balanced trade (3) and the generalized labor marking clearing

condition (4) yields:

Biγ
α
i δ

β−1
i =

∑
j

Kjiγj (46)

In order to find the equation that can be used to prove, we need to eliminate one variable.

Use (7) to express δi as

δi =

(∑
s∈S γsKsi

Biγαi

) 1
β−1

(47)

into equation (6), we obtain

Biγ
α
i

(∑
s∈S γsKsi

Biγαi

) β
β−1

=
∑
j∈S

γi

(∑
s∈S γsKsj

Bjγαj

) 1
β−1

Kij ⇐⇒

B
1

1−β
i γ

α
1−β−1
i

(∑
s∈S

γsKsi

) β
β−1

=
∑
j∈S

(∑
s∈S γsKsj

Bjγαj

) 1
β−1

Kij (48)

We define the corresponding excess demand function might be

Zi (γ) =
1

γi

B 1
β−1

i γ
α+β−1
1−β

i

(∑
s∈S

γsKsi

) β
β−1

−
∑
j′∈S

(∑
s∈S γsKsj′

Bj′γαj′

) 1
β−1

Kij′


This system written as such needs to satisfy 5 properties to be an excess demand system and

the gross substitute property to establish existence and uniqueness (see Propositions 17.B.2,
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17.C.1 and 17.F.3 of Mas-Colell, Whinston, and Green (1995)). The six conditions are:

1. Z (γ) is continuous for γ ∈
(
∆
(
RN

+

))o
2. Z (γ) is homogenous of degree zero.

3. Z (γ) · γ = 0 (Walras’ Law).

4. There exists a k > 0 such that Zj (γ) > −k for all j.

5. If there exists a sequence wm�w0, where w0 6= 0 and w0
i = 0 for some i, then it must

be that:

maxj{Zj(wm)}�∞ (49)

and the gross-substitute property:

6. Gross substitutes property:
∂Z(wj)

∂wk
> 0 for all j 6= k.

Properties 1-3 are trivial by the way we define the system. Properties 4 and 5 are chal-

lenging and may require an analysis case-by-case which restrict further the set of parameters

that uniqueness applies. We thus only discuss the region where gross-substitutes applies. To

consider this system as an excess demand system and apply the tools originally developed

in Alvarez and Lucas (2007), we need to differentiate the expression above. We only use the

bracketed term without loss of generality. We have:

∂Zi (γ)

∂γj
=

β

β − 1
KjiB

1
1−β
i γ

α+β−1
1−β

i

(∑
s∈S

γsKsi

) 1
β−1

− 1

β − 1

∑
j′∈S,j′ 6=j

Kij′

(∑
s∈S γsKsj′

Bj′γαj′

)−β+2
β−1

Kjj′

−
− 1

β − 1
Kij

(∑
s∈S γsKsj

Bjγαj

)−β+2
β−1

[
KjjBjγ

α
j − αBjγ

α−1
j

∑
s∈S γsKsj′

Bjγαj

]

=
β

β − 1
KjiB

1
1−β
i γ

α+β−1
1−β

i

(∑
s∈S

γsKsi

) 1
β−1

− 1

β − 1

∑
j′∈S,j′ 6=j

Kij′

(∑
s∈S γsKsj′

Bj′γαj′

)−β+2
β−1

Kjj′

−
− 1

β − 1
Kij

(∑
s∈S γsKsj

Bjγαj

)−β+2
β−1

[
γjKjj − α

∑
s∈S γsKsj′

γj

]
Let β < 0 and α < 0 then the expression is positive and the gross-substitute property

holds. Similar results can be easily established for β = 0, α < 0 and β < 0, α = 0. The

same cannot be, in generally, established if β > 1 or α > 1 since the expression cannot

be signed in that case, and in particular we have found parametric specifications where the

gross-substitutes property may fail.16 Thus, the region that uniqueness applies with this

16In particular, we analyzed the Armington case with intermediate inputs as in Section 7.1.3. We can show
that this model for σ = 3 and γ = 1/4 corresponds to the case α, β > 1 but the gross-substitute condition
does not obtain in the case of many symmetric regions with symmetric trade costs or even two regions with
no trade costs.
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approach is α ≤ 0, β ≤ 0.

B.4 Comparative Statics when β = 0

Let us consider a particularly interesting special case, β = 0. We have in this case that the

equilibrium is characterized by

Biγ
α−1
i =

∑
j∈S

(∑
s∈S γsKsj

Bjγαj

)−1
Kij =⇒

γα−1i =
∑
j∈S

(
Bjγ

α
j∑

s∈S γsKsj

)
BiKij,

which is the standard single-equation gravity model that we find in papers such as Anderson

(1979); Eaton and Kortum (2002); Chaney (2008). We can rewrite this system re-written

using 4 as

Yi =
∑
j∈S

(
γiKij∑
s∈S γsKsj

)
Yj

In this last equation the technique developed by Dekle, Eaton, and Kortum (2008) can be

applied (see details in Arkolakis, Costinot, and Rodŕıguez-Clare (2012)) so that computing

the changes in γi require only knowledge of changes in Kij and initial trade and output levels

across all the models that can be captured by this formulation.

Notice that given equation 47 and the above equation we have for β = 0 that we can

express the origin fixed effects as a function of the destination fixed effects and parameters

γi =

(∑
jKijδj

Bi

) 1
α−1

. (50)
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